

Antimicrobial & antiparasitic use and resistance in British sheep and cattle: a systematic review

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Hennessey, M., Whatford, L., Payne-Gifford, S., Johnson, K. F. ORCID: https://orcid.org/0000-0002-5088-1163, Van Winden, S., Barling, D. and Häsler, B. (2020) Antimicrobial & antiparasitic use and resistance in British sheep and cattle: a systematic review. Preventive Veterinary Medicine, 185. 105174. ISSN 0167-5877 doi:

https://doi.org/10.1016/j.prevetmed.2020.105174 Available at https://centaur.reading.ac.uk/95051/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

Published version at: http://dx.doi.org/10.1016/j.prevetmed.2020.105174

To link to this article DOI: http://dx.doi.org/10.1016/j.prevetmed.2020.105174

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading Reading's research outputs online

- 1 Antimicrobial & antiparasitic use and resistance in British sheep and
- 2 cattle production systems: a systematic review

3

- 4 Mathew P. Hennessey*1, Louise Whatford1, Sophie Payne-Gifford2, Kate Johnson2, Steven
- 5 Van Winden¹, David Barling², Barbara Häsler¹
- 6 *Corresponding author; mphennessey@rvc.ac.uk
- 7 ¹ Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology
- 8 and Population Sciences, Royal Veterinary College, London, UK
- 9 ² Centre for Agriculture Food and Environmental Management, School of Life Science,
- 10 University of Hertfordshire

11

12

Abstract

- 13 A variety of antimicrobials and antiparasitics are used to treat British cattle and sheep to
- 14 ensure animal welfare, a safe food supply, and maintain farm incomes. However, with
- increasing global concern about antimicrobial resistance in human and animal populations,
- there is increased scrutiny of the use of antimicrobials in food-producing animals.
- 17 This systematic review sought to identify and describe peer and non-peer reviewed sources,
- 18 published over the last ten years, detailing the usage of, and resistance to, antimicrobials
- 19 and antiparasitics in sheep and cattle farming systems in Britain as well as identify
- 20 knowledge gaps. Applying the PRISMA review protocol and guidelines for including grey
- 21 literature; Scopus, Web of Science, Medline, and government repositories were searched
- for relevant articles and reports. Seven hundred and seventy titles and abstracts and 126
- 23 full-text records were assessed, of which 40 scholarly articles and five government reports
- 24 were included for data extraction.
- 25 Antibiotic usage in sheep and cattle in Britain appear to be below the UK average for all
- 26 livestock and tetracyclines and beta-lactam antibiotics were found to be the most
- 27 commonly used. However, the poor level of coverage afforded to these species compared
- 28 to other livestock reduced the certainty of these findings. Although resistance to some

antibiotics (using *Escherichia coli* as a marker) appears to have decreased in sheep and cattle in England and Wales over the last few years, levels of resistance remain high to the commonly used antibiotics. The small number and fragmented nature of studies identified by this review describing anthelmintic usage, and the lack of available national sales data, prevented the identification of trends in either sheep or cattle.

We recommend that additional efforts are taken to collect farm or veterinary level data on antimicrobial usage and resistance, especially in sheep, which appear from this review to be a neglected species in this field. Additionally, metrics produced by this data should be generated in a way to allow for maximum comparability across species, sectors, and countries.

39 40

41

29

30

31

32

33

34

35

36

37

38

Introduction

42 The use of antimicrobial and antiparasitic agents allow the control of pathogens in order to 43 increase animal health, welfare, and productivity in livestock settings which are challenged 44 by disease (Page and Gautier 2012). However, the increased use of these agents over the 45 last 70 years has led to the development of resistance to treatment with subsequent 46 negative health and economic effects (Heymann 2006). Antimicrobial resistance is 47 recognised as a global health threat, and is predicted to develop into a leading cause of human fatality by 2050, with an annual cost to the global economy of 100 trillion US dollars 48 49 (O'Neill 2016). Anthelmintic resistance while primarily species specific, is a major cause of 50 poor productivity and economic loss in livestock production systems globally (Shalaby 2013). 51 While the interactions between human, animal, and environmental microbiomes are 52 complex and not fully understood, evidence exists linking the use of antibiotics in one 53 microbiome to the prevalence of resistant organisms in another; occupational exposure to 54 livestock has been reported as a risk for human health, particularly among veterinarians, 55 farmers, livestock cullers, and slaughterhouse workers, who are exposed to organisms such 56 as livestock associated methicillin resistant Staphylococcus aureus (MRSA) and Coxiella burnetii (Klous et al. 2016; Rossi et al. 2017; Tang et al. 2017). While reducing the use of 57 58 antimicrobials in one population is known to be correlated with a reduction in resistance in 59 the same population, evidence linking reductions of use in livestock with reductions of

60 resistant organisms in humans is currently scarce (Dorado-García et al. 2016; Tang et al. 61 2017; Træholt Franck et al. 2017; Veldman et al. 2017; Bennani et al. 2020). Thus, while 62 measures to reduce antimicrobial usage in farming provide safeguarding mechanisms to 63 protect their therapeutic use in livestock, delineating the benefit such measures have to 64 protect the therapeutic use of antimicrobials in humans remains challenging. 65 Although there are calls to govern the use of antimicrobials at an international level 66 (Woolhouse et al. 2015; Padiyara et al. 2018), with guidance documents and action plans 67 from global bodies such as the World Health Organisation (WHO), Food and Agriculture Organisation (FAO), and the World Organisation for Animal Health (OIE), (FAO 2016; OIE 68 69 2016; WHO 2019), there is no legally binding international treaty (no Montreal or Kyoto 70 protocol) on how they should be used or documented (Heymann and Ross 2019). At a 71 national level, there are various best practice guidelines available to antimicrobial and 72 antiparasitic users in livestock in Britain, such as the UK government's One Health report on 73 antibiotic use and resistance (VMD 2019a) and five-year action plan for antimicrobial 74 resistance (DHSC 2019), the British Veterinary Association's policy statement on the 75 responsible use of antimicrobials in food producing animals (BVA 2019), and the industry led 76 initiatives Sustainable Control of Parasites in Sheep (SCOPS 2019) and Control of Worms 77 Sustainably (COWS 2019a). To date, the use of antimicrobials in livestock in Britain is 78 governed by EU (indirectly) and national legislation, which include the 2006 ban on 79 antibiotics being used as growth promoters and a 2018 proposal to restrict the routine use 80 of prophylactic and metaphylactic antibiotics (due to come into effect in 2022) (European 81 Parliament 2019). Although possible to repeal EU legislation post-Brexit, it is likely the UK 82 will adopt this legislation after its exit as the UK has been one of the forerunners of effective 83 voluntary strategies to reduce antimicrobial use driven by strong private-public partnerships 84 and private industry involvement and leadership. 85 In Britain, the Veterinary Medicines Directorate (VMD; an agency of the Department of 86 Environment Farming and Rural Affairs) regulates medicine registration and use. The 87 National Office of Animal Health (NOAH) and the Responsible Use of Medicines in 88 Agriculture Alliance (RUMA), two industry initiatives, set the background of what 89 antimicrobials are available and how they are used in livestock. And yet, apart from pigs and 90 poultry, the level of use of antimicrobials in British livestock production is relatively

unknown at farm level. Often, due to multi-species registration of medicines, amounts of 92 antimicrobials are stated at livestock level and not species or farm level. Although farmers are legally required to record the amount of antimicrobials they have used (DEFRA 2019), this data is used for individual farm management and farm assurance schemes, and not stored in a central database and therefore not readily available for antimicrobial usage surveillance. Usage of antibiotics is calculated through national sales data by the VMD, and while this inferred usage has good coverage for some livestock species (for example usage in salmon farming is 100% complete), there is only 30% coverage for dairy cattle, 5.5% coverage for beef cattle, and no known sales data coverage for sheep (VMD 2018). Additionally, as antimicrobials are often registered to multiple livestock species, sales cannot be reliably related to a certain species, unless the drug of use is solely registered to said species (for example products solely licensed to fish). The VMD collects antibiotic sales data and usage data. Antibiotic sales data are submitted by pharmaceutical companies to the VMD on their previous year's sales of antimicrobials authorised for use in animals in accordance with veterinary medicine regulations 2013. Antibiotic usage data are collected and submitted voluntarily by different livestock stakeholders to the VMD. This was the result of a collaboration between RUMA and the VMD and first published in 2014 with only usage data from the poultry sector until more data became available in the subsequent years. 110 Additionally, although the UK participates in mandatory EU-wide antibiotic resistance monitoring, in 2018 samples were only taken from poultry (VMD 2018), and so understanding the links between antimicrobial usage and resistance at the animal and farm level is challenging. Cattle and sheep are the two most commonly produced red meat species in Britain and understanding the level of usage and resistance of/to anti-infective agents is an important 116 aspect of the national agenda for controlling antimicrobial resistance and ensuring the 117 sustainability of domestic meat production, especially given the changing horizon ahead by leaving the governance of the EU behind. Consequently, the aim of this study was to conduct a systematic review on the use and resistance of antimicrobials and antiparasitics in 120 cattle and sheep production systems in Britain to provide an overview of the current situation and identify gaps in knowledge.

91

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

111

112

113

114

115

118

119

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Methods

Search strategy

A systematic literature review was conducted in line with PRISMA guidelines (Moher et al. 2015). First, an a priori protocol was produced which set out the primary and secondary objectives and the review question; namely to (1) identify and describe the existing literature detailing the level of usage and resistance to antimicrobials and antiparasitics in British¹ sheep and cattle production systems, and (2) identify any research gaps within this topic. Inclusion criteria were defined based on the population, intervention, comparison, outcomes of an article, and study design framework (PICOS, adapted from Chatterjee et al., (2018)) and included; English language, peer-reviewed texts and reports, which had a focus on sheep and/or cattle raised for meat production in Britain (England, Wales, and Scotland) published in the last ten years; further details are given in Supp. 1 (section 6). The search was conducted on the 11th and 12th June 2019 in Scopus, Web of Science and Medline databases. These three databases were selected to provide a high level of article recall across biomedical articles (Bramer et al. 2017). Search terms were derived using the Boolean operator OR for the following four themes, (1) anti-infective agent, (2) livestock population², (3) location, and (4) focus, before being combined using the Boolean operators 'AND' and 'AND NOT' (Table 1). The term 'UK or United Kingdom' was included at this stage to screen for any articles which may contain information on England, Scotland, or Wales.

Table 1. Search terms used to build the systematic review

Anti-infective agent	Livestock population	Location	Focus	Exclude
(antimicrobial* OR	AND (livestock OR	AND (GB OR "Great	AND (use OR	AND NOT
"anti microbial*" OR	cattle OR beef OR	Britain" OR	using OR	"New south
antibiotic* OR "anti	cow OR cows OR	England OR English	usage OR	wales"
biotic*" OR	calf OR calv* OR	OR wales OR welsh	resis* OR	

¹ British (English, Scottish, and Welsh) production systems were the focus of this review (rather than the whole of the United Kingdom)

² As around half of British beef is supplied from the dairy sector (through calves and cull cows) (AHDB 2017) the use of antibiotics in dairy cows was considered a relevant indicator of antibiotic use in red meat production.

antifungal* OR "anti	heifer* OR bull OR	OR Scotland OR	treatment*
fungal*" OR	bulls OR bovine OR	Scottish OR UK OR	OR incidence
antiprotozoal* OR	sheep OR lamb*	"united kingdom")	OR
"anti protozoal*" OR	OR ewe OR ewes	0 ,	prevalence
bactericid* OR	OR ram OR rams		OR risk OR
bacteriostat* OR anti-	OR ovine OR dairy)		"risk factor"
infective* OR "anti	,,		OR driver)
infective*" OR			
antiviral* OR "anti			
viral*" OR vermifuge*			
OR antiparasitic* OR			
"anti parasitic*" OR			
anthelmintic* OR			
antihelmintic* or			
wormer)			

To complement the search in scientific databases and achieve a complete systematic review, grey literature was searched using the methodology described by Mahood *et al.* (2014) to screen for data sets and reports. Rather than using open search engines (e.g. Google.com) which may result in unreliable sources, we targeted government data sets (Piasecki *et al.* 2018). The UK's government's data repositories³ were searched using the same search terms and parameters as described in Table 1. The only difference is that the government search function is not as sophisticated; only using the Boolean operator 'AND'.

Relevance screening and full text appraisal

After duplicate removal, two reviewers (MH and LW) independently reviewed the same 10% of the articles (n=69), selected by random using a random number generator in Excel, by title and abstract using the PICOS inclusion criteria. Once both reviewers had screened the sample articles, the conclusion on whether to include or exclude were compared in order to measure the inter-rater reliability using observed proportional agreement and Cohen's kappa, calculated manually using the method described by Cohen (1960) (Supp. 1; part 8). Observed proportional agreement between the two observers was 91.3%, with a corresponding Cohen's kappa of 0.812 indicating strong level inter-rater reliability IRR. The reviewers discussed the six articles on which they disagreed in order to reach a consensus

³ https://www.gov.uk/search/research-and-statistics

and to clarify the screening criteria. Given the high level of IRR, it was deemed acceptable to allow a single reviewer (MH) to screen the remaining articles and apply inclusion and exclusion criteria. Full text appraisal of the remaining articles was completed by two independent reviewers (MH and LW). Grey literature records were screened for relevance using the same PICOS inclusion criteria. During the review process citation lists were examined to check recall accuracy and to identify possible additional articles for inclusion in the review.

Data extraction

Data was extracted from both the included scientific articles and reports into Microsoft Excel (version 16.33); capturing data on the target population, area of interest, geographic location, study design, and outcome indicators (such as the number of farms using antimicrobials, percentage of bacterial isolates resistant to antibiotics, or proportion of farms with anthelmintic resistance) (a summary of which is presented in Supp. 2). Where reports contained disaggregated data (such as antibiotic resistance profiles by species, region, and year), this data was extracted and collated to allow visualisation of trends. Where sources contained data relating to the United Kingdom, rather than Britain (the focus of this review), data was disaggregated into constituent countries.

Results

Summary of articles

A total of 773 articles were screened for this review: 687 primary articles identified through searching Scopus, Web of Science, and Medline, 83 documents and reports identified through a grey literature search, and 3 additional articles identified by examining the citation lists of these primary articles. All articles were written in English; no exclusion of articles was done based on language.

Figure 1. Flow chart documenting literature retrieval and criteria used to select articles and reports for inclusion in the systematic review of anti-infective agents in sheep and cattle populations in Britain.

Descriptive statistics of selected articles and reports

Of the final 40 articles half focused solely on cattle, 19 focused solely on sheep, and one article contained data on both species. Most articles (29/40) contained data on resistance to anti-infective agents while fewer articles (15/40) contained data on the usage of anti-infective agents (Table 2). Four articles contained data relating to more than one area of interest.

Table 2. Topic areas covered in articles

Area of interest	Number of articles	% of articles
Antibiotic usage	10	25
Antibiotic resistance	16	40
Anthelmintic usage	6	15
Anthelmintic resistance	12	30
Anti-ectoparasitic resistance	2	5

NB. Total number of articles and reports exceeds 40 as some records contained data on more than one area of interest

The grey literature reports included two relevant data series; annual data for Veterinary Antimicrobial Resistance and Sales Surveillance (VARSS) published by the Veterinary Medicines Directorate (VMD) in 2013, 2015 and 2018, and reports on antibiotic usage from the task force for Responsible Use of Medicines in Agriculture (RUMA) published in 2018 and 2019.

A total of 36 articles (90%) covered population data from England, 25 (62.5%) from Wales, and 20 (50%) from Scotland (total number of articles exceeds 40 as many articles contained data on more than one country).

Antibiotic use

Antibiotic usage was detailed in the results of nine (23%) of the articles (five focused on cattle and four focused on sheep) (Table 3). Seven of the nine articles (78%) targeted farmers for data collection using a questionnaire-based approach and in the remaining two veterinary sales data were used.

The five reports used antibiotic sales data collected from veterinary practices and pharmaceutical companies as part of nationwide antibiotic use surveillance. For cattle, data on antibiotic usage were reported by RUMA and the VMD over a four- and five-year period, respectively. The RUMA reports use benchmark values for antibiotic usage in dairy cattle provided by two groups of dairy farms from Kite Consulting and Solway Vets (n=674) and

from Kingshay consultants (n=409). The 2019 RUMA report contained information on 3,458 beef farms (representing 5.5% of British production) and 2,978 dairy farms (30% of the national herd) collected from veterinary practice sales data by FarmVet Systems⁴. For sheep, the reports contained information on antibiotic usage from a single study by Davies *et al*. (2017) already included in this review.

Table 3. Studies on antibiotic usage

Study	Population	Location	Random sampling	Sample size (farms)	Method of data collection
Rutherford et al., 2015	Sheep	EN, WA	No	19	Questionnaire
Davies et al., 2017	Sheep	EN, SC, WA	No	207	Practice sales data
O'Kane et al., 2017	Sheep	EN	Yes	1294	Questionnaire
Lima et al., 2019	Sheep	EN, SC, WA	No	648	Questionnaire
Brunton et al., 2012	Cattle	EN, WA	Yes	557	Questionnaire
Horseman et al., 2013	Cattle	EN, SC, WA	Yes	84	Questionnaire
Hyde et al., 2017	Cattle	EN	No	332	Practice sales data
Fujiwara et al., 2018	Cattle	EN, WA, SC	No	148	Questionnaire
Higham et al., 2018	Cattle	EN, WA, SC	No	372	Questionnaire

EN = England, SC = Scotland, WA = Wales

The majority of the studies produced a proportional outcome metric related to a particular farming practice (for example; the % of farmers using antibiotics to treat lameness). Two studies used practice sales data and details of farm flock and herd compositions to generate estimates of antibiotic use in milligrams per population corrected unit (mg/PCU), defined daily doses vet (DDDvet), and defined course doses vet (DCDvet).

Antibiotic usage in sheep

The three studies looking at antibiotic usage in sheep from farm level data described usage regarding the treatment of footrot (one of the lead causes of lameness in sheep) and new born lambs; the proportion of farmers using antibiotic injections to treat footrot was found to be 24.4% (O'Kane *et al.* 2017), and the proportion of farmers administering prophylactic antibiotics to new born lambs was 26.8% in a general population of sheep farms (Lima et al., 2019) and 73.7% in a population of sheep farms which reported to have joint ill present (Rutherford et al., 2015).

⁴ FarmVet Systems, provided by software company VetIMPRESS; www.vetimpress.com

In the study by Davies *et al.* (2017) which looked at antibiotic use in 207 sheep farms, antibiotic usage was found to have a mean mg/PCU of 11.38 (s.d. 15.35, range 0-116.9), 1.47 DDDvet (s.d. 2.1), and 0.39 DCDvet per ewe per flock. The most common classes of antibiotics used were; tetracyclines (57.4%), penicillins (23.7%), and aminoglycosides (10.7%). Antibiotics were predominately administered parenterally (84.4% of the time).

Antibiotic usage in cattle

The five studies looking at antibiotic usage in cattle described the treatment of mastitis and lameness in dairy cattle. Mastitis was found to be the most common reason for the use of antibiotics (Higham *et al.*, 2018), with 93% of farmers using antibiotic intra-mammary tubes to treat mastitis during the lactation (Brunton *et al.*, 2012), and 96% of farmers using antibiotic dry cow intra-mammary tubes (Fujiwara *et al.*, 2018). Regarding lameness treatment (sole ulcer, sole bruising, and white line disease) 55% of farmers reported using injectable antibiotics as an option to treat clinical cases (Horseman et al., 2013).

In the study by Hyde et al. (2017) on 332 dairy farms, antibiotic usage was found to have a mean mg/PCU of 22.11 (range 0.36-97.79), 4.22 DDDvet (range 0.05-20.29), and 1.93 DCDvet (range 0.01-6.74). The most common type of antibiotics used were beta-lactams and aminoglycosides which comprised 42.8% and 20.9% respectively. Parenteral treatment

The VMD and RUMA reports contained antibiotic consumption data from 2014-2018 for dairy and beef production systems and are shown in tables 4 and 5.

Table 4. Antibiotic usage in cattle by class (VMD 2019b)

Antibiotic	Beef mg/kg (%)	% change 2017-2018	Dairy mg/kg (%)	% change 2017-2018
Penicillin and 1 st generation cephalosporins	5.0 (24)	+28	5.5 (32)	+8
Tetracyclines	7.3 (35)	-16	3.2 (19)	+14
Aminoglycosides	3.8 (18)	+31	3.5 (20)	+13
Macrolides	1.7 (8)	+13	1.9 (11)	-2
Trimethoprim/sulphonamides	1.3 (6)	+30	1.9 (11)	+20

was the most common route of administration (78.1% of the time).

	Baseline (2016) ⁵	2017-2018	2018-2019	% change compared to baseline
Total usage (mg/	/kg)			
FarmVet Systems	S			
Beef	-	19	21	
Dairy	26.2	16	17	-29.2
Kite consultants	& Solway Vets			
Dairy	26.2	23.7	21.9	-16.4
Kingshay consult	ants			
Dairy	26.2	20.5	17.3	-34.0
Intramammary t	ubes (DCDVet)			
UK-VARSS				
Dry cow	0.732	0.547	0.644	-12
Lactating cow	0.808	0.694	0.776	-4
Kite consultants	& Solway Vets			
Dry cow	0.732	0.5	0.46	-37
Lactating cow	0.808	0.66	0.55	-32
Kingshay consult	ants			
Dry cow	0.732	0.522	0.519	-29
Lactating cow	0.808	0.801	0.601	-26

Antibiotic resistance

Of the 40 articles, 16 contained information about antibiotic resistance; 12 (75%) about resistance in cattle, three (19%) in sheep and one of the studies contained information about both cattle and sheep (6%) (Table 6).

Nine of the studies (56%) conducted bacterial identification and resistance testing from samples collected from farms (e.g. from bulk milk tanks or clinical cases) while the remaining seven studies (44%) analysed pre-existing laboratory data. From the 16 studies, eight (50%) focused on *Enterobacteriaceae* species with *Escherichia coli* (*E. coli*) being the most common organism profiled, followed by *Staphylococcus aureus* (*S. aureus*) in 4/16 (25%). Two studies (13%) used a form of random sampling in their study design.

Table 6. Studies on antibiotic resistance

2	7	5	

Study	Population	Location	Random sampling		Source of samples	Organism
Wu et al., 2014	Sheep	EN, SC, WA	No	41	Pre-existing laboratory samples	Campylobacter jejuni

⁵ Baseline data taken from a single source; FarmVet Systems

Rutherford et al., 2015	Sheep	EN, WA	No	25	On farm sampling (sheep with joint ill)	Streptococcus dysgalactiae
Angell et al., 2015	Sheep	EN, WA	No	20 On farm sampling (sheep with CODD lesions)		Treponema spp.
Cheney et al., 2015	Sheep	EN, WA	No	101	Pre-existing laboratory samples	Escherichia coli
García-Álvarez et al., 2011	Cattle	EN	No	940	Pre-existing laboratory samples	Staphylococcus aureus
Warner et al., 2011	Cattle	EN, WA	No	65	On farm sampling (not stated from where)	Escherichia coli
Wu et al., 2012	Cattle	EN, WA	No	34	Pre-existing laboratory samples	Escherichia coli
Paterson et al., 2012	Cattle	EN, SC, WA	No	1500	On farm sampling (bulk milk tank)	Staphylococcus aureus
Randall et al., 2014	Cattle	EN, WA	Yes	103	On farm sampling (waste milk samples)	Entero- bacteriaceae
Ayling et al., 2014	Cattle	EN, SC, WA	No	45	Pre-existing laboratory samples	Mycoplasma bovis
Paterson et al., 2014	Cattle	EN, SC, WA	Yes	1090	On farm sampling (bulk milk samples)	Staphylococcus aureus
Cheney et al., 2015	Cattle	EN, WA	No	534	Pre-existing laboratory samples	Escherichia coli
Thomas et al., 2015	Cattle	EN, SC, WA	No	-	On farm sampling (mastitis cases)	Escherichia coli Staphylococcus aureus Strep. uberis
MacFadyen et al., 2018	Cattle	EN, WA	No	1100	On farm sampling (bulk milk samples)	Macrococcus caseolyticus
Mellor et al., 2019	Cattle	EN, SC, WA	No	1115	Pre-existing laboratory samples	Salmonella typhimurium
Mueller-Doblies et al., 2018	Cattle	EN, SC, WA	No	45,336	Pre-existing laboratory samples	Salmonella typhimurium
Velasova et al., 2019	Cattle	EN, SC, WA	No	40	On farm sampling (faecal samples)	Entero- bacteriaceae

NB. EN = England, SC = Scotland, WA = Wales

The 2018 VARSS reports contained information on antibiotic resistance in both sheep and cattle (as well as other animals) collated from samples sent to the Animal and Plant Health Agency (APHA) laboratories for diagnostic purposes (VMD 2019b). Antibiotic resistance was reported for the major livestock bacterial pathogens (such as species causing mastitis and respiratory disease) as well as marker bacterial species significant to human health (such as *E. coli* and *Salmonella spp.*) collected from livestock faecal samples (Table 7).

Table 7. Samples submitted to APHA included in the 2018 VARSS report (VMD 2019b)

Population	Location	Sample size	Organism	Data range available
Sheep	UK	22	Streptococcus dysgalactiae	2011-2018

Sheep	UK	81	Mannheimia haemolytica	2011-2018
Sheep	UK	50	Biberstein trehalosi	2011-2018
Sheep	EN, WA	72-161	Escherichia coli	2013-2018
	SC	67		
Sheep	EN, WA	276	Salmonella spp.	2013-2018
	SC	68		
Cattle	UK	110	Escherichia coli	2011-2018
Cattle	UK	32	Streptococcus dysgalactiae	2011-2018
Cattle	UK	84	Streptococcus uberis	2011-2018
Cattle	UK	36	Staphylococcus aureus	2011-2018
Cattle	UK	76	Pasteurella multocida	2011-2018
Cattle	UK	44	Mannheimia haemolytica	2011-2018
Cattle	EN+WA	208	Escherichia coli	2013-2018
	SC	157-313		
Cattle	EN+WA	489	Salmonella spp.	2013-2018
	SC	140		
NID ENL E	1 1 66 6 11	1 14/4 14/1	v 11 '1 1 12' 1	

Mannhaimia haamalutica

2011 2010

NB. EN = England, SC = Scotland, WA = Wales, UK = United Kingdom

Antibiotic resistance in sheep

Chaan

H

The four studies investigating antibiotic resistance in sheep reported on four different organisms; *E.coli, Campylobacter jejuni (C. jejuni), Streptococcus dysgalactiae* (*S. dysgalactiae*), and *Treponema* species. In their study of antibiotic resistance of *E. coli* from diseased farm livestock, Cheney et al. (2015), found that 57.4% of non-verotoxigenic *E. coli* were resistant to at least one antimicrobial and the highest level of resistance for tetracycline (56.4% of isolates), sulphonamides (48.5%), ampicillin (37.6%), and streptomycin (31.7%). A study of abortion associated with *C. jejuni* by Wu et al. (2014) found that of the 42 isolates, 17.1% were resistant to nalidixic acid, 9.8% resistant to clindamycin, 4.9% resistant to tetracyclines, and 2.4% resistant to azithromycin (the authors did not state what percentage of isolates were resistant to at least one antimicrobial). In a study of *S. dysgalactiae* isolated from sheep with joint ill, Rutherford et al. (2015) reported that all 25 isolates were resistant to tetracycline. Angell et al. (2015) tested the in-vitro susceptibility of contagious ovine digital dermatitis associated *Treponema* species and found that all 20 isolates were susceptible to ten different antibiotics.

The VARSS 2018 report showed high a level of resistance to tetracyclines in *S. dysgalactiae* and *Mannheimia haemolytica* (Table 8; VARSS 2018).

Table 8. Antibiotic resistance in major sheep pathogens taken from VARSS 2018 report

	Resistant isolates (%)							
	Number of isolates	Ampicillin	Amoxicillin/ clavulanate	Enrofloxacin	Trimethoprim	Tetracycline	Neomycin	Tylosin
Common mastitis pathogens: Streptococcus dysgalactiae Common respiratory pathogens:	22	0	0			77.3		0
Mannheimia haemolytica Bibersteinia trehalosi	81 50	2.5 0	0 0	0 0	0 0	46.9 2.0		

NB. In sheep, Mannheimia haemolytica can also cause mastitis

High levels of antibiotic resistance were reported in isolates of *E. coli* from sheep in England, Wales, and Scotland, with the highest levels detected to tetracycline, ampicillin, and spectinomycin in all countries, streptomycin in England and Wales, and amoxicillin/clavulanate in Scotland (Figure 2; VARSS 2013-2018). Levels of resistance were found to be decreasing in *E. coli* in sheep in England and Wales, while levels of resistance in sheep in Scotland showed an increase over the last two years.

Figure 2. Percentage of *E. coli* isolates from sheep resistant to different antibiotics in (A) England and Wales, and (B) Scotland

In 2018, the highest level of resistance in *Salmonella spp*. from sheep in England and Wales was to streptomycin (7.6% of isolates), and in Scotland was to sulphonamide compounds (11.8% of isolates) (Figure 3; VARSS 2013-2018).

Figure 3. Percentage of *Salmonella* isolates from sheep resistant to different antibiotics in (A) England and Wales, and (B) Scotland

Antibiotic resistance in cattle

Four studies reported on the resistance profiles to *S. aureus;* two examining isolates from mastitis cases and two examining isolates from bulk milk samples. Thomas et al., (2015) found that of the 38 *S. aureus* isolates from mastitis cases, 31.6% were resistant to penicillin G, and García-Álvarez et al., (2011) found that of the 940 *S. aureus* isolates from mastitis cases, 2.6% were resistant to methicillin, though none were positive for the *mecA* gene

(used to confirm methicillin-resistant S. aureus [MRSA]). Paterson et al. (2012) identified 300 MRSA isolates from 1500 bulk milk samples and found that seven of the isolates (originating from five geographically remote locations) were mecA positive and belonged to the clonal complex CC398. Another study from the same author documented the presence of mecC MRSA in ten out of 375 (2.7%) English farms and one sample of mecA MRSA (Paterson et al., 2014). Three articles described three miscellaneous bacteria; Mycoplasma bovis, Streptococcus uberis (S. uberis), and Macrococcus caseolyticus. Ayling et al., (2014) reported that Mycoplasma bovis had shown increasing levels of resistance over a five-year period (between 2004 and 2009), demonstrated by rising MIC50 levels, though as minimum inhibitory concentrations to define resistance have not been set for this bacterium the prevalence of resistance could not be stated. Thomas et al., (2015) reported that in 39 isolates of S. uberis, 12.8% and 7.7% were resistant to tetracycline and erythromycin respectively. In their study of Macrococcus caseolyticus, MacFayden et al., (2018) found that all the 33 isolates grown from bulk milk tanks were positive for mecB and mecD. Studies which investigated Enterobacteriaceae species included those which looked for extended spectrum beta lactamase (ESBL) markers in various bacteria and those which

Table 9. Antibiotic resistance in *Enterobacteriaceae* species

reported on resistance in specific bacterial species (Table 9).

Study	Source of samples	Resistance
Randall et al.,	Waste milk samples	6.8% samples positive for ESBL
2014	(n=103)	
Velasova et al.,	Faecal samples	25% samples positive for ESBL
2019	(n=40)	
Warner et al.,	On farm sampling	ESBL E. coli found on 43.1% of farms
2011	(n=65)	
Cheney et al.,	Pre-existing lab	84.1% non-VTEC <i>E. coli</i> resistant to at least one antibiotic
2015	samples (n=534)	56.5% VTEC E. coli resistant to at least one antibiotic
Wu et al., 2012	Pre-existing lab samples (n=34)	61.7% of <i>E. coli</i> with at least one antibiotic resistant gene
Mueller-Doblies	Pre-existing lab	69.2% of Salmonella isolates resistant to one of more
et al., 2018	samples (n=244)	antibiotics
Mellor et al.,	Pre-existing lab	85.4% of Salmonella isolates resistant to one of more
2019	samples (n=1115)	antibiotics
		74.7% of Salmonella isolates resistant to three or more
		antibiotics

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Cheney et al. (2015), found high levels of resistance in *E. coli* to sulphonamides (73.6% of isolates), tetracycline (70.7% of isolates), ampicillin (69.5% of isolates), and streptomycin (48.5% of isolates). The VARSS 2018 report recorded a high level of resistance to tetracyclines in the following bacterial species: *S. dysgalactiae, Pasteurella multocida, S. uberis*, and *Mannheimia haemolytica* and a high level of resistance to neomycin in *S. uberis* (Table 10; VMD 2018).

Table 10. Antibiotic resistance in major cattle pathogens taken from VARSS 2018 report

Resistant isolates (%)

	Number of isolates	Ampicillin	Amoxicillin/ clavulanate	Enrofloxacin	Trimethoprim	Tetracycline	Neomycin	Tylosin
Common mastitis pathogens:								
Escherichia coli	110	21.8	5.5	2.7	6.4	13.6	2.7	
Streptococcus dsygalactiae	32	0	0			87.5	3.1	0
Streptococcus uberis	84	0	0			34.5	45.2	11.9
Staphylococcus aureus	36	27.8	0			2.8	0	2.8
Common respiratory pathogens:								
Pasteurella multocida	76	2.6	0	0	0	51.3		
Mannheimia haemolytica	44	2.3	0	0	0	50		

Overall the level of antibiotic resistance in *E. coli* reported was higher in cattle from England and Wales compared to Scotland. In all countries the highest levels of resistance were recorded to ampicillin and tetracycline. Resistance levels were found to be decreasing in *E. coli* from cattle in England and Wales. While resistance levels were also found to be decreasing in *E. coli* from cattle in Scotland from 2013 to 2017, resistance increased in 2018 (Figure 4; VMD 2013-2018).

Figure 4. Percentage of *E. coli* isolates from cattle resistant to different antibiotics in (A) England and Wales, and (B) Scotland

In 2018 the highest level of resistance in *Salmonella spp.* from cattle in England and Wales was to streptomycin and sulphonamide compounds (both 13.9% of isolates), and in Scotland was to sulphonamide compounds (15.7% of isolates) (Figure 5; VMD 2013-2018).

Anthelmintic use

Of the 40 articles, six (15%) looked at anthelmintic usage; five in sheep and one in cattle (Table 11). All of the studies used farm level data to measure usage and was either captured by farmers self-reporting through questionnaires (n=5), or by ascertaining baseline usage levels before conducting trials into anthelmintic resistance (n=1). No reports were found reporting anthelmintic usage.

Anthelmintics are separated into five major groups; broad spectrum anthelmintics active against major species of helminths and some ectoparasites (groups 1-3); group 1-BZ (benzimidazoles), group 2-LV (imidazothiazoles, including levamisole), group 3-ML

(macrocyclic-lactones), and newer generation anthelmintics (groups 4 & 5); group 4-AAD (amino-acetonitrile derivatives), and group 5-SI (spiro-indoles, such as derquantel, available as combination products) (Kaminsky *et al.* 2008; Little *et al.* 2011).

Table 11. Studies on anthelmintic usage

Study	Population	Location	Random sampling	Sample size (farms)	Method of data collection
Burgess et al., 2012	Sheep	EN, SC, WA	No	118	Questionnaire
Morgan et al., 2012	Sheep	EN, SC, WA	Yes	600	Questionnaire
Crilly et al., 2015	Sheep	SC	No	38	Questionnaire
Learmount et al., 2016	Sheep	EN, WA	No	14	Routine usage recorded as part of trial
Lima et al., 2019	Sheep	EN, SC, WA	No	615	Questionnaire
Bellet et al., 2018	Cattle	EN	No	43	Questionnaire

NB. EN = England, SC = Scotland, WA = Wales

Anthelmintic use in sheep

Of the six studies, two described the routine use of anthelmintics. In a study of 118 sheep farms, Burgess et al., (2012) reported that 99% of farmers gave treatment against nematodes and in a study of 600 farms, Morgan et al., (2012) reported that 93%, 67%, and 58% of farmers routinely treated against nematodes, liver fluke, and tapeworms respectively. Two studies reported on specific farming practices; in their study of 615 sheep

farms, Lima et al. (2019) reported that farmers administered a group four or five anthelmintic (monepantel and derquantel) to 32% and 28% of ewes and rams at quarantine. Crilly et al., (2015) reported that 27 out of 38 farmers (71%) used moxidectin (a macrocyclic lactone) for the periparturient treatment of ewes. Macrocyclic lactones (group three anthelmintics) were reported by three studies to be the most commonly used anthelmintic against nematodes; 56% of 118 farms (Burgess et al., 2012), 47% of 600 farms (Morgan et al., 2012), and 84% (SCOPS farms⁶) and 70% (non SCOPS farms) in a study of 14 farms (Learmount et al., 2016). Benzimidazoles (group one anthelmintics) were reported to be used against nematodes in 31% of 118 farms (Burgess et al. 2012), 26% of 600 farms (Morgan et al., 2012), and 7% (SCOPS farms) and 21% (non SCOPS farms) in a study of 14 farms (Learmount et al., 2016). Levamisole (group two anthelmintics) had the lowest reported use, ranging from 28-31% of 118 farms (Burgess et al., 2012), 16% of 600 farms (Morgan et al., 2012), to 9% of 14 farms (Learmount et al., 2016). The mean number of times ewes were treated annually for nematodes (any class of anthelmintic) was reported to be 2.0 (Burgess et al., 2012), 2.35 (s.d. 1.48, range 0-12) (Morgan et al., 2012), and 2.4 (Learmount et al., 2016). The mean number of times lambs were treated for nematodes was reported to be 3.3 (Burgess et al., 2012), 3.55 (s.d. 2.76, range 0-16) (Morgan et al., 2012), and 4.1 (Learmount et al., 2016). Learmount et al., (2016) also reported that those farms following the SCOPS guidelines used significantly fewer treatments in both ewes (ewes on SCOPS farms being treated between zero and three times per year compared to non-SCOPS farms treating between zero and five times per year) and lambs (lambs on SCOPS farms being treated between zero and five times per year compared to non-SCOPS farms treating between zero and eight times per year), though it should be

412

413

414

415

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Anthelmintic usage in cattle

Only one study, (Bellet et al., 2018) consisting of 43 farms reported on the use of anthelmintics in cattle and found that farmers routinely used anthelmintics on 85% and 44%

noted that this study only contained seven SCOPS and seven non SCOPS farms.

⁶ SCOPS – Sustainable Control of Parasites in Sheep (SCOPS 2019)

of their young stock and adult cows respectively. As with the sheep studies, the most common anthelmintic class used in young stock was macrocyclic lactones (89% of farms), which is consistent with the industry led cattle parasite guideline Control of Worms Sustainably (COWS) which recommend macrocyclic lactones as a first line treatment against the parasites *Ostertagia ostertagi* and *Cooperia oncophora* (COWS 2019b).

Anthelmintic resistance

Twelve of the 40 studies (30%) reported on anthelmintic resistance; ten in sheep and two in cattle (Table 12). No grey literature sources were found reporting anthelmintic resistance. Faecal egg count reduction tests (FECRT) were used to test for resistance in the majority (n=9) of the studies; other tests for resistance were the larval development test (LDT) (n=4), egg hatch test (n=1), and farmer self-reported resistance (n=1).

Table 12. Studies on anthelmintic resistance

429	
430	

Study	Population	Location	Random sampling	Sample size (farms)	Method of resistance testing
Taylor et al., 2009	Sheep	EN, WA	No	40	FECRT & LDT
Mitchell et al., 2010	Sheep	WA	No	122	LDT
Burgess et al., 2012	Sheep	EN, SC, WA	No	118	Self-reported resistance
Jones et al., 2012	Sheep	EN, WA	No	11	FECRT
Daniel et al., 2012	Sheep	EN, SC, WA	No	25	FECRT
Stubbings and SCOPS,	Sheep	EN, SC, WA	No	16	FECRT
2012					
Thomas, 2015	Sheep	WA	No	58	FECRT, LDT, EHT
Learmount et al.,	Sheep	EN, WA	No	14	LDT
2016a					
Glover et al., 2017	Sheep	EN	No	27	FECRT
Kamaludeen et al.,	Sheep	EN, WA	Partly	74	FECRT
2019					
McArthur et al., 2011	Cattle	SC	No	4	FECRT
Geurden et al., 2015	Cattle	EN, SC, WA	No	10	FECRT

EN = England, SC = Scotland, WA = Wales

FECRT = Faecal egg count reduction test, LDT = Larval development test, EHT = Egg hatch test

Anthelmintic resistance in sheep

Eight of the studies reported on the resistance of nematodes to anthelmintics, either generally, or specifically for *Teladorsagia* and *Trichostrongylus* (Table 13). In their study of 122 sheep farms in Wales, Mitchell et al., (2010) reported nematodes resistance in 100 farms (82.0%) consisting of resistance to benzimidazole only, benzimidazole and levamisole, and to levamisole only, in 56 (46%), 38 (31%), and six (5%), of farms respectively. In another study of 58 sheep farms in Wales, Thomas (2015) reported nematode resistance in 47 farms (81%), consisting of resistance to benzimidazoles, levamisole, and macrocyclic lactones in 44 (75.9%), 32 (55.2%), and 33 (56.9%) of farms respectively. Ten farms had single resistance, 16 farms had double resistance, 13 had triple resistance; and 7 had triple resistance plus moxidectin (ibid). In a study of 25 sheep farms in England, Glover et al., (2017) reported resistance for benzimidazoles, levamisole, and macrocyclic lactones in 24 (96%), 15 (60%), and 18 (67%) of farms. Three farms had single resistance (to benzimidazoles), 11 farms had double resistance, and ten had triple resistance (ibid).

Table 13. Nematode resistance

Study	No of farms	Nematode	Overall	1-BZ	2-LV	3-ML
Taylor et al., 2009	40	Teladorsagia		97.5%	40%	
		Trichostrongylus		44%	50%	
Mitchell et al., 2010	122	Unspecified	82%	77%	37%	
Burgess et al., 2012	118	Trichostrongylus	18%	17.8%	3.4%	
Jones et al., 2012	11	Trichostrongylus				55%
Stubbings and SCOPS, 2012	16	Trichostrongylus				62.5%
Thomas, 2015	58	Unspecified	81%	75.9%	55.2%	56.9%
Glover et al., 2017	25	Unspecified	96%	96%	60%	67%
Learmount et al., 2016a	14	Teladorsagia		100%		
		Trichostrongylus		100%		

1-BZ = group 1 (Benzimidazole), 2-LV = group 2 (Levamisole), 3-ML = group 3 (macrocyclic lactone)

Two studies reported on the resistance of *Fasciola hepatica* (liver fluke) in sheep to triclabendazole. In a study of 26 farms in England and Wales, Kamaludeen et al., (2019) reported that 21 of the farms (80.8%) showed a reduction in triclabendazole efficacy with nine farms showing a complete lack of efficacy and no change in post treatment faecal egg count. Daniel et al., (2012) reported that of 15 farms in the study, seven (six in Wales and

one in Scotland) were found to have triclabendazole resistance, though there was no indication of resistance in the ten farms sampled from England.

Anthelmintic resistance in cattle

Two studies reported on the resistance to macrocyclic lactones (ivermectin and moxidectin) to *Cooperia oncophora* and *Ostertagia ostertagi* though both studies contained a small number of farms. McArthur et al., (2011) reported that three out of four farms had FECRT results consistent with *Cooperia* resistance to ivermectin. Geurden et al., (2015) reported that out of ten farms, one and five farms had confirmed and inconclusive resistance to moxidectin respectively, and three and four farms had confirmed and inconclusive resistance to ivermectin respectively; resistant species were *Cooperia* and *Ostertagia*.

Anti-ectoparasitic usage & resistance

Two articles contained data concerning ectoparasites, one on the usage and one on the resistance of anti-ectoparasitics. Crilly et al., (2015), reported that 61% of farms (39% using injectable macrocyclic lactones and 21 using organophosphate dips) in Scotland use whole flock treatment for *Psoroptes ovis* (sheep scab), and Doherty et al., (2018), reported on the novel resistance of *Psoroptes ovis* to macrocyclic lactones in a study of four farms in England and Wales.

Discussion

General

Although the importance of anti-infectives and the risk of resistance development are widely discussed (DANMAP 2016, Dorado-Garcia *et al.* 2016, Veldman et al., 2017), we identified a low number of publications (40 papers and two report series) reporting use or resistance in sheep and cattle in Britain. There were marked differences between the number of papers focusing on cattle compared to sheep, with 60% of the papers focusing on usage and 76% on resistance in cattle only. Similarly, both report series only contained primary antimicrobial usage data in cattle and not in sheep. Cattle, especially dairy, may be

the greater focus of attention due to the more intensive way they are farmed, with increased contact time between professionals (both farmers and veterinarians) compared to sheep. Other ways that cattle gain more attention than sheep is that beef markets are offered more protections under the EU's Common Market Organisation than sheep markets and additionally, beef is consumed, exported and imported more than sheep meat (AHDB 2019a, 2019b). This gap in interest and knowledge of what appears to be a neglected species warrants more attention and research.

Antibiotic usage

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

From the data extracted in this review, antibiotic use in sheep and cattle in Britain appear similar to each other, similar to the level observed in poultry, and below the UK average for all livestock (which is elevated by the relatively high usage levels reported in pigs). The marked difference to pig production is likely due to the less intensive nature of production compared to the pig sector, where prophylactic and metaphylactic use of antibiotics to avoid infectious diseases occurs in many farrow-to-finish and fattening farms (Lekagul et al. 2019). While poultry production in the Britain is often highly intensive, the ability to achieve high levels of biosecurity (such as occurs in closed housing systems) support production systems that are not heavily reliant on antibiotics (DEFRA 2020). However, a major caveat of these findings is the poor level of coverage afforded to sheep and cattle (especially beef production systems) in Britain; small sampling sizes with frequent use of convenience sampling over random sampling are likely to lead to unrepresentative results. In comparison, the pig sector utilises an electronic medicine book (eMB-pigs) to allow farmers to regularly upload antibiotic usage and represents 87% of UK pig producers (DHSC 2019). Mastitis being the most common use for antibiotics in dairy cattle in Britain is consistent with other high dairy producing countries such as the USA and New Zealand (Denis et al. 2009; Landers et al. 2012). Antibiotic usage in dairy cattle due to mastitis has followed a downward trend over the last three years showing reductions in both total usage and in dry and lactating cow treatments. As with other livestock production systems in the UK, tetracyclines and beta-lactam antibiotics (penicillins and first generation cephalosporins) were commonly used antibiotics in sheep and cattle (VMD 2019b), and reflects the WHO's position on restricting the use certain antibiotics (such as third and fourth generation cephalosporins and fluoroquinolones) in non-human species (WHO 2019). Globally,

518 one of the antibiotic groups used for growth promotion in countries which have yet to ban 519 this practice (Granados-Chinchilla and Rodríguez 2017). 520 Many of the scholarly articles described antibiotic usage using in a proportional metric 521 focused at the farm level. While these types of metrics are potentially useful for comparing 522 temporal and spatial trends and providing relatively easy ways of measuring use before and 523 after an intervention, they remain specific to a species, disease, or practice, and are not 524 readily comparable outside of their own sector. However, in this review there were limited 525 instances of proportional metrics being used to make serial or temporal comparisons, thus 526 limiting their usefulness. Furthermore, as the proportional metrics are set at the farm level, 527 they may inflate the magnitude of usage compared to metrics set at the level of individual 528 animals. The production of quantifiable metrics, such as mg/PCU or mg/kg, provide a 529 standardised approach allowing comparisons of usage between species, sectors (livestock 530 and human), and countries, and are advocated as harmonised indicators by both the 531 European Centre for Disease Prevention and Control and the UK One Health report on antibiotic use (VMD 2019a). However, metrics such as mg/kg do not account for the 532 533 variation in dosage of different antibiotics; for example, newer generation drugs may have a 534 lower mg/kg dose than older ones; thus limiting the use of new generation drugs in favour 535 of older ones may lead to a higher overall mg/kg despite effective antibiotic stewardship 536 (Mills et al. 2018). To compensate for this, metrics such as the defined daily dose can be 537 utilised, where the total mg of medicine used is divided by the daily dose, but add an 538 additional level of complexity to data generation. Quantifiable metrics can either be 539 generated from a 'top down' (or consumption level) approach, using national sales data and 540 estimations of total livestock populations (as in the VMD or RUMA reports) and so remain 541 aggregated at the species level; or from a 'bottom up' approach, using veterinary practice 542 sales and farm holding data (as used by Davies et al. (2017) and Hyde et al. (2017)), and so 543 be more complex and time consuming to generate than consumption level data. 544 Consumption level data can also face problems when antibiotics are licenced for use in 545 more than one species and assumptions need to be made on how usage is divided across 546 species. Given the requirement of farm assurance schemes for farmers to keep records of 547 antibiotic usage, and the high level of digitalisation of veterinary practice sales data,

tetracyclines remain the most commonly used antibiotics in livestock production, and are

generating additional 'bottom up' quantifiable metrics with a wider coverage than is currently available should be possible, albeit not necessarily feasible; Jones-Diette *et al.* (2016) state that veterinary research using electronic records is hindered by the multitude of practice management systems used in the UK.

Antibiotic resistance

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

Although resistance to some antimicrobials (using E.coli as a marker) appears to have decreased in sheep and cattle in England and Wales over the last few years, levels of resistance remain high, particularly for tetracyclines, penicillins, aminoglycosides and sulphonamides in both species and there is some evidence of increasing levels of resistance in Scotland. Additionally, many of the sheep and cattle pathogens responsible for economically important issues such as mastitis and respiratory diseases have high levels of resistance to tetracyclines, one of the most commonly used antibiotics. However, as these findings are derived from bacterial samples submitted to veterinary laboratories selection bias should be considered. Given that submitting samples for bacterial culture and sensitivity is not routine practice for all cases of mastitis or respiratory disease the data will likely reflect the more troublesome clinical cases which have not responded to first line treatment, and so resistance levels in the general population may be lower than reported here. With the exception of ampicillin and neomycin in cattle, resistance of pathogens to other major groups of antibiotics remains low for both species, providing, at least for now, effective alternative treatment options. From a One Health perspective, monitoring the levels of antibiotic resistance in zoonotic pathogens in animals forms an important part of national action plans to tackle antimicrobial resistance. The high level of antibiotic resistance observed in E. coli in both sheep and cattle is concerning given that ruminants are an important reservoir for zoonotic verotoxigenic E. coli (Fairbrother and Nadeau 2006). While it may appear encouraging to observe that resistance in E. coli to enrofloxacin remains below 10% for both sheep and cattle across Britain, fluoroquinolones remain an important group of antibiotics in the treatment of E. coli in humans, with increasing reports of resistance in people with urogenital infections (Zaytoun et al. 2011; Talan et al. 2016). As with E. coli, livestock play an important role in the zoonotic transmission of Salmonella, a major cause of human food

poisoning. The lower rate of antibiotic resistance seen in Salmonella in sheep and cattle

compared to *E.* coli is reflected in findings from other ruminant populations (Scott *et al.* 2012). These lower rates of antibiotic resistance may be explained by the less ubiquitous nature of *Salmonella* in ruminant intestinal tracts than *E. coli* (Fegan *et al.* 2004; RODRIGUEZ *et al.* 2006) leading to a lower antibiotic resistance selection pressure for *Salmonella*.

Anthelmintics

Sheep gained more attention than cattle in the area of anthelmintic usage and resistance which may be due to some of the inherent differences between these two species. Sheep experience an increase in faecal parasite output around lambing related to a relaxation of immunity at this time, thought to be more profound in the presence of twins (or triplets), a common occurrence in this species (Fthenakis *et al.* 2015). There is a perception that cattle suffer less with worm burdens than sheep (with the industry led COWS advising that adult cows do not need monitoring for worms unless a problem occurs (COWS 2019a)) and our finding that more data exists for sheep than cattle is reflected in global trends on anthelmintic research (Sutherland and Leathwick 2011).

Anthelmintic usage

The small number and fragmented nature of studies identified by this review describing anthelmintic usage, and the lack of available national sales data, prevented the identification of trends in either sheep or cattle. Collecting data on anthelmintic usage may be confounded by the fact that they are prescribed at a farm rather than animal level, but it should still be possible to see serial and temporal trends. Given the negative economic burden of parasites on livestock production (gastrointestinal parasites are estimated to cost the British sheep industry £84 million annually (Nieuwhof and Bishop 2005)) and two major industry led initiatives to control anthelmintic usage (SCOPS and COWS), this lack of data is surprising, and warrants addressing. For example, it would be prudent to investigate whether the difference identified by Learmount *et al.* (2016) in their small number of SCOPS and non-SCOPS farms, exists on a wider scale, and thus be able to validate the benefit for farmers to follow such guidelines.

Anthelmintic resistance

The high levels of resistance of nematodes in British sheep and cattle to group 1-3 anthelmintics is reflected by global trends in livestock (Mphahlele *et al.* 2019). This finding is

concerning, especially given the small number of group 4 and 5 anthelmintics currently available. However, as with anthelmintic usage, the small number of studies focusing on anthelmintic resistance identified by this review warrants attention. The SCOPS guidelines recommend that sheep farmers perform faecal egg counts every two to four weeks during the grazing seasons, and so it could be assumed that data exists at the farm or veterinary practice level detailing anthelmintic resistance on a wider scale than is currently reported.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

609

610

611

612

613

614

Conclusion

From the findings of this review we recommend that additional data is needed to understand the current usage of antimicrobials in sheep, and the current usage of, and resistance to anthelmintics in sheep and cattle in Britain. Given the national importance of sheep farming, the lack of research afforded to this species identified by this review is concerning. As identified by two articles in this review, veterinary practice sales data provide a potential valuable resource for measuring antimicrobial usage if effective methods of collecting and collating data can be accomplished on a national scale. When collating and reporting data on antimicrobial usage, researchers and governing bodies should take efforts to produce metrics which are comparable across species, sectors, and time; some of the findings identified by this review were limited in their usefulness due to a lack of comparability. Currently, data on antibiotic resistance in sheep and cattle in Britain is subject to selection bias, being based on specimens from clinical cases, an issue which could be addressed though the development of an active surveillance system, though such a system would require access to adequate resources on a national scale. Additionally, efforts could be made to access data on anthelmintic resistance which exists as part of individual farm health plans so that an assessment can be made about the effectiveness of current strategies to control the development of resistance.

635	Declaration of interests:
636	Funding
637	This study was conducted as part of a project kindly funded by the Cadogan Charity with
638	matched-funding provided by the Royal Veterinary College and the University of
639	Hertfordshire.
640	Acknowledgments
641	We would like to acknowledge Houda Bennani for her input into the governance of
642	antimicrobials.

643	References
644 645 646	AHDB (2017) Beef Production from the Dairy Herd, available: https://beefandlamb.ahdb.org.uk/wp-content/uploads/2017/08/Beef-production-from-the-dairy-herd.pdf.
647 648 649	AHDB (2019a) The UK Cattle Yearbook 2019 AHDB [online], available: https://ahdb.org.uk/knowledge-library/the-uk-cattle-yearbook-2019 [accessed 10 Feb 2020].
650 651 652	AHDB (2019b) The UK Sheep Yearbook 2019 AHDB [online], available: https://ahdb.org.uk/knowledge-library/the-uk-sheep-yearbook-2019 [accessed 10 Feb 2020].
653 654 655 656 657 658	Angell, J.W., Clegg, S.R., Sullivan, L.E., Duncan, J.S., Grove-White, D.H., Carter, S.D., Evans, N.J. (2015) 'In vitro susceptibility of contagious ovine digital dermatitis associated Treponema spp. isolates to antimicrobial agents in the UK.', <i>Veterinary dermatology</i> , 26(6), 484–485, available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN= 26482550.
659660661662663	Ayling, R.D., Rosales, R.S., Barden, G., Gosney, F.L. (2014) 'Changes in antimicrobial susceptibility of Mycoplasma bovis isolates from Great Britain.', <i>The Veterinary record</i> , 175(19), 486, available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med10&NEWS=N&AN= 25185107.
664665666667	Bellet, C., Green, M.J., Bradley, A.J., Kaler, J. (2018) 'A longitudinal study of gastrointestinal parasites in English dairy farms. Practices and factors associated with first lactation heifer exposure to &ITOstertagia ostertagi&IT on pasture', <i>JOURNAL OF DAIRY SCIENCE</i> , 101(1), 537–546.
668 669 670	Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stärk, D.C.K., Häsler, B. (2020) 'Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain', <i>Antibiotics</i> .
671	Bramer, W.M., Rethlefsen, M.L., Kleijnen, J., Franco, O.H. (2017) 'Optimal database

672	combinations for literature searches in systematic reviews: a prospective exploratory
673	study', Systematic reviews, 6(1), 245, available:
674	https://pubmed.ncbi.nlm.nih.gov/29208034.
675	Brunton, L.A., Duncan, D., Coldham, N.G., Snow, L.C., Jones, J.R. (2012) 'A survey of
676	antimicrobial usage on dairy farms and waste milk feeding practices in England and
677	Wales.', The Veterinary record, [Comment in: Vet Rec. 2012 Oct 27;171(17):429; PMID:
678	23104790 [https://www.ncbi.nlm.nih.gov/pubmed/23104790]], 171(12), 296,
679	available:
680	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2
681	2903925.
682	Burgess, C.G.S., Bartley, Y., Redman, E., Skuce, P.J., Nath, M., Whitelaw, F., Tait, A., Gilleard,
683	J.S., Jackson, F. (2012) 'A survey of the trichostrongylid nematode species present on
684	UK sheep farms and associated anthelmintic control practices.', Veterinary
685	parasitology, 189(2-4), 299-307, available:
686	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2
687	2560313.
688	BVA (2019) Responsible Use of Antimicrobials [online], available:
689	https://www.bva.co.uk/take-action/our-policies/responsible-use-of-antimicrobials/
690	[accessed 14 May 2020].
691	Chatterjee, A., Modarai, M., Naylor, N.R., Boyd, S.E., Atun, R., Barlow, J., Holmes, A.H.,
692	Johnson, A., Robotham, J. V (2018) 'Quantifying drivers of antibiotic resistance in
693	humans: a systematic review', The Lancet Infectious Diseases, 18(12), e368–e378,
694	available: http://www.sciencedirect.com/science/article/pii/S1473309918302962.
695	Cheney, T.E.A., Smith, R.P., Hutchinson, J.P., Brunton, L.A., Pritchard, G., Teale, C.J. (2015)
696	'Cross-sectional survey of antibiotic resistance in Escherichia coli isolated from diseased
697	farm livestock in England and Wales.', Epidemiology and infection, 143(12), 2653–2659,
698	available:
699	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=
700	25613078.
701	Cohen, J. (1960) 'A Coefficient of Agreement for Nominal Scales', Educational and

702	Psychological Measurement, 20(1), 37–46, available:
703	https://doi.org/10.1177/001316446002000104.
704	COWS (2019a) Promoting Sustainable Control of Cattle Parasites - COWS - Promoting
705	Sustainable Control of Cattle Parasites [online], available:
706	https://www.cattleparasites.org.uk/ [accessed 14 May 2020].
707	COWS (2019b) Gut and Lung Worms - COWS - Promoting Sustainable Control of Cattle
708	Parasites [online], available: https://www.cattleparasites.org.uk/gut-and-lung-worms/
709	[accessed 10 Feb 2020].
710	Crilly, J.P., Jennings, A., Sargison, N. (2015) 'Patterns of faecal nematode egg shedding after
711	treatment of sheep with a long-acting formulation of moxidectin.', Veterinary
712	parasitology, 212(3-4), 275-280, available:
713	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=
714	26276580.
715	Daniel, R., van Dijk, J., Jenkins, T., Akca, A., Mearns, R., Williams, D.J.L. (2012) 'Composite
716	faecal egg count reduction test to detect resistance to triclabendazole in Fasciola
717	hepatica.', The Veterinary record, 171(6), 153–155, available:
718	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2
719	2791519.
720	Davies, P., Remnant, J.G., Green, M.J., Gascoigne, E., Gibbon, N., Hyde, R., Porteous, J.R.,
721	Schubert, K., Lovatt, F., Corbishley, A. (2017) 'Quantitative analysis of antibiotic usage
722	in British sheep flocks.', The Veterinary record, 181(19), 511, available:
723	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=
724	29051311.
725	DEFRA (2019) The Guide to Cross Compliance in England 2019, available:
726	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach
727	ment_data/file/764890/Cross_Compliance_2019_rules_v1.0.pdf [accessed 17 Mar
728	2020].
729	DEFRA (2020) Biosecurity and Preventing Welfare Impacts in Poultry and Captive Birds,
730	available:
731	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach

732	ment_data/file/877359/biosecurity-poultry-guide.pdf [accessed 18 May 2020].
733	Denis, M., Wedlock, D.N., Lacy-Hulbert, S.J., Hillerton, J.E., Buddle, B.M. (2009) 'Vaccines
734	against bovine mastitis in the New Zealand context: What is the best way forward?',
735	New Zealand Veterinary Journal, 57(3), 132–140, available:
736	https://doi.org/10.1080/00480169.2009.36892.
737	DHSC (2019) UK 5-Year Action Plan for Antimicrobial Resistance 2019 to 2024 - GOV.UK
738	[online], available: https://www.gov.uk/government/publications/uk-5-year-action-
739	plan-for-antimicrobial-resistance-2019-to-2024 [accessed 15 May 2020].
740	Doherty, E., Burgess, S., Mitchell, S., Wall, R. (2018) 'First evidence of resistance to
741	macrocyclic lactones in Psoroptes ovis sheep scab mites in the UK', Veterinary Record,
742	182(4), 106, available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
743	85044077888&doi=10.1136%2Fvr.104657&partnerID=40&md5=f297d561bf802b52dd9
744	0dd3e5ea6e609.
745	Dorado-García, A., Mevius, D.J., Jacobs, J.J.H., Van Geijlswijk, I.M., Mouton, J.W., Wagenaar,
746	J.A., Heederik, D.J. (2016) 'Quantitative assessment of antimicrobial resistance in
747	livestock during the course of a nationwide antimicrobial use reduction in the
748	Netherlands', Journal of Antimicrobial Chemotherapy, 71(12), 3607–3619, available:
749	https://doi.org/10.1093/jac/dkw308.
750	European Parliament (2019) Veterinary Medicines: Fighting Antibiotic Resistance News
751	European Parliament [online], available:
752	https://www.europarl.europa.eu/news/en/headlines/society/20181018STO16580/vet
753	erinary-medicines-fighting-antibiotic-resistance [accessed 14 May 2020].
754	Fairbrother, J.M., Nadeau, É. (2006) 'Escherichia coli: on-farm contamination of animals',
755	Rev. sci. tech. Off. int. Epiz, 25(2), 555–569, available:
756	http://www.microbionet.com.au/vtectable.htm [accessed 18 May 2020].
757	FAO (2016) The FAO Action Plan on Antimicrobial Resistance 2016-2020 Global Forum on
758	Food Security and Nutrition (FSN Forum) [online], available:
759	http://www.fao.org/fsnforum/resources/fsn-resources/fao-action-plan-antimicrobial-
760	resistance-2016-2020 [accessed 19 May 2020].

- 761 Fegan, N., Vanderlinde, P., Higgs, G., Desmarchelier, P. (2004) 'Quantification and
- prevalence of Salmonella in beef cattle presenting at slaughter', Journal of Applied
- 763 *Microbiology*, 97(5), 892–898, available: https://doi.org/10.1111/j.1365-
- 764 2672.2004.02380.x.
- 765 Fthenakis, G.C., Mavrogianni, V.S., Gallidis, E., Papadopoulos, E. (2015) 'Interactions
- between parasitic infections and reproductive efficiency in sheep', *Veterinary*
- 767 *Parasitology*, 208(1), 56–66, available:
- 768 http://www.sciencedirect.com/science/article/pii/S0304401714006517.
- 769 Fujiwara, M., Haskell, M.J., Macrae, A.I., Rutherford, K.M.D. (2018) 'Survey of dry cow
- 770 management on UK commercial dairy farms.', The Veterinary record, 183(9), 297,
- 771 available:
- 772 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=
- 773 29907660.
- García-Álvarez, L., Holden, M.T.G., Lindsay, H., Webb, C.R., Brown, D.F.J., Curran, M.D.,
- 775 Walpole, E., Brooks, K., Pickard, D.J., Teale, C., Parkhill, J., Bentley, S.D., Edwards, G.F.,
- Girvan, E.K., Kearns, A.M., Pichon, B., Hill, R.L.R., Larsen, A.R., Skov, R.L., Peacock, S.J.,
- 777 Maskell, D.J., Holmes, M.A. (2011) 'Meticillin-resistant Staphylococcus aureus with a
- 778 novel mecA homologue in human and bovine populations in the UK and Denmark: A
- descriptive study', *The Lancet Infectious Diseases*, 11(8), 595–603, available:
- 780 https://www.scopus.com/inward/record.uri?eid=2-s2.0-
- 781 79960696292&doi=10.1016%2FS1473-3099%2811%2970126-
- 782 8&partnerID=40&md5=9db93b84170865f3669ff411a8b9175f.
- 783 Geurden, T., Chartier, C., Fanke, J., di Regalbono, A.F., Traversa, D., von Samson-
- Himmelstjerna, G., Demeler, J., Vanimisetti, H.B., Bartram, D.J., Denwood, M.J. (2015)
- 785 'Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of
- 786 cattle in Europe.', International journal for parasitology. Drugs and drug resistance,
- 787 5(3), 163–171, available:
- 788 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=
- 789 26448902.
- 790 Glover, M., Clarke, C., Nabb, L., Schmidt, J. (2017) 'Anthelmintic efficacy on sheep farms in

791 south-west England.', The Veterinary record, 180(15), 378, available: 792 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN= 793 28167646. 794 Granados-Chinchilla, F., Rodríguez, C. (2017) 'Tetracyclines in Food and Feedingstuffs: From 795 Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health 796 Implications', Journal of analytical methods in chemistry, 2017, 1315497, available: 797 https://pubmed.ncbi.nlm.nih.gov/28168081. 798 Heymann, D., Ross, E. (2019) Preserve the Effectiveness of Antibiotics with a Global Treaty 799 Chatham House [online], Chatham House, available: 800 https://www.chathamhouse.org/expert/comment/preserve-effectiveness-antibiotics-801 global-treaty [accessed 19 May 2020]. 802 Heymann, D.L. (2006) 'Resistance to Anti-Infective Drugs and the Threat to Public Health', 803 *Cell*, 124(4), 671–675, available: 804 http://www.sciencedirect.com/science/article/pii/S009286740600184X. 805 Higham, L.E., Deakin, A., Tivey, E., Porteus, V., Ridgway, S., Rayner, A.C. (2018) 'A survey of 806 dairy cow farmers in the United Kingdom: knowledge, attitudes and practices 807 surrounding antimicrobial use and resistance.', The Veterinary record, 183(24), 746, 808 available: 809 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=3 810 0413678. 811 Horseman, S. V, Whay, H.R., Huxley, J.N., Bell, N.J., Mason, C.S. (2013) 'A survey of the on-812 farm treatment of sole ulcer and white line disease in dairy cattle.', Veterinary journal 813 (London, England: 1997), 197(2), 461–467, available: 814 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=2 815 3602930. 816 Hyde, R.M., Remnant, J.G., Bradley, A.J., Breen, J.E., Hudson, C.D., Davies, P.L., Clarke, T., 817 Critchell, Y., Hylands, M., Linton, E., Wood, E., Green, M.J. (2017) 'Quantitative analysis 818 of antimicrobial use on British dairy farms.', The Veterinary record, [Comment in: Vet 819 Rec. 2017 Dec 23;181(25):681-682; PMID: 29263291 [https://www.ncbi.nlm.nih.gov/pubmed/29263291]], 181(25), 683, available: 820

821 822	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN= 29263292.
823 824 825 826	Jones-Diette, J.S., Brennan, M.L., Cobb, M., Doit, H., Dean, R.S. (2016) 'A method for extracting electronic patient record data from practice management software systems used in veterinary practice', <i>BMC Veterinary Research</i> , 12(1), 239, available: https://doi.org/10.1186/s12917-016-0861-y.
827 828 829	Jones, J., Pearson, R., Jeckel, S. (2012) 'HELMINTH CONTROL Suspected anthelmintic resistance to macrocyclic lactones in lambs in the UK', <i>VETERINARY RECORD</i> , 170(2), 59-U96.
830 831 832 833 834 835	Kamaludeen, J., Graham-Brown, J., Stephens, N., Miller, J., Howell, A., Beesley, N.J., Hodgkinson, J., Learmount, J., Williams, D. (2019) 'Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales.', <i>The Veterinary record</i> , 184(16), 502, available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=3 0824600.
836 837 838 839 840 841	Kaminsky, R., Gauvry, N., Schorderet Weber, S., Skripsky, T., Bouvier, J., Wenger, A., Schroeder, F., Desaules, Y., Hotz, R., Goebel, T., Hosking, B.C., Pautrat, F., Wieland-Berghausen, S., Ducray, P. (2008) 'Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate', <i>Parasitology research</i> , 103(4), 931–939, available: https://pubmed.ncbi.nlm.nih.gov/18594861.
842843844845	Klous, G., Huss, A., Heederik, D.J.J., Coutinho, R.A. (2016) 'Human-livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature', <i>One health (Amsterdam, Netherlands)</i> , 2, 65–76, available: https://pubmed.ncbi.nlm.nih.gov/28616478.
846 847 848	Landers, T.F., Cohen, B., Wittum, T.E., Larson, E.L. (2012) 'A review of antibiotic use in food animals: perspective, policy, and potential', <i>Public health reports (Washington, D.C. :</i> 1974), 127(1), 4–22, available: https://www.ncbi.nlm.nih.gov/pubmed/22298919.
849 850	Learmount, J., Stephens, N., Boughtflower, V., Barrecheguren, A., Rickell, K. (2016) 'The development of anthelmintic resistance with best practice control of nematodes on

851	commercial sheep farms in the UK.', <i>Veterinary parasitology</i> , 229, 9–14, available:
852	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med12&NEWS=N&AN=
853	27809985.
854	Lekagul, A., Tangcharoensathien, V., Yeung, S. (2019) 'Patterns of antibiotic use in global pig
855	production: A systematic review', Veterinary and Animal Science, 7, 100058, available:
856	http://www.sciencedirect.com/science/article/pii/S2451943X18302473.
857	Lima, E., Lovatt, F., Davies, P., Kaler, J. (2019) 'Using lamb sales data to investigate
858	associations between implementation of disease preventive practices and sheep flock
859	performance.', Animal: an international journal of animal bioscience, 1–9, available:
860	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medp&NEWS=N&AN=3
861	1094306.
862	Little, P.R., Hodge, A., Maeder, S.J., Wirtherle, N.C., Nicholas, D.R., Cox, G.G., Conder, G.A.
863	(2011) 'Efficacy of a combined oral formulation of derquantel-abamectin against the
864	adult and larval stages of nematodes in sheep, including anthelmintic-resistant
865	strains.', Veterinary parasitology, 181(2–4), 180–193, available:
866	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=2
867	1684691.
868	MacFadyen, A.C., Fisher, E.A., Costa, B., Cullen, C., Paterson, G.K. (2018) 'Genome analysis of
869	methicillin resistance in Macrococcus caseolyticus from dairy cattle in England and
870	Wales.', Microbial genomics, 4(8), available:
871	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=2
872	9916803.
873	Mahood, Q., Van Eerd, D., Irvin, E. (2014) 'Searching for grey literature for systematic
874	reviews: Challenges and benefits', Research Synthesis Methods, 5(3), 221–234.
875	McArthur, C.L., Bartley, D.J., Shaw, D.J., Matthews, J.B. (2011) 'Assessment of ivermectin
876	efficacy against gastrointestinal nematodes in cattle on four Scottish farms.', The
877	Veterinary record, 169(25), 658, available:
878	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=2
879	1984566.
880	Mellor, K.C., Petrovska, L., Thomson, N.R., Harris, K., Reid, S.W.J., Mather, A.E. (2019)

881	'Antimicrobial Resistance Diversity Suggestive of Distinct Salmonella Typhimurium
882	Sources or Selective Pressures in Food-Production Animals.', Frontiers in microbiology,
883	10, 708, available:
884	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=3
885	1031720.
886	Mills, H.L., Turner, A., Morgans, L., Massey, J., Schubert, H., Rees, G., Barrett, D., Dowsey, A.,
887	Reyher, K.K. (2018) 'Evaluation of metrics for benchmarking antimicrobial use in the UK
888	dairy industry.', The Veterinary record, [Comment in: Vet Rec. 2018 Dec
889	22;183(24):752; PMID: 30573584 [https://www.ncbi.nlm.nih.gov/pubmed/30573584]],
890	182(13), 379, available:
891	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medc&NEWS=N&AN=2
892	9476032.
893	Mitchell, E.S.E., Hunt, K.R., Wood, R., McLean, B. (2010) 'Anthelmintic resistance on sheep
894	farms in Wales.', The Veterinary record, 166(21), 650-652, available:
895	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=2
896	0495166.
897	Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P.,
898	Stewart, L.A., Group, PP. (2015) 'Preferred reporting items for systematic review and
899	meta-analysis protocols (PRISMA-P) 2015 statement', Systematic Reviews, 4(1), 1,
900	available: https://doi.org/10.1186/2046-4053-4-1.
901	Morgan, E.R., Hosking, B.C., Burston, S., Carder, K.M., Hyslop, A.C., Pritchard, L.J.,
902	Whitmarsh, A.K., Coles, G.C. (2012) 'A survey of helminth control practices on sheep
903	farms in Great Britain and Ireland.', Veterinary journal (London, England: 1997),
904	[Comment in: Vet J. 2012 Jul;193(1):2-3; PMID: 22749119
905	[https://www.ncbi.nlm.nih.gov/pubmed/22749119]], 192(3), 390–397, available:
906	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2
907	1908211.
908	Mphahlele, M., Molefe, N., Tsotetsi-Khambule, A., Oriel, T. (2019) 'Anthelmintic Resistance
909	in Livestock', in <i>Helminthiasis</i> , IntechOpen.
910	Mueller-Doblies, D., Speed, K.C.R., Kidd, S., Davies, R.H. (2018) 'Salmonella Typhimurium in

911	livestock in Great Britain - trends observed over a 32-year period.', Epidemiology and
912	infection, 146(4), 409–422, available:
913	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=
914	29415790.
915	Nieuwhof, G.J., Bishop, S.C. (2005) 'Costs of the major endemic diseases of sheep in Great
916	Britain and the potential benefits of reduction in disease impact', Animal Science, 81(1),
917	23–29, available: https://www.cambridge.org/core/article/costs-of-the-major-
918	endemic-diseases-of-sheep-in-great-britain-and-the-potential-benefits-of-reduction-in-
919	disease-impact/C1E2B560AB5FA568CECCAF6F8B23160A.
920	O'Kane, H., Ferguson, E., Kaler, J., Green, L. (2017) 'Associations between sheep farmer
921	attitudes, beliefs, emotions and personality, and their barriers to uptake of best
922	practice: The example of footrot.', Preventive veterinary medicine, 139(Pt B), 123–133,
923	available:
924	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=
925	27371994.
926	O'Neill, J. (2016) TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND
927	RECOMMENDATIONS THE REVIEW ON ANTIMICROBIAL RESISTANCE CHAIRED BY JIM
928	O'NEILL, available: https://amr-review.org/sites/default/files/160518_Final paper_with
929	cover.pdf [accessed 11 Jun 2019].
930	OIE (2016) AMR: OIE - World Organisation for Animal Health [online], available:
931	https://www.oie.int/en/for-the-media/amr/ [accessed 19 May 2020].
932	Padiyara, P., Inoue, H., Sprenger, M. (2018) 'Global Governance Mechanisms to Address
933	Antimicrobial Resistance', Infectious diseases, 11, 1178633718767887-
934	1178633718767887, available: https://www.ncbi.nlm.nih.gov/pubmed/29686487.
935	Page, S.W., Gautier, P. (2012) 'Use of antimicrobial agents in livestock.', Revue Scientifique
936	et Technique - Office International des Épizooties, 31(1), 145–188.
937	Paterson, G.K., Larsen, J., Harrison, E.M., Larsen, A.R., Morgan, F.J., Peacock, S.J., Parkhill, J.,
938	Zadoks, R.N., Holmes, M.A. (2012) 'First detection of livestock-associated meticillin-
939	resistant Staphylococcus Aureus CC398 in bulk tank milk in the United Kingdom,
940	January to July 2012', Eurosurveillance, 17(50), available:

941	https://www.scopus.com/inward/record.uri?eid=2-s2.0-
942	84871507033&partnerID=40&md5=6e15836f3790e1a697d80a06b8905d0e.
943	Paterson, G.K., Morgan, F.J.E., Harrison, E.M., Peacock, S.J., Parkhill, J., Zadoks, R.N., Holmes,
944	M.A. (2014) 'Prevalence and properties of mecC methicillin-resistant Staphylococcus
945	aureus (MRSA) in bovine bulk tank milk in Great Britain.', The Journal of antimicrobial
946	chemotherapy, 69(3), 598–602, available:
947	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med10&NEWS=N&AN=
948	24155057.
949	Piasecki, J., Waligora, M., Dranseika, V. (2018) 'Google Search as an Additional Source in
950	Systematic Reviews', Science and Engineering Ethics, 24(2), 809–810.
951	Randall, L., Heinrich, K., Horton, R., Brunton, L., Sharman, M., Bailey-Horne, V., Sharma, M.,
952	McLaren, I., Coldham, N., Teale, C., Jones, J. (2014) 'Detection of antibiotic residues and
953	association of cefquinome residues with the occurrence of Extended-Spectrum beta-
954	Lactamase (ESBL)-producing bacteria in waste milk samples from dairy farms in England
955	and Wales in 2011.', Research in veterinary science, 96(1), 15–24, available:
956	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med10&NEWS=N&AN=
957	24314891.
958	RODRIGUEZ, A., PANGLOLI, P., RICHARDS, H.A., MOUNT, J.R., DRAUGHON, F.A.N.N. (2006)
959	'Prevalence of Salmonella in Diverse Environmental Farm Samples', Journal of Food
960	Protection, 69(11), 2576–2580, available: https://doi.org/10.4315/0362-028X-
961	69.11.2576.
962	Rossi, G., De Leo, G.A., Pongolini, S., Natalini, S., Zarenghi, L., Ricchi, M., Bolzoni, L. (2017)
963	'The Potential Role of Direct and Indirect Contacts on Infection Spread in Dairy Farm
964	Networks', PLOS Computational Biology, 13(1), e1005301, available:
965	https://doi.org/10.1371/journal.pcbi.1005301.
966	RUMA (2019) Targets Task Force: Two Years On, available: https://www.ruma.org.uk/wp-
967	content/uploads/2019/10/RUMA-TTF-update-2019-two-years-on-FULL-REPORT.pdf
968	[accessed 3 Mar 2020].
969	Rutherford, SJ., Jeckel, S., Ridler, A. (2015) 'Characteristics of sheep flocks affected by
970	Streptococcus dysgalactiae arthritis.', The Veterinary record, 176(17), 435, available:

971 972	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN= 25724543.
973 974	SCOPS (2019) SCOPS Sustainable Control of Parasites in Sheep [online], available: https://www.scops.org.uk/ [accessed 14 May 2020].
975 976 977 978 979 980 981 982 983 984 985	 Scott, L., Menzies, P., Reid-Smith, R.J., Avery, B.P., McEwen, S.A., Moon, C.S., Berke, O. (2012) 'Antimicrobial resistance in fecal generic Escherichia coli and Salmonella spp. obtained from Ontario sheep flocks and associations between antimicrobial use and resistance', <i>Canadian journal of veterinary research = Revue canadienne de recherche veterinaire</i>, 76(2), 109–119, available: https://pubmed.ncbi.nlm.nih.gov/23024453. Shalaby, H.A. (2013) 'Anthelmintics Resistance; How to Overcome it?', <i>Iranian journal of parasitology</i>, 8(1), 18–32, available: https://www.ncbi.nlm.nih.gov/pubmed/23682256. Stubbings, L., SCOPS (2012) 'Efficacy of macrocyclic lactone treatments in sheep in the UK.', <i>The Veterinary record</i>, 170(25), 653, available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2 2730501.
986 987 988	Sutherland, I.A., Leathwick, D.M. (2011) 'Anthelmintic resistance in nematode parasites of cattle: a global issue?', <i>Trends in Parasitology</i> , 27(4), 176–181, available: http://www.sciencedirect.com/science/article/pii/S1471492210002370.
989990991992993	Talan, D.A., Takhar, S.S., Krishnadasan, A., Abrahamian, F.M., Mower, W.R., Moran, G.J., Group, Emerge.I.D.N.S. (2016) 'Fluoroquinolone-Resistant and Extended-Spectrum β-Lactamase-Producing Escherichia coli Infections in Patients with Pyelonephritis, United States(1)', Emerging infectious diseases, 22(9), 1594–1603, available: https://pubmed.ncbi.nlm.nih.gov/27532362.
994 995 996 997 998	Tang, K.L., Caffrey, N.P., Nóbrega, D.B., Cork, S.C., Ronksley, P.E., Barkema, H.W., Polachek, A.J., Ganshorn, H., Sharma, N., Kellner, J.D., Ghali, W.A. (2017) 'Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis', <i>The Lancet. Planetary health</i> , 1(8), e316–e327, available: https://www.ncbi.nlm.nih.gov/pubmed/29387833.

1000	Taylor, M.A., Learmount, J., Lunn, E., Morgan, C., Craig, B.H. (2009) Multiple resistance to
1001	anthelmintics in sheep nematodes and comparison of methods used for their
1002	detection', Small Ruminant Research, 86(1–3), 67–70, available:
1003	https://www.scopus.com/inward/record.uri?eid=2-s2.0-
1004	70450223329&doi=10.1016%2Fj.smallrumres.2009.09.020&partnerID=40&md5=457e8
1005	32e7783938331e22fedf113a4f2.
1006	Thomas, E. (2015) 'Anthelmintic study update – results of the recent WAARD project',
1007	CATTLE PRACTICE, 23(2), 377–378.
1008	Thomas, V., De Jong, A., Moyaert, H., Simjee, S., El Garch, F., Morrissey, I., Marion, H., Vallé,
1009	M. (2015) 'Antimicrobial susceptibility monitoring of mastitis pathogens isolated from
1010	acute cases of clinical mastitis in dairy cows across Europe: VetPath results',
1011	International journal of antimicrobial agents, 46(1), 13–20, available:
1012	https://www.scopus.com/inward/record.uri?eid=2-s2.0-
1013	84934921255&doi=10.1016%2Fj.ijantimicag.2015.03.013&partnerID=40&md5=948b82
1014	8f582b490d2c9e252da26cfd63.
1015	Træholt Franck, K., Olsen, S., Sönksen, U. (2017) 'DANMAP 2016, RESISTANCE IN HUMAN
1016	CLINICAL BACTERIA, E. coli and K. pneumoniae'.
1017	Velasova, M., Smith, R.P., Lemma, F., Horton, R.A., Duggett, N.A., Evans, J., Tongue, S.C.,
1018	Anjum, M.F., Randall, L.P. (2019) 'Detection of extended-spectrum beta-lactam, AmpC
1019	and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in
1020	2015.', Journal of applied microbiology, 126(4), 1081–1095, available:
1021	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medl&NEWS=N&AN=3
1022	0693606.
1023	Veldman, K., Wit, B., Pelt, W., Heederik, D., DJ, M. (2017) MARAN 2017: Monitoring of
1024	Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2016.
1025	Combined with NETHMAP-2017: Consumption of Antimicrobial Agents and
1026	Antimicrobial Resistance among Medically Important Bacteria in the Netherlan.
1027	VMD (2019a) UK One Health Report: Antibiotic Use and Antibiotic Resistance in Animals and
1028	Humans - GOV.UK [online], available:
1029	https://www.gov.uk/government/publications/uk-one-health-report-antibiotic-use-

1030	and-antibiotic-resistance-in-animals-and-humans [accessed 18 May 2020].
1031	VMD (2019b) UK Veterinary Antibiotic Resistance and Sales Surveillance Report
1032	Www.Gov.Uk/Government/Organisations/Veterinary-Medicines-Directorate, available:
1033	www.nationalarchives.gov.uk/doc/open-government-
1034	licence/version/3/oremailPSI@nationalarchives.gov.uk.Thispublicationisavailableatww
1035	w.gov.uk/government/collections/veterinary-antimicrobial-resistance-and-sales-
1036	surveillance. [accessed 3 Mar 2020].
1037	Warner, R.G., Snow, L.C., Cheney, T., Wearing, H., Harris, K., Cook, A.J., Teale, C.J., Coldham,
1038	N.G. (2011) 'Identification of risk factors for the prevalence of CTX-M ESBL E. coli on
1039	dairy farms in North West England and North Wales', Cattle Practice, 19(1), 51,
1040	available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
1041	79953712603&partnerID=40&md5=4c304c3b9a8f1649b957eb0f186fe665.
1042	WHO (2019) 'WHO WHO list of critically important antimicrobials (WHO CIA list)', WHO,
1043	available: https://www.who.int/foodsafety/areas_work/antimicrobial-
1044	resistance/cia/en/ [accessed 18 May 2020].
1045	Woolhouse, M., Ward, M., Bunnik, B. van, Farrar, J. (2015) 'Antimicrobial resistance in
1046	humans, livestock and the wider environment', Philosophical transactions of the Royal
1047	Society of London. Series B, Biological sciences, 370(1670).
1048	Wu, G., Ehricht, R., Mafura, M., Stokes, M., Smith, N., Pritchard, G.C., Woodward, M.J.
1049	(2012) 'Escherichia coli isolates from extraintestinal organs of livestock animals harbour
1050	diverse virulence genes and belong to multiple genetic lineages.', Veterinary
1051	microbiology, 160(1–2), 197–206, available:
1052	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=2
1053	2766078.
1054	Wu, Z., Sippy, R., Sahin, O., Plummer, P., Vidal, A., Newell, D., Zhang, Q. (2014) 'Genetic
1055	diversity and antimicrobial susceptibility of Campylobacter jejuni isolates associated
1056	with sheep abortion in the United States and Great Britain.', Journal of clinical
1057	microbiology, 52(6), 1853–1861, available:
1058	http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medc&NEWS=N&AN=2
1059	4648552.

1060	Zaytoun, O.M., Vargo, E.H., Rajan, R., Berglund, R., Gordon, S., Jones, J.S. (2011) 'Emergence
1061	of Fluoroquinolone-resistant Escherichia coli as Cause of Postprostate Biopsy Infection:
1062	Implications for Prophylaxis and Treatment', Urology, 77(5), 1035–1041, available:
1063	http://www.sciencedirect.com/science/article/pii/S0090429511000513.
1064	
1065	