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What effect did the introduction of Bitcoin futures have on 

the Bitcoin spot market? 

 

 

 

Abstract 

Bitcoin futures were introduced in December 2017 and this was seen by some as a sign of the most 

popular cryptocurrency finally being accepted by the financial community.  In this paper, we 

examine the impact of the introduction of Bitcoin futures on the Bitcoin spot market in terms of 

five characteristics - returns, volatility, skewness, kurtosis and liquidity, using a Bayesian diffusion-

regression (state-space) structural time-series model. Our results indicate that the introduction of 

bitcoin futures potentially exerted a downward impact on the USD bitcoin spot market return and 

skewness and an upward one on volatility, kurtosis and liquidity, which became higher after futures 

were introduced. Therefore, our paper offers important insights for investors and regulators, while 

providing some guidance as to the potential impact of futures markets on other cryptocurrencies. 
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1. Introduction 

The introduction of Bitcoin futures in early December 2017 marked one of the most crucial 

landmarks in the development of cryptocurrency markets. With the introduction of Bitcoin futures 

on the Chicago Board Options Exchange (CBOE) and the Chicago Mercantile Exchange (CME), 

investors could now speculate on falling prices (“go short”) and interestingly, according to Robert 

Shiller, it was exactly this lack of being able to go short which was responsible for the Bitcoin 

pricing bubble in 2017 (Shiller 2017).  The impact of the introduction of futures markets has had 

a profound effect on the Bitcoin market, with some papers documenting a significant increase in 

the spot volatility of Bitcoin (Corbet et al. 2018; Kim et al. 2020), a crash in Bitcoin price after the 

introduction of futures (Ruozhou et al. 2020), an impact on the market efficiency of Bitcoin 

(Shynkevich 2020), while some papers find that the price discovery of Bitcoin now originates in 

the future market rather than the spot market (Kapar and Olmo 2019; Fassas et al. 2020).  

Therefore the impact of a futures market has had a huge effect on the Bitcoin market.   

This study attempts to shed light on the causal impact of the introduction of Bitcoin futures 

in December 2017 on five properties of the Bitcoin spot market, namely returns, volatility, 

skewness, kurtosis and liquidity. Specifically, we attempt to answer the question - what could the 

Bitcoin market look like if the Bitcoin futures had never been introduced? To answer this question, 

we implement a diffusion-regression (state-space) structural time-series model (Brodersen et al., 

2015) that helps us predict the Bitcoin market response to the introduction of Bitcoin futures. This 

is an important topic to study since the listing of Bitcoin futures on the main futures exchanges 

was a landmark event for Bitcoin since it brought Bitcoin trading to a regulated market for the first 

time and therefore opened up Bitcoin trading to a larger audience. Our paper examines what would 

have happened to the main variables of Bitcoin if Bitcoin futures had not been introduced. 

Bitcoin, proposed by Satoshi Nakamoto in 2008, was the first digital currency to operate 

through a peer-to-peer network without reliance on a central authority.  It has received a lot of 

attention from the media, governments, regulators and investors alike, who have been attracted by 
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its innovative features and huge price appreciation.  However, this price appreciation has come 

with large volatility and uncertainty regarding the future price path of this popular cryptocurrency.  

The Bitcoin literature so far has mainly focused on the inefficiency of Bitcoin (Urquhart 2016; 

Bariviera 2017; Tiwari et al 2018; Wei 2018; Sensoy 2019), its hedging and diversification benefits 

(Bouri et al 2017; Corbet et al 2019a; Urquhart and Zhang 2018; Borri 2019), potential for returns 

from investing in Bitcoin (Brière et al 2015; Hudson and Urquhart 2019; Kajtazi and Moro 2019; 

Platanakis and Urquhart 2019) as well as the volatility dynamics of Bitcoin (Katsiampa 2017; Chaim 

and Laurini 2018; Catania et al 2019; Matkovskyy 2019; Katsiampa 2019).1 

One the key developments of Bitcoin was the introduction of futures trading which was 

seen as a sign that the financial system was beginning to accept Bitcoin as a tradeable speculative 

asset.2  The introduction was also important for Bitcoin traders as for the first time, they were able 

to easily hedge their spot positions.  CBOE Futures (XBT) and CME Futures (BTC) were launched 

on the 10th and 18th of December 2017, respectively, and this event was met with a mixed market 

reaction. Proponents argued that the introduction of the futures market would mean a move 

towards market efficiency and better liquidity while opponents blamed it for the sharp drop in 

Bitcoin prices. Academic thought in this regard remains mixed. For instance, Liu et al (2019) show 

that the launch of Bitcoin futures caused the crash of Bitcoin in 2018. On the other hand, Hattori 

and Ishida (2019) document that Bitcoin futures trading had a negative effect on Bitcoin prices 

only in the first 19 minutes, and not over the longer term. In a similar vein, Hale et al. (2018) show 

that the post-launch drop in Bitcoin prices is consistent with investor behaviour in traditional asset 

markets when futures are introduced for the first time (Fostel and Geanakoplos, 2012).  

Several studies have documented positive effects of futures trading on the overall Bitcoin 

market, such as an increase in Bitcoin market efficiency (Köchling et al. 2018; Matkovskyy and 

Jalan 2019). Ruozhou et al. (2020) document that while the launch of Bitcoin futures caused a 

 
1 For a systematic review of the literature on Bitcoin, see Corbet et al (2019). 
2 Through an examination of transaction data, Baur et al (2018) show that Bitcoin is mainly used as a speculative 
investment by investors and not as an alternative currency or medium of exchange. 
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significant decrease in short-term Bitcoin prices, other cryptocurrencies remained largely 

unaffected. Kim et al (2019) document greater Bitcoin spot market stability post-launch of Bitcoin 

futures while Kapar and Olmo (2019) show that Bitcoin futures dominate the price discovery 

process while both the futures and spot prices are driven by a common factor which is a 

combination of the futures and spot price.  Using the information share methodology of 

Hasbrouck (1995), Baur and Dimpfl (2019) show that the Bitcoin spot price leads future prices in 

terms of price discovery, which is attributed to higher trading volume and longer trading hours of 

the spot market compared to the US-based futures markets.3 In a recent paper, Alexander et al. 

(2019) document that derivatives on the unregulated BitMEX exchange lead prices on major 

Bitcoin exchanges and are effective hedges against spot price volatility. 

In general, derivative markets offer several advantages such as lower transaction costs, 

higher liquidity and ease of short selling (Chance and Brooks, 2013). However, in the literature, 

there are contradictory findings regarding the impact of the introduction of futures trading on the 

spot market. For instance, some studies find that the introduction of derivatives has a destabilizing 

effect on the respective spot market (Cox, 1976; Cagan, 1981; Hart and Kreps, 1986; Stein, 1987).  

For example, Jegadeesh and Subrahmanyam (1993) suggest that after introducing futures for the 

S&P500 index, the average spread of its stocks increased significantly. Similarly for volatility, Harris 

(1989) document that for the S&P500, volatility increased after the introduction of derivatives in 

1983, which has been supported in other international markets (for instance Antoniou and Holmes 

1995; Pok and Poshakwale 2004; Ryoo and Smith 2004; Zhong, Darraf and Otero 2004; Xie and 

Mo 2014; Xie and Huang 2014; Kutan et al. 2018) and commodity markets (Yang et al. 2005; Gupta 

and Varma, 2016; etc).  

An alternative finding in the literature is that the introduction of a futures markets stabilizes 

the spot market by lowering the volatility of the market (for instance Powers 1970; Kyle 1985; 

Antoniou et al 1998).  Gulen and Mayhew (2000) study stock market volatility before and after the 

 
3 This finding is also supported by a previous study by Corbet et al (2018). 
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launch of equity-index futures trading in twenty-five countries and find that for 16 countries out 

of 25, the introduction of futures led to decreased volatility in the underlying stock markets. 

Antoniou, Koutmos and Pericli (2005) demonstrate that futures markets help stabilize the 

underlying spot markets.  Chen, Han, Li, and Wu (2013) document that the launch of index futures 

trading significantly reduces the volatility in the Chinese stock market. Lee et al. (2014) document 

lower volatility in the European real-estate market following the launch of the real-estate futures 

contracts in 2007. Bohl, Diesteldorf, and Siklos (2015) document that Chinese index futures 

decrease spot market volatility in mainland China with Chinese index futures traded in Singapore 

and Hong Kong.  Nevertheless, there is some evidence that the introduction of futures markets 

has no significant effect on the spot market (Freris, 1990; Schwert, 1990; Antoniou and Foster, 

1992; Bacha and Vila, 1994; Darrat and Rahman, 1995; Fortenbery and  Zapata, 1997; Jochum and 

Kodres, 1998;  Lee and Tong, 1998; Bohl and Stephan, 2013).  

Given the conflicting views of the impact of the launch of futures markets, we examine the 

causal impact on a number of important facets of the Bitcoin market. The causal impact of an 

intervention is the difference between the observed time series of the response (Bitcoin returns, 

volatility, skewness, kurtosis and liquidity) and the unobserved series that would have been 

observed had the intervention not happened (Brodersen et al. 2015).  This causal impact is studied 

using the methodology outlined in Brodersen et al. (2015)4 that uses a Bayesian approach to infer 

the temporal evolution of activity and incremental impact. 

In our empirical study, we use Bitcoin return, variance, volatility, skewness, kurtosis and 

liquidity as the treatment variables, which on the basis of findings related to other financial markets 

(Cox, 1976; Cagan, 1981; Pindyck 1983; Hart and Kreps, 1986; French et al. 1987; Ross 1989; 

Nelson 1990; Gulen and Maydew 2000; Mitton and Vorkink, 2007; Barberis and Huang, 2008 etc.) 

could potentially be affected by the introduction of Bitcoin futures. Other cryptocurrencies, namely 

 
4 Brodersen et al. (2015) offer the method to construct the “counterfactual” that is similar conceptually to synthetic 
diff-in-diff methods (e.g. Abadie and Gardeazabal 2003; Abadie 2005; and Abadie, Diamond and Hainmueller 2010). 
It is implemented in CausalImpact R package. 
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Ethereum and Litecoin, that are not directly affected by the intervention, i.e., the launch of Bitcoin 

futures, but remain correlated with our variables of interest (Köchling et al. 2018) are used as the 

control time series. 

Our results contribute to existing literature by quantifying the effect of the introduction of 

Bitcoin futures on bitcoin spot market return, volatility, realized kurtosis, realized skewness and 

liquidity. Our simulation shows that if bitcoin futures had never been introduced, the USD bitcoin 

spot market return would be higher, volatility and kurtosis lower, skewness higher and finally, 

market liquidity lower.  

Thus, our findings show that the introduction of bitcoin futures had a significant negative 

effect on return and a significant positive impact on spot market volatility. The negative 

relationship observed between bitcoin volatility and return can be due to greater risks (Chung and 

Chuwonganant 2018) and is consistent with expected risk premium and volatility (French et al. 

1987). In terms of skewness, the introduction of bitcoin futures decreases the degree of asymmetry 

of the return distribution around its mean. Following Lien and Wang (2012), this could be 

interpreted as a potential increase in demand for hedging following the introduction of bitcoin 

futures. In addition, our results support the finding of Bris et al (2007) who postulate that returns 

in markets in which short-selling is not practiced, typically exhibit significantly less negative 

skewness. The launch of Bitcoin futures ended up making the bitcoin spot market not only more 

volatile but also more vulnerable to extreme return values. This can be witnessed from sharp 

increases in realized kurtosis values of the USD bitcoin spot market. This could potentially deter 

risk-averse investors from participating in the market after the launch of futures. In short, in terms 

of all three aspects of volatility, skewness and kurtosis, the launch of bitcoin futures seems to have 

destabilized the USD bitcoin spot market. We observe however, that the launch of futures resulted 

in a tiny positive effect in bitcoin spot market liquidity, but unfortunately, this effect is not strong 

enough to stabilize this already highly-volatile market.  
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The overall picture seems to suggest that the introduction of bitcoin futures had a 

significantly positive impact on spot volatility and a significantly negative impact on Bitcoin returns. 

Even when this may sound surprising, this is in line with the findings of Ang et al. (2006) who find 

that investors typically expect lower returns from stocks with overall high levels of volatility. The 

results support the hypothesis that the introduction of bitcoin futures, in general, contributed to 

destabilizing the USD bitcoin spot market (Cox, 1976; Cagan, 1981; Hart and Kreps, 1986; Stein, 

1987), with volatility as the main channel for destabilization.  

The rest of this paper is organized as follows. Section 2 introduces the data, the variables 

of interest and the methodology while Section 3 presents the empirical results.  Section 4 

summarizes our paper and provides conclusions. 

 

2. Data, variables of interest and methodology 

2.1. Data 

We collect hourly Bitcoin price data from the Bitstamp exchange and that for Ethereum and 

Litecoin, from Kraken, over the period 1st July 2017 to 10th October 2019.  Our sample period is 

chosen due to data availability of Ethereum and Litecoin. The Bitstamp, one of the longest running 

exchanges, is highly liquid and also the exchange used by Datastream (Platanakis and Urquhart 

2019). On the other hand, LTC and ETH are not available on Bitstamp from the same day as 

Bitcoin. Given the need to have the longest possible time series before the introduction of futures 

for an efficient application of the Brodersen (2015) methodology, we take closing price and volume 

data for LTC and ETH from Kraken, which provides a much longer time series of observations.5 

Even when the three cryptocurrencies are interconnected (Koutmos 2018; Antonakakis et 

al. 2019; and Ji et al. 2019; Smales 2020), the literature suggests that Ethereum and Litecoin 

remained unaffected by the bitcoin futures launch. Indeed, cryptocurrencies’ connectedness is a 

 
5 Kraken data has been extensively used in published cryptocurrency research. For instance, Matkovskyy and Jalan 
(2020), Matkovskyy (2019) who use closing price data from this exchange. Alexander and Dakos (2020) conclude that 
data from Kraken, as used in Matkovskyy (2019) is accurate. 
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well-documented phenomenon. For instance, Sifat et al. (2019) document the presence of bi-

directional causality between bitcoin and Ethereum. Moratis (2020) provides support to the 

evidence that connectedness among cryptocurrencies is not explicitly determined by their size. Yi 

et al. (2018) analyse volatility connectedness of 8 cryptocurrencies – bitcoin, Ripple, Litecoin, 

Peercoin, Namecoin, Feathercoin, Novacoin and Terracoin using the Spillover Index approach 

(Diebold and Yilmaz, 2009). They find that overall connectedness increased after 2016 and that 

the bitcoin is an important transmitter of connectedness, though not the dominant one.  

Ji et al. (2019) examine return connectedness for 6 large cryptos – Bitcoin, Ethereum, 

Ripple, Litecoin, Stellar and Dash, using Diebold and Yilmaz (2012, 2016) measures and show that 

shocks in Bitcoin returns, followed by Litecoin have the greatest impact on other cryptocurrencies. 

They present evidence that cryptocurrency connectedness is not necessarily related to its market 

size. Bouri et al. (2020) study cryptocurrency connectedness using return jumps on a sample of 12 

cryptocurrencies, including Ethereum and Litecoin. They document that the presence of a jump in 

one currency increases the probability of inducing a jump in another, showing connectedness of 

bitcoin and Ethereum. Similarly, Gonzalez et al. (2020) in their study of both long- and short-run 

interdependencies between returns of Bitcoin and Ethereum, XRP, Bitcoin Cash, Tether, Bitcoin 

SV, Litecoin, EOS, Binance coin, and Tezos by means of a NARDL approach, document  evidence 

of connectedness, i.e., the presence of short-run and long-run responses of cryptocurrencies’ 

returns to changes in bitcoin return for all frequencies. Using wavelet coherence analysis and 5-

minute data, Fruehwirt et al. (2020) show significant co-movement and interdependence among 

the cryptocurrencies. On the other hand, given that the only underlying asset of Bitcoin futures is 

bitcoin, there is evidence that the other cryptocurrencies are insulated to some extent to the bitcoin 

futures launch (Ruozhou et al. 2020). We also find support for our claim in Shynkevich (2020) who 

documents no evidence of improvement of market efficiency of Ethereum following the start of 

trading in bitcoin futures.  
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A volatility signature is applied to test for overall volatility for different frequencies of 

Bitcoin close prices. This is in line with Andersen et al. (1999) who address the issue of selection 

of an appropriate sampling frequency in the light of high frequency data. They argue that the ‘ideal’ 

frequency for calculation of realized volatility of asset returns must be selected in a manner that 

minimises both microstructural bias and sampling error. This is made possible with the help of a 

volatility signature plot that represents average realized volatility against various sampling intervals. 

The ideal frequency to be selected is one where one observes a relative stabilization of overall 

volatility.  

Since their introduction, volatility signature plots have been employed across various 

academic studies in finance to address data frequency issues (see for instance, Corsi et al. 2008, 

Degiannakis and Floros, 2013 and for cryptocurrencies in particular by Akyildirim et al., 2020 and 

Shen et al. 2020.). 

The volatility signatures are depicted in Figure 1 and shows that the volatility of Bitcoin 

levels off around the 60-minute frequency.  Specifically during the first 10 minutes, bitcoin volatility 

decreased from 2.6 to 0.2 (90% decrease) while between 11-60 minutes, it decreased from 0.2 to 

0.04 (78% decrease) and then after that, volatility dropped from 0.04 to 0.02 which indicates the 

levelling off volatility.  Therefore, based on these volatility signature results, one can conclude that 

the 60 minutes’ frequency is best suited for our tests from the point of view of noise minimization. 

 

2.2. Variables of Interest 

The variables of interest in this paper are the daily Bitcoin return, volatility, skewness, kurtosis and 

liquidity that are considered to be of significant interest to researchers, market regulators, investors 

(Chung and Chuwonganant 2018). 

We calculate log returns as: 
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 𝑟𝑡 = (𝐼𝑛𝑃𝑡 − 𝐼𝑛𝑃𝑡−1) × 100 (1) 

 

Where 𝑟𝑡 is the daily return on day t and 𝑃𝑡 and 𝑃𝑡−1 are the prices at day t and day t-1.    

Realized variance (RV), is defined any given day t as the sum of the squared intraday returns 

𝑟𝑡,𝑗 at a given sampling frequency 1/M: 

 

 

𝑅𝑉𝑡,𝑀 = ∑ 𝑟𝑡,𝑗
2

𝑀

𝑗=1

 

 

(2) 

 

where M is the number of intervals in the trading day.  We choose hourly data because for any 

higher frequency, we observe lack of liquidity. 

Realized volatility is calculated by applying the median realized volatility, medRV, of 

Andersen et al. (2012). This approach has better efficiency properties than other formalizations for 

volatility and displays better finite-sample robustness to jumps and small returns. It is based on the 

theoretical development of Andersen and Bollerslev (1998) and Merton (1980) and was empirically 

supported and further developed as a less noisy, unbiased and consistent estimator (Anderson et 

al, 2003, 2007, 2010; 2011a,b; 2012; Engle and Gallo, 2006; Corsi, Pirino, and Renò, 2010; Liu et 

al., 2017; Ma et al., 2017). Chen et al. (2011) show that this approach generally outperforms 

stochastic volatility models as well as the generalized autoregressive conditional heteroscedastic 

models (Santos and Ziegelmann, 2014; Vortelinos, 2017 etc.). Also, this approach can effectively 

address possible abrupt jumps in volatility.”  

It is calculated as following: 
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𝑚𝑒𝑑𝑅𝑉𝑡 =
𝜋

6 − 4√3 + 𝜋
(

𝑀

𝑀 − 2
) ∑ 𝑚𝑒𝑑(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1| )2

𝑀−1

𝑖=2

 (3) 

 

where 𝑀 is the number of intervals in one day and 𝑟𝑡 is the return at time t. This estimate has a 

number of advantages comparatively to simple realized variance calculation, that is biased, 

inconsistent, and not robust to jumps. Also, we prefer the median realized volatility measure instead 

of the bipower variation measure because the latter is biased in empirical applications as the 

sampling frequency is not high enough to eliminate the influence of jumps, and the sample may 

include a number of zero returns.  The MedRV allows the impact of jumps to completely vanish 

except in the case of two consecutive jumps and it is robust to the occurrence of zero returns.  

For the purpose of checking robustness we also calculated the time-varying GARCH 

models (tGARCH, GARCH-in-mean etc.) volatility that are a standard instrument in volatility 

estimation and the time dependent variance as the stochastic volatility with student-t errors and 

leverage, that provide more sophisticated framework for volatility estimates. 

The time dependent variance as the stochastic volatility with student-t errors and leverage 

models proposed and further developed by  Jacquier et al. (2004), Omori et al. (2007), Nakajima 

and Omori (2009) among others. This type of model is based on the seminal work of Taylor (1982), 

which addresses heteroskedasticity using a non-linear latent state space model, later termed the 

stochastic volatility (SV) model. In SV models, the volatility process evolves in a stochastic manner 

and offers various advantages over GARCH models (Kim, Shephard, and Chib 1998; Nakajima 

2012).  

 The univariate stochastic volatility model with leverage, heavy tails and correlated jumps is 

specified as follows (Harvey and Shephard 1996; Omori, Chib, Shephard, and Nakajima 2007; 

Nakajima and Omori 2012): 

 𝑦𝑡 = 𝑥𝑡𝛽 + exp(ℎ𝑡/2)𝜀𝑡,  
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ℎ𝑡+1 = 𝜇 + 𝜑(ℎ𝑡 − 𝜇) + 𝜎𝜂𝑡 , 

𝜀𝑡~𝑡𝑣(0,1), 

𝜂𝑡~𝒩(0,1), 

Where 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 is a vector of observations, 𝜇 is the level, 𝜑 is the persistence, and 

𝜎 is the standard deviation of the log-variance. The log variance process ℎ = (ℎ1, … , ℎ𝑛)𝑇 is 

initialized by ℎ0~𝒩 (𝜇,
𝜎2

1−𝜑2), 𝑋 = (𝑥1, … , 𝑥𝑛)𝑇 is an n x K matrix with the vectors of K regressors 

at time t in its t-th row, the K regression coefficients are collected in 𝛽, 𝑡𝑣(a, b) is the Student’s t 

distribution with v degrees of freedom, mean a, and variance b, the correlation matrix of (𝜀𝑡, 𝜂𝑡) is 

defined as Σ𝑝 = (
1 𝜌
𝜌 1

).  

Bayesian inference using an MCMC sampling scheme is applied to derive the estimates. We 

also measure realised skewness and kurtosis as in Amaya et al. (2011): 

 

 
𝑅𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 =

√𝑁 ∑ (𝑟𝑡,𝑖)
3𝑁

𝑖=1

𝑅𝑉𝑡
3/2

 (4) 

 
𝑅𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑡 =

√𝑁 ∑ (𝑟𝑡,𝑖)
4𝑁

𝑖=1

𝑅𝑉𝑡
2  (5) 

 

where 𝑅𝑉 is realized variance.  These two measures enable us to study the normality of returns and 

determine the negative or positive skewness as well as the excess kurtosis of Bitcoin returns. 

Liquidity measurement is important given the role of liquidity in affecting market functioning. For 

instance, Korn et al. (2019), formalizing the derivative hedge theory of Cho and Engle (1999), show 

that spot market illiquidity is not shifted in a one-to-one fashion to the futures market. Instead, it 

interacts with price risk, liquidity risk, and the risk aversion of the market maker. 

Two measures of Bitcoin market liquidity are used - the high-low range (HLR) following 

Chung and Zhang (2014) and the volatility over volume (VoV) index developed by Fong et al. 
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(2017).  The high-low range (HLR) is computed by adjusting the Chung and Zhang (2014) measure 

by replacing bid and ask prices with the high and low prices, such that:  

 

 
𝐻𝐿𝑅𝑡 =  

𝐻𝑡 − 𝐿𝑡

0.5 (𝐻𝑡 +  𝐿𝑡)
 (6) 

 

The volatility over volume (VoV) index (Fong et al. 2017) is defined as: 

 

𝑉𝑜𝑉𝑡 =
ln (

𝐻𝑡
𝐿𝑡

⁄ )

√𝑣𝑜𝑙𝑢𝑚𝑒
 (7) 

 

Therefore, we employ a comprehensive set of liquidity measures.  

A significant impediment in the calculation of Bitcoin liquidity lies in the use of reported 

trading volumes by Bitcoin exchanges. There are studies that document the problem of suspicious 

trading activity and inflated trading volumes on Bitcoin exchanges. Several reasons have been 

attributed for this phenomenon, such as the need to attract more customers, convince coin 

producers to host their ICO’s by over-emphasizing exchange liquidity (Wan, 2019) and price 

manipulation by exchanges (Gandal et al., 2018).  

To ensure the validity of our liquidity measures that use reported Bitcoin trading volumes, 

we check for potential anomalies in trading volumes using Benford’s law, a well-documented 

technique in fraud detection. The Law argues that numbers in a series consistently follow a pattern 

with low digits occurring more frequently in initial positions than larger digits. Given its efficacy in 

detecting anomalies in almost any series of numbers, the Law has been applied to a variety of 

settings, ranging from natural sciences (see for instance, Sambridge et al., 2010) to auditing (Drake 

and Nigrini, 2000) and accounting (Papanikolaou and Grammatikos, 2020). Interestingly, recent 
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applications of the Benford’s Law include cryptocurrency markets (Cong et al., 2019; Peterson, 

2020)6. 

Figure 2 shows the Benford distributions, both actual and theoretical (the red dashed line). 

Benford results at least for our sample period suggest the presence of no significant anomalies in 

Bitcoin volumes, reassuring us of the validity of our liquidity results that use reported Bitcoin 

trading volumes. 

 

2.3. Methodology  

In this study we quantify the impact of a discrete event (a treatment), i.e., the introduction 

of bitcoin futures on the Bitcoin spot market. The causal impact of an event is the difference 

between the observed value of the response variable and the unobserved value that would have 

been obtained had the intervention not taken place (Brodersen et al. 2015; Claveau 2012; Hoover 

2012; Antonakis et al. 2010). We use several sources of information to quantify the causal effect of 

the launch of bitcoin futures. First, the behaviour of Bitcoin spot market itself, prior to the 

introduction of futures7. Second, the behaviour of potential control variables,  that are not directly 

affected by the intervention but are correlated with the variable of interest and were predictive of 

the target series prior to the intervention (for instance, return series for other cryptocurrencies). 

We also assume, that the correlation between the Bitcoin spot market and the control series 

continued after the launch of Bitcoin futures. . A post-treatment part of control time-series due to 

its potential to predict a dependent variable, Bitcoin spot market price, is also used.  In our model, 

we use Bitcoin return, variance, volatility, skewness, kurtosis and liquidity as the treatment variables, 

y’s, and the ones of Ethereum and Litecoin as controls.  Ethereum and Litecoin are chosen due to 

their correlation with bitcoin and absence of bitcoin futures effect on their efficiency (Köchling et 

 
6 For a comprehensive review on the use of Benford’s Law in Finance and Accounting, see Flayyih et al. (2020). 

 
7 The pre-intervention period starts on 1st July 2017 due to data availability and continues till 18th December 2017, 
which is treated as the day of the event or intervention. 
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al. 2018). Following Brodersen et al. (2015) we built a diffusion-regression (state-space) structural  

time-series model, where one component of state is a regression that prevents a inflexible 

commitment to a particular control variables implemented by integrating a posterior uncertainty 

regarding influence of selected predictors as well as an uncertainty about which predictors to 

include. It has the following advantages, i.e., (i) it allows for different types of assumptions 

regarding the latent state and emission processes underlying the observed cryptocurrency data, 

including local trends and seasonality; (ii) it gives flexibility posterior inferences can be summarised 

because of an application of Bayesian approach to inferring the temporal evolution  of Bitcoin spot 

market; (iii) the selected approach allows for using a spike-and-slab prior on regression counterpart 

in the structural time-series model,  allowing to average over the selected controls; (iv) avoids 

overfitting. Using this model, the posterior distribution of the Bitcoin spot market return, volatility, 

skewness, kurtosis and liquidity are derived given the value of the target series in the pre-Bitcoin 

futures introduction period and the values of the controls (Ethereum and Litecoin markets) after 

the introduction of the futures. Deducting the predicted values from the observed response in the 

post-intervention period derives a semiparametric Bayesian posterior distribution for the causal 

effect. 

Typically, Bayesian structural time-series models are very flexible and can be specified in 

general as the following pair of equations. An observation equation that describes how a given 

system state translates into measurements: 

 

 𝑦𝑡 = 𝑍𝑡
𝑇𝑎𝑡 + 𝜀𝑡 (8) 

 

and a state equation that specifies the transition process of latent variables from one time point to 

the next: 
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 𝑎𝑡+1 = 𝑇𝑡𝑎𝑡 + 𝑅𝑡𝜂𝑡 (9) 

 

where 𝑦𝑡 is observed data, 𝑎𝑡 is a latent d-dimensional state vector (formed by concatenating the 

individual state components), 𝑍𝑡
𝑇 is a d-dimensional output vector, where d is the total number of 

latent states for all entries in 𝑦𝑡, 𝜀𝑡 is a scalar observation error with noise variance σt, ηt is a q-

dimensional system error with a q×q block-diagonal state-diffusion matrix Qt , where q ≤ d, 𝑇𝑡 is a 

d × d transition matrix, 𝑅𝑡 is a d × q control matrix (q ≤ d), 𝜀𝑡~𝒩(0, 𝜎𝑡
2),  𝜂𝑡~𝒩(0, 𝑄𝑡)  are 

independent of all other coefficients, 𝑅𝑡𝜂𝑡 is the error structure allows for incorporation of state 

components of less than full rank.  

Structural time series models built in terms of components have a direct interpretation (Qiu, 

Jammalamadaka and Ning 2018). The model incorporates several such the components. The first 

component is a local linear trend with a slope that exhibits stationarity: 

 

 𝜇𝑡+1 = 𝜇𝑡 + 𝛿𝑡 + 𝜂𝜇,𝑡 (10) 

 𝛿𝑡+1 = 𝐷 + 𝜌(𝛿𝑡 − 𝐷) + 𝜂𝛿,𝑡 (11) 

 

where 𝜇𝑡 is the trend at time t,  𝛿𝑡 is the expected increase in μ between times t and t + 1, the slope 

of the time trend is AR(1) variation around a long-term slope of D, |ρ| < 1 is the learning rate at 

which the local trend is updated. Thus, the model accounts for both short-term and long-term 

information. 𝜌 is a m x m diagonal matrix with diagonal entries 0 ≤ 𝜌𝑖𝑖 ≤ 1, for i=1; 2; … ; m, and 

represent the learning rates at which the local trend is updated for 𝑦𝑡. When 𝜌𝑖𝑖 = 1, the 

corresponding slope becomes a random walk. In general, the specification of time series models 

for the trend component differs due to the time-series characteristics and any prior knowledge.  

The next component catches seasonality an is incorporated as 
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𝛾𝑡+1 = − ∑ 𝛾𝑡−𝑆 + 𝜂𝛾,𝑡

𝑆−2

𝑠=0

 (12) 

 

where S represents the number of seasons, and 𝛾𝑡 is their joint contribution to the observed 

response 𝑦𝑡. The part of the transition matrix 𝑇𝑡 that represent seasonality  

is an (Si-1)x(Si -1) matrix with -1 along the top row, 1 along the subdiagonal and 0 elsewhere. We 

estimated and tested the models with an S = 7 day-of-week effect, as well as an S = 52 weekly 

annual cycle. The results show not significant different in estimation of the Bitcoin futures 

introduction effect. 

One of the popular ways to include control time series (Ethereum and Litecoin) in the 

model is through a linear regression with either static or dynamic coefficients. A starting point is s 

static regression, that can be presented in state-space form as 𝑍𝑡 = 𝛽𝑇𝑥𝑡 and 𝑎𝑡 = 1, where 𝑥𝑡 is 

the set of predictors at time t, and 𝛽 represents corresponding static regression coefficients. It is 

assumed that all covariates are contemporaneous, meaning that no lag between Bitcoin (treated 

time series) and Ethereum and Litecoin (untreated time series) are imposed.  

Alternatively, contemporaneous covariates with dynamic regression coefficients can be 

used to calculate accurate predictions of control time series that received no treatment and are used 

when the linear relationship between treated and control time-series is believed to change over 

time.  

It is represented as 

 

 

𝑥𝑡
𝑇𝛽𝑡 = ∑ 𝑥𝑗,𝑡

𝐽

𝑗=1

𝛽𝑗,𝑡 (13) 

 𝛽𝑗,𝑡+1 = 𝛽𝑗,𝑡 + 𝜂𝛽,𝑗,𝑡 (14) 

 



 18 

where 𝛽𝑗,𝑡 is the coefficient for the j th control series, 𝜎𝛽𝑗

2  is the standard deviation of its associated 

random walk and  𝜂𝛽,𝑗,𝑡~𝒩(0, 𝜎𝛽𝑗

2 ),  Zt = xt and αt = βt, the corresponding part of the transition 

matrix is Tt = IJ×J , with Qt = 𝑑𝑖𝑎𝑔 (𝜎𝛽𝑗

2 ). Setting in state-space form by Zt = βTxt and αt = 1 we 

end up with a static regression that allows for capturing local behaviour and accounting for 

regression effects. The state-space model is assembled following Brodersen et al. (2015). Local 

variability in the Bitcoin time series is captured by the dynamic local level or dynamic linear trend 

component. 

Due to expectations of high degree of sparsity (Qiu et al. 2018), the spike-and-slab prior is 

applied which avoids overfitting (George and McCulloch 1993, 1997; Scott and Varian 2014). Also, 

a spike-and-slab prior over coefficients allows for a model to choose an appropriate set of 

coefficients. This prior combines the “spike”, point mass at zero for an unknown subset of zero 

coefficients, with the “slab”, that is a weakly informative distribution of nonzero coefficients, which 

is close to a Gaussian with a large variance (Brodersen et al. 2015). Forward-filtering, backward 

sampling framework is utilized to efficiently implement a spike-and-slab prior and thus to identify 

a sparse set of covariates from a set of data (Scott and Varian 2014). We can define the spike-and-

slab prior as  

 

 
𝑝 (𝜚, 𝛽,

1

𝜎𝜀
2

) = 𝑝(𝜚)𝑝(𝜎𝜀
2|𝜚)𝑝(𝛽𝜚|𝜚, 𝜎𝜀

2) (15) 

 

where 𝛽𝜚 are nonzero elements of the vector 𝛽, 𝜚 = (𝜚1, … , 𝜚𝐽), 𝜚𝑗 = 1 if 𝛽𝑗 ≠ 0 and 𝜚𝑗 = 0 

otherwise. The spike part of Eq.(15) can be defined as an arbitrary distribution over {0,1}𝐽 and can 

be calculated as a product of independent Bernoulli distributions: 
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𝑝(𝜚) = ∏ 𝜋𝑗
𝜚𝑗

(1 − 𝜋𝑗)1−𝜚𝑗

𝐽

𝑗=1

 (16) 

 

where 𝜋𝑗 is the prior probability of regressor j included in the model, that can be set as 𝜋𝑗 = 𝑀/𝐽, 

where M is the expected model size (Scott and Berger 2010). 

 The “slab” part of the prior is based on a normal-inverse Gamma distribution (Brodersen 

et al. 2015): 

 

 𝛽𝜚|𝜎𝜀
2~𝒩 (𝑏𝜚 , 𝜎𝜀

2(Σ𝜚
−1)

−1
) (17) 

 1

𝜎𝜀
2

~𝒢 (
𝑣𝜀

2
,
𝑠𝜀

2
) (18) 

 

where 𝑏𝜚 is prior expectation about the value of each element of β,  Σ𝜚
−1 denote the rows and 

columns of  Σ−1 corresponding to nonzero entries in  𝜚, 𝑣𝜀 is the number of observations worth 

of weight the prior estimate should be given, 𝑠𝜀 = 𝑣𝜀(1 − 𝑅2)𝑠𝑦
2, 𝑅2 ∈ [0,1]. Applying Zellner’s 

(1986) g-prior, Σ−1 =
𝑔

𝑛
𝑋𝑇𝑋 allows to interpret g as g observations worth of information. Then, to 

ensure propriety Σ−1 can be written as follows with default values of g = 1 and w = ½  (Brodersen 

et al. 2015): 

 

 Σ−1 =
𝑔

𝑛
{𝑤𝑋𝑇𝑋 + (1 − 𝑤) 𝑑𝑖𝑎𝑔 (𝑋𝑇𝑋)} (19) 

 

For posterior simulation a Gibbs sampler is used to simulate a sequence (θ,α)(1), (θ,α)(2), . . . 

from a Markov chain whose stationary distribution is p(θ,α|y1 : n). 

For posterior inference the following steps are done (Brodersen et al. 2015). First, draws 

of the model parameters θ and the state vector α are simulated given the observed data y1 : n. For 
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this purpose, a Gibbs sampler is applied to simulate a sequence (θ,α)(1), (θ,α)(2), . . . from a Markov 

chain whose stationary distribution is p(θ,α|y1 : n). We draw the latent state from given model 

parameters and �̃�, using the posterior simulation algorithm from Durbin and Koopman (2002) that 

uses the Kalman filter and a fast mean smoother. To draw of the static regression coefficients 𝛽 

we apply: 

 

 
𝜚|�̇�1:𝑛~𝐶(�̇�1:𝑛)

|Σ𝜚
−1|1/2

|V𝜚
−1|1/2

𝑝(𝜚)

S𝜚

(
𝑁
2

)−1
 (20) 

 

were �̇�1:𝑛 denote 𝑦𝑡 with the contributions from the other state components subtracted away, 

 𝐶(�̇�1:𝑛) is an unknown normalizing constant, V𝜚
−1 = (𝑋𝑇𝑋)𝜚 + Σ𝜚

−1, 𝑆𝜚 = 𝑠𝜀 + �̇�𝑇
1:𝑛

�̇�1:𝑛 +

𝑏𝜚
𝑇Σ𝜚

−1𝑏𝜚 − 𝛽𝜚
𝑇V𝜚

−1�̃�𝜚, 𝛽𝜚 = (V𝜚
−1)

−1
(X𝜚

𝑇�̇�1:𝑛 + Σ𝜚
−1𝑏𝜚), 𝑁 = 𝑣𝜖 + 𝑛. We use a Gibbs sampler 

that draws each 𝜚𝑗 given all other  𝜚−𝑗 and then once it is complete, we sample directly from 

𝑝(𝛽,
1

𝜎𝜀
2 , �̇�1:𝑛) by applying standard conjugate formulae. 

Then, the posterior simulations are applied to simulate from the posterior predictive 

distribution 𝑝(�̃�𝑛+1:𝑚|𝑦1:𝑛, 𝑥1:𝑛) over the time series �̃�𝑛+1:𝑚 given the observed activity before 

intervention y1 : n. Finally, the posterior predictive samples are used for calculation of the posterior 

distribution of the pointwise impact for each time, t. The posterior distribution of cumulative 

impact is derived using the same samples. 

Causal impact estimation deals with the posterior incremental effect, 𝑝(�̃�𝑛+1:𝑚|𝑦1:𝑛, 𝑥1:𝑚). 

Therefore, the Bitcoin market response is �̃�𝑛+1, … �̃�𝑚 that would have been observed in the treated 

(spot) market, after the intervention, in the absence of treatment. 
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The posterior probability that the intervention had any effect and checking whether the 

posterior interval for the effect includes zero is expressed in terms of a p-value8. Based on the 

calculated results, we evaluate impact (Brodersen et al. 2015). First, samples from the approximate 

posterior predictive density of the effect attributed to the intervention (pointwise impact) is yield: 

 

 𝜙𝑡
(𝜏)

≔ 𝑦𝑡 − �̃�(𝜏)
𝑡
 (21) 

 

where t = n+1, . . . , m. Then, the cumulative effect of the introduction of futures over time is 

calculated: 

 

 

∑ 𝜙𝑡′
(𝜏)

𝑡

𝑡′=𝑛+1

 (22) 

 

Eq. (22) represents cumulative sum of causal increments that approaches its true total value (in 

expectation) as we increase the forecasting period. This cumulative impact can also be calculated 

as running average effect: 

 

 1

𝑡 − 𝑛
∑ 𝜙𝑡′

(𝜏)

𝑡

𝑡′=𝑛+1

 (23) 

 

that eventually approach zero. The results of usage of Eqs. (21-23) are then depicted.  

 

2.4. Descriptive Statistics 

 
8 Based on parameter priors and the data provide, the posterior distribution of the response variable that would be 
expected in the absence of an intervention is calculated and compared to the actual response. The tail-area probability 
is the probability under the calculated posterior that the response is at least as extreme as the observed one the tail-
area probability is small, the effect of the intervention can be considered significant.  
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Descriptive statistics of different cryptocurrency returns are reported in Table 1. Here one 

can see that the Bitcoin and Ethereum offer the highest and negative mean returns, respectively.  

Litecoin appears to be the riskiest, in terms of variance, skewness and kurtosis. It has a kurtosis 

value of 18.71 as against 3 for a normal distribution, indicating very high probability of extreme 

values and fluctuations in returns.  

 

3. Empirical results and discussion 

We estimate the Bayesian diffusion-regression (state-space) structural time-series model 

with student distribution where the effects on the selected parameters of the Bitcoin market are 

presented below.  

The pre-intervention period starts on 1st July 2017 due to data availability and continues till 

18th December 2017, which is treated as the day of the event or intervention.9  We select the 

following event windows for the post-intervention period - 1 day, 3 days, 1 week, 1-6 months, and 

22 months (the end date of observations). The results and statistics are reported in Table 2 (Table 

2a contains the main results, while Tables 2b and 2c have the results of using 2h and 4h raw data 

for robustness check; in general results are robust to selected frequencies), while results for 

individual variables are presented in Figures 1 to 18. 

 

3.1. Effect on USD Bitcoin spot market return 

The estimates of the Bitcoin return with and without the introduction of futures are 

presented in Panel A of Table 2. The Brodersen (2015) technique compares realized returns post-

launch to ‘inferred’ returns in the absence of intervention. We notice that while realized returns 

remain consistently negative, the model predicts consistent positive returns in the absence of 

 
9 A short pre-treatment period can potentially cause fails in recognition of important patterns in our data and wider 
posterior intervals (i.e., an underpowered analysis). 
Regarding the end of a pre-treatment period, for robustness, we also estimate our results for the intervention day of 
10th December 2017 and have very similar results.  We do not report them to conserve space but are available upon 
request from the corresponding author.  
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Bitcoin futures. For instance, on the next day after the introduction of bitcoin futures, Bitcoin 

return in the USD spot market had an average value of approx. -0.0015. In the absence of the 

introduction of bitcoin futures, one could expect an average return of 0.0016 (p=0.00). Subtracting 

the model-generated predicted value from the realized value provides us with an estimate of the 

causal effect of the intriduction of futures on US spot bitcoin return, which equals -0.0031.  

Similarly, coefficients on the ‘causal effect of the intervention’ represent the average impact 

the introduction of Bitcoin futures had on the spot USD Bitcoin market returns, calculated as 

indicatd above. We see that for upto about 6 months after launch, the effect remains significantly 

negative, though its intensity diminishes over time. It is interesting to see that the adverse impact 

on Bitcoin returns starts right from day 1 after the launch. This seems to suggest that the spot USD 

Bitcoin market might have been better off without the launch of futures in terms of generation of 

better returns.  

These findings are reiterated by Figures 3 and 4. In Figure 3, one notices that the negative 

impact of the launch of Bitcoin futures on spot returns diminishes over time and becomes rather 

stable after the third month or so.  

 

3.2. Effect on realized variance and volatility of the USD Bitcoin spot market 

3.2.1 Effect on realized variance 

Results are presented in Panel B of Table 2. This time we observe a positive variance for 

both the realized as well as the predicted series, though realized variance values always remain 

higher than predicted ones. Once again, the main coefficients of interest are those on ‘the causal 

effect of the intervention’ that indicate the average impact of the launch of Bitcoin futures on spot 

realized variance.  

The effect of the introduction of the bitcoin futures on the USD Bitcoin spot market 

realized variance is positive, which indicates that on average, futures ended up making the Bitcoin 

spot market riskier (similar results are documented by Blau and Whitby, 2019). Also, this effect 
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peaks at about 1 week and remains statistically significant for up to 6 months’ post-launch. The 

heightened volatility in the Bitcoin market on account of Bitcoin futures can be observed in the 6-

month numbers, where realized variance has an average value of approx.. 0.0043. as opposed to 

the expected value in the absence of an intervention, which is 0.0022. The latter is almost half the 

size of the actual value observed.  

In the 22-month post-intervention period, realized variance has an average value of approx. 

0.0022 while in the absence of an intervention, the expected value is 0.0017. The causal effect is 

0.00047. Though still positive, this effect is not statistically significant. 

Figure 5 presents the same pattern. One observes a sharp rise in realized variance right 

from day 1 after the launch which continues till about 1 week, after which a downward trend sets 

in. At about 22 months, one notices an almost complete drop of variance to normal (pre-launch) 

levels. 

 

3.2.2. Effect on realized volatility and stochastic volatility with leverage, heavy tails and jumps 

Panel C of Table 2 and Figures 7 and 8 present results about realized volatility. The 

introduction of Bitcoin futures significantly increased Bitcoin market volatility, right from the first 

day after launch. The effect continues and reaches its peak after one week of the introduction of 

futures, after which it begins to fall. In terms of statistical results, realized volatility in the USD 

Bitcoin spot market has an average value of approx. 0.016 at the end of the first week after 

introduction of futures, with an expected value in the absence of an intervention of0.0037 (p=0.00). 

The causal impact of the introduction of futures therefore is the difference in values, 0.012, 

statistically significant at the 1% level.  This positive effect on realized volatility, however, remains 

statistically significant till about the fifth month after the introduction. Similar to results for realized 

variance, the positive impact of futures on realized volatility fades away at about 22 months after 

launch. 
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Our robustness results using the SV model indicate that an on an overall basis, a stochastic 

volatility model with leverage, heavy tails and jumps reveals similar patterns in realized volatility as 

GARCH models used in this study. (see Fig. 9-10) One key difference, however, is that unlike 

realized volatility, it does not reveal similar patterns of peaks. Taking into account both realized 

volatility and the SV model for robustness, we can say that the introduction of Bitcoin futures has 

had a positive and significant effect on spot market volatility until the fifth month after 

introduction..10 

While interpreting these results, one should keep in mind the fact that increased volatility 

following the launch of futures is not necessarily an undesirable outcome. Spot market volatility 

may rise as a consequence of better information transmission from the futures to the cash markets, 

following the launch of futures (Ross, 1989). However, with these results, one cannot dismiss the 

destabilization hypothesis associated with the launch of Bitcoin futures. This hypothesis postulates 

that the possibility of short selling encourages higher speculation on the part of speculative, 

uninformed investors that contributes to higher spot market volatility. In other words, armed with 

the ability to short-sell operate at higher levels of leverage and lower transaction costs, badly-

informed investors introduce noise into the price-discovery process.  

In the context of Bitcoin, Kapar and Olmo (2019) find that the Bitcoin futures market 

dominates the price discovery process, implying enhanced speculative activity affecting spot prices.  

Gulen and Maydew (2000) on the other hand, offer a country-level perspective to analysing the 

futures-spot volatility relationship. They find that the introduction of futures results in heightened 

volatility in the stock markets of the US and Japan, the only two countries that exhibit such 

behaviour out of the 25 studied. They attribute the results to Stein’s (1987) information-based 

model in which prices are determined through the interaction between hedgers and informed 

speculators in the stock market. While the availability of futures facilitates greater risk-sharing and 

 
10 The results from the GARCH models (simple GARCH, tGARCH, GARCH-in-means, etc.) show the similar 
pattern. The best fit  



 26 

consequently, reduced volatility, this effect could be potentially offset by greater noise and chaos 

created by hedgers in response to a noisy, informative signal.  

In the end, one could conclude that the ultimate effect of futures on underlying spot market 

volatility is a function of the state of development of the concerned economy’s financial 

institutions. For highly-developed markets such as the US, the introduction of futures offers only 

a modest stabilization mechanism (compared to the already-existing mechanisms in the market) 

when compared to the additional noise created in trading (Black, 1986; De Long et al., 1990 etc.). 

Thus, based on Gulen and Maydew (2000), we conclude that our results support the destabilization 

hypothesis that states that the introduction of futures increased volatility in the underlying spot 

market, consequently destabilizing it (Cox, 1976; Cagan, 1981; Hart and Kreps, 1986; Stein, 1987; 

etc). 

 

3.3. Effect on realized skewness of the USD Bitcoin spot market 

Panel D of Table 2 and Figures 11 and 12 present the results of the impact of the launch 

of bitcoin futures on realized skewness in the USD spot Bitcoin market. This time we observe a 

negative and positive series for realized and predicted skewness across time periods. This results in 

a general negative overall impact of the introduction of Bitcoin futures on realized skewness across 

time, which starts right from the first day after launch, results are statistically significant only 

starting 3 days’ post-launch and peaks at 1 week post-launch. The effect diminishes over time but 

continues to remain statistically significant until the first month after launch. Given the absence of 

statistical significance after 1 month, the remaining post-intervention period cannot be 

meaningfully interpreted.  

During the one-month post-intervention period, the realized skewness of the USD Bitcoin 

return has an average value of approx. -0.14, while the predicted value is 0.29 (p=0.039). The causal 

effect of the launch of Bitcoin futures on realized skewness is therefore, -0.43. Broadly speaking, 

this implies that the introduction of futures decreases the degree of asymmetry of the Bitcoin return 
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distribution around its mean. Without Bitcoin futures, the USD Bitcoin spot market return would 

have been distributed with an asymmetric tail extending towards more positive values. This means 

that in terms of skewness in Bitcoin returns, the introduction of Bitcoin futures can be considered 

to have been beneficial to the development of the Bitcoin spot market.  

One of the possible explanations of this phenomenon can be based on the volatility 

feedback model (French et al. 1987; Pindyck 1983; Nelson 1990; Engle and Ng 1993; Glosten et 

al. 1993; etc) that both good and bad news contribute to uncertainty in terms of future prices. That 

makes risk-averse investors require a higher rate of return and a lower present price to reward the 

higher risks, regardless of the nature of the news. This feedback effect reinforces the effect of the 

negative impact of bad news and restrains the effect of the positive impact of good news.  

According to the theories of skewness preferences (Mitton and Vorkink, 2007; Barberis 

and Huang, 2008) investors prefer positive skewness due to overpricing of positively skewed 

equities. Lien and Wang (2015) show that an increase in skewness reduces the demand for hedging, 

meaning that the introduction of bitcoin futures can potentially increase such a demand. Also, our 

results for the bitcoin market support the finding of Bris, Goetzmann, and Zhu (2007), that markets 

where going short is not practiced, market returns display significantly less negative skewness.  

 

3.4. Effect on realized kurtosis of the USD Bitcoin spot market 

The effect of the introduction of futures on realized kurtosis flows a rather unusual pattern 

(see Panel E of Table 2, Figures 13 and 14). While the causal impact is negative up to the first week 

after introduction of futures, it flips signs thereafter. From the end of the first month post-launch, 

one observes that the introduction of futures actually ended up increasing realized kurtosis in the 

USD Bitcoin spot market. Not only is this positive effect significant, it continues to grow and 

intensify till the 22nd month after launch.  

Indeed, during the first week of the post-intervention period, the realized kurtosis of the 

USD Bitcoin spot market return had an average value of approx. 2.56, with a predicted value of 
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3.32 in the absence of the introduction of futures. This results in a causal impact of -0.76 (significant 

at 5%) that the launch of futures had on realized kurtosis in the Bitcoin market.   

Overall, this trend seems to suggest that while futures may have helped in reducing kurtosis 

in the early periods of their launch, they ended up making the Bitcoin spot market more vulnerable 

to extreme swings and fluctuations eventually. This is an interesting result since it points towards 

the role of Bitcoin futures in exacerbating the already notorious, extreme behaviour of the Bitcoin 

market.  

 

3.5. Effect on liquidity of the Bitcoin market  

3.5.1. Liquidity, high-low range HLR (Chung and Zhang 2014) 

Results are presented in Figures 15-16 and Panel F of Table 2. Realized liquidity values 

indicate falling liquidity over time. Causal effects of the launch of Bitcoin futures suggest a generally 

positive impact of the launch of Bitcoin futures on spot market liquidity, with statistical significance 

observed only for the 3-day and the 1-week post-intervention period. Not only this, one also 

notices an upward trend in the positive impact on liquidity up to the first week, after which values 

begin to decline. This seems to suggest that an overall mildly positive impact of the launch of 

futures on Bitcoin spot market liquidity.  

During the one-week post-intervention period, HLR had an average value of approx. 0.036 

(Figures 11-12, Panel F of Table 2). By contrast, in the absence of futures, the model-generated 

predicted value is 0.025. The causal effect of the introduction of Bitcoin futures on market liquidity 

is therefore 0.010 (significant at 1%).  

 

3.5.2. Fong et al. (2017) liquidity measurement  

Results are presented in Figures 17-18 and Panel G of Table 2. One observes trends similar 

to those for the Chung and Zhang (2014) liquidity measure. Even when generally speaking, the 

launch of futures appears to have increased spot market liquidity, statistical significance is observed 
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only for the 1-week and 1-month post-intervention periods. After 1-month post-launch, the 

positive effect rapidly dissipates.  

During the one-month post-intervention period, the VoV index had an average value of 

approx. 0.0029 as opposed to a predicted value of 0.0016, in the absence of futures. The causal 

effect of Bitcoin futures on market liquidity using the VoV index equals 0.0012 (p=0.00).  

After 22 months of the post-intervention period, the VoV index has an average value of 

approx. 0.00074, and a predicted value of 0.00089 in the absence of Bitcoin futures. This generates 

a causal impact of -0.00014 on account of the event. Despite the negative sign observed, the 

absence of any statistical significance makes it impossible to deduce the actual impact.  

Thus, one could conclude that the introduction of Bitcoin futures had a statistically 

significant positive effect on the liquidity of the USD Bitcoin spot market, but not large enough to 

stabilize the highly illiquid market.  

 

4. Conclusion 

The academic literature on Bitcoin is ever-growing and has been dominated by studies determining 

the market dynamics of the cryptocurrency as well as debating whether Bitcoin is a currency, an 

asset or even a commodity.  With the introduction of the futures market in December 2017, bitcoin 

investors can now short the Bitcoin spot market and implement hedging strategies much easily 

than before. Although the literature to date has focused on the impact of the futures market on 

price discovery and the immediate impact on the spot price, we examine what impact the 

introduction of Bitcoin futures has had on five attributes of the Bitcoin spot market – returns, 

liquidity, volatility, skewness and kurtosis. We answer this question by implementing a Bayesian 

diffusion-regression (state-space) structural time-series model.  

Our results indicate that the introduction of bitcoin futures ended up lowering USD bitcoin 

spot market returns and skewness, and driving up Bitcoin market volatility, kurtosis and liquidity. 

Even when the only positive outcome associated with the introduction of Bitcoin futures is the 
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rise in liquidity in the spot market, the effect is too small to make any real difference in terms of 

stabilizing the market. Given this, we find support in favour of the hypothesis that the introduction 

of bitcoin futures, in general, contributed to destabilizing the USD bitcoin spot market (Cox, 1976; 

Cagan, 1981; Hart and Kreps, 1986; Stein, 1987).   

Specifically, for a few days following the introduction of the futures, an increase in spot 

market volatility is observed. The phenomenon reaches its peak after one week of the introduction 

of futures, after which it begins to fall. On an overall basis however, volatility in the USD bitcoin 

spot market after the introduction of futures is significantly higher than one could expect without 

futures. The introduction of bitcoin futures decreases skewness - the degree of asymmetry of the 

return distribution around its mean - which can be interpreted as an increase in demand for hedging 

(Lien and Wang, 2012). Also, our skewness results are in line with the findings of Bris, Goetzmann, 

and Zhu (2007), who postulate that in markets where the possibility of short-selling is absent, 

market returns display significantly less negative skewness. The launch of Bitcoin futures ended up 

making the Bitcoin spot market not only more volatile but also more vulnerable to extreme return 

values. This can be witnessed from sharp increases in realized kurtosis values of the USD bitcoin 

spot market.  

These significant changes to return and volatility characteristics of the USD Bitcoin spot 

market brought about by the introduction of Bitcoin futures imply a whole new risk-return regime 

for investors in this market. Our results can help foster this understanding by facilitating a 

comparison of risk-return characteristics before and after the launch of Bitcoin futures. Since its 

inception in 2008, despite its baffling volatility and price swings, the Bitcoin market has lured 

investors with its too-good-to-believe returns that remain unmatched with any other asset class in 

the financial market. However, lower returns and heightened volatility brought about by Bitcoin 

futures could potentially deter risk-averse investors from participating in the market.  

Not only in terms of overall volatility, even changes in skewness and kurtosis could affect 

investor participation in the Bitcoin. Guidolin and Timmermann (2008) show that investors have 
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skewness and kurtosis preferences. Kurtosis measures the fatness of tails in the return distribution. 

Thus, risk-averse investors may want to avoid holding assets with higher kurtosis given the 

likelihood of extreme returns.  

Our results hold value even in terms of regulation and policy making. As the debate 

surrounding the worthiness of Bitcoin futures continues, academic literature continues to 

investigate and document the impact that the newly launched derivative instruments have had on 

the cryptocurrency market in general and the Bitcoin market in particular. For instance, while 

Bitcoin futures make it possible for investors to short-sell the Bitcoin with margin requirements 

far below those that existed before (Baur and Dimpfl, 2019), result in higher market stability (Kim 

et al., 2020) and improves informational efficiency (Kochling et al., 2019), they are not free from 

externalities in terms of other cryptocurrencies. For instance, the launch of Bitcoin futures has 

been associated with higher tail risk of other cryptocurrencies (Sebastiao and Godinho, 2020) and 

even higher levels of volatility for non-Bitcoin cryptocurrencies (Blau and Whitby, 2019).  

Given that Bitcoin futures affect not only the immediate USD Bitcoin spot market (as we 

have documented) but the overall crypto market as well, regulation of these futures merits 

significant policy attention, despite all other benefits that they may entail.  

However, we suggest that our results be interpreted with caution given the fact that the 

period from 2017-end to 2018 has been extraordinary in terms of the cryptocurrency market. Not 

only did prices demonstrate extreme and unprecedented swings during this period, but a significant 

milestone was witnessed through the introduction of Bitcoin futures. Given the presence of various 

confounding events that occurred during this time, it becomes difficult to make a causal assessment 

of the introduction of futures on the spot market, given that in different or ‘more stable’ conditions, 

this impact could easily have been different.  

In short, our overall findings suggest that a destabilizing impact of the launch of bitcoin 

futures on the USD bitcoin spot market. Through our findings on the individual impact of Bitcoin 

futures on the various dimensions of the USD Bitcoin spot market – returns, liquidity, volatility, 
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skewness and kurtosis, our results offers insights for existing and potential investors in the Bitcoin 

and capital market regulators who may need to timely control the externalities associated with this 

controversial innovation.  
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Tables 

Table 1: The descriptive statistics of the Bitcoin, Ethereum and Litecoin logarithmic returns. 
 

BTCUSD ETHUSD LTCUSD  

mean 0.000060 -0.000020 0.000019 

median 0.000050 0.000000 -0.000124 

min -0.111454 -0.135830 -0.138626 

max 0.112861 0.141869 0.212333 

variance 0.000097 0.000146 0.000187 

SD 0.009854 0.012086 0.013657 

skewness 0.181946 0.332911 0.807263 

kurtosis 14.350840 15.996760 18.710240 
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Table 2a: This table presents the effect of the introduction and no introduction of Bitcoin futures on the Bitcoin spot price for 
returns, realized variance, realized volatility, stochastic volatility, realized kurtosis, realized skewness and liquidity. ***, ** and * 
indicate significance at the 1%, 5% and 10% respectively for the causal effect of the intervention.  

1 day 3 days 1 week 1 month 6 months 22 months 

Panel A: Returns 

Introduction of Futures Markets -0.0015 -0.0023 -0.0016 -0.00071 -0.00025 -0.000053 

No Futures Markets 0.0016 
 

0.00061 0.00029 0.00051  0.00043 0.00053  

The causal effect of the intervention  -0.0031***  -0.0029 ***  -0.0019 ***  -0.0012***  -0.00068 *  -0.00059 

P-value 0.00 0.00 0.00 0.00 0.10 0.26 

Panel B: Realized Variance 

Introduction of Futures Markets 0.004 0.0082 0.015 0.0092 0.0043 0.0022 

No Futures Markets 0.0027 0.0031 0.006 0.004 0.0022 0.0017 

The causal effect of the intervention 0.0013** 0.0051*** 0.0093*** 0.0052*** 0.002** 0.00047 

P-value 0.07 0.001 0.001 0.001 0.089 0.456 

Panel C: Realized Volatility 

Introduction of Futures Markets 0.005 0.0075 0.016 0.009 0.0036 0.0017 

No Futures Markets 0.0017  0.0018  0.0037  0.0027  0.0018  0.0013  

The causal effect of the intervention 0.0029 *** 0.0057 *** 0.012 *** 0.0063*** 0.0019 0.00031 

P-value 0.00 0.00 0.00 0.00 0.12 0.46 

Panel D: Stochastic volatility with leverage, heavy tails and jumps 

Introduction of Futures Markets 0.0023 0.0025 0.0025 0.0026 
0.002 0.0015 

No Futures Markets 0.002 0.0021 0.0022 0.002 
0.0018 0.0018 

The causal effect of the intervention 0.00028*** 0.00054*** 0.00047*** 0.00057*** 
0.000041 -0.00051 

P-value 0.00 0.00 0.00 0.00 
0.384 0.74 

Panel E: Realized Skewness 

Introduction of Futures Markets -0.057 -0.42 -0.32 -0.14 -0.03 -0.0077 

No Futures Markets 0.47 0.24 0.27 0.29 0.2 0.24 

The causal effect of the intervention  -0.52  -0.66***  -0.59*  -0.43**  -0.23  -0.25 

P-value 0.24 0.01 0.08 0.04 0.12 0.33 

Panel F: Realized Kurtosis 

Introduction of Futures Markets 2.16 2.72 2.56 4.55 4.93 5.52 

No Futures Markets 3.37 3.41 3.32 3.59 3.41 3.57 

The causal effect of the intervention  -1.21*  -0.69  -0.76** 0.96*** 1.52*** 1.95*** 

P-value 0.08 0.12 0.04 0.00 0.00 0.00 

Panel G: Chung and Zhang (2014) Liquidity 

Introduction of Futures Markets 0.019 0.026 0.036 0.027 0.018 0.011 

No Futures Markets 0.018 0.022 0.025 0.020  0.014 0.017 

The causal effect of the intervention 0.001 0.0044* 0.010*** 0.0074 0.0031  -0.0051 

P-value 0.40 0.09 0.00 0.12 0.41 0.45 

Panel J: Fong et al. (2017) Liquidity 

Introduction of Futures Markets 0.002 0.0019 0.0026 0.0029 0.0012 0.00074 

No Futures Markets 0.0015 0.0017 0.002 0.0016 0.0012 0.00089 

The causal effect of the intervention 0.000065 0.00021 0.00057*** 0.0012*** 0.000014  -0.00014 

P-value 0.38 0.14 0.00 0.00 0.48 0.42 
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Table 2b: This table presents the effect of the introduction and no introduction of Bitcoin futures on the Bitcoin spot price for 
returns, realized variance, realized volatility, realized kurtosis, realized skewness and liquidity using 2 hour data. 
 ***, ** and * indicate significance at the 1%, 5% and 10% respectively for the causal effect of the intervention.  

1 day 3 days 1 week 1 month 6 months 22 months 

Panel A: Returns 

Introduction of Futures Markets 0.0032 -0.0045 -0.0055 -0.001 -0.00046 -0.00013 

No Futures Markets 0.0027 0.00056 -0.0014 0.00035 0.00058 0.0004 

The causal effect of the intervention 0.00043 -0.0051*** -0.0041*** -0.0014*** -0.001 -0.00053 

P-value 0.41 0.002 0.001 0.0138 0.353 0.461 

Panel B: Realized Variance 

Introduction of Futures Markets 0.002 0.0044 0.011 0.005 0.0022 0.0011 

No Futures Markets 0.0013 0.0013 0.0035 0.002 0.0012 0.001 

The causal effect of the intervention 0.00077*** 0.003*** 0.0071*** 0.0029*** 0.00097* 0.00014 

P-value 0.013 0.001 0.001 0.001 0.13 0.483 

Panel C: Realized Volatility 

Introduction of Futures Markets 0.0051 0.011 0.026 0.014 0.006 0.0031 

No Futures Markets 0.0037 0.0039 0.0093 0.0061 0.003 0.0028 

The causal effect of the intervention 0.0014** 0.0073*** 0.016*** 0.0077*** 0.0024*** 0.00031 

P-value 0.097 0.001 0.001 0.001 0.034 0.442 

Panel D: Realized Skewness 

Introduction of Futures Markets -0.5 -0.76 -0.64 -0.14 -0.21 -0.09 

No Futures Markets -0.11 -0.13 -0.16 0.15 0.037 0.054 

The causal effect of the intervention -0.39 -0.63*** -0.48*** -0.3** -0.25 -0.14 

P-value 0.327 0.0173 0.029 0.1 0.223 0.411 

Panel E: Realized Kurtosis 

Introduction of Futures Markets 2.51 2.41 2.45 3.39 3.81 3.92 

No Futures Markets 2.96 2.88 2.77 2.95 2.89 2.95 

The causal effect of the intervention -0.45 -0.47 -0.32 0.44*** 0.93*** 0.96*** 

P-value 0.255 0.205 0.206 0.031 0.001 0.037 

Panel F: Chung and Zhang (2014) Liquidity 

Introduction of Futures Markets 0.019 0.027 0.038 0.029 0.018 0.012 

No Futures Markets 0.019 0.022 0.026 0.023 0.019 0.016 

The causal effect of the intervention -0.00021 0.0051*** 0.012*** 0.0064 -0.0011 -0.0042 

P-value 0.487 0.0158 0.07 0.313 0.499 0.462 

Panel G: Fong et al. (2017) Liquidity 

Introduction of Futures Markets 0.0017 0.002 0.0027 0.0024 0.0011 0.00074 

No Futures Markets 0.0014 0.0015 0.0017 0.0016 0.0013 0.0012 

The causal effect of the intervention 0.00035** 0.00054*** 0.001*** 0.00078 -0.00016 -0.00043 

P-value 0.071 0.038 0.009 0.169 0.463 0.41 
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Table 2c: This table presents the effect of the introduction and no introduction of Bitcoin futures on the Bitcoin spot price for 
returns, realized variance, realized volatility, realized kurtosis, realized skewness and liquidity using 4 hour data. 
 ***, ** and * indicate significance at the 1%, 5% and 10% respectively for the causal effect of the intervention.  

1 day 3 days 1 week 1 month 6 months 22 months 

Panel A: Returns 

Introduction of Futures Markets 0.00054 -0.0092 -0.0096 -0.0035 -0.00096 -0.00029 

No Futures Markets 0.0026 -0.00082 -0.002 -0.00044 0.0012 0.0015 

The causal effect of the intervention -0.0021* -0.0084*** -0.0076*** -0.0031*** -0.0021 -0.0018 

P-value 0.152 0.001 0.001 0.031 0.239 0.387 

Panel B: Realized Variance 

Introduction of Futures Markets 0.00087 0.0026 0.0056 0.0025 0.0012 0.00056 

No Futures Markets 0.00062 0.00093 0.0027 0.0013 0.00056 0.00026 

The causal effect of the intervention 0.00025** 0.0017*** 0.0029*** 0.0012*** 0.0006*** 0.0003 

P-value 0.084 0.001 0.001 0.001 0.024 0.343 

Panel C: Realized Volatility 

Introduction of Futures Markets 0.0017 0.0098 0.027 0.013 0.0061 0.0028 

No Futures Markets 0.0017 0.0028 0.011 0.0053 0.003 0.002 

The causal effect of the intervention 0.000053 0.007*** 0.017*** 0.0082*** 0.0031*** 0.00074 

P-value 0.467 0.001 0.001 0.001 0.007 0.422 

Panel D: Realized Skewness 

Introduction of Futures Markets -1.09 -1.12 -1.02 -1.02 -1.02 -0.21 

No Futures Markets 0.38 0.27 -0.063 -0.063 -0.063 0.037 

The causal effect of the intervention -1.47*** -1.39*** -0.96*** -0.96*** -0.96*** -0.25 

P-value 0.042 0.011 0.012 0.012 0.012 0.223 

Panel E: Realized Kurtosis 

Introduction of Futures Markets 5.94 5.94 2.99 2.99 3.92 3.92 

No Futures Markets 2.48 2.48 2.28 2.28 2.95 2.95 

The causal effect of the intervention 3.45*** 3.45*** 0.71*** 0.71*** 0.96*** 0.96*** 

P-value 0.001 0.001 0.006 0.006 0.037 0.037 

Panel F: Chung and Zhang (2014) Liquidity 

Introduction of Futures Markets 0.015 0.028 0.03 0.028 0.018 0.011 

No Futures Markets 0.016 0.021 0.024 0.021 0.015 0.014 

The causal effect of the intervention -0.00048 0.0066*** 0.012*** 0.0071 0.0022 -0.0033 

P-value 0.451 0.054 0.01 0.245 0.453 0.468 

Panel G: Fong et al. (2017) Liquidity 

Introduction of Futures Markets 0.0014 0.0019 0.0027 0.0023 0.0011 0.00072 

No Futures Markets 0.0013 0.0014 0.0016 0.0015 0.0012 0.00097 

The causal effect of the intervention 0.00014 0.00052*** 0.0011*** 0.00079 -0.0001 -0.0002 

P-value 0.271 0.041 0.006 0.151 0.48 0.39 
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Figures 
 

 
 
 
Figure 1: Volatility signature, bitcoin close prices. 
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Panel a) Volume in BTC 
 
 

 
Panel b) Volume in USD 
 
Figure 2: The Benford distributions of the bitcoin volumes (Panel (a) represents the volume in 
BTC, while Panel (b) represents the same volume in USD) 
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Figure 3: Dynamics of the USD Bitcoin spot market return with and without the 
introduction of Bitcoin futures (the y-axis values represent accumulative return of the Bitcoin 
spot market).  
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Figure 4: Inferring causal impact on USD Bitcoin spot market return through predictions, Bayesian 

Structural Time Series with student distribution. Two other markets (ETH and LTC, X1 and X2, 

respectively) were not subject to the intervention and thus are not included in the graph. A 

trajectory of a treated USD Bitcoin spot market return (Y) with an intervention on December 18th 

2017. The difference between observed data of USD Bitcoin spot market return and predictions 

of this return is the inferred causal impact of the intervention. A cumulative impact of the 

introduction of Bitcoin futures on the Bitcoin USD spot market return (Posterior inferences, Eq. 

22), for each day, the summed effect up to that day.  
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Figure 5:  Dynamics of the realized variance of the USD Bitcoin spot market return with 
and without the introduction of the Bitcoin futures (the y-axis values represent accumulative 
realized variance of the Bitcoin spot market) 
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Figure 6: Inferring causal impact on USD Bitcoin spot market realized variance through 

predictions, Bayesian Structural Time Series with student distribution. Two other markets (ETH 

and LTC, X1 and X2, respectively) were not subject to the intervention and thus are not included 

in the graph. A trajectory of a treated USD Bitcoin spot market return (Y) with an intervention on 

December 18th 2017. The difference between observed data of USD Bitcoin spot market realized 

variance and predictions of this variance is the inferred causal impact of the intervention. A 

cumulative impact of the introduction of Bitcoin futures on the Bitcoin USD spot market realized 

variance (Posterior inferences, Eq. 22), for each day, the summed effect up to that day. 
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Figure 7:  Dynamics of the realized volatility of the USD Bitcoin spot market return with 
and without the introduction of the Bitcoin futures (the y-axis values represent accumulative 
realized volatility of the Bitcoin spot market) 
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Figure 8: Inferring causal impact on USD Bitcoin spot market realized volatility through 

predictions, Bayesian Structural Time Series with student distribution. Two other markets (ETH 

and LTC, X1 and X2, respectively) were not subject to the intervention and thus are not included 

in the graph. A trajectory of a treated USD Bitcoin spot market realized volatility (Y) with an 

intervention on December 18th 2017. The difference between observed data of USD Bitcoin spot 

market realized volatility and predictions of this realized volatility is the inferred causal impact of 

the intervention. A cumulative impact of the introduction of Bitcoin futures on the Bitcoin USD 

spot market realized volatility (Posterior inferences, Eq. 22), for each day, the summed effect up 

to that day. 
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Figure 9:  Dynamics of the stochastic volatility with leverage, heavy tails and jumps of the 

USD Bitcoin spot market return with and without the introduction of the Bitcoin futures (the y-
axis values represent accumulative stochastic volatility of the Bitcoin spot market) 
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Figure 10: Inferring causal impact on USD Bitcoin spot market stochastic volatility with 

leverage, heavy tails and jumps through predictions, Bayesian Structural Time Series with student 

distribution. Two other markets (ETH and LTC, X1 and X2, respectively) were not subject to the 

intervention and thus are not included in the graph. A trajectory of a treated USD Bitcoin spot 

market stochastic volatility (Y) with an intervention on December 18th 2017. The difference 

between observed data of USD Bitcoin spot market stochastic volatility and predictions of this 

stochastic volatility is the inferred causal impact of the intervention. A cumulative impact of the 

introduction of Bitcoin futures on the Bitcoin USD spot market stochastic volatility (Posterior 

inferences, Eq. 22), for each day, the summed effect up to that day. 
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Figure 11: Dynamics of the realized skewness of the USD Bitcoin spot market return with 

and without the introduction of the Bitcoin futures (the y-axis values represent accumulative 

realized skewness of the Bitcoin spot market). 
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Figure 12: Inferring causal impact on USD Bitcoin spot market realized skewness through 

predictions, Bayesian Structural Time Series with student distribution. Two other markets (ETH 

and LTC, X1 and X2, respectively) were not subject to the intervention and thus are not included 

in the graph. A trajectory of a treated USD Bitcoin spot market realized skewness (Y) with an 

intervention on December 18th 2017. The difference between observed data of USD Bitcoin spot 

market realized skewness and predictions of this realized skewness is the inferred causal impact of 

the intervention. A cumulative impact of the introduction of Bitcoin futures on the Bitcoin USD 

spot market realized skewness (Posterior inferences, Eq. 22), for each day, the summed effect up 

to that day. 
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Figure 13: Dynamics of the realized kurtosis of the USD Bitcoin spot market return with 

and without the introduction of the Bitcoin futures (the y-axis values represent accumulative 

realized kurtosis of the Bitcoin spot market). 
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Figure 14: Inferring causal impact on USD Bitcoin spot market realized kurtosis through 

predictions, Bayesian Structural Time Series with student distribution. Two other markets (ETH 

and LTC, X1 and X2, respectively) were not subject to the intervention and thus are not included 

in the graph. A trajectory of a treated USD Bitcoin spot market realized kurtosis (Y) with an 

intervention on December 18th 2017. The difference between observed data of USD Bitcoin spot 

market realized kurtosis and predictions of this return is the inferred causal impact of the 

intervention. A cumulative impact of the introduction of Bitcoin futures on the Bitcoin USD 

spot market realized kurtosis (Posterior inferences, Eq. 22), for each day, the summed effect up 

to that day. 

  

o
rig

in
a

l
p

o
in

tw
is

e
c
u

m
u

la
tiv

e

0 200 400 600 800

0

5

10

15

20

25

0

10

20

0

500

1000

1500

2000



 59 

 

Figure 15: Dynamics of the high-low range HLR (Chung and Zhang 2014) of the USD 

Bitcoin spot market with and without the introduction of Bitcoin futures (the y-axis values 

represent the accumulative high-low range HLR of the Bitcoin spot market) 
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Figure 16: Inferring causal impact on USD Bitcoin spot market the high-low range, HLR, 

Chung and Zhang (2014) liquidity through predictions, Bayesian Structural Time Series with 

student distribution. Two other markets (ETH and LTC, X1 and X2, respectively) were not subject 

to the intervention and thus are not included in the graph. A trajectory of a treated USD Bitcoin 

spot market high-low range (Y) with an intervention on December 18th 2017. The difference 

between observed data of USD Bitcoin spot market high-low range and predictions of this high-

low range is the inferred causal impact of the intervention. A cumulative impact of the introduction 

of Bitcoin futures on the Bitcoin USD spot market high-low range (Posterior inferences, Eq. 22), 

for each day, the summed effect up to that day. 
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Figure 17: Dynamics of the VoV index (Fong et al. 2017) of the USD Bitcoin spot market 

with and without the introduction of Bitcoin futures (the y-axis values represent the accumulative 

VoV index of the Bitcoin spot market) 
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Figure 18: Inferring causal impact on the USD Bitcoin spot market VoV index, Fong et al 

(2017) liquidity through predictions, Bayesian Structural Time Series with student distribution. Two 

other markets (ETH and LTC, X1 and X2, respectively) were not subject to the intervention and 

thus are not included in the graph. A trajectory of a treated USD Bitcoin spot market VoV index 

(Y) with an intervention on December 18th 2017. The difference between observed data of USD 

Bitcoin spot market VoV index and predictions of this VoV index is the inferred causal impact of 

the intervention. A cumulative impact of the introduction of Bitcoin futures on the Bitcoin USD 

spot market VoV index (Posterior inferences, Eq. 22), for each day, the summed effect up to that 

day. 
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