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RIGIDITY AND FLATNESS OF THE IMAGE
OF CERTAIN CLASSES OF MAPPINGS

HAVING TANGENTIAL LAPLACIAN

HUSSIEN ABUGIRDA, BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

This paper is dedicated to Gunnar Aronsson with the utmost esteem for his pioneering work.

In this paper we consider the PDE system of vanishing normal projection of the Laplacian for C2 maps
u : Rn

⊇�→ RN :
[[Du]]⊥1u = 0 in �.

This system has discontinuous coefficients and geometrically expresses the fact that the Laplacian is a
vector field tangential to the image of the mapping. It arises as a constituent component of the p-Laplace
system for all p ∈ [2,∞]. For p = ∞, the ∞-Laplace system is the archetypal equation describing
extrema of supremal functionals in vectorial calculus of variations in L∞. Herein we show that the
image of a solution u is piecewise affine if either the rank of Du is equal to one or n = 2 and u has
additively separated form. As a consequence we obtain corresponding flatness results for p-Harmonic
maps for p ∈ [2,∞].

1. Introduction

Suppose that n, N are integers and � an open subset of Rn . In this paper we study geometric aspects
of the image u(�)⊆ RN of certain classes of C2 vectorial solutions u : Rn

⊇�→ RN to the following
nonlinear degenerate elliptic PDE system:

(1-1) [[Du]]⊥1u = 0 in �.

Here, for the map u with components (u1, . . . , uN )
> the notation Du symbolises the gradient matrix

Du(x)=
(
Di uα(x)

)α=1,...,N
i=1,...,n ∈ RN×n, Di ≡ ∂/∂xi ,

1u stands for the Laplacian

1u(x)=
n∑

i=1

D2
i i u(x) ∈ RN

Katzourakis is the corresponding author. He has been partially financially supported through the EPSRC grant EP/N017412/1.
2010 AMS Mathematics subject classification: 35B06, 35B65, 35D99, 49N60, 49N99.
Keywords and phrases: vectorial calculus of variations, calculus of variations in L∞,∞-Laplacian, p-Laplacian, rank-one

solutions, special separated solutions, rigidity, flatness.
Received by the editors on December 30, 2018, and in revised form on August 10, 2019.

383

http://dx.doi.org/rmj.2020.50-2
https://doi.org/10.1216/rmj.2020.50.383


384 HUSSIEN ABUGIRDA, BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

and for any X ∈ RN×n , [[X ]]⊥ denotes the orthogonal projection on the orthogonal complement of the
range of linear map X : Rn

→ RN :

(1-2) [[X ]]⊥ := ProjR(X)⊥ .

Our general notation will be either self-explanatory, or otherwise standard as, e.g., in [14; 12]. Note that,
since the rank is a discontinuous function, the map [[ · ]]⊥ is discontinuous on RN×n; therefore, the PDE
system (1-1) has discontinuous coefficients. The geometric meaning of (1-1) is that the Laplacian vector
field 1u is tangential to the image u(�) and hence (1-1) is equivalent to the next statement: there exists
a vector field

A : Rn
⊇�→ Rn

such that
1u = Du A in �.

As we show later, the vector field is generally discontinuous (Lemma 6).
Our interest in (1-1) stems from the fact that it is a constituent component of the p-Laplace PDE

system for all p ∈ [2,∞]. Further, contrary perhaps to appearances, (1-1) is in itself a variational PDE
system but in a nonobvious way. Deferring temporarily the specifics of how exactly (1-1) arises and what
is the variational principle associated with it, let us recall that, for p ∈ [2,∞), the celebrated p-Laplacian
is the divergence system

(1-3) 1pu := Div(|Du|p−2Du)= 0 in �

and comprises the Euler–Lagrange equation which describes extrema of the model p-Dirichlet integral
functional

(1-4) E p(u) :=
∫
�

|Du|p, u ∈W 1,p(�,RN ),

in conventional vectorial calculus of variations. Above and subsequently, for any X ∈ RN×n , the notation
|X | symbolises its Euclidean (Frobenius) norm:

|X | =
( N∑
α=1

n∑
i=1

(Xαi )
2
)1/2

.

The pair (1-3)–(1-4) is of paramount important in applications and has been studied exhaustively. The
extremal case of p→∞ in (1-3)–(1-4) is much more modern and intriguing, in that totally new phe-
nomena arise which are not present in the scalar case. It turns out that one then obtains the following
nondivergence PDE system

(1-5) 1∞u :=
(
Du⊗Du+ |Du|2[[Du]]⊥⊗ I

)
: D2u = 0 in �,

which is known as the∞-Laplacian. In index form, (1-5) reads

N∑
β=1

n∑
i, j=1

(
Di uα D j uβ + |Du|2[[Du]]⊥αβ δi j

)
D2

i j uβ = 0, α = 1, . . . , N .
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The system (1-3) plays the role of the Euler–Lagrange equation and arises in connexion with variational
problems for the supremal functional

(1-6) E∞(u,O) := ‖Du‖L∞(O), u ∈W 1,∞(�,RN ), O b�.

The scalar case of N = 1 in (1-5)–(1-6) was pioneered by G. Aronsson in the 1960s [2–6] who initiated
the field of calculus of variations in L∞, namely the study of supremal functionals and of their associated
equations describing critical points. Since then, the field has developed tremendously and there is ex-
tensive relevant literature, some of which is surveyed in [19]. In particular, although vectorial supremal
functionals began to be explored early enough, the∞-Laplace system (1-5) which describes the necessary
critical conditions in L∞ in the vectorial case N ≥ 2 first arose in the early 2010s in [15]. The area is
now developing very rapidly due to both the mathematical significance as well as the importance for
applications in diverse areas like image processing [13; 23], quasiconformal mappings and the singular
value problem (see [1; 11; 24; 20] and references therein).

In this paper we focus on the C2 case and establish the geometric rigidity and flatness of the images
of solutions u : Rn

⊇ �→ RN to the nonlinear system (1-1), under the assumption that either Du has
rank at most 1, or that n = 2 and u has an additively separated form, see (1-7). As a consequence, we
obtain corresponding flatness results for the images of solutions to (1-3) and (1-5). Both aforementioned
classes of solutions furnish particular examples which provide substantial intuition for the behaviour
of general extremal maps in calculus of variations in L∞, see, e.g., [7; 8; 10; 16; 17; 19; 24] where
solutions of this form have been studied. Obtaining further information for the still largely mysterious
behaviour of∞-Harmonic maps is perhaps the greatest driving force to isolate and study the particular
nonlinear system (1-1). For example, it is not yet know to what extend the possible discontinuities of the
coefficients relates to the failure of absolute minimality.

It is also worth clarifying that, although as it is well-known the Dirichlet problem over a bounded
domain may not in general be solvable for the∞-Laplacian not even in the scalar-valued case, if one
does not prescribe boundary values (and we do not in this paper) it can be demonstrated that infinitely
many nontrivial classical solutions do exist, in particular of the form arising in this paper (see for instance
the explicit constructions of C2 solutions in [16]). Therefore, the results herein are not void and numerous
solutions as those exhibited herein do exist.

Let us note that the rank-one case includes the scalar and the one-dimensional case (i.e., when
min{n, N } = 1), although in the case of N = 1 (in which the single∞-Laplacian reduces to Du⊗Du :
D2u = 0) (1-1) has no bearing since it vanishes identically at any noncritical point.

The effect of (1-1) to the flatness of the image can be seen through the L∞ variational principle
introduced in [18], wherein it was shown that solutions to (1-1) of constant rank can be characterised as
those having minimal area with respect to (1-6)–(1-4). More precisely, therein the following result was
proved:

Theorem 1 [18, Theorem 2.7, Lemma 2.2]. Given N ≥ n ≥ 1, let u : Rn
⊇�→ RN be a C2 immersion

defined on the open set � (more generally u can be a map with constant rank of its gradient on �). Then,
the following statements are equivalent:

(1) The map u solves the PDE system (1-1) on �.
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Figure 1. Illustration of the variational principle characterising (1-1).

(2) For all p ∈ [2,∞], for all compactly supported domains O b� and all C1 vector fields ν :O→ RN

which are normal to the image u(O)⊆ RN (without requiring to vanish on ∂O), namely those for
which ν = [[Du]]⊥ν in O, we have

‖Du‖L p(O) ≤ ‖Du+Dν‖L p(O).

(3) The same statement as in item (2) holds, but only for some p ∈ [2,∞].

If in addition p <∞ in (2)–(3), then we may further restrict the class of normal vector fields to those
satisfying ν|∂O = 0 (see Figure 1).

In the paper [18], it was also shown that in the conformal class, (1-1) expresses the vanishing of the
mean curvature vector of u(�).

The effect of (1-1) to the flatness of the image can be easily seen in the case of n = 1≤ N as follows:
since

[[u′]]⊥u′′ = 0 in �⊆ R

and in one dimension we have

[[u′]]⊥ =

{
I− u′⊗u′

|u′|2
on {u′ 6= 0},

I on {u′ = 0},

we therefore infer that u′′ = f u′ on the open set {u′ 6= 0} ⊆ R for some function f , readily yielding after
an integration that u(�) is necessarily contained in a piecewise polygonal line of RN . As a generalisation
of this fact, our first main result herein is the following:

Theorem 2 (rigidity and flatness of rank-one maps with tangential Laplacian). Let �⊆ Rn be an open
set and n, N ≥ 1. Let u ∈ C2(�,RN ) be a solution to the nonlinear system (1-1) in �, satisfying that the
rank of its gradient matrix is at most one:

rk(Du)≤ 1 in �.

Then, its image u(�) is contained in a polygonal line in RN , consisting of an at most countable union of
affine straight line segments (possibly with self-intersections).
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Figure 2. The graph of f and the image of the curve ν comprising u.

Let us note that the rank-one assumption for Du is equivalent to the existence of two vector fields
ξ : Rn

⊇�→ RN and a : Rn
⊇�→ Rn such that Du = ξ ⊗ a in �.

Example 3 below shows that Theorem 2 is optimal and in general rank-one solutions to the system
(1-1) can not have affine image but only piecewise affine.

Example 3. Consider the C2 rank-one map u : R2
→ R2 given by

u(x, y)=
{
(−x4, x4), x ≤ 0, y ∈ R,

(+x4, x4), x > 0, y ∈ R.

Then, u = ν ◦ f with ν : R→ R2 given by ν(t)= (t, |t |) and f : R2
→ R given by f (x, y)= sgn(x)x4

(see Figure 2).
It follows that u solves (1-1) on R2: indeed, 1u is a nonvanishing vector field on {x 6= 0}, being

tangential to the image thereon since it is parallel to the derivative ν ′(t) = (1,±1) for t 6= 0. On the
other hand, on {x = 0} we have that 1u = 0. However, the image u(R2) of u is piecewise affine but
not affine and equals ν(R). Note that (1-1) is underdetermined, especially without the requirement of
boundary conditions. Therefore, the point of this example is to show that the solutions in general do not
have affine image, although some of them may do, for instance the trivial affine ones.

As a consequence of Theorem 2, we obtain the next result regarding the rigidity of p-Harmonic maps
for p ∈ [2,∞) which complements one of the results in the paper [17] wherein the case p =∞ was
considered.

Corollary 4 (rigidity of p-Harmonic maps, cf. [17]). Let � ⊆ Rn be an open set and n, N ≥ 1. Let
u ∈ C2(�,RN ) be a p-Harmonic map in � for some p ∈ [2,∞), that is u solves (1-3). Suppose that the
rank of its gradient matrix is at most one:

rk(Du)≤ 1 in �.

Then, the same result as in Theorem 2 is true.
In addition, there exists a partition of � to at most countably many Borel sets, where each set of the

partition is a nonempty open set with a (perhaps empty) boundary portion, such that, on each of these, u
can be represented as

u = ν ◦ f.



388 HUSSIEN ABUGIRDA, BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

Here, f is a scalar C2 p-Harmonic function (for the respective p ∈ [2,∞)), defined on an open neigh-
bourhood of the Borel set, whilst ν : R→ RN is a Lipschitz curve which is twice differentiable and with
unit speed on the image of f .

Now we move on to discuss our second main result which concerns the rigidity of solutions

u : R2
⊇�→ RN

to (1-1) for N ≥ 2, having the additively separated form

(1-7) u(x, y) = f (x)− f (y)

for some curve f : R→ RN . Solutions of this form are very important in relation to the∞-Laplacian.
If N = 1, all∞-Harmonic functions of this form after a normalisation reduce to the so-called Aronsson
solution on R2

u(x, y)= |x |4/3− |y|4/3

which is the standard explicit example of a non-C2
∞-Harmonic function with conjectured optimal

regularity. In the vectorial case, the family of separated solutions is quite large. For N = 2, a large class
of such vectorial solutions was constructed in [16] and is given by

u(x, y) =
∫ y

x

(
cos(K (t)), sin(K (t))

)
dt

with K a function in C1(R) satisfying certain general conditions. The simplest nontrivial example of
an∞-Harmonic map with this form (defined on the strip {|x − y|< π/4} ⊆ R2) is given by the choice
K (t) = t . Our second main result asserts that solutions of separated form to (1-1) have images which
are piecewise affine, contained in a union of intersecting planes of RN . More precisely, we have:

Theorem 5 (rigidity and flatness of maps with tangential Laplacian in separated form). Let �⊆ R2 be
an open set and let also N ≥ 2. Let u : Rn

⊇ �→ RN be a classical solution to the nonlinear system
(1-1) in �, having the separated form u(x, y)= f (x)− f (y), for some curve f ∈ (W 3,p

∩C2)(R,RN )

and some p > 1.
Then, the image u(�) of the solution is contained in an at most countable union of affine planes in RN .

In addition, the proof of Theorem 5 shows that every connected component of the set {rk(Du)= 2} is
contained entirely in an affine plane and every connected component of the set {rk(Du)≤ 1} is contained
entirely in an affine line.

Note that our result is trivial in the case that N = n = 2 since the codimension N − n vanishes.
Additionally, due to the regularity of the solutions, if a C2 mapping has piecewise affine image, then
second derivatives must vanish when first derivatives vanish at the “breaking points,” namely the points
where the image has a nonsmooth edge and no tangent exists. Further, one might also restrict their
attention to domains of rectangular shape, since any map with separated form can be automatically
extended to the smallest rectangle containing the domain.

Also, herein we consider only the illustrative case of n = 2 < N and do not discuss more general
situations, since numerical evidence obtained in [24] suggests that Theorem 5 does not hold in general
for solutions in nonseparated form.
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In this paper we try to keep the exposition as simple as possible and therefore we refrain from dis-
cussing generalised solutions to (1-1) and (1-5) (or (1-3)). We confine ourselves to merely mentioning
that in the scalar case,∞-Harmonic functions are understood in the viscosity sense of Crandall–Ishii–
Lions (see, e.g., [10; 19]), whilst in the vectorial case a new candidate theory for systems has been
proposed in [22] which has already borne significant fruit in [20; 21; 22; 11; 9; 24].

We now expound on how exactly the nonlinear system (1-1) arises from (1-3) and (1-5). By expanding
the derivatives in (1-3) and normalising, we arrive at

(1-8) Du⊗Du : D2u+
|Du|2

p− 2
1u = 0.

For any X ∈RN×n , let [[X ]]‖ denote the orthogonal projection on the range of the linear map X :Rn
→RN :

(1-9) [[X ]]‖ := ProjR(X) .

Since the identity matrix of RN splits as I = [[Du]]‖+ [[Du]]⊥, by expanding 1u with respect to these
projections, we have

Du⊗Du : D2u+
|Du|2

p− 2
[[Du]]‖1u =−

|Du|2

p− 2
[[Du]]⊥1u.

The mutual perpendicularity of the vector fields of the left and right hand side leads via a renormalisation
argument (see, e.g., [15; 17; 18]) to the equivalence of the p-Laplacian with the pair of systems

(1-10) Du⊗Du : D2u +
|Du|2

p− 2
[[Du]]‖1u = 0, |Du|2[[Du]]⊥1u = 0.

The∞-Laplacian corresponds to the limiting case of (1-10) as p→∞, which takes the form

(1-11) Du⊗Du : D2u = 0, |Du|2[[Du]]⊥1u = 0.

Hence, the∞-Laplacian (1-5) actually consists of the two independent systems in (1-11) above. The
system |Du|2[[Du]]⊥1u = 0 is, at least on {Du 6= 0}, equivalent to (1-1). Note that in the scalar case of
N = 1 as well as in the case of submersion solutions (for N ≤ n), the second system trivialises.

We conclude the introduction with a geometric interpretation of the nonlinear system (1-1), which
can be expressed in a more geometric language as follows:1 Suppose that u(�) is a C2 manifold and let
A(u) denote its second fundamental form. Then

[[Du]]⊥1u =−tr A(u)(Du,Du).

The tangential part [[Du]]‖1u of the Laplacian is commonly called the tension field in the theory of
Harmonic maps and is symbolised by τ(u) (see, e.g., [25]). Hence, we have the orthogonal decomposition

1u = τ(u)− tr A(u)(Du,Du).

1This fact has been brought to our attention by Roger Moser.
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Therefore, in the case of higher regularity of the image of u, we obtain that the nonlinear system

(1-12) 1u = τ(u) in �,

is a further geometric reformulation of our PDE system (1-1).

2. Proofs

In this section we prove the results of this paper. Before delving into that, we present a result of in-
dependent interest in which we represent explicitly the vector field A arising in the parametric system
1u = Du A, in the illustrative case of n = 2.

We will be using the symbolisations “cof,” “det” and “rk” to denote the cofactor matrix, the determi-
nant function and the rank of a matrix, respectively.

Lemma 6 (representation of A). Let u ∈ C2(�,RN ) be given, �⊆ R2 open, N ≥ 2. The following are
equivalent:

(1) The map u is a solution to the PDE system (1-1).

(2) There exists a vector field A : R2
⊇�→ RN such that

1u = Du A in �.

In (2), as A one might choose

Ā :=


cof(Du>Du)>

det(Du>Du)
(Du)>1u on {rk(Du)= 2}

(1u)> Du Du>

|Du Du>|2
Du on {rk(Du)= 1},

0 on {rk(Du)= 0}.

A is uniquely determined on {rk(Du) = 2} but not on {rk(Du) < 2} and any other A has the form
Ā+ V , where V (x) lies in the nullspace of Du(x), x ∈�.

Proof of Lemma 6. The equivalence between (1) and (2) is immediate, therefore it suffices to show that
Ā satisfies 1u = Du Ā and is unique on {rk(Du)= 2}. Let A be as in (2). On {rk(Du)= 2}, the 2× 2
matrix-valued map Du>Du is invertible and

(Du>Du)−1
=

cof(Du>Du)>

det(Du>Du)
.

Since Du>1u = Du>Du A, we obtain that A= Ā.
The claim being obvious for {rk(Du)= 0} = {Du = 0}, it suffices to consider only the set {rk(Du)= 1}

in order to conclude. Thereon we have that Du can be written as

Du = ξ ⊗ a, in {rk(Du)= 1},

for some nonvanishing vector fields ξ and a. By replacing ξ with ξ |a| and a with a/|a|, we may assume
|a| ≡ 1 throughout {rk(Du)= 1}. If 1u = Du A, we have 1u = (ξ ⊗ a)A and since any component of
A which is orthogonal to a is annihilated, we may replace A by λa for some function λ. Therefore,

1u = (ξ ⊗ a)A= (ξ ⊗ a)(λa)= ξλ|a|2 = λξ
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and hence ξ ·1u = λ|ξ |2 and also ξ>Du = a|ξ |2. On the other hand, since

Du Du> = (ξ ⊗ a)(a⊗ ξ)= ξ ⊗ ξ, |Du Du>| = |ξ |2

we infer that

A= λa =
(
1u · ξ
|ξ 2|

)(
ξ>Du
|ξ 2|

)
=
1u>(ξ ⊗ ξ)Du
|ξ ⊗ ξ |2

= (1u)>
Du Du>

|Du Du>|2
Du,

as claimed. �

We now continue with the proof of the main results.
The main analytical tool needed in the proof of Theorem 2 is the next rigidity theorem for maps whose

gradient has rank at most one. It was established in [17] and we recall it below for the convenience of
the reader and only in the case needed in this paper.

Theorem 7 (rigidity of rank-one maps, cf. [17]). Suppose �⊆ Rn is an open set and u is in C2(�,RN ).
Then, the following are equivalent:

(i) The map u satisfies that rk(Du) ≤ 1 on �. Equivalently, there exist vector fields ξ : �→ RN and
a :�→ Rn with a ∈ C1(�,Rn) and ξ ∈ C1

(
� \ {a = 0},RN

)
such that

Du = ξ ⊗ a, on �.

(ii) There exists Borel subset {Bi }i∈N of � such that

�=

∞⋃
i=1

Bi

and each Bi equals a nonempty connected open set with a (possibly empty) boundary portion,
functions { fi }i∈N ∈ C2(�) and curves {νi }i∈N ⊆W 1,∞

loc (R,RN ) such that, on each Bi the map u has
the form

(2-1) u = νi ◦ fi , on Bi .

Moreover, |ν ′i | ≡ 1 on the interval fi (Bi ), ν ′i ≡ 0 on R \ fi (Bi ) and ν ′′i exists everywhere on fi (Bi ),
interpreted as 1-sided derivative on ∂ fi (Bi ) (if fi (Bi ) is not open). Also,

(2-2)
{

Du = (ν ′i ◦ fi )⊗D fi on Bi ,

D2u = (ν ′′i ◦ fi )⊗D fi ⊗D fi + (ν
′

i ◦ fi )⊗D2 fi on Bi .

In addition, the local functions ( fi )
∞

1 extend to a global function f ∈C2(�) with the same properties
as above if � is contractible (namely, homotopically equivalent to a point).

We may now prove our first main result.

Proof of Theorem 2. Suppose that u : Rn
⊇ �→ RN is a solution to the nonlinear system (1-1) in

C2(�,RN ) which in addition satisfies that rk(Du) ≤ 1 in �. Since {Du = 0} is closed, necessarily its
complement in � which is {rk(Du)= 1} is open.
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By invoking Theorem 7, we have that there exists a partition of the open subset {rk(Du) = 1} to
countably many Borel sets (Bi )

∞

1 with respective functions ( fi )
∞

1 and curves (νi )
∞

1 as in the statement
such that (2-1)–(2-2) hold true and in addition

D fi 6= 0 on Bi , i ∈ N.

Consequently, on each Bi we have

[[Du]]⊥ = [[(ν ′i ◦ fi )⊗D fi ]]
⊥
= I−

(ν ′i ◦ fi )⊗ (ν
′

i ◦ fi )

|ν ′i ◦ fi |
2 ,

1u = (ν ′′i ◦ fi )|D fi |
2
+ (ν ′i ◦ fi )1 fi .

Hence, (1-1) becomes[
I−

(ν ′i ◦ fi )⊗ (ν
′

i ◦ fi )

|ν ′i ◦ fi |
2

](
(ν ′′i ◦ fi )|D fi |

2
+ (ν ′i ◦ fi )1 fi

)
= 0,

on Bi . Since |νi |
2
≡ 1 on fi (Bi ), we have that ν ′′i is orthogonal to ν ′i thereon and therefore the above

equation reduces to
(ν ′′i ◦ fi )|D fi |

2
= 0 on Bi , i ∈ N.

Therefore, νi is affine on the interval fi (Bi ) ⊆ R and as a result u(Bi ) = νi ( fi (Bi )) is contained in an
affine line of RN , for each i ∈ N. On the other hand, since

u(�)= u({Du = 0})
⋃
i∈N

u(Bi )

and u is constant on each connected component of the interior of {Du = 0}, the conclusion ensues by the
regularity of u because u({Du = 0}) is also contained in the previous union of affine lines. The result
ensues. �

Now we establish Corollary 4 by following similar lines to those of the respective result in [17].

Proof of Corollary 4. Suppose u is as in the statement of the corollary. By Theorem 7, there exists, a
partition of � to Borel sets {Bi }i∈N, functions fi ∈ C2(�) and Lipschitz curves {νi }i∈N : R→ RN with
|ν ′i | ≡ 1 on fi (Bi ), |ν ′i | ≡ 0 on R \ fi (Bi ) and twice differentiable on fi (Bi ), such that u|Bi = νi ◦ fi and
(2-2) holds as well. Since on each Bi we have

|Du| =
∣∣(ν ′i ◦ fi )⊗D fi

∣∣= |D fi |,

by (1-8) and the above, we obtain(
(ν ′i ◦ fi )⊗D fi

)
⊗
(
(ν ′i ◦ fi )⊗D f

)
:[

(ν ′′i ◦ fi )⊗D fi ⊗D fi + (ν
′

i ◦ fi )⊗D2 fi
]
+
|D fi |

2

p− 2

{
(ν ′i ◦ fi )1 fi + (ν

′′

i ◦ f )|D fi |
2}
= 0,

on Bi . Since ν ′′i is orthogonal to ν ′i and also ν ′i has unit length, the above reduces to

(ν ′i ◦ fi )

[
D fi ⊗ D fi : D2 fi +

|D fi |
2

p− 2
1 fi

]
+

1
p− 2

(ν ′′i ◦ fi )|D fi |
4
= 0,
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on Bi . Again by orthogonality, the above is equivalent to the pair of independent systems

(ν ′i ◦ fi )

[
D fi ⊗ D fi : D2 fi +

|D fi |
2

p− 2
1 fi

]
= 0, (ν ′′i ◦ fi )|D fi |

4
= 0,

on Bi . Since |ν ′i | ≡ 1 of fi (Bi ), it follows that 1p fi = 0 on Bi and since (Bi )
∞

1 is a partition of � of the
form described in the statement, the result ensues by invoking Theorem 2. �

We may now prove our second main result.

Proof of Theorem 5. The system [[Du]]⊥1u = 0 is equivalent to

(2-3) 1u = Du · A

for a vector field A with components a, b. Then (2-3) can be rewritten as

(2-4) f ′′(x)− f ′′(y)= a(x, y) f ′(x)− b(x, y) f ′(y).

The choices (x, y)= (z, z+ t) and (x, y)= (z+ t, z) in (2-4) yield the equations

(2-5) f ′′(z)− f ′′(z+ t)= a(z, z+ t) f ′(z)− b(z, z+ t) f ′(z+ t)

and

(2-6) f ′′(z+ t)− f ′′(z)= a(z+ t, z) f ′(z+ t)− b(z+ t, z) f ′(z)

respectively. Let fα denote the α-component of f , α = 1, . . . , N . By subtracting (2-5) from (2-6) we
get for t 6= 0 that

(2-7) 2
f ′′α (z+ t)− f ′′α (z)

t
=
(
a(z+ t, z)+ b(z, z+ t)

) f ′α(z+ t)− f ′α(z)
t

+ f ′α(z)
(

a(z+ t, z)− a(z, z+ t)
t

+
b(z, z+ t)− b(z+ t, z)

t

)
for α = 1, . . . , N . On the set { f ′α = 0}, Equation (2-7) becomes

(2-8) 2 f ′′′α (z)=
(
ā(z, z)+ b̄(z, z)

)
f ′′α (z)

as t→ 0. Note also that { f ′α = 0} is closed and its complement { f ′α 6= 0} is open. Now let us set

Cα(z, t) :=
a(z+ t, z)− a(z, z+ t)

t
+

b(z, z+ t)− b(z+ t, z)
t

.

On { f ′α 6= 0}, (2-7) yields that

Cα(z, t)=
1

f ′α(z)

[
2

f ′′α (z+ t)− f ′′α (z)
t

−
(
a(z+ t, z)+ b(z, z+ t)

) f ′α(z+ t)− f ′α(z)
t

]
.

Fix an index α∈{1, . . . , N }, δ>0, an infinitesimal sequence (tm)∞1 and consider the inner δ-neighbourhood
Oδ of the set { f ′α 6= 0}, namely

Oδ :=
{

x ∈ Rn
: f ′α(x) 6= 0 and dist

(
x, ∂{ f ′α 6= 0}

)
> δ

}
.
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Then for any fixed δ > 0 small, there exists a constant cδ > 0 such that along the sequence tm→ 0 we
have

(2-9) ‖Cα( · , tm)‖L p(Oδ) ≤ 2
∥∥∥∥ 1

f ′α( · )
f ′′α ( · + tm)− f ′′α ( · )

tm

∥∥∥∥
L p(Oδ)

+‖a+ b‖L∞(�)

∥∥∥∥ 1
f ′α( · )

f ′α( · + tm)− f ′α( · )
tm

∥∥∥∥
L p(Oδ)

≤
1
cδ

(
2‖ f ′′′α ‖L p(Oδ)+‖a+ b‖L∞(�)‖ f ′′α ‖L p(Oδ)

)
≤

1
cδ

(
2‖ f ′′′‖L p(R)+‖a+ b‖L∞(�)‖ f ′′‖L p(R)

)
.

Note that the right hand side of the above estimate is bounded uniformly in m ∈N as f ′′′ ∈ L p(R,RN )

and f ′ ∈ C1(R,RN ). By letting δ→ 0 and using a standard diagonal argument, (2-9) implies that there
exists a function Cα such that

Cα(·, tm) ⇀ Cα in L p
loc({ f ′α 6= 0}),

as m→∞ along a subsequence of indices (mk)
∞

1 . As a result, (2-7) becomes

(2-10) 2 f ′′′α (z)=
(
ā(z, z)+ b̄(z, z)

)
f ′′α (z)+ f ′α(z)Cα(z) on { f ′α 6= 0},

for any α = 1, . . . , N . Combining equations (2-8) and (2-10), we infer that there exist measurable
functions A, B : R→ R such that

(2-11) f ′′′ = A f ′+ B f ′′ a.e. on R.

The goal in now to show that (2-11) implies that the torsion of the curve f vanishes, at least on a union
of subintervals of R. The idea is to project on three-dimensional subspaces of RN in order to utilise
standard ideas of elementary differential geometry of curves.

To this end, let P3 : R
N
→ RN be the orthogonal projection on a 3D subspace V3 ≡ P3(R

N ) of RN .
The choice of 3-dimensional subspaces owes to the fact that we would like to use the classical formulas
of differential geometry of curves in the Euclidean space. Then, P3 f : R→ V3 ∼= R3 is a curve in R3,
which is C2. By (2-11) we have,

(P3 f )′′′ = A(P3 f )′+ B(P3 f )′′ a.e. on R.

Let “×” denote the cross (exterior) product in R3. Then, the curvature of P3 f is given by

κ = |(P3 f )′× (P3 f )′′|
and, on {κ 6= 0}, the torsion is given by

τ =
[(P3 f )′× (P3 f )′′] · (P3 f )′′′

|(P3 f )′× (P3 f )′′|2
.

Note that {κ 6= 0} is open, as P3 f is C2. Then, we have:

• On the topological interior int({κ = 0}), P3 f is contained in an affine line of V3.

• On the topological interior int({κ 6= 0}), P3 f is planar and hence contained in affine plane of V3.
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Since ∂({κ = 0}) is a nowhere dense set (as the boundary of a closed set which contains no open set),
it follows that f (∂({κ = 0})) is contained in the boundary of an affine plane or an affine line. Hence, we
have that, for any projection P3 f on a 3-dimensional subspace of RN , the projected curve is contained
in an at most countable union of affine planes and lines. Therefore, the same is true for f itself by
elementary analytic geometry: if all 3-dimensional projections of the image set in the space RN for
n ≥ 3 are planes or lines, the same is true for the image itself. The conclusion follows. �
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