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Abstract

This PhD explores the influence of winter weather on the British energy system. It

investigates the effect of weather variability on electricity and gas demand and on

wind power generation. Weather-driven extremes of energy demand have a signifi-

cant impact on the wider energy system, and therefore their risk is quantified and

the driving circulation patterns identified. In addition, to potentially improve the

energy sector’s preparedness for winter, the skill of seasonal weather forecasts to

predict winter energy demand is assessed.

The analysis indicates that energy demand has a strong anti-correlation with

temperature, once socio-economic influences are removed. A 1◦C reduction in tem-

perature typically gives a 1% increase in daily electricity demand and a 3%-4%

increase in gas demand. The risk of extreme demand is assessed using a long tem-

perature record and the modern-day temperature-demand relationship. For exam-

ple, the risk of a winter having at least as much energy demand as December 2010

is estimated to be one in ∼34 years (95% confidence interval of 20-60 years).

To assess the ability of wind turbines to provide power during high electricity

demand, the relationship between wind power and demand is characterised. In

winter, average wind power availability reduces by a third between lower and higher

demand. However, during highest demand there is a modest recovery in wind power.

This relationship is driven by the large-scale weather patterns affecting Northern

Europe. During high demand events, neighbouring countries may struggle to provide

additional capacity due to concurrent low temperatures and reduced wind power.

Skilful predictions of winter mean gas demand and the number of extreme de-

mand days over the winter period are possible from seasonal forecasts initialised in

November. Use of such forecasts could help improve the security of gas supplies and

reduce the impacts associated with extreme demand events.
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Chapter 1

Introduction

1.1 Variability of Britain’s winter climate

The variability of winter weather in Britain is widely discussed. Daily, country-wide

average temperatures can range from below freezing to greater than 10◦C within a

matter of days. Equally a number of wet days can be followed by a week of very little

rain. This variety of weather conditions reflects the geographical location of Britain,

positioned between the Atlantic Ocean and the European continent and in proximity

to the Arctic. With its lower thermal capacity, the European land mass loses its

summer and autumn warmth much quicker than the ocean. Consequently, air flows

from the east of Britain in winter are typically coldest, being on average five degrees

cooler than air flows from the west and marginally cooler than air flows from the

north (Osborn et al. 1999). In contrast, winter rainfall in Britain is more dependent

on the vorticity than the wind direction, with higher accumulations during cyclonic

flow.

Much of this daily weather variability is driven by the presence of synoptic

weather systems. Britain is positioned at the eastern end of the North Atlantic

storm track (Blackmon, 1976). Low pressure systems that form in the western

Atlantic, develop and move across the ocean. During this process, the low-level

air circulating in the systems is progressively moistened through evaporation from

the warm underlying ocean. Upon reaching Britain low pressure systems can bring

warm, wet and windy conditions. Related to its position at the end of the storm-

track, Britain is also a region which can be strongly influenced by blocking high

pressure systems (Rex, 1950). Blocking highs are typically larger in scale (∼2000km

– 4000km across) than low pressure systems and they last for longer (6-11 days,
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Chapter 1. Introduction

Pinheiro et al. 2019). Low pressure systems are diverted to the north and south

of such high pressure systems, and their passage over Britain is often ‘blocked’.

During blocked conditions in winter, Britain is typically cooler, calmer and drier,

with easterly or northerly winds.

Considering the winter as a whole, some winters have a higher number of low

pressure systems, whilst others are more dominated by high pressure systems. For

example during the winter of 2013/14 the UK experienced record average rainfall,

associated with numerous wind storms (Knight et al., 2017). In contrast, winter

2009/10 was one of the coldest on record, with many days dominated by high pres-

sure (Cattiaux et al., 2010). The North Atlantic Oscillation (‘NAO’) is a measure

of the meridional pressure contrast across the North Atlantic (Wallace and Gutzler,

1981). The phase of the NAO influences the winter climate of Britain and the wider

Atlantic basin, including the location, strength and number of storms and the associ-

ated wind, temperature and rainfall conditions (Hurrell 1995 and Hurrell and Deser

2009). Understanding what drives the phase of the NAO and the associated winter

climate is complex and not fully-understood, and involves the influence of telecon-

nections to climate processes in different parts of the world. For example Atlantic

sea surface temperatures (SST), the variability of climate in the Pacific, known as

the El Nino Southern Oscillation (ENSO) or the phase of the winds in the equatorial

region of the stratosphere (the Quasi Biennial Oscillation, QBO) can all influence

the winter conditions experienced in Britain (Rodwell et al. 1999, Fraedrich and

Muller 1992, Marshall and Scaife 2009). Although many of these drivers are now

skilfully predicted at the seasonal timescale (Saha et al. 2006, Scaife et al. 2014b),

the variety and combination of drivers that can influence Britain’s winter makes its

seasonal prediction challenging.

1.2 The impact of weather on Britain’s energy

system

All sectors of society are critically dependent upon the availability of energy, in-

cluding health, housing and the economy. The primary aim of an energy system

operator is to ensure a resilient supply of both electricity and gas, sufficient to meet

the national demand. The variability and extremes of winter weather in Britain

can cause problems for the provision of energy. For example low temperatures can

compromise energy security, due to the strong dependence of energy demand on

temperature (Bessec and Fouquau 2008, Szoplik 2015). A recent example occurred
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in March 2018, when very low temperatures associated with strong easterly winds

(named the ‘Beast from the East’) produced high gas demand and caused the sys-

tem operator to issue a gas deficit warning (National Grid, 2018). Other impacts

include wind storm damage on transmission infrastructure and flooding of ground

based assets such as sub-stations after heavy rainfall (McColl et al. 2012). The

energy sector is, however, experienced in managing the impacts of weather on its

operations, using a range of weather forecasts to increase its preparedness.

The influence of weather on the energy system is rapidly increasing, due to

the changing energy landscape. With the global drive to reduce green-house gas

emissions and in order to limit the effects of anthropogenic climate change, the

development of renewable electricity generation has been widely promoted both in

Britain and around the world (Wiser et al., 2011). Wind and solar power capacity in

Britain has increased rapidly in the last decade and its growth is projected to con-

tinue (BEIS, 2018). Both wind and solar power generation are directly determined

by daily weather conditions; consequently, as their installed capacity increases, the

influence of weather on the supply of electricity will also increase. When balancing

the network, weather variability must now be taken into account when estimating

the demand, the generation and also the supply of energy.

1.3 Thesis aims

This PhD explores the influence of weather variability on certain aspects of the

British energy system in winter. The focus is on understanding the impact of weather

and atmospheric circulation on electricity and gas demand and on the availability of

wind power. The magnitude, likelihood and drivers of extreme demand events are

explored. Finally, the skill of current seasonal weather forecasts to predict winter

energy demand is assessed.

1.3.1 Risk of high demand events

Balancing energy supply and demand is most challenging when demand is at its

highest. The amount of generation capacity in Britain is dictated and financed by

the market, with new generation sources only being built when there is sufficient

demand for additional generation. Consequently, there is little additional capacity

beyond what is normally required. This contrasts with for example France, where

there is a large surplus in electricity generation capacity and where Government

invests heavily in the building of additional capacity (International Energy Agency,
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2016).

During peak demand in Britain, the grid operator requires energy generated

from the full range of suppliers. If supplies are insufficient, there is a heightened risk

of electricity black outs or gas shortages. The British Government stipulates that

the energy system must be able to cope with a certain level of extreme demand, such

as the 1 in 20 year peak daily demand (National Grid, 2016). A thorough under-

standing of the risk and magnitude of extreme demand events is therefore beneficial.

Quantifying this risk is however made more difficult by the short length of many

energy demand data sets (typically 15-30 years) and by society’s changing demand

patterns. However, the strong anti-correlation between demand and temperature

offers the opportunity to use much longer temperature data series (>200 years) to

estimate the risk of weather-driven extreme demand events.

This PhD investigates the variability of daily electricity and gas demand in

Britain over the observed period (from 1975 onwards), exploring the role of both

socio-economic and meteorological drivers. In addition, the magnitude and risk of

weather-driven extreme demand events are quantified, and historical events are put

into context.

1.3.2 Wind power availability during high demand

With the drive to de-carbonise the energy system, the ability of renewable energy

sources to replace traditional generation sources needs to be understood. During

the winter of 2010/2011 there were episodes where both temperatures and wind

speeds in Britain were very low. This created days with extreme electricity demand

but very little wind power. Individuals in the energy industry and sections of the

media began questioning the ability of wind turbines to provide power when most

needed (Royal Academy of Engineering 2013) and preliminary studies have given

non-conclusive results (Zachary and Dent 2012, Brayshaw et al. 2012, Harrison et al.

2015). The British Government is keen to understand whether the conditions ex-

perienced during that winter were typical or anomalous. In addition they want to

know if conditions were similar in neighbouring countries, to understand whether ad-

ditional supplies of electricity can be sourced through interconnection when British

supplies are stretched.

This PhD consequently explores the relationship between electricity demand

and wind power supply in Britain, with a particular focus on extreme demand con-

ditions. The role and importance of atmospheric circulation in this relationship is
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investigated. In addition, a basic assessment of the demand and wind power condi-

tions in the rest of Europe during peak electricity demand in Britain is established,

to determine whether inter-connectors could improve the security of Britain’s elec-

tricity supplies.

1.3.3 Seasonal predictability of winter demand

Seasonal forecasting of winter climate in North-western Europe has improved in the

last decade. The winter NAO can now be skilfully predicted by a number of seasonal

prediction systems (Baker et al., 2018). This improvement has been attributed to

having higher resolution models and a larger ensemble size (Scaife et al. 2014b, Eade

et al. 2014). Studies have begun to demonstrate that current skill levels are sufficient

to skilfully forecast the impacts of winter weather on different sectors of society (e.g.

Svensson et al. 2015, Palin et al. 2016).

The use of seasonal forecast information by Britain’s energy industry is currently

limited. To ensure that the energy sector is as prepared as possible ahead of the

winter, a ‘Winter Outlook’ report is compiled by the grid operator (National Grid,

2017). This details the operator’s view on the security of supply of electricity and gas

systems for the coming winter and is based on a survey of industry participants. The

report is made publicly available and it is used by a range of different actors across

the industry to help prepare for the winter. The outlook gives a forecast of total

and peak winter demand, the likely supply margins and the expected availability

of different supplies. These estimates are based on societal drivers of demand and

supply, such as the strength of the economy and the availability of generation and

storage infrastructure, however they do not currently take account of any weather

forecast information. Rather, the influence of weather on these demand predictions

is assessed by assuming standard winter weather conditions and by stress testing

using historical meteorological extremes.

This PhD capitalises on the recent improvements in winter climate forecasting

to assess whether seasonal forecasts can be used to predict winter energy demand.

Specifically, the skill in predicting winter mean gas demand and the number of high

gas demand days during winter is assessed.

1.3.4 Thesis questions

To summarise the key questions addressed in this PhD are:
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• How has Britain’s energy demand varied over the recent period and what has

driven this variability? What is the risk and magnitude of weather-driven

extreme demand events today?

• What is the relationship between wind power and electricity demand and to

what extent can it be explained by meteorology? Can wind turbines provide

power during high demand periods? Can interconnection help improve the

security of energy supply?

• Can seasonal weather forecasts predict winter mean gas demand and the num-

ber of high gas demand days over the winter period?

6



Chapter 2

Literature Review

2.1 Climate of the North Atlantic and European

region

2.1.1 Meridional radiation imbalance

The sun’s radiation ultimately drives the climate system. Most of the sun’s short

wave-length radiative energy passes through the atmosphere and is either absorbed

by the earth’s surface or is reflected back out to space, depending on the albedo of

the surface and cloud amount (Wallace and Hobbs, 1977). The short wave-length

energy flux varies significantly with latitude and time, generating the diurnal and

seasonal cycles. The oceans are heated by direct absorption of short wave-length

radiation, while the atmosphere is mostly heated by either sensible heat from the

earth’s surface or by absorption of long-wavelength infra-red (IR) radiation emitted

from the earth’s surface. The release of latent heat into the atmosphere through

condensation is another important source of atmospheric heating. At low latitudes

there is a net gain in energy, with incoming solar radiation exceeding outgoing

radiation. In contrast, in the polar regions there is a net loss of energy (Trenberth

and Solomon, 1994). This net energy imbalance from the equator to pole can be

considered to drive the circulations of the ocean and atmosphere.

2.1.2 Ocean heat transport

Figure 2.1 (Trenberth and Fasullo, 2017) shows the poleward energy transport in

the oceans and atmosphere and highlights the variation in energy transport with
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latitude. Energy transport peaks around 35◦ North, and is dominated by transport

within the atmosphere at this latitude. Nearer to the equator the ocean plays

a more significant role. Even though the Atlantic Ocean is a smaller basin than

the Pacific, it plays an important and unique role in climate variability (Trenberth

and Fasullo, 2017). The Atlantic Meridional Overturning Circulation (AMOC) is

responsible for most of the meridional transport of heat by the mid-latitude northern

hemisphere oceans (see Figure 2.1 right). In addition to the direct transportation

of heat northwards by the AMOC, the atmosphere is heated from below, with an

upward surface heat flux of 80-100W/m2 (Trenberth and Fasullo, 2017). Variations

in AMOC strength are linked to multi-decadal variations in sea surface temperatures

in the North Atlantic, referred to as the ‘Atlantic Multi-decadal Oscillation’ (AMO,

Kerr 2000, Knight et al. 2005). The AMO can influence the climate of the Atlantic

basin, with for example an increase in extratropical cyclonicity and rainfall during

its positive (warmer) phase (Knight et al., 2006).

Figure 2.1: Northward energy transports. Left: The annual and zonal means of the
northward energy transports for 2000-2014 in PW for the total Earth system (black),
the atmosphere (red) and the ocean (blue). Right: The ocean component broken
down into the contributions from the Atlantic (violet), Pacific (red), and Indian
(green) Oceans which combine south of 35◦S to give the southern ocean value, as
given in the small map below. The error bars are 1 standard deviation. Trenberth
and Fasullo (2017).
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2.1.3 North Atlantic storm track

The meridional gradient in air temperature over the North Atlantic is strongest in

the winter season. In mid-latitudes there is a balance between the horizontal pres-

sure gradient and the Coriolis force, resulting in winds which are in approximate

geostrophic balance. There is also a balance between the vertical pressure gradi-

ent and the gravity force, referred to as hydrostatic balance. As a result of these

balances, vertical variations of the geostrophic wind are then proportional to the hor-

izontal variations of the temperature field, through the thermal wind balance. The

large decrease in temperature with latitude from equator to pole in winter is con-

sequently accompanied by an increase in zonal wind speeds with height. In certain

conditions, the shear in the flow can allow small disturbances to amplify and grow,

through positive feedback between circulations at the surface and aloft (see Hoskins

and James 2014 for a thorough description). This process is known as baroclinic in-

stability and describes the conversion of available potential energy into eddy kinetic

energy and is the basis for the development of cyclones and anticyclones (Woollings,

2010). These synoptic weather systems transport cold air southwards and warm

air northwards, and contribute to the northwards flux of heat. Developing cyclones

move across the Atlantic from the west to east, with a south-west north-east tilt, in

a region known as the North Atlantic storm track (see Figure 2.2b). If these storms

are still active when they reach the west coast of Europe, they can bring strong

winds and heavy rainfall. As the low pressure systems decay, their eddy kinetic

energy is partly converted into zonal kinetic energy. Momentum is consequently

fed back to the underlying atmospheric flow (Woollings, 2010), creating a band of

strong westerly winds, known as the eddy driven jet stream.

2.1.4 Jet streams

A jet stream is a band of very strong winds. In the northern hemisphere winter,

strong winds are found near the tropopause, circling much of the globe, as shown in

Figure 2.2a. Two jet streams are distinguished in the northern hemisphere winter,

the subtropical jet stream and the eddy driven jet stream (Woollings et al., 2010).

The subtropical jet is located at approximately 30-35◦North, and arises from a

thermal wind balance with the strong meridional temperature gradients at the edge

of the Hadley cell (Vallis et al., 2004). This subtropical jet stream is limited to the

upper troposphere. In contrast, the eddy driven jet stream occurs throughout the

depth of the troposphere and results from the transfer of momentum from transient

eddies to the large scale flow. At most longitudes the two jet streams overlap,

9
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whilst in the Atlantic, there is a clear separation, with the eddy driven jet 10-

15◦ further north than the subtropical jet. Woollings (2010) state the separation

of the two jets over the Atlantic as one of the underlying reasons why European

weather is so unique. The position of the eddy driven jet stream varies significantly

from week to week, and consequently on any given day the upper level winds will

differ from the winter mean shown in Figure 2.2a. Woollings et al. (2010) found 3

main locations for the lower tropospheric Atlantic eddy driven jet, a southerly, mid

and northerly latitude location (approximately 37◦N, 45◦N and 57◦N). These relate

closely to the three Atlantic atmospheric regimes (NAO negative, NAO positive and

Atlantic ridging) discussed in section 2.2.2.

Figure 2.2: Northern Hemisphere climatology for December 1957 to August 2002
from the ERA-40 reanalysis. a) December-February (DJF) 250 hPa wind speed with
streamfunction contoured every 1x107m2s-1. b) DJF transient eddy kinetic energy
(TEKE) using 2-6 day bandpass filtered winds. Shading shows low level values (850
hPa) and contour lines show the upper level (250 hPa) values contoured every 20
m2s-2. c) Standard deviation of monthly-mean 250 hPa streamfunction in DJF. d)-f)
as a)-c) but for June-August (JJA). Woollings (2010).
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2.1.5 Stationary waves

Figure 2.2a also shows the winter mean streamfunction over the Northern hemi-

sphere. Troughs are seen over the western side of the Pacific and Atlantic Oceans,

with a ridge over Europe. The zonal deviations in the winter mean flow can be de-

scribed as large scale stationary Rossby waves, and are linked to the distribution of

continents and oceans (Holton, 1992). The North Atlantic storm track (Figure 2.2b)

is seen to follow the streamfunction lines over the Atlantic. Brayshaw et al. (2009)

have attributed the location and orientation of the storm track to the configuration

of the Rocky mountains and the orientation of the East coast of North America.

The path of developing cyclones has been shown to be steered by the eddy-driven

jet (Lau 1988, Branstator 1995). As mentioned above the eddies themselves, partic-

ularly through variation in eddy momentum flux convergence, drive the variability

in strength and position of the jet stream (Vallis et al., 2004). The storm track

and jet stream consequently feed back upon one another. The surface winds in the

storm track region also drive the western boundary current in the Atlantic Ocean,

which itself is crucial to the existence of the storm track. Hoskins and Valdes (1990)

consequently describe the storm tracks as self-maintaining.

2.1.6 Blocking

Atmospheric blocking is a large-scale atmospheric flow regime which is observed to be

both quasi-stationary and persistent in nature (Pelly, 2001). As the name suggests,

blocking occurs when the westerly jet in the mid-latitudes is blocked, and cyclones

moving within the jet are deflected either side of the blocking feature. A block was

first described by Rex (1950) as the splitting of the basic westerly current into two

branches extending over at least 45◦ of longitude and lasting for a period of ten

days or more. Since then a wide range of blocking definitions have been developed

(see Woollings et al. 2018 for a summary), and their breadth reflects the wide range

of conditions interpreted as blocking. Three main types of block are frequently

described, a dipole block, an omega block or an open ridge of high pressure. A key

feature in all definitions, is a large area of high pressure with associated barotropic

anti-cyclonic flow. In a dipole block, an area of low pressure also exists to the south

of the high pressure, which helps to maintain the position of the block (Hoskins and

James, 2014).

There is currently still no comprehensive theory of blocking (Woollings et al.,

2018). However the importance of upper level dynamics in the generation of blocks is
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clear. When planetary scale Rossby waves, which propagate in a westwards direction

relative to the upper level westerly flow, become extended in latitude and break, air

parcels are cut off from their source regions. Once cut off, the structures can only

disappear if either the air returns to its source location, or through frictional or

heating processes (Hoskins and James, 2014). The stability of the blocking dipole

means blocks often last for a week or longer, longer than would be expected given

diabatic processes alone. During extreme blocking events, such as the blocking over

Russia in the summer of 2010, anomalous convection in the tropics has been found

to drive and maintain the Rossby wave forcing responsible for the development of a

long lasting block (Trenberth and Fasullo, 2012). Others have found that upstream

eddies can help maintain the block structure, by encouraging further wave breaking

and by contributing vorticity anomalies into the block (e.g. Shutts 1983, Altenhoff

et al. 2008). The importance of diabatic heating in blocking processes has only

recently been emphasised (Croci-Maspoli and Davies 2009, Pfahl et al. 2015).

In the Northern hemisphere, blocking predominantly occurs over the eastern re-

gions of the Atlantic and Pacific Oceans (Tibaldi and Molteni, 1990). The impact of

blocking on European weather is significant and depends on the location of the block

and time of year. For example in winter, Scandinavian blocking can produce cold,

calm conditions over much of Northern Europe, whilst in summer, heat wave condi-

tions can result. If a blocking anticyclone is particularly persistent, the deflection of

low pressure systems around the block can lead to drought conditions beneath the

high pressure system and increased rainfall elsewhere (Trigo et al., 2004).

2.2 Variability of North Atlantic winter climate

2.2.1 Low frequency variability: Teleconnection patterns

Analysis of long records of monthly mean atmospheric circulation reveal large scale

correlations between the flow at remote locations. Such correlations are referred

to as ‘teleconnections’ to stress the correlation-at-a-distance aspect of their nature

(James, 1994). A teleconnection describes the contemporaneous and lagged varia-

tions in climate over distant parts of the globe. Teleconnections have fixed locations,

with nodes and anti-nodes, which oscillate in parallel. At its simplest level, a tele-

connection is identified by calculating the correlation between all individual grid

points across the globe and then identifying regions which are distant (greater than

a typical synoptic feature) and are strongly correlated with one another.
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The two main large-scale teleconnection patterns of the Northern Hemisphere

500hPa geopotential height field are the Pacific-North American (PNA) pattern and

the North Atlantic Oscillation (NAO) and are shown in Figure 2.3 (James 1994,

following Wallace and Gutzler 1981). The PNA pattern has four centres of action,

the central Pacific, northeast Pacific, northwest Canada and southeast USA. The

NAO has two main centres of action, in the subtropical Atlantic and the northwest

Atlantic. These teleconnections indicate connections between the tropics and mid-

latitudes, and reflect meridionally propagating Rossby waves (James, 1994).

Another approach used to analyse low frequency climate variability is princi-

pal components analysis (PCA). Compared to correlation analysis described above,

PCA has the benefit of giving information about the timescale of variability. The aim

of PCA is to represent the maximum possible fraction of the variability contained

in an original data set through a smaller set of orthogonal eigenvectors (known as

EOFs, see Wilks 2006). The NAO is the first EOF of the North Atlantic region,

explaining 39% of the variance of the winter sea level pressure field (see Figure 2.4,

Hurrell and Deser 2009). A clear dipole in pressure between the northern and south-

ern regions of the North Atlantic is seen.

The North Atlantic Oscillation

The North Atlantic Oscillation is the dominant mode of atmospheric variability in

the North Atlantic and European region. In the positive phase of the NAO, atmo-

spheric pressure is higher than normal in the region of the Azores high and lower

than normal over the Icelandic region, leading to an anomalously strong pressure

gradient over the North Atlantic basin. This strengthened pressure gradient is as-

sociated with stronger westerly winds and a more northerly and intense storm track

(Rogers, 1990). Warmer wetter conditions are experienced over Northern Europe

and Eastern US, whilst cooler, drier conditions occur over the Mediterranean and

the Canadian Arctic (Wallace and Gutzler 1981, Hurrell 1995, Hurrell and Deser

2009). In contrast, during the NAO’s negative phase, the pressure gradient across

the North Atlantic is weaker than normal and at times even reversed. This leads to

an increase in air flows over Europe from the east and north and a higher chance of

anticyclonic blocking (Shabbar et al., 2001). Conditions in Northern Europe and the

Eastern US are consequently colder and drier than normal, whilst the Mediterranean

and Canadian Arctic are warmer and wetter than usual (Hurrell, 1995).

The NAO also influences the ocean. On interannual and sub-decadal timescales,

variations in the NAO drive a tripole pattern of SST anomalies in the North Atlantic
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(Marshall et al. 2001, Delworth et al. 2017). This SST pattern is a direct response

of the ocean mixed layer to turbulent surface heat flux anomalies associated with

the NAO. The strong coupling between the surface winds and the surface ocean

means that the NAO also influences wave height, with larger waves in the northeast

Atlantic and smaller waves south of 40◦ North during NAO positive conditions

(Visbeck et al. 2003, Bacon and Carter 1993). On timescales longer than ten years,

there is a lagged response of the ocean to the NAO. For example, a prolonged

positive NAO anomaly will enhance the strength of the AMOC after a decadal-scale

delay, leading to increased northwards heat transport and warmer basin wide SSTs

(Delworth et al., 2017).

To a lesser extent, the ocean can also influence the atmosphere in the North

Atlantic. Variability of the NAO at both shorter and longer timescales is found to

be driven in part by the SST tripole in the North Atlantic and by ENSO in the

Pacific (Rodwell et al. 1999, Czaja and Frankignoul 2002, Deser et al. 2007, Folland

et al. 2012, Dunstone et al. 2016). These results highlight the two-way feedback

between the ocean and atmosphere.

Figure 2.3: Summary of the main teleconnection patterns for the northern hemi-
sphere winter, based on the monthly mean geopotential height fields. The heavy
lines denote the 0.6 correlation contours. James (1994), after Wallace and Gutzler
(1981)

Understanding of the dynamical drivers of the winter NAO has increased in

recent decades. The Quasi-Biennial Oscillation, sudden stratospheric warmings,
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Figure 2.4: Leading empirical orthogonal function (EOF1) of the winter (December
to March) mean sea level pressure anomalies over the North Atlantic sector and the
percentage of the total variance explained. The data cover 1899-2006. Hurrell and
Deser (2009).

Atlantic SSTs, the El Nino Southern Oscillation and tropical precipitation are all

now considered to affect the winter NAO (Thompson et al. 2002, Baldwin and

Dunkerton 2001, Czaja and Frankignoul 2002, Merkel and Latif 2002, Scaife et al.

2017). The response of the NAO to these dynamical drivers is discussed in the

seasonal prediction section 2.6. In summary the NAO drives significant variations

in weather and climate across the whole North Atlantic basin and across a range of

timescales.

2.2.2 Synoptic variability: Weather regimes

To better understand North Atlantic synoptic (multi-day) climate variability, many

studies have attempted to identify the dominant large-scale weather regimes present

in winter. This approach assumes the atmosphere preferentially evolves between

a number of dominant states or regimes and compared to PCA, it attempts to

identify more physically meaningful patterns of climate variability. A number of

statistical techniques have been used to identify possible regimes. Initial efforts

involved subjectively grouping together patterns in synoptic weather charts, for

example the Lamb weather types (Lamb, 1972). More recently methods have become

objective and identify the weather or climate states which correspond to peaks in

the probability density function of the climate phase space (see Fereday et al. 2008

for a thorough summary).

An objective regime classification method frequently used is cluster analysis.
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Cluster analysis essentially sorts data into groups whose identities are not known

in advance (Wilks, 2006). A number of clustering algorithms have been developed,

based on either hierarchical or non-hierarchical methods. The former, reduces the

number of groups by successively identifying and combining the two most simi-

lar members, until the desired number of groups is achieved. In contrast, non-

hierarchical methods such as K-means clustering, specify the number of groups at

the start and then move members between groups until each member in the group

is closest to its own centroid and far from the centroids of neighbouring groups. To

reduce the dimensionality of the data set being clustered, the data is often projected

on the leading few EOFs prior to clustering. Clustering can be applied to daily, or

temporally averaged data, such as monthly means.

Figure 2.5: Winter (December-March) weather regimes in sea level pressure (hPa)
over the North Atlantic domain using daily data from 1950-2006. The percentage at
the top right of each panel expresses the frequency of occurrence of a cluster out of
all winter days since 1950. Hurrell and Deser (2009) following Cassou et al. (2004).

Four weather regimes are typically found to summarise the daily variability of

the atmospheric pressure field over the North Atlantic, shown in Figure 2.5 (Hurrell

and Deser 2009, following Cassou et al. 2004). The four regimes comprise of the

two phases of the NAO, and two further regimes dominated by a centre of high

pressure located over either Scandinavia (referred to as ‘Blocking’) or to the west

of the UK (the ‘Atlantic ridge’ regime). Cassou et al. (2004) and Hurrell and Deser

(2009) show that the climatological frequency of each regime over winter is similar

(occurring during 20-30% of days) and over the twentieth century some winters are

16



Chapter 2. Literature Review

more dominated by one regime than another. For example the winters of the 1960s

were dominated by the NAO negative regime, whilst the 1990s had many more

NAO positive days. However, for any given winter there is always a mix of regimes,

highlighting that although the NAO is the dominant mode of variability in the North

Atlantic, it does not explain all the variance seen (Hurrell and Deser, 2009).

The climate of the North Atlantic varies across a range of spatial and temporal

scales, as exemplified in Figures 2.3 and 2.5. As highlighted, a range of methods

exist to explore this variability and although the detailed behaviour seen can be

method specific, the dominant features, such as the NAO remain.

2.3 Britain’s winter climate

Britain is located to the North-west of the European continent. To the west of

Britain is the Atlantic Ocean and to the east the North Sea. The ocean’s higher

heat capacity compared to the atmosphere, means that as the autumn leads into

winter, the ocean keeps Britain warmer than in other more continental regions at the

same latitude. Britain is positioned at the end of the North Atlantic Storm track, in

a region where both low pressure systems and blocking anticyclones prevail. Winter

climate in Britain is therefore very variable, with warmer wetter winters when the

air flow is from the west or south-west and colder, drier winters when the air flow

is from the north or east. Figure 2.6 shows the large variability in winter UK mean

temperatures from 1910 to 2018, ranging from near freezing to approximately 6◦C

(NCIC, 2018). UK winter rainfall is shown in Figure 2.7, with winter accumulations

ranging from approximately 100 to 550mm. Extreme winters can be identified, such

as the cold and dry winter of 1963 (the year refers to the January and February of

the winter period) or the very wet winter of 2014.

The weather experienced in a particular winter varies with location. Figure 2.8

shows the variation in winter mean temperature and precipitation across the UK in

2010 and 2014, presented as an anomaly from the 1961-1990 period. The winters of

2010 and 2014 were both recent extreme winters and give an indication of the range

of winter weather conditions experienced in Britain. A description of each winter is

given below.

2.3.1 Winter 2009/2010

Winter 2010 was the coldest winter in 31 years, with a winter mean temperature

of only 1.6◦C (Prior and Kendon 2011, see Figure 2.6) and cold anomalies in all
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Figure 2.6: Winter mean UK temperature (◦C), 1910 to 2018, NCIC (2018).

Figure 2.7: Winter mean UK rainfall (mm), 1910 to 2018, NCIC (2018).
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Figure 2.8: The winter mean temperature anomaly from the 1961-1990 average (◦C,
left) and winter rainfall amount (% of 1961-1990 average, right) for 2010 (upper)
and 2014 (lower), NCIC (2018).
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regions (Figure 2.8, upper left panel). The winter was characterised by prolonged

cold spells, hard frosts and frequent snowfalls, with predominantly easterly and

northerly winds bringing air from Northern Europe over the UK. Temperatures fell

well below freezing in selected locations, for example -10◦C occurred in the Scottish

glens. Rainfall totals were higher than average over the eastern half of the UK, but

lower over the western half, reflecting the dominance of easterly winds (Figure 2.8,

upper right panel). In contrast, exceptionally warm and wet conditions occurred in

parts of south-eastern Europe and the Mediterranean (Prior and Kendon, 2011).

In 2010, the 500hPa geopotential height anomaly field was strongly zonal, with

anomalously high pressure over the pole and low pressure over mid-latitudes. This

led to a record negative winter mean NAO index, almost 3 standard deviations below

average (Cattiaux et al., 2010). Winter 2010 also had the second highest blocking

frequency since 1949, with 33% of days being classed as blocked. The persistence of

the NAO over the winter was notable, with approximately two-thirds of days classi-

fied as the NAO negative regime and very few NAO positive regime days (Cattiaux

et al., 2010). Wang and Chen (2010) attribute the cold surface temperatures to

warming of the stratosphere and its subsequent downwards propagation to the sur-

face. In addition Fereday et al. (2012) also suggested that the easterly phase of the

Quasi-Biennial Oscillation (QBO), the strong El Nino, anomalous snow cover and

the solar minimum in 2010 may all have contributed to the extreme NAO index that

winter. See section 2.4.2 for a description of these patterns of climate variability.

2.3.2 Winter 2013/2014

Winter 2014 was the wettest winter in the UK since records began in 1910, with 165%

of average rainfall (see Figure 2.8, lower right panel, NCIC 2018). This was caused

by a succession of deep Atlantic low pressure systems affecting the UK (Kendon and

McCarthy, 2015). Matthews et al. (2014) found winter 2014 to be the stormiest

winter for the UK and Ireland in a 143-year series. Exceptionally high river flows

were experienced in many parts of the country, leading to impactful flooding events,

particularly in southern regions (Huntingford et al., 2014). The westerly atmospheric

flow regime, produced mild conditions across the UK (see Figure 2.8, lower left panel)

and the average UK temperature was the fifth highest in a series from 1910. There

was a marked absence of cold spells, with few air frosts and little or no snow in the

southern half of the UK and at lower elevations (Kendon and McCarthy, 2015).

The winter mean sea level pressure was anomalously low over the UK and to the

west of the UK. Such that the winter NAO index was 1.3 standard deviations above
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the average from 1981-2010. Knight et al. (2017) explored the drivers of winter 2014

and concluded that influences from the tropics were likely to have played a significant

role in the development of the unusual extra-tropical circulation. In addition, the

westerly phase of the QBO and the associated stronger and more stable stratospheric

polar vortex appear to have contributed to the extreme conditions (Huntingford et al.

2014, Knight et al. 2017) .

2.4 Seasonal weather prediction

In 1963 Lorenz discovered the phenomenon of chaos. Even with a perfect model

and essentially perfect initial conditions, forecasts lose all predictive information

after a finite time. Small instabilities can grow in time and may eventually modify

the large-scale flow and change the evolution of a developing circulation system in

a distant part of the atmosphere (Hoskins and James, 2014). Lorenz noted that

practical predictability is a function of the physical system under investigation,

the available observations and the dynamical prediction models used to simulate

the system. Based on atmospheric initialization alone, Lorenz found the limit of

deterministic predictability for mid-latitude weather was about two weeks.

However, predictable aspects of the atmosphere beyond two weeks have been

found to be possible using a combination of three different sources of predictability;

inertia of the climate system, patterns of climate variability and the influence of

external forcing factors. These sources of predictability are summarised in Figure 2.9

(National Academy of Sciences, 2010) and are described below.

2.4.1 Inertia of the climate system

The inertia of the climate system represents the influence of more slowly varying

components of the climate system on the atmosphere. Initialisation of these compo-

nents can lead to extended predictability. For example, the ocean has a heat capacity

3,500 times that of air, consequently anomalies in ocean heat content develop over

much longer timescales than in the atmosphere and also last for much longer. Once

such an anomaly has developed, it can have a large impact on the atmosphere over

a number of months or years. Predictions of the evolution of European climate can

therefore be improved by taking the ocean conditions into account (Rodwell and

Doblas-Reyes, 2006).

Other components of the climate system have ‘memory’ and can be used for

seasonal prediction of the atmosphere, including soil moisture, snow cover, vege-
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Figure 2.9: Processes that act as sources of interseasonal to interannual climate
predictability extend over a wide range of timescales and involve interactions among
the atmosphere, ocean and land, National Academy of Sciences (2010).
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tation, land heat content and polar sea ice (National Academy of Sciences, 2010).

For example, although the moisture content of soil is to a large extent determined

by the amount of rainfall received, it varies on a much slower timescale than that

of rainfall. Soil moisture integrates the effects of rainfall, evaporation and runoff

and influences the atmosphere through impacting the surface energy budget. Soil

moisture has been found to influence the evolution of atmospheric temperature and

rainfall in certain regions and at certain times of year (Koster and Suarez, 2003).

For example, Black et al. (2006) and Fischer et al. (2007) found the precipitation

deficit in the preceding spring and the resultant dry soils led to an exacerbation of

the European summer heat wave of 2003.

The health of vegetation can also outlive an atmospheric anomaly and influence

the local climate long after the initial atmospheric anomaly has subsided (Zeng et al.,

1999). Where vegetation is sparse or in higher latitude regions where soil moisture

freezes, thermal energy stored in the land surface can also influence the overlying

atmosphere over an extended period. The influence of Arctic sea ice on European

climate has attracted considerable attention, with contrasting results. However a

common conclusion is that a reduction in Arctic sea ice can increase the risk of

the negative phase of the NAO in winter (Deser et al. 2004, Screen 2017). Current

seasonal prediction systems now initialise sea ice conditions and include interactive

sea ice physics to model such feedbacks (Scaife et al., 2014b).

2.4.2 Climate variability

The interaction between different components of the climate system, can lead to

quasi-periodic variations in climate that give additional predictability at the seasonal

timescale (National Academy of Sciences 2010, Smith et al. 2012). The El Nino

Southern Oscillation (ENSO) is the largest-amplitude interannual pattern of climate

variability on the planet, with every 2-7 years an oscillation involving the surface

temperature of the ocean and atmosphere, rainfall and circulation in the tropical

Pacific region (Philander, 1989). ENSO has a large impact on the surface weather

in the regions directly affected by the oscillation, but also in regions far from the

source region, through Rossby wave induced teleconnections (Wallace and Gutzler

1981, Hoskins and Karoly 1981). For example, the NAO is influenced by ENSO via

both a direct tropospheric pathway and also a more remote stratospheric pathway,

through the disruption of the stratospheric polar vortex and its subsequent surface

impacts (Butler et al., 2014). With the exception of the spring predictability barrier

(Duan and Wei, 2013), ENSO can be predicted one to a few seasons in advance
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using both statistical methods and coupled ocean-atmosphere models (Zebiak and

Cane 1987, Saha et al. 2006, Wang et al. 2009, Luo et al. 2008). This skill leads

to increased predictability of atmospheric conditions in many locations around the

globe.

Other patterns of climate variability that can improve seasonal predictability

involve different layers of the atmosphere, such as the influence of convection in the

troposphere on the evolution of climate in the stratosphere. For example gravity

waves created by tropospheric convection, propagate vertically and drive an oscil-

lation in the tropical zonal winds in the stratosphere, known as the Quasi-Biennial

Oscillation (QBO). Approximately every 14 months, the flow direction reverses and

its phase is highly predictable (Pohlmann et al. 2013, Scaife et al. 2014a). The

QBO has been found to affect the jets in both the stratosphere and the troposphere.

During the westerly phase of the QBO, the stratospheric polar vortex is typically

stronger, and the tropospheric jet stream often more intense and shifted poleward,

increasing the meridional pressure gradient (Holton and Tan 1980, Kidston et al.

2015). This more positive NAO pattern, leads to stronger surface winds and more

intense cyclones (Anstey and Shepherd 2014, Kidston et al. 2015). The opposite is

true during the easterly phase of the QBO. Consequently, advance knowledge of the

QBO phase can improve predictability of the surface conditions (Boer and Hamilton

2008, Scaife et al. 2014b). However, given the QBO is only one of many influencing

factors, knowledge of its phase alone is not sufficient to give an accurate forecast of

surface winter weather.

Planetary waves also influence the strength of the polar vortex in the strato-

sphere. Some winters have a strong and persistent westerly flow around the North

Pole, whilst in every other winter on average, a sudden stratospheric warming (SSW)

event can lead to a complete breakdown of the stratospheric westerlies. SSW are

found to be less likely when the QBO is in its westerly phase (Holton and Tan, 1980).

After a SSW the anomalously easterly winds move down through the troposphere

leading to an increase in the likelihood of easterly flow conditions at the surface

and cold air outbreaks (Baldwin and Dunkerton 2001, Thompson et al. 2002). In

the weeks following a SSW event, increased predictability of surface conditions over

Northern Europe is found (Marshall and Scaife 2010, Sigmond et al. 2013).

The third source of climate predictability at the seasonal timescale comes from

the external forcing of climate. Natural external forcing factors include the varia-

tion in the sun’s output and volcanic eruptions, whilst man-made external forcing

includes green-house gas emissions, aerosols and land use change. For example, in-
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coming solar radiation varies with an 11-year cycle and this can have an influence on

atmospheric conditions (Haigh and Cargill, 2015), with maximum response lagged

by a few of years (Gray et al., 2013). Ineson et al. (2011) find that during a solar

minimum, negative NAO conditions and cold Northern European winters are more

likely. While a large volcanic eruption can significantly cool the global atmosphere

over the following few years (see review by Robock 2000). Human activities, such as

the burning of fossil fuels for power generation, or the burning of forests to clear land

for agriculture, influence the composition and radiation balance of the atmosphere.

For example, GHG forcing leads to the warming of the troposphere, while aerosol

forcing causes cooling (Myhre et al., 2013).

2.5 Seasonal prediction systems

Seasonal forecasts can be made using purely statistical techniques, dynamical models

or a combination of both (Smith et al., 2012). Statistical analysis can enable an

improved understanding of the climate system, which can then be incorporated

into dynamical models, improving their forecasts. In addition, the combination of

statistical and dynamical methods can allow the prediction of quantities directly

relevant to society, such as transport impacts (Palin et al., 2016), which are not

directly output from the climate model itself (National Academy of Sciences, 2010).

2.5.1 Prediction methods

Statistical methods are trained on historical data, modelling the relationship be-

tween climate fields in either space and/or time. A number of statistical methods

can be used, including correlation and regression, empirical orthogonal functions and

principal component analysis or constructed analogues (National Academy of Sci-

ences, 2010). For example, Folland et al. (2012) and Hall et al. (2017) use multiple-

linear regression to model and predict the influence of a number of climate drivers

on European winter temperatures and rainfall, or the NAO.

Dynamical models are based on the fundamental laws of physics; the conserva-

tion of mass, Newton’s second law and the laws of thermodynamics. In a dynamical

model, the atmosphere and ocean are often represented on a horizontal and vertical

grid, and the equations are solved at each grid point. The influence of processes

that occur on scales smaller than the grid are modelled separately using physical

parametrisations. Parametrised processes include short and long wave radiation,

boundary layer processes, moist convection and sub grid-scale turbulent mixing.
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The first attempts at longer range forecasting (beyond 2 weeks) were made in the

late 1960s using an atmospheric general circulation model (AGCM, Miyakoda and

Hembree 1969). The first successful dynamical predictions of ENSO used a model

with a one-layer ocean representing the thermocline and a simple atmosphere (Cane

et al., 1986). Hybrid schemes with either a more detailed ocean or atmosphere were

then developed and a two-tier approach used. Coupled global circulation models

(CGCM) were first used operationally in the 1990s and have developed to include

detailed atmosphere, ocean, land and sea ice components. Initial conditions for

seasonal forecasts are currently derived from separate atmosphere, ocean and land

assimilation schemes (e.g. MacLachlan et al. 2015).

With better observations and understanding of the climate system, and the

increase in computing power available, CGCMs are now able to spontaneously re-

produce many of the observed features of the climate system with improved fidelity,

such as jet streams, the Hadley circulation and ENSO (Smith et al., 2012). Since the

2000s ENSO prediction skill using a CGCM has improved significantly, such that

forecasts are generally competitive or better than those based on statistical methods

(Saha et al. 2006, Wang et al. 2009, Barnston et al. 2012).

2.5.2 Ensemble prediction

Systematic errors in the mean state, the annual cycle and in climate variability are

however still present in CGCMs, impacting seasonal forecast skill. To better sample

the uncertainty in a seasonal forecast an ensemble of forecasts is commonly produced.

There are a number of methods for producing an ensemble. The ECMWF system 4

(Molteni et al., 2011) initialises all forecasts members on the same day, with small

perturbations in the integrations generated by a stochastic physics scheme. The

Met Office system in contrast uses a lagged ensemble approach, where each day,

2 ensemble members are run, and then the forecasts are gathered together over a

period of time to give the ensemble (MacLachlan et al., 2015). The range of outcomes

across the ensemble reflects the uncertainty in the forecast associated with initial

condition and modelling uncertainty.

To represent model structural uncertainty, forecasts from more than one mod-

elling system can be considered, as errors in one model may be uncorrelated to those

of another. By combining the forecasts from different models, the impact from sys-

tematic errors are to some extent reduced and lead to an improvement in seasonal

forecast skill. For example Palmer et al. (2004) found a multi-model seasonal fore-

cast system to be more reliable than that based on any of the individual models
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included.

2.5.3 Met Office prediction systems

The Met Office seasonal and decadal prediction systems (‘GloSea5’ and ‘DePreSys3’)

are used within this thesis and are described at length in MacLachlan et al. (2015)

and Dunstone et al. (2016). Both systems use the Met Office’s global environment

model (HadGEM3-GC2) to evolve the climate forward in time. This model consists

of an atmosphere, ocean, land surface and sea-ice component. It represents the full

depth of the stratosphere (85 model levels), and has 3 hourly atmosphere-ocean

coupling and assimilated sea-ice. The atmosphere and land components have a

horizontal resolution of 0.8◦ longitude by 0.6◦ latitude (approximately 50km in mid-

latitudes), while the ocean and sea-ice model resolution is 0.25◦ (approximately

27km on the equator). The recent increase in ocean resolution has improved the

path of the North Atlantic Current, and has removed a cold bias in the North-west

Atlantic (Scaife et al. 2011, MacLachlan et al. 2015). The frequency of blocking in

Northern Europe was also found to improve (Scaife et al., 2011).

MacLachlan et al. (2015) summarises the seasonal forecast skill of GloSea5:

ENSO skill is very high (the anomaly correlation coefficient is 0.8 for a 5 month lead

time), the Arctic Oscillation is well predicted with a correlation of 0.63, the MJO

is skilfully forecast out to 20 days, equivalent to other systems, and the distribution

of storm tracks in the North Atlantic is well captured, but with too few storms.

Within this PhD, seasonal forecast skill is assessed by comparing observations

with the ensemble mean of the combined GloSea5 and DePreSys3 hindcast sets.

The GloSea5 hindcast set covers 23 years, from 1993 to 2016. Ten ensemble hind-

cast members are available for each calendar week, and the three nearest weeks of

hindcasts centred around the desired start time are collected together. For a winter

forecast, 30 ensemble members are therefore available. In contrast, the DePreSys3

system has 40 ensemble members available over the winter period, each initialised

on the 1st November, covering the period 1981 to 2018. In both systems, ensem-

ble member differences are created using a stochastic physics scheme (MacLachlan

et al., 2015). The different methods of initialisation of the GloSea5 and DePreSys3

systems do not appear to influence the seasonal prediction skill of the NAO (Scaife

et al. 2014b, Dunstone et al. 2016).
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2.6 Predictability of the North Atlantic winter

climate

As discussed earlier, the NAO is the dominant pattern of winter climate variability

in the North-Atlantic and European region, and significantly influences tempera-

ture, rainfall and wind conditions in Britain. Predicting the correct phase of the

NAO in advance is therefore critical for the skilful prediction of winter conditions

in Britain. The NAO has been shown to be influenced by many of the climate

processes described above, including the QBO, SSWs, Atlantic SSTs, ENSO and

tropical precipitation (Thompson et al. 2002, Baldwin and Dunkerton 2001, Czaja

and Frankignoul 2002, Merkel and Latif 2002, Scaife et al. 2017). A seasonal mean

NAO consequently reflects the combined influence of these different teleconnections,

as well as chaotic variability.

Each climate process increases the likelihood of specific conditions at the sur-

face, during the entirety or parts of the winter. For example an easterly QBO, a

SSW, El Nino conditions, and a negative tripole SST distribution all lead to an

increased chance of negative NAO conditions (Thompson et al. 2002, Baldwin and

Dunkerton 2001, Merkel and Latif 2002, Rodwell and Folland 2002). For El Nino,

the negative NAO response occurs two-thirds of the time (Toniazzo and Scaife, 2006)

and predominantly impacts late winter (Broennimann, 2007). Conversely a westerly

QBO, La Nina conditions and positive tripole Atlantic SSTs, increase the chance

of a positive phase of the NAO (Thompson et al. 2002, Pozo-Vazquez et al. 2001,

Czaja and Frankignoul 2002). Knowledge of the state of these different climate

processes ahead of the winter can lead to an improvement in the predictability of

European winters (Thompson et al. 2002, Broennimann 2007, Marshall and Scaife

2009, Folland et al. 2012, Hall et al. 2017).

2.6.1 NAO prediction skill

While seasonal prediction systems are skilful in predicting tropical climate, skill

in predicting mid-latitude climate has historically been low (National Academy of

Sciences, 2010). Climate models have typically shown little atmospheric circula-

tion response to ocean and land surface anomalies. However, recently Scaife et al.

(2014b) demonstrated that skilful predictions of the winter NAO from forecasts ini-

tialised around the 1st November were possible. A correlation of approximately 0.6

was found between forecast and observed winter mean NAO index between 1993 and
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2012 using the GloSea5 prediction system (see Figure 2.10). Scaife et al. (2014b)

hypothesised that the skilful predictions of the NAO resulted from the ability of

the model to accurately represent the key teleconnections between the ocean and

upper atmosphere and the North Atlantic winter climate. The magnitude of the re-

sponse to given forcings was however found to be much smaller than in observations.

Consequently although the ensemble mean correlated well with the observations, its

variability was much smaller than observed. Such forecasts are referred to as being

‘under-confident’ (Eade et al., 2014). Scaife et al. (2014b) demonstrated that a large

number of ensemble members was required to give a skilful prediction of the NAO,

as this enabled the predictable signal to emerge from the ensemble noise.

Subsequently equivalent winter NAO prediction skill has been found over a

longer period (1981-2016) using the same coupled model (Dunstone et al., 2016) and

an even higher level of skill has been achieved using a multi-model ensemble (NAO

correlation of 0.85, Athanasiadis et al. 2017, Baker et al. 2018). Baker et al. (2018)

found that dynamical models from centres other than the Met Office, also gave

under-confident NAO predictions and that winters which were successfully forecast

in all models were years with a strongly positive or strongly negative observed NAO.

2.6.2 North Atlantic climate prediction skill

Other features of North Atlantic winter climate have been shown to be skilfully

predicted. Kirtman et al. (2014) demonstrate skilful predictions of winter SSTs

in the North Atlantic to the west of the UK, from a July start date. Riddle et al.

(2013), Kang et al. (2014) and Stockdale et al. (2015) demonstrate skill in predicting

the interannual variability of the winter Arctic Oscillation (AO) using a range of

coupled ensemble prediction systems. Scaife et al. (2014b) showed that both winter

storminess and winter wind speed were skilfully forecast over Northern Europe when

using direct output from the GloSea5 system. However, winter temperatures were

more skilfully forecast when using a statistical prediction based on the model NAO

prediction, rather than using the model forecast temperatures. Athanasiadis et al.

(2014) found that skilful prediction of the frequency of both instantaneous and

multi-day blocking events was possible over the UK using the GloSea5 system.

With the improvement in seasonal predictability of winter climate in the North

Atlantic and European region, the ability of such systems to predict societally rel-

evant variability has been assessed. For example, skilful forecasts of sea ice cover

(Karpechko et al., 2015), transport delays (Palin et al., 2016) and river flows (Svens-

son et al., 2015) using the predictability of the NAO have all been demonstrated.
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Figure 2.10: GloSea5 prediction of the winter mean NAO index. The NAO in
observations (black line), ensemble mean forecasts (orange line), and individual
ensemble members (orange dots) in winter hindcasts. Scaife et al. (2014b).

The use of seasonal forecasts by the energy sector is described in section 2.8.5.
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2.7 Basics of the UK’s energy system

A basic description of the UK energy system in 2017 is given, summarising infor-

mation available from the latest Digest of UK Energy Statistics (BEIS, 2018). A

number of primary fuels are consumed within the UK, including petroleum (48%),

natural gas (29%), primary electricity (17%) and coal. Since 2004 the UK has

been a net importer of fuel and in 2017 imports accounted for 36% of energy used.

Primary energy consumption has been reducing over the last 10 years by approx-

imately 1% per year, from ∼235 Million tonnes of oil equivalent (Mtoe) to ∼195

Mtoe. Transport and domestic energy use currently account for nearly two-thirds of

final consumption. The main indigenous sources of energy include gas from the UK

continental shelf (40% of generation), nuclear (21%), renewable generation (20%)

and coal (7%). In the last decades the share of energy from fossil fuels has decreased

and is currently at a record low of 80%, whilst that from low-carbon sources (nuclear

and renewables) has increased to 18%.

2.7.1 International and national policy context

The energy industry is undergoing a large scale transition, from a system based on

the burning of fossil fuels to a low-carbon energy system. With the acceptance of

anthropogenically caused climate change, nations around the world are increasingly

committed to reducing their green-house gas (GHG) emissions. The United Nations

Framework Convention on Climate Change (UNFCCC) led to the Kyoto Protocol

in 1997 (UNFCCC, 1997) and more recently the Paris Agreement in December

2015 (UNFCCC, 2015). The latter, the first truly global agreement, aims to reduce

greenhouse gas emissions and to limit the increase in global average temperature to

1.5◦C–2◦C above pre-industrial levels.

In 2008 the Climate Change Act was passed, committing the UK Government

by law to reduce GHG emissions by at least 80% of 1990 levels by 2050 (UK Govern-

ment, 2008). This includes an interim target to reduce GHG emissions by at least

34% by 2020. To help achieve these reductions, the 2008 Act introduced carbon

budgets, which set legally-binding limits on the total GHG emissions that the UK

can emit over a series of 5 year periods. Given the energy sector is the largest con-

tributor to GHG emissions, the Government has set targets to reduce energy sector

emissions. For example, the Government has been advised to reduce emissions of

carbon dioxide per kWh to 100g or below by 2030, from ∼500g in 2008 (Climate

Change Committee 2009, 2015). Under the EU’s 2009 Renewable Energy Directive,
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the UK has the target of obtaining 15% of its energy from renewable sources by

2020, from a baseline of 3% in 2009 (European Commission 2009, DECC 2009).

This target is further broken down into 30% of electricity, 12% of heat and 10% of

transport from renewable sources by 2020.

2.7.2 Gas supply and demand

In 2017 approximately half of all gas supplies came from the UK’s North-Sea Gas

fields, whilst a similar amount was imported (BEIS, 2018). This contrasts sharply

with the year 2000, when all UK gas needs were met by North Sea supplies. Gas

supplies are imported from Norway, the Netherlands and Belgium through sea-

bed pipelines. Alternatively liquefied natural gas (LNG) is shipped into the UK

(predominantly from Qatar). The National Transmission System (NTS) moves the

gas from the import hubs to the major demand centres across the country. The

distribution network of smaller pipes then delivers the gas to individual homes and

offices.

In 2017 approximately 35% of UK gas demand came from the domestic sector

for the heating of homes and water (BEIS, 2018). A similar amount was used for

the generation of electricity. Industrial usage accounted for only 10% of total gas

demand. Gas demand has seen a gradual decline since the early to mid 2000s, such

that the demand in 2017 was down by a fifth compared to that of 2000. The reduc-

tion in gas demand is primarily associated with a reduction in industrial demand.

However, there has also been a reduction in gas demand for both domestic use

and for power production over the same period, related to improvements in energy

efficiency, such as home insulation.

2.7.3 Electricity supply and demand

In the UK, electricity is traditionally generated using a range of methods and fuels,

including coal, gas, nuclear, hydro-power and diesel, with power plants distributed

across the country. In addition to indigenous generation, there are four intercon-

nectors with Europe, allowing the trading of electricity (between England - France,

England - Netherlands, Northern Ireland - Ireland and Wales - Ireland). Electricity

is moved around the country via the high voltage national transmission network and

then delivered to homes via the more local, lower voltage distribution network.

For electricity, supply is completely driven by demand, because electricity can-

not currently be stored in large amounts. Electricity demand in the UK reached a
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peak in 2005 and then reduced thereafter. In recent years there has been a shift

in the production of electricity away from coal to gas generation, and in the last

couple of years a shift from coal to renewable generation. In 2015, the carbon price

floor for a tonne of CO2 doubled from £9 to £18. Carbon emissions from coal are

over double those of gas and consequently in 2016 the generation of electricity from

burning coal significantly decreased (BEIS, 2018).

There has been a steady increase in generation of electricity from renewable

sources since 2000 (see Figure 2.11), driven by national and international incen-

tives, including the Renewable Energy Directive and advice from the UK’s Climate

Change Committee. In 2017, bio-energy and onshore wind power each account

for nearly a third of renewable electricity generation, with offshore wind and solar

power accounting for approximately a fifth and a tenth respectively. The percent-

age of electricity derived from renewable sources has increased from ∼4% in 2004 to

28% in 2017, reaching nearly 100TWh (BEIS, 2018). The current distribution and

capacity of onshore and offshore wind farms across the UK is shown in Figure 2.12.

The growth of renewable electricity generation is expected to continue, with fu-

ture scenarios predicting an increase in wind and solar power capacity of between

60%–150% and 15%–100% respectively by 2030 (National Grid, 2019). Much of the

growth in wind power is expected to come from increased offshore capacity.

Figure 2.11: The contribution of renewable sources to electricity generated between
2000 and 2017 (TWh), BEIS (2018), chapter 6: Renewable sources of energy.
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Figure 2.12: Current UK onshore and offshore wind installation capacity, BEIS
(2018), chapter 6: Renewable sources of energy.
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Considering total energy consumption (transport, heat and electricity), in 2017

over 10% came from renewable sources. Meeting the UK’s interim renewable energy

targets has been achieved by the rapid increase in renewable electricity generation.

However the renewable heat and renewable transport targets are appearing harder

to achieve, with less than 8% of overall heat and less than 5% of transport energy

use coming from renewable sources (BEIS, 2018).

2.7.4 Management of the energy system

National Grid is the operator of the UK’s gas and electricity system and is respon-

sible for ensuring a secure supply of energy. Security of supply can be defined as a

system’s ability to provide a flow of energy to meet demand in a manner and price

that does not disrupt the course of the economy (Grubb et al., 2006). Threats to

supply include failure of a primary fuel source, due to import reliance or domestic

issues, transmission network problems, generation capacity limitation or operational

failures due to inadequate spinning reserve (Mitchell et al., 1996). Demand for en-

ergy varies across a range of timescales, including across a year, a week, a day and

within an hour (e.g. Mirasgedis et al. 2006, Psiloglou et al. 2009, Summerfield et al.

2015). Ensuring there is sufficient energy supply therefore requires advance warning

of likely demand, of available supplies and real-time flexibility to manage unforeseen

variations.

A number of tools are currently used by the grid operator to ensure sufficient

supplies of energy are available at different times of the year, including the energy

market, the capacity market and the balancing services market (Engie, 2016). The

energy market describes the basic trading between generators and suppliers and

is designed for everyday use. In contrast, the balancing services market and the

capacity market are designed to ensure sufficient supplies of energy are available

during specific periods. For example, the balancing services market enables the grid

operator to buy energy at a pre-agreed price at any time of year to help keep the

system in balance. Whilst the capacity market is specifically designed to ensure

sufficient supply is available during periods of system stress, such as during peak

demand periods. Through a capacity auction, the grid operator will agree to pay

a monthly payment throughout the year to a supplier, on the condition that they

provide a certain amount of electricity when asked.
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Demand forecasting

Knowledge of future demand is critical for management of the energy system, and

is at the core of nearly all decisions made in energy markets (Hahn et al., 2009).

Forecasting of demand occurs on different timescales, including very short-term

forecasts (minutes to an hour ahead), short-term forecasts (an hour to a week ahead),

medium-term forecasts (a week to a year ahead) and long-term forecasts (longer than

a year ahead), each with a different purpose (Hahn et al. 2009, Apadula et al. 2012).

Short and very short-term demand forecasts allow the grid operator and utility

companies to estimate energy spot prices and to bid for and schedule energy supply

requirements and contributions (Fischer 2010). Such forecasts also enable the safe

operation of the energy system, for example by ensuring sufficient gas is held in

storage to underpin daily operations of the NTS (National Grid, 2016). A small

improvement in the accuracy of demand forecasts can reduce production costs and

increase profitability (Cho et al., 2013). Medium-term forecasts of demand are useful

for the assessment of security of supply, scheduling of fuel supplies, maintenance

operations and negotiation of supply contracts (National Grid 2016, Apadula et al.

2012). Whilst longer-term demand forecasts aide energy trading and new build

investment decisions (Szoplik, 2015). For example, National Grid make demand

forecasts for the coming 10 years (the ‘Ten Year Statement’) to better plan the

longer term development of the NTS (National Grid, 2016). The modelling of energy

demand is discussed in section 2.8.

Winter planning

During winter, cold episodes can lead to peaks in electricity and gas demand. When

supplies of energy available are insufficient to meet the high levels of demand, energy

prices can rise very quickly. The increase in the energy price can cause additional

sources of energy to become available, helping to fill the demand - supply imbalance.

If sufficient supplies cannot be sourced, there is the risk of electricity black-outs or

gas shortages. To ensure the UK energy sector is as prepared as possible for the

coming winter, each October National Grid release a ‘Winter Outlook’ report (Na-

tional Grid, 2017). This report details the operator’s view on the security of supply

of electricity and gas systems for the coming winter period, following consultation

with the wider energy industry. For the electricity sector, the outlook includes a

forecast of the coming winter’s peak transmission system demand, the expected

margin between supply and demand, the amount of reserve planned, the assumed

interconnector supply and the ‘loss of load expectation’, which measures the risk
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across the whole winter of demand exceeding supply under normal operation. For

example, for the winter of 2017/2018 the forecast of peak demand was 50.7GW,

which included national demand (49.1GW), power station demand (600MW) and

base load interconnector exports (1GW). For winter 2017/2018 the expected margin

was 6.2GW and the loss of load expectation was 0.01 hours per year (National Grid,

2017).

For gas demand the ‘Winter Outlook’ report gives a forecast of the coming win-

ter’s total demand, the minimum storage requirement, the 1-in-20 year peak day

demand, the peak day supply margin and the expected availability of different gas

supplies (National Grid, 2017). Demand forecasts are for the whole national trans-

mission system (NTS) which includes residential and industrial demand attached to

the local distribution network, industrial plants directly linked to the NTS, gas in-

jected into storage and exports to the European mainland and Ireland. For example,

for the 2017/18 winter, total demand was forecast to be 51.4 billion cubic meters

(bcm, or approximately 565TWh, using National Grid’s recommended conversion

of 1mcm to 11GWh). The 1-in-20 year peak day demand forecast was 502 mcm per

day (or 5522GWh), where the local distribution zone component was approximately

350 mcm per day (or 3850GWh).

The ‘Winter Outlook’ forecasts do not consider any weather forecast information

for the coming winter, rather it assumes standard winter conditions and then assesses

the risks associated with past weather related peak demand events. For example,

peak electricity demand estimates are based on seasonal normal weather, where for

each week of the year, a 30 year average of relevant weather variables, including

temperature, wind speed and solar irradiance is constructed. These averaged values

are translated into demand using the climatological linear regression relationship

between demand and weather. This PhD therefore helps to address this gap by

considering whether skilful prediction of winter energy demand is possible using

seasonal predictions of winter climate.

2.8 Influence of weather and climate on the UK’s

energy system

The UK energy system has been impacted by weather throughout its development.

For example during the winter of 1947, six weeks of continuous snow prevented the

transportation of coal around the country. The heating of homes and businesses, and

the generation of electricity at that time were almost entirely dependent upon coal,
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and consequently the country’s energy supplies were severely affected (Prior and

Kendon, 2011). Although today’s energy system is designed to cope with the ma-

jority of weather conditions experienced in the UK, extreme events can still cause

serious impacts. For example, a deep low pressure system on the 12th February,

2014, brought very strong winds and damaged the overhead transmission and dis-

tribution network, leaving 100,000 homes without power across the UK (Kendon

and McCarthy, 2015). The storm also caused extreme wave heights off the southern

coast of Ireland which impacted the operations of the Kinsale gas platform. In con-

trast, during the cold winter of 2010, heavy snowfall and ice brought down trees and

power lines and resulted in 45,000 homes in Scotland having disrupted electricity

supplies (Prior and Kendon, 2011).

Both the demand for and generation of energy are significantly impacted by

the weather (Bessec and Fouquau 2008, Szoplik 2015). The impacts of weather

and climate on electricity and gas demand are described in detail in sections 2.8.1

and 2.8.2 respectively. With the increase in the capacity of renewable electricity, the

generation of energy is also increasingly impacted by weather and its variability. For

example, wind power, solar power and hydro-power are strongly influenced by the

variability of wind speeds, solar irradiation and rainfall accumulation respectively

(e.g. Wiser et al. 2011, Arvizu et al. 2011, Kumar et al. 2011). Bio-energy is also

weather sensitive, with weather conditions affecting the growth of crops. However,

unlike wind and solar power, the climatic sensitivity of bio-energy poses less of

an issue for security of supply due to the time-lag between production (i.e. crop

growth) and generation of electricity through burning of the biomass. The impacts

of weather and climate on wind power resource is described in detail in section 2.8.3.

Most impacts of weather on the energy system are immediate, for example

the rapidly changing renewable energy production associated with the passage of

weather fronts, or the damage to the network associated with a wind storm. How-

ever, some impacts result from extended periods of anomalous weather. For example,

heavy rain over a number of days can lead to flooding of ground based assets, or

consecutive cold days can lead to dwindling gas supplies, given there is a maximum

rate at which gas can be supplied into the network.

2.8.1 The impacts of weather on electricity demand

Due to the utility of demand forecasts, there is a large body of research exploring

the drivers and predictability of energy demand. Electricity demand has been shown

to be a function of both weather and a variety of socio-economic factors (Psiloglou
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et al. 2009, Fischer 2010). Temperature is the dominant weather driver of electricity

demand in many developed countries, for example in the UK (Henley and Peirson

1997, Taylor and Buizza 2003, Hor et al. 2005, Bessec and Fouquau 2008), in Greece

(Mirasgedis et al., 2006), in France (Cho et al., 2013) in Italy (Apadula et al. 2012,

De Felice et al. 2013) and in the US (Sailor and Munoz, 1997). Lagged impacts have

occasionally been included in demand models (Taylor and Buizza 2003, Mirasgedis

et al. 2006, Bloomfield et al. 2016). For example, Mirasgedis et al. (2006) find

an improved prediction of demand when the previous two days of temperature are

taken into account, which is attributed to human memory and the thermal capacity

of buildings.

Bessec and Fouquau (2008) find the shape of the relationship between tempera-

ture and electricity demand varies with country. In Northern Europe (for example in

Scandinavia), there is a near-linear negative relationship between demand and tem-

perature, with a single peak in winter associated with space heating and lighting.

In Southern European countries (for example in Greece, Spain, Italy and Portugal),

there is a secondary summer peak associated with cooling demand, which results in

a non-linear, U-shaped relationship between temperature and demand (Hekkenberg

et al. 2009, Bessec and Fouquau 2008). During the last decade a number of Southern

European countries have seen a larger demand peak in summer than in winter, in

contrast to earlier decades, which is thought to result from the increasing use of air

conditioning (Hekkenberg et al., 2009). In other parts of the world, for example

in Bangkok, the single demand peak occurs in summer (Wangpattarapong et al.,

2008).

A modest improvement in the predictability of electricity demand has been

demonstrated when additional weather variables are included in a demand model, in-

cluding relative humidity, clearness index, cloudiness, rainfall, solar radiation, wind

speed and other derived variables (Psiloglou et al., 2009). Heating and cooling

degree day indices have also been widely used to model electricity demand, allow-

ing the separation of the cooling and heating demand relationships (Le Comte and

Warren 1981, Hor et al. 2005, Mirasgedis et al. 2006, Apadula et al. 2012). Finally,

bio-meteorological indices that combine the influence of different weather variables

have also been applied to the modelling of demand. For example, a wind chill index

combines the influence of wind speed and temperature effects on demand, whilst

the ‘heat-index temperature’ combines the influence of temperature and humidity

on demand (Apadula et al., 2012).

In addition to meteorological drivers, socio-economic factors that affect elec-
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tricity demand include energy prices, consumer behaviour, income, Gross Domestic

Product (GDP), import and export values, manufacturing and population (Henley

and Peirson 1997, Psiloglou et al. 2009). To better explore the weather-demand re-

lationships, longer term variations in demand that relate to socio-economic drivers

are often removed, using for example linear regression with GDP, non-linear regres-

sion with time, or generalised additive models (e.g. Hor et al. 2005, De Felice et al.

2013, Cho et al. 2013 respectively).

The impacts of weather on UK electricity demand

In the UK, temperature and electricity demand have a near-linear negative relation-

ship (Hor et al. 2005, Bessec and Fouquau 2008, Psiloglou et al. 2009, Summerfield

et al. 2015). However, above a certain temperature threshold, demand tends to level

off. The relationship between monthly mean temperature and electricity demand is

shown in Figure 2.13 (Hor et al., 2005). Below ∼14◦C demand decreases as temper-

atures increase, from 14◦C - 17◦C demand is largely unresponsive to temperature,

and above 18◦C there is a suggestion of an increase in demand as temperatures

increase (Hor et al., 2005). Using daily demand, Hor et al. (2005) found that de-

mand saturated below a given temperature and that demand became unresponsive

to temperature at approximately 20◦C. The former was attributed to lighting load

saturation and a base level of thermal comfort in winter. In addition, heating degree

days (HDD) were found to be more closely correlated with demand than tempera-

ture, although cooling degree days (CDD) were poorly correlated. Taylor and Buizza

(2003) modelled the variation in UK electricity demand due to weather using the

effective temperature (an average of current temperature and the previous day’s ef-

fective temperatures), the cooling power of the wind (a non-linear function of wind

speed and average temperature) and effective illumination (a complex function of

visibility, number and type of cloud, and amount and type of precipitation).

Clearly defined annual, weekly and sub daily cycles are seen in UK electricity

demand (Taylor and Buizza 2003, Hor et al. 2005, Taylor 2010), highlighting for

example the winter early evening peak and the steeply increasing demand from

5am to approximately midday. Taylor (2010) show the variation in demand profile

with day of the week, highlighting the reduced demand during weekends, Monday

mornings and Friday afternoons, compared to other week days (see Figure 2.14). The

influence of socio-economic factors, such as day of the week and holiday days have

consequently been included in UK demand models, to better reflect the observed

variation in demand (e.g. Taylor and Buizza 2003, Bloomfield et al. 2016, Troccoli
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Figure 2.13: Mean monthly demand as a function of monthly Central England
Temperature, from 1970 to 1995, Hor et al. (2005).

et al. 2018).

Figure 2.14: Average daily cycle of electricity demand (MW) for Great Britain, for
each day of the week, Taylor (2010).

2.8.2 The impacts of weather on gas demand

Across the literature, gas demand is typically modelled using a combination of

weather variables (e.g. temperature, HDD, CDD, wind speed, relative humidity,

sunshine), socio-economic factors (e.g GDP, population, fuel prices), and building

characteristics (e.g. size of building, type of ownership, roof type) (Soldo 2012,

Szoplik 2015, National Grid 2016). Residential gas demand has been shown to be

41



Chapter 2. Literature Review

very sensitive to temperature, for example in the US the correlation is greater than

0.9, and a 1◦C increase in mean monthly temperature leads to an 8% decrease in

residential demand (Sailor et al., 1998). In contrast, industrial demand in the US

has a very low sensitivity to weather, and is rather influenced by the price of gas and

the national income. Longer term trends in gas demand have been seen in the US

and Italy, which have been attributed to the strength of the economy (Huntington

2007, Bianco et al. 2014).

The impacts of weather on UK gas demand

There is a surprising lack of UK focussed gas consumption studies in the peer-

reviewed literature. van Goor and Scholtens (2014) analyse the daily UK gas con-

sumption record from 2001 to 2011, and find a dominant annual cycle, a lack of

any longer-term trend and high daily variability. Summerfield et al. (2015) demon-

strates the significant variability of UK gas demand throughout the day, with a peak

in demand at either end of the working day (∼7am and 5pm-8pm). The relation-

ship between gas demand and weather in the UK has been most closely analysed by

National Grid (National Grid 2016). Gas demand is modelled using a Composite

Weather Variable (CWV) which combines the influence of effective temperature,

wind chill and seasonal normal effective temperatures (a long term average of effec-

tive temperatures, for each day of the year). After optimization, the CWV has a

strong, negative, linear relationship with gas demand. (National Grid 2016).

Wilson et al. (2013) explore the co-variability of UK gas and electricity demand

and find that gas demand is much more variable than electricity demand. Also,

during peak demand periods, there is up to three times as much gas consumed

as electricity. Electricity demand variability is found to be more consistent and

less subject to seasonal variation compared to that of gas demand. They conclude

that even a partial electrification of domestic heating demand would have serious

implications for the UK’s ageing electrical transmission and distribution networks,

due to the increase in magnitude and variability of daily and peak energy flows.

Knowledge gaps

The importance of temperature in UK electricity demand variability has been clearly

demonstrated. However, previous studies have investigated this relationship using

either lower temporal resolution, but longer length data sets, or shorter data sets of

high temporal resolution. For example Hor et al. (2005) and Bessec and Fouquau

(2008) consider the relationship over 26 and 15 years respectively but only use
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monthly data, whilst the daily and sub-daily studies of Psiloglou et al. (2009) and

Henley and Peirson (1997) only consider 5 and 1 year of data respectively. In

contrast, little is published on the UK temperature - gas demand relationship. In

addition, there does not appear to be any literature quantifying the role of climate

extremes in energy demand extremes. This PhD therefore aims to address these

gaps by robustly assessing the temperature - demand relationships using the longest

daily records available, and by using these relationships with historical temperature

records to explore the risk of temperature-driven demand extremes.

2.8.3 The impacts of weather on wind power production

Wind power production depends non-linearly on wind speed. The kinetic energy of

wind is turned into mechanical energy, through the rotation of the blades of a wind

turbine. The turbine shaft is connected to an electrical generator, where mechanical

energy is converted to electrical energy by electromagnetic induction (Wiser et al.,

2011). The power in the wind is proportional to the cube of the wind speed and

hence the amount of electricity produced is also largely dependent on the cube of

the wind speed. Figure 2.15 shows the relationship between wind speed, power of

the wind and wind power produced, known as the ‘power curve’ (US Department

of Energy, 2008). Below the cut-in wind speed (often 3-4m/s), the turbines will not

turn and so no power is produced (region I). Above the cut-out wind speed (often

20-25m/s) there is also no power produced as the turbine is stopped from working

to avoid damage. Between the cut-in and rated power wind speed (the speed of

maximum output, often 11-15m/s), the power produced is proportional to the cube

of the wind speed (region II). Above the rated wind speed, a further increase in

wind speed does not lead to an increase in wind power, as the maximum generation

capacity has been reached (region III). Wind power production is also proportional

to the swipe area of the turbine (e.g. see Manwell et al. 2002). As wind speeds

typically increase with height, power production has increased as turbines have got

progressively larger (Wiser et al., 2011). The power curve of a particular turbine

depends on its physical characteristics e.g. height, blade length and design. Wind

power production at a particular location is clearly strongly dependent on the local

wind field climate and the type of turbines installed.

The impacts of weather on UK wind power production

Due to the UK’s proximity to the Atlantic Ocean and its position at the end of

the North Atlantic storm track, the UK has better wind power resource than many
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Figure 2.15: Conceptual power curve for a modern variable-speed wind turbine, US
Department of Energy (2008).

other countries (see Figure 2.16). The wind climate of the UK is also highly variable,

leading to variability of wind power across a range of timescales (Watson 2014,

Cannon et al. 2015, Bett and Thornton 2016). Cannon et al. (2015) find that the

number of prolonged low or high wind power generation events is well approximated

by a Poisson-like random process, with the occurrence rate reducing as the length of

the event increases. They also find substantial seasonal variability in the frequency

of wind extremes. For example, the number of low wind episodes is found to be

greater in summer than in winter, while a higher frequency of ramping events (a

rapid change in wind speed) is found to occur in winter because of the greater

number of cyclones affecting the UK.

Due to the reduced surface friction over the ocean, wind speeds are usually

higher offshore than onshore, leading to higher capacity factors offshore (Drew et al.

2015, Harrison et al. 2015, a capacity factor is the proportion of the maximum

electrical energy that a turbine can produce over a given time period). Drew et al.

(2015) also find that the planned increase in offshore turbines around the UK would

reduce the occurrence of prolonged periods of low generation, increase the occurrence

of periods of prolonged high generation and increase the ramping magnitude by a

factor of five. Bett and Thornton (2016) show that estimating the annual mean wind

speed for England and Wales, requires a very long dataset to sufficiently capture
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interannual and decadal variability.

Figure 2.16: Map of annual mean wind speed at a height of 100m from the ‘Global
Wind Atlas’ (m/s) from 2008-2017. This is produced by downscaling ERA5 reanal-
ysis data using the WRF mesoscale and the Danish Technical University (DTU)
microscale modelling systems, see DTU (2015).

The impacts of wind power on the energy system

Many studies have investigated the impact of variable wind power generation on

the wider energy system. These impacts include the need for extra flexible reserve

generation to meet unforeseen changes in generation or demand, increased cycling

of flexible power plants due to the impact of greater variability and curtailment of

wind power output during periods when supply exceeds demand (Watson, 2014).

The more variable and unpredictable the wind speeds and consequent power are,

the larger the impact on the energy system and the greater the costs (Watson, 2014).

Using a simple representation of the power system, Bloomfield et al. (2016) find that

as the amount of wind power increases, the annual amount of power required from

baseload plant (such as nuclear) reduces and its interannual variability increases

substantially.

To assess the ability of wind power to replace traditional generation sources, the
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relationship between wind power and electricity demand in the UK has been inves-

tigated. Sinden (2007) analysed hourly data between 1996–2003 across all seasons,

and found a weak positive relationship between demand and wind power (Pearson

correlation of 0.28). During periods of high electricity demand, some studies have

found an increased risk of lower wind power supply (Oswald et al. 2008, Zachary

and Dent 2012, Harrison et al. 2015), whilst others have found more moderate or

higher wind power supply (Sinden 2007, Zachary et al. 2011, Brayshaw et al. 2012).

They all emphasize the uncertainty in the relationship due to the shortage of data

considered (often less than 10 years).

2.8.4 The influence of atmospheric circulation on the energy

system

Over the last decade there has been an increasing interest in the impact of atmo-

spheric circulation patterns on European energy systems. Some studies consider the

influence of monthly or seasonal circulation variability (e.g. Brayshaw et al. 2011,

Ely et al. 2013, Jerez et al. 2013, Zubiate et al. 2017), whilst others focus on the

impact of daily circulation variability (e.g. Oswald et al. 2008, Leahy and McKeogh

2013, Grams et al. 2017).

Monthly-seasonal variability

Reflecting the winter NAO - climate relationships across Europe, a negative NAO

index is associated with a decrease in UK wind power, a reduction in hydro-power

reservoir levels in Norway and an increase in the combined UK and Scandinavian

electricity demand (Brayshaw et al. 2011, Ely et al. 2013). For example Brayshaw

et al. (2011) find that at two sites in the UK, a change in phase of the NAO is

associated with a 10% change in winter mean wind power production. In contrast,

in Spain with a negative NAO phase there is increased wind power, increased hydro-

power, and reduced solar power (Jerez et al., 2013). Figure 2.17 demonstrates the

North-South dipole in wind speed and consequently wind power across Europe, dur-

ing different phases of the winter NAO. Zubiate et al. (2017) extend this analysis

to investigate the influence of the next two most important atmospheric circulation

patterns of regional variability, the East Atlantic (EA) and Scandinavian (SC) pat-

terns. They find that in certain locations, the phase of the EA and SC patterns

can modify the NAO - wind speed relationship. For example, when the NAO phase

is positive and the EA phase negative, enhanced wind speeds are found over much

of north-western Europe (Zubiate et al., 2017), leading to increased wind power
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capacity factors in Ireland for example (Cradden et al., 2017).

Figure 2.17: Extended winter (October-March) climatology of sea level pressure
(‘SLP’, hPa, colours), and 10m wind fields (‘W10’) during a) positive and b) negative
phases of the NAO, averaged over period 1959-2007, Jerez et al. (2013).

Daily to multi-day variability

With the increasing impact of weather variability on the energy system, interest

in the influence of typical daily weather patterns or multi-day regimes has grown.

For example, Grams et al. (2017) show that the multi-day fluctuations in Europe’s

wind power is closely associated with the sequence of Europe-wide weather regimes.

Countries adjacent to the North and Baltic Seas (including the UK) have higher

than average wind power during cyclonic regimes, but lower than average wind

power during blocked regimes. In contrast, south-eastern European countries have

the opposite relationship. A number of studies have found that due to the finite size

of weather systems, spreading the geographical location of wind farms can help to

reduce the variability of their combined output (Sinden 2007, Drake and Hubacek

2007, Oswald et al. 2008, Santos-Alamillos et al. 2014, Grams et al. 2017). Daily

wind power in Britain has been found to have a lower correlation with average

European wind power when compared to many other European countries, given its

more peripheral location (Monforti et al., 2016).
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Focussing on the British energy system, Bloomfield et al. (2018) find that the

weather conditions that cause the most impact depend on the amount of installed

wind power capacity. As wind power capacity increases, the weather pattern that

causes highest residual demand (once wind power has been removed) changes from a

high pressure system north of the UK to one located directly over the UK. Bloomfield

et al. (2018) also find that curtailment of wind power is most likely to be needed when

low pressure systems are located to the north of the UK in autumn, as warm, windy

conditions, generate high wind power, but moderate demand. Bett and Thornton

(2016) find that cyclonic weather types cause a weak anti-correlation between wind

speeds and solar irradiance in western Britain. In the east however, where a broader

range of weather types influence cloud amount, a weaker relationship between wind

speed and irradiance is found.

The influence of weather patterns on the availability of wind power during peak

electricity demand periods in the UK, has been discussed in a number of papers.

A high pressure system directly over the UK is found by Oswald et al. (2008) and

Leahy and Foley (2012) to cause high demand and low wind power availability,

during specific case study events. For example, Figure 2.18 shows the low wind

power production in Germany, the UK and Ireland, when a high pressure system is

located over North-western Europe. The improvement in wind power towards the

end of the period is associated with the arrival of a low pressure system. However,

Brayshaw et al. (2012) argue that a high pressure system directly over the UK

would not generate extreme demand, as temperatures are not sufficiently extreme.

Rather they suggest that blocked conditions with northerly or easterly flow over

the UK or extended north-south troughs over western Europe, are more likely to

give peak UK demand, as these weather patterns drive lower UK temperatures (see

Figure 2.19, panels b and c). Brayshaw et al. (2012) also suggest that wind speeds

and consequently wind power, would be moderate during such cold weather types.

Knowledge gaps

The uncertainty in both the availability of wind power during extreme demand

conditions and in the role of weather patterns in this relationship, therefore deserves

further exploration. This PhD aims to clarify this relationship, using a long daily

record of electricity demand and a simple model of UK wind power availability.

The extent to which the demand - wind power relationship can be explained by

meteorology is explored, with a focus on extreme demand periods.
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Figure 2.18: North European hourly wind load factors from 30th January to 11th
February 2006, with representative mean sea level pressure charts, Oswald et al.
(2008).

Figure 2.19: Mean sea level pressure patterns that Brayshaw et al. (2012) find are
associated with a) moderate GB temperatures and b) and c) very low GB temper-
atures.
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2.8.5 Use of weather and climate forecasts in the energy

industry

Short-term weather forecasts are used extensively by the energy sector to improve

forecasting of demand and renewable supply (Taylor and Buizza 2003, Foley et al.

2012, De Felice et al. 2013, Lopes et al. 2018). Use of longer-term weather forecasts

by the industry is however more limited, due to increasing forecast uncertainty. At

the multi-week to monthly lead-time, skilful forecasts of wind power generation are

however seen (Lynch et al. 2014, Beerli et al. 2017). The interest in the application of

seasonal weather forecasts to energy system management is growing. The potential

benefits of their application were first discussed by Troccoli (2010) and Brayshaw

et al. (2011), however it is not until recently that the skill of seasonal climate fore-

casts relevant for the energy industry have been assessed. For example, Bett et al.

(2017), Troccoli et al. (2018) and Bett et al. (2018) assess skill in forecasting tem-

perature, wind speed, solar irradiance and rainfall to infer possible predictability

of energy demand, wind, solar and hydro power generation respectively. However,

there are still very few studies demonstrating the direct application of seasonal cli-

mate forecasts for energy management. The two clear examples being the seasonal

predictability of electricity demand in Italy using temperature forecasts (De Felice

et al., 2015), and the seasonal predictability of wind power and electricity demand

in the UK, using predictions of wind speed and the NAO respectively (Clark et al.,

2017).

Knowledge gaps

This PhD builds on this work to explore whether seasonal forecasts of climate can

help anticipate the UK’s winter gas demand. In addition, due to the importance of

extreme demand periods for energy system management, an assessment of the skill

in predicting the number of high gas demand days over the winter period is also

undertaken.
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The role of temperature in the

variability and extremes of

electricity and gas demand in

Great Britain

3.1 Abstract

The daily relationship of electricity and gas demand with temperature in Great

Britain is analysed from 1975 – 2013 and 1996 – 2013 respectively. The annual

mean and annual cycle amplitude of electricity demand exhibit low frequency vari-

ability. This low frequency variability is thought to be predominantly driven by

socio-economic changes rather than temperature variation. Once this variability is

removed, both daily electricity and gas demand have a strong anti-correlation with

temperature (relec = -0.90 , rgas = -0.94). However these correlations are inflated

by the changing demand-temperature relationship during spring and autumn. Once

the annual cycles of temperature and demand are removed, the correlations are

relec = −0.60 and rgas = −0.83. Winter then has the strongest demand-temperature

relationship, during which a 1◦C reduction in daily temperature typically gives a

∼1% increase in daily electricity demand and a 3% – 4% increase in gas demand.

Extreme demand periods are assessed using detrended daily temperature observa-

tions from 1772. The 1 in 20 year peak day electricity and gas demand estimates

are, respectively, 15% (range 14% – 16%) and 46% (range 44% – 49%) above their

average winter day demand during the last decade. The risk of demand exceeding
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recent extreme events, such as during the winter of 2009/2010, is also quantified.

3.2 Introduction

Predicting electricity and gas demand is important for ensuring there is sufficient

supply to meet demand. This is particularly important during extreme demand

periods, when the risk of energy shortages and whole sale energy prices rise (National

Grid 2014, van Goor and Scholtens 2014).

Energy demand is driven by weather and a variety of socio-economic factors

(Psiloglou et al. 2009, Soldo 2012). Temperature is the dominant weather driver

of electricity and residential gas demand in many developed countries (Sailor et al.

1998, Mirasgedis et al. 2006, Cho et al. 2013, Timmer and Lamb 2007), where lower

temperatures produce heating demand and higher temperatures create air condi-

tioning demand (Hahn et al., 2009). Inclusion of additional weather variables has

been shown to modestly improve demand predictability, such as relative humidity,

solar radiation, wind-speed and other derived variables (Psiloglou et al. 2009, Soldo

2012, Szoplik 2015). Socio-economic factors affecting electricity and gas demand in-

clude energy prices, consumer behaviour, income, Gross Domestic Product (GDP),

manufacturing, population and building characteristics (Henley and Peirson 1997,

Psiloglou et al. 2009, Szoplik 2015).

Previous studies have found a near-linear, negative relationship between tem-

perature and electricity and gas demand in the UK (Hor et al. 2005, Bessec and

Fouquau 2008, Psiloglou et al. 2009, Summerfield et al. 2015). Energy demand is

shown to vary across a range of timescales, with clear daily, weekly and annual

cycles (Taylor and Buizza 2003, Taylor 2010, van Goor and Scholtens 2014). In

addition, UK electricity demand exhibits a long term trend (Hor et al. 2005). How-

ever these studies either use high temporal resolution, but short length data sets,

or longer data sets of lower temporal resolution. For example Hor et al. (2005) and

Bessec and Fouquau (2008) consider the relationship over 26 and 15 years respec-

tively but only use monthly data, whilst the daily and sub-daily studies of Psiloglou

et al. (2009) and Henley and Peirson (1997) only consider 5 and 1 year of data

respectively.

This study therefore aims to better quantify the relationship between demand

and temperature in Great Britain (GB), at a daily timescale, using the longest

demand records available (38 years for electricity, 16 years for gas). A comparison

of the annual, seasonal and monthly relationships is given. In addition, the risk
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of demand extremes in GB is quantified for the first time, by creating an artificial

extension of the demand data back in time using observed temperature observations

and the recent demand-temperature relationships.

3.3 Observed data sets

3.3.1 Demand Data

Daily electricity demand data for GB is available from National Grid1, for 1971-

2013 in giga (109) watt hours (GWh). Electricity supply and demand are balanced

every second, to maintain the stability of the network’s frequency. Consequently,

electricity demand is known by measuring how much electricity is generated. Na-

tional Grid measure the amount of electricity generated across the country that is

connected to the transmission network and give a daily total by summing over the

day. The demand dataset for GB used here, has been generated by combining two

separate demand datasets, one for England and Wales and one for GB (see Sup.

Mat., section 3.8.1, for further details). Data is considered from 1975 onwards due

to the coal mining strikes and power cuts during the early 1970s. Annual GB elec-

tricity demand increased almost monotonically from 1975 until 2006, thereafter a

reduction up to the present is apparent (Figure 3.1, upper). A clear annual cycle is

visible, with on average a maximum monthly demand in January and a minimum

in August, and more clearly seen in Figure 3.2 for one year, 2010-2011.

Daily gas demand data (in GWh) for GB is provided by National Grid for

the shorter period 1996–2013. The gas demand represents the total of non-daily

metered demand (mainly domestic usage), daily metered demand (for large indus-

trial premises) and shrinkage (gas leaks, theft). It does not include gas consumers

directly connected to the national transmission network, such as gas-fired power

stations and large industrial units (National Grid 2012a, Wilson et al. 2013). Gas

demand is calculated by measuring the flow rate of gas at a variety of different exit

points across the network, giving the demand in each local distribution zone and at

large industrial sites. Total GB demand is then calculated by summing the demand

across the network. Compared to electricity, there is little low frequency variabil-

ity in gas consumption over this more limited period (Figure 3.1, lower). However

there is a clear annual cycle of gas demand with on average a peak in January and

minimum in August, as seen in van Goor and Scholtens (2014).

1http://www.nationalgrid.com/uk/Electricity/Data
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Figure 3.1: Upper: Processed GB electricity demand timeseries (GWh, black) with
harmonic fit (red), Jan 1975 - June 2013. Lower: Processed daily GB gas demand
(GWh, black) timeseries with harmonic fit (red), March 1996 - March 2013. Demand
during weekends and holiday periods has been replaced with linear interpolated
values, see text.
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As noted by Taylor and Buizza (2003), a strong weekly cycle in electricity

demand is evident, with reduced demand during weekends and holidays (Figure 3.2,

grey line). Weekend and holiday days have on average 15% – 20% less electricity

demand than week days. Whilst for gas demand a much smaller weekly cycle is seen,

with on average only 5% – 10% less demand on non-working days. The difference

is consistent with a higher proportion of electricity demand relating to industrial

activity, which reduces over the weekend (DECC, 2013).

3.3.2 Temperature Data

To explore the relationship between GB energy demand and temperature, the Cen-

tral England Temperature record (CET, Parker et al. 1992) is used. This obser-

vational dataset gives the average temperature of an area enclosed by Lancashire,

London and Bristol and daily data are available from 1772. Shorter datasets cover-

ing the whole of GB are available, but as population and demand are weighted to the

south of GB, the CET dataset is deemed suitable. In addition the CET record cap-

tures the temperature variability seen in other parts of the UK (the daily correlation

between CET and the average temperature in Scotland or Wales is very strong, r =

0.93 and r = 0.99, respectively), in agreement with Croxton et al. (2006). The vari-

ability in temperature associated with both the annual cycle and daily fluctuations,

is much greater than any low frequency variability (Figures 3.2 and 3.3).

As described previously, temperature is the dominant weather driver of electric-

ity demand. However this cannot be the case for the low frequency electricity de-

mand variability seen in Figure 3.1. The steady increase in annual electricity demand

up to the mid-2000s would need to be accompanied by a reduction in temperatures

over the same period, this is not seen in Figure 3.3. The long term trend in electric-

ity demand leads to a large amount of scatter in the week-day demand-temperature

relationship (Figure 3.4, left), which is in contrast to the strong relationship seen in

individual years (Figure 3.5). Therefore to better quantify how demand varies with

temperature, this low frequency, non-temperature driven demand variability needs

to be identified and removed.

56



Chapter 3. Temperature variability and energy demand

−
5

0
5

1
0

1
5

2
0

2
5

CET (black) and harmonic fit (red), 1975−2013

year

C
E

T
 (

 ° 
C

)

1975 1979 1983 1987 1991 1995 1999 2003 2007 2011
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Figure 3.4: Left: Scatter plot of daily temperature (◦C) and GB electricity demand
(GWh) between January 1975 - March 2013, during week days and non holidays,
coloured by season. The Pearson correlation coefficient (r) is given for the annual re-
lationship, with linear fits for each season and annually. Right: as left but detrended
GB electricity demand and detrended CET.
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Figure 3.5: Left: The daily relationship between GB Electricity demand (GWh) and
CET (◦C) for April 1975–March 1976 (red) and for April 2005–March 2006 (blue),
with their Pearson correlation coefficient (r). Right: As left, but coloured by season.
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3.4 Low frequency demand variability

3.4.1 Identification and drivers

A number of different methods have been used to model or remove long term trends

in demand, including using a linear-regression with GDP (Hor et al. 2005, Mirasgedis

et al. 2006 and Psiloglou et al. 2009), non-linear regression (De Felice et al. 2013),

normalising by population or taking the deviation of demand for a particular day

or month relative to the mean for that year (Sailor et al. 1998, Bessec and Fouquau

2008, Hor et al. 2005).

There is a strong positive correlation between GDP and electricity demand prior

to 2006 (r = 0.98, see Figure 3.6) in agreement with Hor et al. (2005). However from

2007 onwards there is little correlation (r = 0.07). The reduction in demand since

the mid 2000s is thought to be due to the financial crisis, energy saving measures,

an increase in embedded generation (demand that is not seen by the grid operator)

and a move away from heavy industry (DECC 2012 and National Grid 2014). The

latter three factors would reduce the relationship between GDP and energy demand

and may explain the change in relationship seen after 2006. As for electricity, gas

demand has a positive but weaker correlation with GDP prior to 2007 (r = 0.42)

and little correlation after (r = 0.07).

The time varying and complex combination of socio-economic drivers of demand

suggests that using an individual driver (such as GDP) to model and then remove

the long term demand trend is not appropriate. Rather the trend is modelled using

a 5 year centred running mean demand. This low frequency demand variability

effectively represents the combination of different socio-economic drivers on demand

and is subsequently removed prior to comparison with temperature (described in

section 3.5.1). A five year centred running mean demand is chosen to be not too

long, whilst minimising the impact of an extreme demand season (which could be

weather driven) on the yearly demand evolution.

The long term trend and magnitude of the annual cycle of demand are identified

using Fourier analysis (see Wilks 2006), benefiting from the quasi-sinusoidal nature

of the annual cycle of demand. To construct an evolving background demand (y(t)),

the demand in any year (April–March) is analysed using a Fourier representation of

the form:
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Figure 3.6: The relationship between UK GDP (millions of £s) and annual mean
GB electricity demand (left) and GB gas demand (right) in GWh. The Pearson
correlation coefficient (r) for different periods is given.

y(t) = y + A1 cos (ωt) +B1 sin (ωt) + A2 cos (2ωt) + B2 sin (2ωt) (3.1)

where, 2π
ω

= 365 days. A second order representation is necessary to capture

the asymmetries in the annual cycle of demand. This produces yearly values of each

parameter on the right-hand side of equation 3.1. To produce a smoothly evolving

background demand, the evolution of each of these parameters is smoothed. A1,

B1, A2, and B2 are smoothed by fitting a linear regression line through the annual

values between 1975 and 2013. Yearly mean demand (y) is smoothed by taking a 5

year running mean due to its non-linear form (red line, Figure 3.7 left), as described

earlier. For the two years at either end of the timeseries y is represented by a 3

year average. Low frequency variability is therefore defined as variability with a

timescale of greater than about 5 years, whilst high-frequency variability is defined

as variability on a daily, seasonal and inter-annual timescale.

Here, the focus is on the week-day (Monday - Friday) temperature-demand re-

lationship, and including non-working days would have undesirable effects on the

Fourier representation. Consequently, prior to fitting the Fourier expansion, weekend

demand is replaced with the average of the adjacent Monday and Friday. Similarly,

demand during bank holidays and 3 days either side, is replaced with linearly in-

terpolated values between adjacent non-holiday days. This process maintains the

60



Chapter 3. Temperature variability and energy demand

length of the record for the sake of the Fourier analysis. The processed and original

demand timeseries are shown in black and grey in Figure 3.2 respectively.
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Figure 3.7: Fourier harmonic parameters of Electricity demand analysis. Left: An-
nual mean demand (y, black), its 5 year running mean (red). Right: First harmonic
wave amplitude (C1, GWh, black) and its smoothed representation (red). The
smoothed C1 is calculated from the linear representations of A1 and B1.

3.4.2 Results

The slowly evolving background electricity and gas demand timeseries, resulting

from the Fourier fitting and smoothing, are shown in red in Figure 3.1. The Fourier

representation successfully captures both the low frequency demand variability and

its changing annual cycle.

The Fourier representation also allows the amplitude of the annual cycles of

electricity and gas demand and their evolution to be compared. The first Fourier

component (the annual cycle) can alternatively be written as C1 cos (ωt− φ1), with

amplitude (C) and phase shift (φ), where C1 =
√

(A2
1
+B2

1
) and tanφ = B1

A1

. Gas

demand has a large annual cycle, where its amplitude (C1) is ∼60% of the long term

mean demand and changes little over the recorded period (Figure 3.1 lower and

C1, Figure 3.8). In contrast the annual cycle of electricity demand is considerably

smaller and reduces by approximately a third over the last 38 years (Figure 3.7 right,

also seen in Figure 3.1 upper). For example, in 2012 the amplitude was only 14%
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of the mean demand of that year. In the recent period (2005-2012), approximately

two-thirds of residential gas consumption was for space heating compared to less

than a quarter for electricity (DECC 2013, see their Table 3.02, Domestic data),

explaining the greater sensitivity of gas demand to temperature and its larger annual

cycle. The reduction in the amplitude of the annual cycle of electricity demand is

associated with summer demand increasing at a faster rate than winter demand,

with the difference reducing by on average 1.7GWh/year, or approximately 7% per

decade (Figure 3.9). An equivalent reduction in the seasonal cycle of temperature

is not seen, rather non-meteorological drivers are likely responsible.

The Fourier analysis also highlights that the annual mean gas demand (y) in-

creases between 1996 to the early 2000s and then reduces thereafter (left hand panel

of Figure 3.8). Over the whole period, negative linear trends in gas demand are seen

in spring, summer and autumn, with reductions of 1-2% per year (Figure 3.10).

62



Chapter 3. Temperature variability and energy demand

2000 2005 2010

1
5
0
0

1
7
0
0

1
9
0
0

Mean annual demand,  y

Year

D
e
m

a
n
d
 (

G
W

h
)

2000 2005 2010

9
5
0

1
0
5
0

1
1
5
0

1
2
5
0

Annual cycle amplitude,  C1

Year

C
1
 c

o
e
ff
ic

ie
n
t

Figure 3.8: Fourier harmonic parameters of GB gas demand analysis. Left: Annual
mean demand (GWh, black) and 5 year running mean (red). Right: First harmonic
wave amplitude (C1, GWh, black) and its smoothed representation (red). The
smoothed C1 is calculated from the polynomial representations of A1 and B1.
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Figure 3.9: Seasonal mean of daily GB electricity demand (GWh) and CET
(◦C) and linear trends over the period 1975-2012 (left) and winter/summer and
spring/autumn differences in these two variables (right). Statistical significance of
the trend at the 5% level is indicated by a *.
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winter/summer and spring/autumn differences (right)
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3.5 Demand - temperature relationships

The desire to understand the current risk of demand extremes has determined how

the demand-temperature relationship is established.

3.5.1 Methodology

Demand - removing the low frequency variability

Low frequency demand variability, associated with socio-economic changes, weakens

the demand-temperature relationship and is therefore removed. This is achieved by

replacing the slowly varying background demand field with a constant annual cycle

demand background. The two stages undertaken to achieve this are:

R = D −B

Dd = R + Bc

where:

D = Demand (black line in Figure 3.1)

B = Slowly varying background demand (red line in Figure 3.1)

R = Residual demand.

Bc = Repeating climatological mean annual demand cycle (red line in Figure 3.11)

Dd = Detrended demand, where the low frequency variability has been removed

(black line in Figure 3.11)

The resultant detrended demand (Dd) timeseries is shown in Figure 3.11. This

process has effectively retained the high frequency demand variability and the cli-

matological annual cycle, whilst removing the long term variations in both annual

mean demand and annual cycle magnitude. For example the demand spike in winter

1986-1987 or the anomalously high demand throughout winter 1978-1979 are still

present in this detrended demand timeseries.

Temperature - removing the long term trend

Temperature variability occurs across all timescales, from sub-daily to centennial.

Decadal scale variability in atmospheric temperature (as seen in Figure 3.12) is

driven by slowly varying climate dynamics, including the Atlantic Multi-decadal

oscillation and the El Nino southern oscillation (Knight et al. 2006, Fraedrich and

Muller 1992) and external forcings including aerosols and solar variability. Such
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Figure 3.11: Upper: Detrended GB electricity demand timeseries (GWh, black) and
climatological annual cycle (red), April 1975 - March 2013. Lower: Detrended GB
gas demand timeseries (GWh, black) and climatological annual cycle (red), Jan 1996
- March 2013.
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variations in temperature are important to include when calculating the risk of de-

mand extremes. However longer scale temperature variability, which is presumed

to be predominantly associated with anthropogenic climate change, makes the like-

lihood of cold winter days lower today (Brown et al. 2008, Hartmann 2013, Bindoff

2013). To account for this non-stationarity, the long term temperature trend needs

to be removed prior to the demand-temperature relationship and risk of extremes

being established (as discussed in Coles 2001).
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Figure 3.12: Annual mean CET (◦C, black) used in the Fourier expansion, and a
third order polynomial fit (blue).

A long term trend in CET can also be modelled using a Fourier expansion, as

shown in red in Figure 3.3 for the recent period. The detrending approach used is

the same as that for demand (see section 3.5.1), with a few important differences.

Firstly, the evolution of the annual mean temperature is represented by a third order

polynomial (blue line, Figure 3.12), to better capture the long term trend. Secondly,

the evolution of Ax and Bx is not modelled, rather climatological average values are

used, giving a constant annual cycle in the background timeseries. Consequently,

once this background field has been removed, only decadal and higher frequency

variability remains in the ‘detrended temperature’ timeseries, including any changes

in the annual cycle (in contrast to detrended demand).

The relationship between detrended demand and detrended temperature can

now be established. The relationship is determined using all years of data, this ap-

proach therefore assumes the relationship remains constant through the data period.

The relationship is only considered over working week-days (excluding weekends,

bank holidays and 3 days either side of bank holidays).
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3.5.2 Results

Annual relationship

The removal of low frequency demand variability leads to a much stronger week-day

relationship between electricity demand and detrended temperature, increasing the

correlation from −0.61 to −0.90 (Figure 3.4, right and top row Table 3.1), which

is now similar to that seen within individual years. This suggests that the key

relationship between demand and temperature has been retained whilst the socio-

economic influences on demand have been successfully removed. The strength of

the relationship is now comparable to that of raw gas demand and temperature,

where r = −0.94 (Figure 3.13). Low frequency gas demand variability is small,

consequently its removal barely modifies its annual correlation with temperature

(Table 3.2). The daily relationships are seen to be slightly non-linear, with the

negative relationship levelling off above ∼17◦C, similar to that found in Psiloglou

et al. (2009) and Summerfield et al. (2015).

Seasonal and monthly relationships

The electricity demand-temperature relationships for each season also improve sub-

stantially after removal of low frequency demand variability, for example the winter

correlation increases from −0.19 to −0.80 (Table 3.1). Modest correlation increases

are also seen after detrending the gas demand (Table 3.2). A strong anti-correlation

between daily detrended temperature and electricity demand is found in winter,

spring and autumn (magnitude ≥ −0.80, Figure 3.14), with a much weaker correla-

tion in summer (r = −0.28), in agreement with Psiloglou et al. (2009). Electricity

Data Raw correlation Detrended correlation Deseasonalised,
detrended correlation

All days -0.61 -0.90 -0.60
Winter days -0.19 -0.80 -0.81
Spring days -0.40 -0.82 -0.64
Summer days -0.01 -0.28 -0.12
Autumn days -0.44 -0.86 -0.62

Table 3.1: Summary of correlations between daily GB electricity demand and daily
CET, between 1st January 1975 and 31st March 2013, considering week-day and
non-holiday days only (Column 1). Column 2, the same however the correlation is
between detrended demand and detrended CET. Column 3, the same as column 2,
except the respective annual cycles have been removed.
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Figure 3.13: Scatter plot of daily temperature and GB gas demand between March
1996 - March 2013, during week days and non holidays, coloured by season. The
Pearson correlation coefficient (r) is given for the annual relationship, with linear
fits for each season and annually.

Data Raw correlation Detrended correlation Deseasonalised,
detrended correlation

All days -0.94 -0.95 -0.83
Winter days -0.83 -0.91 -0.90
Spring days -0.88 -0.91 -0.83
Summer days -0.60 -0.76 -0.65
Autumn days -0.91 -0.94 -0.87

Table 3.2: Summary of correlations between daily GB gas demand and daily CET
between March 1996 and March 2013. See Table 3.1 for details.
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demand saturation at extreme low temperatures, as claimed by Hor et al. (2005),

is not seen. Gas demand is strongly related to temperature in each season, with

stronger correlations than those of electricity, particularly in summer (Table 3.2 and

Figure 3.16, left-hand column).

The strength of the seasonal relationships between detrended demand and ei-

ther CET or detrended CET is compared and the difference is found to be very

small (correlations vary by a maximum of 0.01). This highlights that over the 38

year period of demand observations, the long term trend in temperature is small

compared to higher frequency variability, and therefore barely influences the daily

demand-temperature relationships.
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Figure 3.14: Scatter plot of daily detrended temperature (◦C) and detrended GB
electricity demand (GWh), during week days and non holidays between 1st January
1975 - 31st March 2013, coloured by month. The Pearson correlation coefficient (r)
and the linear fit through each month and the whole season (black) are also shown.

For both electricity and gas demand, the all days correlation is higher than that

of individual seasons. This reflects the large annual cycle in temperature and the

fact that the annual cycle in demand is not fully explained by the annual cycle in

temperature. During spring or autumn the relationship between demand and tem-
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perature changes (see Figure 3.14). For example, the March relationship is nearer

to that seen in winter, whilst the May relationship is more similar to that found in

summer. A day with a temperature of 7◦C would on average give an electricity de-

mand of ∼900GWh in March, ∼850GWh in April and ∼800GWh in May. However

during winter or summer, the monthly relationships are very similar. The change

in relationship within a season cannot be caused by temperature. One hypothesis is

that during spring and autumn, for the same daily average temperature, a difference

in daylight hours could modify the demand for lighting and possibly also for heating.

The strength of the seasonal relationships during spring and autumn is better

established using the residual relationships (where the annual cycles have been re-

moved, see Figures 3.15 and 3.16). The all days correlation is now lower or equivalent

to that of the individual seasons (r = −0.60 for electricity and r = −0.83 for gas,

see last column in Tables 3.1 and 3.2). Winter now has the strongest relationships,

with approximately two-thirds of the variability in electricity demand being linearly

accounted for by temperature variability (r = −0.81) and over four-fifths of gas

demand variability (r = −0.90). Temperature sensitivity in winter is now similar or

higher than that seen in spring and autumn, contrary to that seen when the annual

cycle is present. Over the data period, a 1◦C decrease in daily temperature during

winter months will typically give rise to a 10–12GWh increase in daily electricity

demand (∼1% increase, established using the monthly linear fits in Figure 3.14)

and a 105–115GWh increase in daily gas demand (3%–4% increase). Temperature

sensitivity is at a minimum in summer (1–3GWh increase in demand/◦C of cool-

ing), whilst demand increases by 7–13GWh in spring and 4–12GWh in autumn, per

degree of cooling. Unlike more southern European countries, GB has limited air-

conditioning within residential properties, explaining the weak sensitivity of demand

to temperature in summer.

A similar picture is seen for gas demand, where temperature sensitivity is highest

in winter and lowest in summer. A 1◦C decrease in daily temperature during winter

months will typically give rise to a 105–115GWh increase in daily gas demand (3%–

4% increase), and a 20–50GWh increase in demand in summer. Demand increases

by 90–135GWh in Spring and 60–120GWh in Autumn, per degree of cooling.
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Figure 3.15: Scatter plot of daily detrended temperature residual (◦C) and detrended
GB electricity demand residual (GWh), during week days and non holidays between
1st January 1975 - 31st March 2013, coloured by month. The Pearson correlation
coefficient (r) and the linear fit through the whole season are also shown (black)
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Figure 3.16: Left column: Scatter plot of daily detrended temperature (◦C) and
detrended GB Gas demand (GWh), during week days and non holidays between 1st

March 1996 - 31st March 2013, coloured by month. The Pearson correlation coeffi-
cient (r) and the linear fit through each month and the whole season (black) are also
shown. Right column: as left but with residual demand and residual temperature.
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3.6 Extreme demand periods

In preparation for each winter, National Grid estimates both the magnitude of ex-

treme electricity and gas demand conditions and total generation capacity, to ensure

sufficient supply. For electricity demand, they estimate the 1 in 20 year peak de-

mand, where peak demand is defined as the maximum instantaneous demand (in

GW) during a financial year. They also estimate the average cold spell peak de-

mand, which is defined as the peak demand within a year which has a 50% chance of

being exceeded as a result of weather variation alone (National Grid 2012b). As part

of the gas winter security assessment, the 1 in 20 year and 1 in 50 year peak daily,

weekly, monthly and seasonal mean demand are estimated (National Grid 2014).

3.6.1 Methodology

The longer a demand timeseries the better the quantification of its extremes. The

observations of electricity and gas demand cover 38 years and 16 years respectively.

However a much longer artificial demand timeseries can be generated using the

entire detrended CET record (1772 – 2013) and the modern detrended temperature–

demand regression relationships (as described in Section 3.5.2). These artificial

daily demand estimates, give the demand that would have occurred given historical

temperatures, but are consistent with demand from a modern energy system. The

winter mean relationship is chosen because of the interest in high demand extremes.

The risk of recent extreme demand periods is assessed by counting the number

of artificial events since 1772 where demand equals or exceeds the recent event of

interest.

The mean absolute error between regression predicted and actual demand over

the observed period is small. Bootstrap sampling is employed to quantify uncertainty

in the demand estimates, resulting from uncertainty in the regression model and the

limited sample size. For further details on the mean error and bootstrap sampling

see Sup. Mat (section 3.8.2). All extreme demand estimates are presented as a

percentage difference from the average winter day demand over the last decade (Dec

2003–Feb 2013, hereafter referred to as ‘climatology’), as calculated by the regression

model. The climatological electricity and gas demand are 980GWh and 2951GWh

respectively.
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3.6.2 Results

Daily extremes

Over the 241 years, the top 1% of electricity demand days in winter have a demand

estimate which is at least 10.8% (10.4% – 11.1%) above climatology (Figure 3.17

and table 3.3). The 1 in 20 year peak day electricity demand estimate is 15% (14%

– 16%) above climatology, whilst the average cold spell demand estimate is 10.2%

(9.8% – 10.6%) above climatology. The coldest day in the record occurred on the

20th January 1838, with a detrended temperature of -11.7◦C, giving an electricity

demand estimate 17% (12% – 21%) above climatology. It is not possible to compare

the 1 in 20 year peak demand estimate with that forecast by National Grid because

the latter is instantaneous demand in GW rather than daily demand in GWh.
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Figure 3.17: Left: The cumulative frequency distribution of the deviation of winter
daily GB electricity demand for 1772 – 2013, from the average winter day’s demand
(December 2003–February 2013, ‘climatology’). The results presented are from the
regression bootstrap. The red lines indicate the top 1% of winter demand days.
Right: as left but GB gas demand.

Equivalent statistics are given in Table 3.3 and Figure 3.17 for gas demand. The

deviations from climatology are greater for gas than electricity, which is consistent

with gas demand being more sensitivity to temperature change. The 1 in 20 year

peak day gas demand estimate is 46% (44% – 49%) above climatology, whilst the 1

in 50 year demand estimate is 50 % (47% – 54%) higher. Based on the climatological

demand from 2003-2013, the 1 in 20 year peak day gas demand value is 4308GWh

or 392mcm, which is higher than the 2017/2018 forecast value of approximately

350mcm. This difference may reflect the reducing demand for gas over recent years,

as the equivalent forecast for winter 2013/14 was 388-402mcm (National Grid, 2013),

which is similar to that calculated here.
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Averaging Elect. demand Elect. demand Gas demand Gas demand Date of

period Top 1% Max Top 1% Max Max

Winter Day 10.8% (10.4–11.1) 16.6% (12.2–20.7) 33% (31–34) 57% (47–66) 20/01/1838

Month 5.6% (5.0–6.3) 7.2% (6.4–7.9) 19% (18–21) 24% (22–26) Jan 1795

Winter 3.2% (2.7–4.0) 4.6% (4.2–5.1) 11% (9–13) 16% (15–17) 1962/1963

Table 3.3: The minimum percentage increase of average daily demand during the
top 1% of winter days, months and winters between 1772 and 2013, relative to
the recent decade’s daily winter mean demand value of 980GWh for electricity and
2951GWh for gas. The dates of maximum gas and electricity agree. The 5 – 95
percent uncertainty range from bootstrap sampling is given in brackets (see section
3.8.2 in Sup. Mat.).

Monthly and seasonal extremes

December 2010 is a recent, extremely cold month (Maidens et al. 2013). The de-

trended temperature was on average -1.5◦C, giving temperature driven electricity

and gas demand estimates of, respectively, 5.7% (4.9% – 6.4%) and 19% (18% – 21%)

above climatology. Over the 241 year period, a month with at least as much elec-

tricity or gas demand as December 2010 is estimated to occur on average once every

∼34 years (20 – 60 years). Months with greater demand would have occurred in the

past given the temperatures experienced. For example January 1795 was the coldest

month since 1772, with a detrended average temperature of -2.9◦C. Such conditions

would give a monthly average electricity and gas demand estimate 7.2% (6.4% –

7.9%) and 24% (22% – 26%) above climatology respectively.

Winter 2009/2010 is a recent extreme winter (Cattiaux et al. 2010, Fereday

et al. 2012), when the average daily detrended temperature was 1.6◦C. Estimates of

winter mean temperature driven electricity and gas demand are, respectively, 2.3%

(1.8% – 2.7%) and 8% (7% – 9%) above climatology. Over the 241 year period, a

winter with at least as much electricity or gas demand as 2009/2010 is estimated

to occur on average once every ∼18 years (12 - 27 years). Winter 1962/1963 was

the coldest winter since 1772, with an average detrended temperature of -0.6◦C.

Under such conditions, winter average electricity and gas demand is estimated to

be, respectively, 4.6% (4.2% – 5.1%) and 16% (15% – 17%) above climatology.

The 1 in 50 year peak gas demand week, month and season are estimated

to be 35% (33% – 37%), 20% (18% – 22%) and 9% (8% – 11%) above climatology

respectively. It is of interest to note that due to the long term trend in temperature,
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the risk of a December 2010 or a winter 2009/2010 demand has approximately

halved.

Decadal variability of European surface climate is strongly linked with decadal

variability of the NAO (Hurrell, 1995). For example, during the 1960s, winters were

much colder in Northern Europe compared to those of the 1990s, reflecting the shift

from negative to positive NAO conditions over the period. Colder UK winters have

also been found to occur more often during periods of low solar activity (Lockwood

et al., 2010). Given the artificial demand extremes presented here are driven purely

by observed temperature variability, equivalent decadal variability in the demand

extremes would be expected.

3.7 Conclusions

Observed daily electricity and gas demand in GB have been analysed between 1975-

2013 and 1996-2013 respectively. The daily relationships between week-day energy

demand and temperature have been established and their variation with month and

season investigated. Low frequency, non-temperature related demand variability

is represented by a slowly evolving truncated Fourier expansion, and is removed

prior to establishing the relationship with temperature. Artificial estimates of daily

demand are made back to 1772 using detrended temperature observations and the

modern detrended demand–temperature regression relationships. The current risk

and magnitude of extreme demand events has then been quantified. The main

conclusions are given below:

• From 1975 – 2006 annual electricity demand increases almost monotonically,

after which a reduction is seen. Over the same period the annual cycle ampli-

tude of electricity demand reduces by a third, which is associated with summer

demand increasing at a faster rate than winter demand.

• Both daily electricity and gas demand are strongly anti-correlated with daily

mean temperature (relec = −0.90, rgas = −0.94), once low frequency non-

temperature related variability in demand has been removed. However these

correlations are inflated by the demand-temperature relationships changing

throughout spring and autumn. Once the annual cycles of temperature and

demand are removed, the correlations drop to relec = −0.60 and rgas = −0.83.

• Winter has the strongest demand-temperature relationship (relec = -0.81 ,

rgas = -0.90), and high temperature sensitivity. Over the data period, a 1◦C

78



Chapter 3. Temperature variability and energy demand

reduction in daily temperature in winter typically gives a ∼1% increase in

daily electricity demand and a 3% – 4% increase in gas demand.

• A higher proportion of gas demand is consumed for domestic heating com-

pared to electricity, which is consistent with its stronger anti-correlation with

temperature, its larger relative annual cycle, its weaker weekly cycle and its

greater sensitivity to temperature change.

• The 1 in 20 year peak day electricity demand estimate is 15% (14% – 16%)

above the average winter day demand. The 1 in 20 and 1 in 50 year peak day

gas demand estimates are 46% (44% – 49%) and 50% (47% – 54%) above the

average winter day respectively. Today the risk of a month having at least

as much electricity or gas demand as December 2010 is estimated to be one

in ∼34 years (20 – 60 years). The risk of a winter having at least as much

electricity or gas demand as the 2009/2010 winter is estimated to be one in

∼18 years (12 – 27 years). The long term trend in temperature means the risk

of a December 2010 or a winter 2009/2010 demand has approximately halved.

This improved understanding of the demand-temperature relationships and the

risk of extremes should aid operational management and longer term planning of

Great Britain’s energy system.
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3.8 Supplementary Material

3.8.1 Electricity demand data

Two different electricity demand datasets have been combined to give a total GB

daily demand record between 1971 and 2013. A daily England and Wales (E&W)

electricity demand dataset is available from April 1971 to December 2009. A half

hourly GB total electricity demand dataset is available from January 2001 to March

2013. A daily average conversion factor from E&W to GB total demand is calculated

over the overlap period (January 2001 to December 2009), where on average E&W

makes up 90% of GB demand. Using this conversion factor and the E&W demand

data, a daily GB demand record prior to 2001 is created and combined with the

later GB data to give a full record. This follows the methodology used within Na-

tional Grid (personal communication). The electricity demand data are published

INDO (Initial Demand Outturn) and are based on National Grid operational gen-

eration metering. The demand excludes station load, pump storage pumping and

interconnector exports.

3.8.2 Regression uncertainty and bootstrap sampling

Prior to using the regression relationships to make out of sample predictions, their

robustness has been explored. The mean absolute error of the electricity and gas

demand estimates (the difference between the predicted and actual demand) over the

observed period is calculated using cross validation. This means that for a prediction

of demand on a given day, the regression relationship between observed demand and

temperature is calculated using all observations except for those 10 days either side

of the day in question (see e.g. Wilks 2006). For electricity the mean absolute

error is 21GWh, equivalent to approximately half the standard deviation of winter

demand. For gas demand, the mean absolute error is 130GWh, or approximately

a third of the winter standard deviation. The cross-validation correlation between

predicted and actual electricity demand is 0.80, whilst for gas demand is 0.93.

Bootstrap sampling is employed to quantify uncertainty in the demand esti-

mates, resulting from uncertainty in the regression model and the limited sample

size. For each daily temperature, 1000 demand estimates are created assuming a

normal distribution of regression residuals, sampling the uncertainty in the regres-

sion relationship. The central demand estimates presented give the average across

this bootstrap. In addition a 5-95 percent bootstrap range is given in brackets,
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which additionally includes sample uncertainty. For each bootstrap timeseries, a

different selection of 241 years is chosen and to maintain decadal variability, 10 year

blocks are chosen at random with replacement.
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Chapter 4

The relationship between wind

power, electricity demand and

winter weather patterns in Great

Britain

4.1 Abstract

Wind power generation in Great Britain has increased markedly in recent years.

However due to its intermittency its ability to provide power during periods of high

electricity demand has been questioned. Here we characterise the winter relationship

between electricity demand and the availability of wind power. Although a wide

range of wind power capacity factors is seen for a given demand, the average capacity

factor reduces by a third between low and high demand. However, during the highest

demand average wind power increases again, due to strengthening easterly winds.

The nature of the weather patterns affecting Great Britain are responsible for this

relationship. High demand is driven by a range of high pressure weather types, each

giving cold conditions, but variable wind power availability. Offshore wind power is

sustained at higher levels and offers a more secure supply compared to that onshore.

However, during high demand periods in Great Britain neighbouring countries may

struggle to provide additional capacity due to concurrent low temperatures and low

wind power availability.
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4.2 Introduction

The British Government is committed to reducing greenhouses gas emissions whilst

maintaining a resilient and affordable energy supply. Britain has an ambitious target

to achieve 15% of its energy consumption (electricity, heat and transport) from

renewable sources by 2020 (EU, 2009). Policy measures have led to an increase

in the percentage of energy consumption generated from renewables, from 3% in

2009 to 8% in 2015. Wind power accounted for approximately half of the renewable

electricity generated in 2015 and it is therefore already playing an important role

in the British energy system (DECC, 2016). Offshore wind capacity is expected to

grow significantly over the next decades (DECC, 2013, 2016), in part to help meet

the increase in electricity demand expected with the electrification of heating and

transportation.

Operational managers ensure electricity supply and demand are balanced second

by second. To achieve this, forecasts of demand and supply are made in the months,

days and hours prior to real time. Peak demand is a primary concern, and the grid

operator must ensure ahead of each winter that sufficient supply is available. This

is of growing importance due to an increased security of supply risk in Britain in

recent years, associated with closing of older coal and gas plants (Royal Academy of

Engineering, 2013; Ofgem, 2015). The intermittent nature of wind power means

that estimating its availability in advance is challenging. A better knowledge of the

relationship between electricity demand and wind power supply is therefore advan-

tageous, especially during peak demand. The availability of interconnection supply

from neighbouring countries during peak British demand is also of growing interest,

due to increasing interconnector capacity and the participation of interconnectors

in the Capacity Market (a system developed to ensure security of supply, DECC

2016).

The influence of weather on the demand–supply balance is increasing, due to

the high temperature sensitivity of demand (Bessec and Fouquau, 2008; Thornton

et al., 2016) and increasing renewable generation. Consequently, interest in this

issue is growing (Sinden, 2007; Oswald et al., 2008; Zachary et al., 2011; Brayshaw

et al., 2011; Zachary and Dent, 2012; Ely et al., 2013; Harrison et al., 2015). A

weak positive relationship is found between electricity demand and wind power

supply across the year in Britain (Sinden, 2007), with the reverse found in winter

(Zachary and Dent, 2012; Harrison et al., 2015). However during very high demand

conditions, some studies suggest the risk of lower wind power supply (Oswald et al.,
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2008; Zachary and Dent, 2012; Harrison et al., 2015), whilst others suggest more

moderate or higher supply (Sinden, 2007; Zachary et al., 2011; Brayshaw et al.,

2012). They all emphasize the uncertainty in the relationship due to the short data

lengths considered (often less than 10 years). Large scale weather patterns have

been shown to influence electricity demand and renewable supply over Northern

Europe, including the North Atlantic Oscillation (NAO, a measure of the large scale

north–south atmospheric pressure difference), and high pressure systems (Brayshaw

et al., 2011; Ely et al., 2013). The influence of high pressure on wind power supply

and demand is however under debate (Oswald et al., 2008; Brayshaw et al., 2012;

Leahy and Foley, 2012).

The aim of the paper is to quantify the winter relationship between daily elec-

tricity demand and wind power supply across Great Britain (GB) over an extended

period (34 years). The role of weather patterns on this relationship is explored,

with a particular focus on high demand conditions. The wider European context is

then considered, by assessing temperature and wind power conditions across Europe

during periods of high GB demand.

4.3 Data and methodology

4.3.1 Electricity demand data

An observed electricity demand dataset was provided by National Grid, the grid

operator, for the period January 1975 to March 2013. This dataset gives the total

electricity demand across GB for each day in giga watt hours (GWh). Annual

electricity demand is shown to steadily increase from 1975 until 2006 and then reduce

(Thornton et al., 2016). The magnitude of the annual cycle in demand is also found

to reduce over the whole period. These long term changes in demand cannot be

explained by temperature changes, rather are thought to be predominantly driven

by socio-economic factors (Thornton et al., 2016).

To better quantify the relationship between weather driven electricity demand

and wind power, these long term changes in demand are firstly removed. This

is achieved by representing the evolution of the annual mean demand and annual

cycle by a slowly evolving second order Fourier expansion. This slowly evolving

background is then removed from the full demand time-series and is replaced by

a repeating long term mean annual demand cycle (Thornton et al., 2016). This

process effectively retains the demand variability on a daily, seasonal and interan-
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nual timescale, whilst removing variability on timescales greater than 5 years. Full

details of the detrending methodology are given in Chapter 3, where the original

and detrended electricity demand time-series are shown (Figures 3.1 and 3.11 re-

spectively).

4.3.2 Wind power model

Wind power availability is modelled using reanalysis wind speeds and an idealised

wind power model. In the latter, a uniform distribution of turbines across GB

is assumed, including both onshore and coastal offshore regions (see Figure 4.1).

Regions under consideration for siting of future offshore turbines have also been

included, for example in the North Sea. The uniform distribution approach does

not attempt to accurately represent current-day generation, but rather it aims to

capture the general variation in available wind power across GB and through time.

This approach has the additional benefit of giving information on possible future

generation sites.

Figure 4.1: The regions over which the wind power availability is considered: the
full GB region (left), the onshore region (middle) and the offshore region (right).

A daily wind power estimate is calculated using 6-hourly, 60m height wind

speeds and air density, which are available from the ERA-Interim dataset. ERA-

Interim is a gridded global reanalysis dataset, with a resolution of approximately

80km by 80km and is available from January 1979 to the present. A reanalysis

dataset is created by rerunning a global weather model over a long period, whilst

ingesting all available observations. It provides a multivariate, spatially complete

and coherent record of atmospheric circulation (Dee et al., 2011).
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The wind speed at each ERA-Interim grid-point is fed through a typical power

curve, the Vestas V90 1.8-2MW turbine1 is chosen with a cut in, cut out and rated

wind speed (Ur) of 4m/s, 25m/s and 12m/s respectively. A wind power capacity

factor is then calculated as follows:

Capacityfactor =
ρU3

ρcU3
r

where U represents the wind speed after it has been modified by the power

curve characteristics, ρ is the air density and ρc = 1.225kg/m3, a typical density.

The capacity factor therefore takes both wind speed and air density changes into

account.

The wind power capacity factor is calculated at each grid point, every 6-hours

and then averaged to give a daily mean, for all days between 1979 and 2013. In addi-

tion a regional mean capacity factor is calculated for each day, from the daily mean

values. By presenting the wind power as a capacity factor, the importance of the

choice of turbine is limited. The resultant wind power capacity factors should how-

ever be considered as indicative, rather than numerically exact, given the idealised

wind power model used. Even with these simplifications, the modelled GB average

capacity factor in winter (∼0.5) is found to compare favourably with a study where

the wind farm distribution and capacity are more realistically represented (Harrison

et al., 2015). Given the idealised wind power model used, we consider the electricity

demand and wind power separately, rather than combining to give a proportion of

demand met by wind power.

4.4 Electricity demand, wind power relationship

The electricity demand – wind power relationship is calculated over the period for

which both datasets are available (January 1979 to March 2013). The relationship

is only calculated over week days (Monday – Friday) during non–holiday periods.

Weekends, bank–holidays and 3 days either side of bank holidays are excluded from

the analysis due to the different demand profiles seen over these non-working days

(Thornton et al., 2016). The data considered therefore represents 62% of the full

data set and consists of 7804 days.

To put the winter relationship between electricity demand and wind power in

context, we start by showing the relationship across the year and in each season. A

1http://www.vestas.com/en/products_and_services/turbines
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clear seasonal cycle in demand is seen, with lowest demand in summer and highest

demand in winter (Figure 4.2, upper left). A wide range of wind power conditions

exist for a given electricity demand, and the range is smallest in summer and largest

in winter.

During the lower three-quarters of demand days, there is the seemingly helpful

relationship that as demand increases so does average wind power, as found by

Sinden (2007) (black line Figure 4.2, upper–middle). This reflects the variation

in temperatures and wind speeds with season, with calmer, warmer conditions in

summer and cooler, windier conditions in late autumn and early spring. However

above the 75th percentile of demand, average wind power reduces, which occurs

predominantly in winter and autumn. Understanding this downturn in wind power

provides the motivation for this paper. Given our interest in high demand days,

which predominantly occur in winter (Figure 4.2, upper right), only winter days are

considered.
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Figure 4.2: Upper left: Scatter plot of daily GB electricity demand and GB mean
wind power capacity factor in winter (blue), spring (green), summer (orange) and
autumn (brown). Density contour interval is 0.02%. Pink lines show the median
demand and capacity factor across all days. Upper middle: Variation in GB average
wind power capacity factor with percentile of electricity demand, averaged over a 5%
demand bin, for each season (colours) and all days in year (black). A minimum of 18
values (1% of that seasons’ days) are required to make a mean capacity factor. Upper
right: For a given level of demand, the percentage of days in each season. Lower:
Scatter plot of winter daily electricity demand and wind power when averaged across
GB (left), offshore region (middle) and onshore region (right).
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4.5 Winter relationship

The tendency for lower wind power during higher winter demand is shown by the

tilt of the density contours of the daily distribution (Figure 4.2, lower left). It is

also clearly seen when averaged across days of similar demand (Figure 4.3, left).

Average wind power reduces by a third between lower and higher winter demand,

from approximately 60% to 40% of rated power. Around the 85th percentile of

winter demand, average wind power is at a minimum, however above this, wind

power begins to increase again. Although this upturn appears small, in percentage

terms it is larger than the respective increase in demand (Figure 4.3, right). On

average, therefore, wind power can satisfy a larger proportion of the highest demand

than it can at the 85th percentile of demand. For comparison with previous studies,

the relationship between wind power and demand is also shown with respect to the

average cold spell demand (see section 4.5.2).

The same relationship is seen when wind power is averaged across both on-

shore and offshore regions separately and across different regions of GB (North-west,

North-east, South-west and South-east), see Figures 4.4 and 4.5. The demand–wind

power relationship is therefore largely insensitive to the spatial distribution of tur-

bines across GB. Across all demand conditions, average offshore wind has a capacity

factor 15–25 percentage points higher than onshore wind, because of higher wind

speeds offshore (Drew et al., 2015) (Figure 4.4). Although the reduction in capacity

factor with increasing demand is similar for onshore and offshore regions (reducing

by ∼0.2), the percentage decline is smaller offshore than onshore, due to the greater

magnitude of offshore wind power. For example, onshore wind power nearly halves

whilst offshore wind power reduces by less than a third. In addition to wind power

being lower onshore, during higher demand conditions, it is more frequently lower

(Figure 4.2, lower row).
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Figure 4.3: Left: Variation in GB average wind power capacity factor (black) and
meridional pressure difference between two regions north and south of GB (hPa, red)
with winter percentile of GB electricity demand, averaging over 1% bins (dashed)
and 5% bins (solid). The pressure difference during the minimum wind power is
highlighted by the grey lines. This pressure difference is used as a proxy to represent
the larger scale pressure field over the North Atlantic (see section 4.5.3 for details).
Right: Variation in electricity demand (GWh, black) and GB average temperature
(◦C, red) with percentile of winter electricity demand.

91



Chapter 4. Wind power, electricity demand and weather patterns

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Offshore (blue), onshore (brown) 
  capacity factor

Demand percentile

C
a
p
a
c
it
y
 f
a
c
to

r

5 20 35 50 65 80 95

Figure 4.4: Variation in average GB onshore (brown) and offshore (blue) wind power
capacity factor with winter percentile of GB electricity demand. Capacity factors
are presented as rolling 5% demand bin means. The 10th and 90th percentile capacity
factors for each demand bin and each region are given (dashed).
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Figure 4.5: Variation in wind power capacity factor with winter percentile of GB
electricity demand, when averaged over both onshore and offshore regions of GB
(black) and individual regions: North-west (green), North-east (blue), South-west
(orange), South-east (grey). Capacity factors are presented as rolling 5% demand
bin means. The 10th and 90th percentile capacity factors for each demand bin and
each region are given (dashed).
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4.5.1 Observational comparison

Reanalysis datasets are often used in place of observations due to their consistent,

gridded representation of weather and climate. However the reanalysis fields can be

biased with respect to the raw observations. To test the validity of the ERA-Interim

generated wind power capacity factors, equivalent factors have been established us-

ing observed wind speeds. The HadISD dataset (Dunn et al., 2012) gives quality

controlled sub-daily, 10m wind speed measurements at various locations across GB

(Figure 4.6). To compare the wind power generated using either observed or reanaly-

sis wind speeds, ERA-Interim equivalents of the observations are made. Wind power

is calculated using 10m ERA-Interim wind speeds, at the nearest ERA-Interim land

grid point to each wind speed observation. A minimum of four wind power values

are required to make a daily mean at any location and then a minimum of 4 values

per region to make a regional daily mean. The relationship between wind power

and demand is similar when using either ERA-Interim or observed wind speeds

(Figure 4.6). ERA-Interim wind speeds can therefore be considered sufficiently rep-

resentative to assess the countrywide demand – wind power relationship.

4.5.2 Wind power – demand relationship, using average cold

spell demand

Previous studies investigating the demand – wind power relationship, present de-

mand as a percentage of the average cold spell (ACS) demand (Zachary et al., 2011;

Brayshaw et al., 2011; Zachary and Dent, 2012; Harrison et al., 2015). ACS demand

is defined as the peak demand within a year which has a 50% chance of being ex-

ceeded as a result of weather variation alone (National Grid, 2012b). Peak demand

in this context is defined as the maximum daily demand during a financial year.

The reduction in wind power with increasing electricity demand (seen in Fig-

ure 4.3) is also seen when using this alternative representation (Figure 4.7, left), in

agreement with previous studies (Zachary and Dent, 2012; Harrison et al., 2015).

The upturn in wind power during high and extreme electricity demand is however

much stronger using this ACS representation, with wind power capacity factors

above 0.6 when demand is greater than 105% of ACS demand. This upper tail

reflects the strong easterly winds associated with cluster 1.

Although this form of the relationship gives the average wind power during the

very highest demand conditions, it is based on very few extreme demand days (see

red line). This representation does not require the same number of observations
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Figure 4.6: Top left: Variation in GB average wind power capacity factor with win-
ter percentile of the GB daily electricity demand, based on HadISD 10m observed
wind speeds (black) and ERA-Interim 10m wind speeds nearest to the observation
locations (red), when averaged over 1% (dashed) and 5% (solid) demand bins. Wind
capacity factors have been calculated with constant density (1.225km/m3) and as-
suming the same power curve characteristics as for 60m winds. Top right: Observed
(HadISD) 10m wind power capacity factor when averaged over GB (black, solid),
and regional means: North-west (green), North-east (blue), South-west (orange),
South-east (grey). The 10th and 90th percentile capacity factors for each demand
bin and each region are given (dashed). Capacity factors are presented as rolling
5% demand bin means. Bottom: location of HadISD observations.
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Figure 4.7: Variation in GB average wind power capacity factor (black) and bin
count (red) with percentile of average cold spell electricity demand, averaging over
1% bins (dashed) and 5% bins (solid). Left: full period (1979 – 2013), right: second
half of period (1996 – 2013).

per bin unlike when using percentiles of demand, consequently the number of ob-

servations greatly reduces as the event becomes more rare. The uncertainty in the

average wind power availability during peak demand is highlighted by looking at the

relationship over a shorter period. If only the most recent half of the data period is

considered (1996–2013), the upturn is barely seen and very low wind power occurs

at the highest demand, as seen previously (Zachary and Dent, 2012; Harrison et al.,

2015). In this more recent period, peak demand is more frequently driven by the

Greenland high weather type, explaining the lower average wind power availability

seen. An assessment of the frequency of the high demand weather types using longer

historical sea level pressure records would allow a better representation of this upper

tail when using the ACS representation.

4.5.3 The role of weather patterns

In the extra-tropics, large scale weather patterns in the lower atmosphere play a

dominant role in shaping the weather experienced at the surface. The important
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weather features, such as low and high pressure systems, can be identified from a

surface pressure field adjusted for the height of any topography. This is referred

to as mean sea level pressure (MSLP). We therefore compare the average MSLP

field during different demand conditions. Two demand categories are defined: low

and high demand, representing the lower and upper 5% of winter demand days

respectively, each containing 90 days. On average, a low or high demand day would

be expected to occur two to three times per winter (only considering work days).

During low demand in winter, high pressure is centred over France and Spain,

with low pressure centred over Iceland on average (Figure 4.8). This stronger than

average pressure difference across the North Atlantic, resembles the positive phase of

the NAO. Associated with this pattern are generally stronger westerly winds (winds

from west to east) and higher temperatures (Hurrell, 1995). The air temperature

across GB is over 3◦C higher than normal and wind power is often >20% above

normal, with capacity factors ∼0.5 onshore, and >0.7 in many offshore regions.

In contrast, during high electricity demand, high pressure extends from Russia

and Scandinavia across GB on average, with anomalously high pressure in northern

Europe and anomalously low pressure in southern Europe (Figure 4.8). These neg-

ative NAO type conditions typically produce colder, calmer conditions in northern

Europe (Hurrell, 1995). Cold easterly winds (winds from east to west) cause GB

temperatures to fall below freezing and wind power is lower than average across all

of GB (onshore capacity factors are typically <0.4, whilst offshore >0.5). Greatest

reductions in wind power are seen over Scotland (>30% lower than average). The

third column in Figure 4.8 will be discussed in section 4.8.

The reduction in wind power with increasing demand in winter can therefore

be explained by variations in the atmospheric pressure pattern over north-western

Europe. A proxy for this field is the north-south (meridional) pressure difference

over GB (red line, Figure 4.3 left). This is calculated by averaging the mean sea

level pressure over the two regions shown in Figure 4.8, upper left (northern region

: 27◦W–21◦E, 57◦N–70◦N, southern region: same longitudes, 38◦N–51◦N) and then

subtracting the southern pressure from the northern pressure. A positive difference

implies generally easterly winds, and a negative difference westerly winds. The

greater the magnitude of the pressure difference, the stronger the resultant winds.

The reduction in wind power with increasing winter demand seen in Figure 4.3 is

consequently associated with a weakening of both the meridional pressure difference

and the westerly winds. Minimum average wind power occurs when there is little

pressure difference (grey lines, Figure 4.3), associated with high pressure sat directly
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Figure 4.8: Mean of MSLP, (mb, top), 2m temperature (◦C, 2nd row), temperature
anomaly (◦C, 3rd row), wind power capacity factor (%, fourth row) and wind power
capacity factor anomaly (% difference from climatology, bottom) during low (left
column), high (middle column) and peak (right column) GB electricity demand,
01/01/1979 – 31/03/2013. Anomalies are relative to the winter climatology. Gray
boxes in upper left panel show the regions over which the pressure is averaged prior
to calculating the pressure difference. 98
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over GB (Brayshaw et al., 2012). The upturn in wind power during higher demand

is associated with a reversed and strengthening meridional pressure difference, and

strengthening easterly winds.

Average air density over GB increases as demand in winter increases, due to

a reduction in temperature and an increase in pressure. However the impact of

density changes on the wind power – demand relationship is minimal. Using constant

density would only over-estimate the reduction in wind power between higher and

lower demand in winter by approximately 3%.

4.6 High electricity demand

To better understand the spatial and temporal variation of wind power during high

demand days, we determine the dominant weather patterns during high demand

and their respective wind power availability. K-means clustering (Wilks, 2006) is

applied to the mean sea level pressure fields of all high demand days. Four clusters

are found to adequately represent the daily variability in the pressure field and are

shown in the left-hand column of Figure 4.9. These clusters highlight the typical

pressure patterns seen during a high demand day.

4.6.1 Clustering methodology

K-means clustering is a non-hierarchical clustering technique that requires the num-

ber of clusters to be specified in advance. The minimum number of clusters found

to minimise the pattern correlation ratio (Huth, 1996) was four, when averaged over

100 repetitions (Figure 4.10). The k-means clustering algorithm systemically assigns

each daily MSLP field to the cluster most similar to itself, by choosing the cluster

which minimises the absolute difference between the sample and the cluster centroid

(the average of the fields within that cluster). An area weighting (cosine of latitude)

is applied to this difference to account for the bunching of grid points towards the

polar regions. The cluster centroids are updated after every reassignment, progres-

sively moving the centroids away from their original random number fields. The

assignment of each day is repeated a number of times to minimize the variability

within each cluster and maximize the variability between clusters.

The whole clustering process is repeated 100 times, allowing the most robust

cluster set to be established. Across the cluster bootstrap, the cluster origins change

and the ordering of the high demand days is also jumbled to ensure the cluster set

is not dominated by the order of the first few high demand days. To determine
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Figure 4.9: The cluster centroids over high demand days (MSLP, hPa, left column)
and the standard deviation of each cluster across the bootstrap (hPa, right column).
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Figure 4.10: The variation in the pattern correlation ratio (PCR, left), the within
cluster correlation (middle) and the between cluster correlation (right) with number
of clusters chosen. The PCR is the between cluster correlation divided by the within
cluster correlation.

the most representative cluster set across the bootstrap, the following two step pro-

cedure is undertaken. Firstly the clusters within each cluster set are ordered to

best match the order of the first set. This is done by choosing the cluster order

that maximises the sum of the cluster by cluster pattern correlation. Secondly, the

average pattern correlation between one set and another is calculated, by taking

the average correlation of the ordered cluster pairs. The set with the highest av-

erage pattern correlation with all other sets is chosen as the most representative.

The cluster centroids are robust, as the variability in pressure across the bootstrap is

small compared to the strength of the pattern (see right hand column of Figure 4.9).

4.6.2 High demand weather types

The four high demand weather patterns show that high pressure in the region plays

an important role in generating high electricity demand in GB, in agreement with

Brayshaw et al. (2012). Each cluster has a similar occurrence frequency (ranging

from 19% – 32% of high demand days, see Figure 4.11). High pressure is found over

Scandinavia/Scotland (clusters 1 and 2), over central and northern Europe (cluster

3) and over Greenland and the North Atlantic (cluster 4), causing the advection of

cold air over GB by easterly, south-easterly or northerly winds respectively.

During each high demand weather type, anomalously low temperatures are
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Figure 4.11: The cluster centroids over high demand days (MSLP, hPa, left column).
The average 2m temperature anomaly (◦C, middle column) and wind power capacity
factor anomaly (% difference from climatology, right column) when averaged across
all days in each cluster. Anomalies are relative to the winter climatology from
01/01/1979 – 31/03/2013. This cluster set is the set most representative of the
bootstrap, see section 4.6.1 for details.
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found across GB, with daily average temperatures often below freezing (Figure 4.11,

and Figure 4.12). This is expected, given the strong anti–correlation between elec-

tricity demand and temperature in winter (Thornton et al., 2016). However, spatial

wind power availability differs across the weather types. For example, the strong

north-south pressure difference over GB in cluster 1, gives wind power 20% higher

than normal over most of England and Wales (capacity factor >0.4 onshore and

>0.7 offshore). In contrast, a high pressure over Greenland and weak pressure over

GB (cluster 4), gives wind power at least 40% below normal (capacity factors of

<0.3 on land and <0.5 offshore).

GB average wind power can vary across days with the same weather type (Fig-

ure 4.13, left), reflecting the daily variation in both the pattern and its magnitude.

Even with this variation it is clear that high demand days with wind power above the

winter average are predominantly generated by the Scandinavian high and Atlantic

low pressure patterns (clusters 1 and 2 respectively, see dots above the red line). In

contrast, the central European and Greenland high pressure patterns predominantly

give daily capacity factors below the winter average (clusters 3 and 4 respectively).

In Chapter 5, to explore seasonal prediction skill, a method is developed to

identify whether a given day can be classified as a high demand day based on the

similarity of its pressure field to one of the identified high demand weather types.

The Spearman rank correlation between the number of high demand days per winter

and the number of identified high demand weather type days per winter is 0.57. This

highlights that it is possible to have a day with a similar large-scale pressure field to

one of the high demand weather types, but without high demand actually occurring

and vice versa. This reflects the fact that the weather patterns describe the large-

scale pressure pattern across North-western Europe, rather than the localised flow

direction over GB which is critical for determining demand. However, even with

this caveat, the number of high demand weather type days per winter is found to

be a skilful predictor of winter demand (see Chapter 5).
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Figure 4.12: The cluster centroids over high demand days (MSLP, hPa, left column).
The average 2m temperature (◦C, middle) and wind power capacity factor (%, right)
when averaged across all days in each cluster. The cluster set is the set most
representative of the bootstrap, see section 4.6.1 for details.
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1
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Figure 4.13: Daily electricity demand and GB mean wind power capacity factor
(left) and mean 2m temperature (right) during high demand days. Each day is
coloured by its MSLP cluster number (see figure 4.11). The mean properties for
each cluster are indicated by a large circle. The vertical grey line defines the lower
boundary of the peak demand days and the horizontal red lines mark the winter
average wind power capacity factor (left) and temperature (right).

4.7 The wider European picture

The weather patterns that bring low temperatures and high demand to GB, also

cause anomalously low temperatures across many parts of Europe, both on average,

and during individual types (Figures 4.8 and 4.11 respectively). This is particularly

true for the northern half of Europe where temperatures can be 6◦C below the winter

average. Given the strong relationship between electricity demand and temperature

in many European countries (Bessec and Fouquau, 2008), high energy demand is

therefore likely in neighbouring countries during high GB demand.

The majority of Europe also experiences below average wind power during high

GB demand on average (Figure 4.8, middle column, bottom row). Many countries

have onshore wind power capacity factors <0.2, 20% or more lower than normal.

Spain and Portugal are the exception, with much higher wind power than normal

(>40% higher), although capacity factors are still only ∼0.2 onshore and ∼0.4 off-

shore. The anti-correlation between the wind field of GB and Iberia (Monforti et al.,

2016) reflects the shift in the location of the storm track between the two phases of

the NAO (Hurrell and Deser, 2009).
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Considering individual weather types, during windy, high demand days in GB,

the North Sea, northern Germany and Denmark also have above average wind power,

as these regions also sit between the two pressure centres (cluster 1, Figure 4.11).

However when GB has below average wind power (clusters 2–4), the majority of

mainland Europe also has below average wind power (capacity factors <0.2). The

main exception is the Iberian Peninsula during cluster 2, where capacity factors

>0.3 (Figure 4.12).

4.8 Peak electricity demand

Peak demand days are of great interest to the energy industry. By their nature

they are rare. Here we define peak demand as the top 1% of winter GB demand

days, representing 18 days over the 34 year period. With this definition, a peak

demand day would be expected to occur on average once every other winter (only

considering work days). It is recognised that the sample size is small, but it is worthy

of consideration for analysis because of the importance of days with the very highest

demand.

The average MSLP pattern associated with peak electricity demand in GB is

similar to that during high demand, but more intense (Figure 4.8, right column).

The reversed pressure difference is stronger (Figure 4.3), resulting from higher pres-

sure over Scandinavia and deeper pressure over south-western Europe. Strengthened

easterly winds give rise to temperatures below -3◦C across GB and near average wind

power.

The full range of high demand weather types are also seen during peak demand

(Figure 4.13), giving a wide range of average GB wind power, from very low (cluster

4, capacity factor of ∼0.1) to very high (cluster 1, capacity factor of ∼0.8). In

this limited sample, half of the peak demand days have wind power above the

winter average. The spike in wind power during peak demand seen in Figure 4.3, is

therefore explained by the higher percentage of cluster 1 type days. Interestingly,

over this period the very highest demand appears to occur when temperatures are

very low and wind power is very high, associated with strong easterly winds (cluster

1, Figure 4.13). This suggests that either the higher wind speed directly increases

demand, or the higher wind speeds are needed to bring larger quantities of cold

air over GB, causing the very low temperatures and consequent very high demand.

The former would support the use of a wind chill factor in peak electricity demand

estimation, as used by National Grid (Taylor and Buizza, 2003).
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Of particular concern is low wind power availability during peak demand. Clus-

ter 4 is therefore of interest as the Arctic air flow can generate very low temperatures

and very low wind power. During the 18 peak demand events investigated here, only

3 days have this weather type, all of which occurred during December 2010 (3 yel-

low points, Fig 4.13). During these days, wind power availability was very low both

onshore and offshore (capacity factors <0.2). The relatively small number of years

considered here limits our estimation of the likelihood of such peak demand events.

An improved estimation could be made by assessing the likelihood of such weather

types in a longer historical record or using large ensembles of model simulations.

4.9 Discussion

The availability of wind power during different electricity demand conditions in

Britain is analysed between 1979 and 2013. We use daily observations of total GB

demand and estimate wind power availability using reanalysis wind speeds and an

idealised wind power model.

For the majority of the year, as demand increases, average available wind power

also increases. However in winter, average wind power reduces by a third between

lower and higher demand. This winter relationship is shown to be driven by the

large scale weather patterns affecting Northern Europe. The change from predomi-

nantly strong, warm, westerly winds, to colder, calmer, easterly winds explains the

reduction in wind power supply as demand increases. However, contrary to what

is often believed, during high demand we find a modest recovery in average wind

power, which is associated with a reversed north-south pressure gradient and the

building of high pressure to the north of GB.

These average relationships hide considerable daily variability, where for a given

demand, a wide range of wind power availability is possible. We find that during

high and peak demand, a range of high pressure weather types generate similarly

cold conditions over GB, but varying wind power supply. Approximately one-third

of high demand days have wind power above the winter average, and two-thirds

below. However, in our limited sample of peak demand days, although days do exist

with very little onshore and offshore wind power, half of days have above average

wind power, due to more days with strong easterly winds.

The characterisation of the relationship between electricity demand and wind

power supply in Britain, should help both in the short term management of the

energy system and in longer term planning. Wind power and demand are currently
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estimated using short term weather forecasts and demand and supply models. Un-

certainty in the forecast of the proportion of demand met by wind power relates

to both the accuracy of the weather forecast and the validity of the demand and

generation models. Our analysis helps to explain the varying contribution of wind

power and should help operational managers better interpret forecast information.

For example, the range in possible wind power availability for a given demand can

be reduced if the weather type is known.

Here we show that wind power can contribute to the supply mix during high

and peak demand. The relationship is complex such that certain weather types

provide good wind power, whilst others limit availability. The spatial distribution

of wind power availability varies across these weather types, indicating that a spread

of wind turbines across GB would maximise the average availability of wind power

during high demand. In addition, the percentage reduction in wind power supply

with increasing demand is lower offshore than onshore, suggesting offshore wind

power is better placed to aid security of supply. This analysis highlights the risk of

wide-scale high electricity demand and low wind power days across many parts of

Europe, associated with large scale high pressure systems. Neighbouring countries

may therefore struggle to provide additional capacity to GB when its demand is

high and its wind power low.

Having identified the weather types important for the security of electricity

supply in GB, such a classification will allow an assessment of their predictability

on a range of timescales and also of possible changes in a changing climate.
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Skilful seasonal prediction of

winter gas demand

5.1 Abstract

In Britain, residential properties are predominantly heated using gas central heating

systems. Ensuring a reliable supply of gas is therefore vital in protecting vulnerable

sections of society from the adverse effects of cold weather. Ahead of the winter,

the grid operator makes a prediction of gas demand to better anticipate possible

conditions. Seasonal weather forecasts are not currently used to inform this demand

prediction. Here we assess whether seasonal weather forecasts can skilfully predict

the weather-driven component of both winter mean gas demand and the number of

extreme gas demand days over the winter period. We find that both the mean and

the number of extreme days are predicted with some skill from early November using

seasonal forecasts of the large-scale atmospheric circulation (r > 0.5). Although

temperature is most strongly correlated with gas demand, the more skilful prediction

of the atmospheric circulation means it is a better predictor of demand. If seasonal

weather forecasts are incorporated into pre-winter gas demand planning, they could

help improve the security of gas supplies and reduce the impacts associated with

extreme demand events.

5.2 Introduction

Gas demand in Britain is dominated by demand for residential and commercial

heating (National Grid, 2017). Consequently gas demand is highly anti-correlated
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with temperature (Pearson correlation, r = −0.90, Thornton et al. 2016), with

demand increasing as temperatures fall. Ensuring a reliable supply of gas is therefore

critical to protect more vulnerable sectors of society from cold-related illnesses. The

energy supply system is under most pressure during winter, when cold snaps drive

peak demand (Thornton et al. 2016, 2017), competition for gas supplies and high

energy prices, as for example occurred in early March 2018 (National Grid, 2018).

To ensure security of supply the energy system operator assesses the energy situation

ahead of the winter. They predict total winter demand, possible extreme gas demand

conditions, necessary storage requirements and likely available supplies (National

Grid, 2017). Current predictions of winter demand do not consider any seasonal

weather forecast information. Instead, average winter conditions are assumed and

then risks associated with historical weather related peak demand events are assessed

(National Grid, 2017). Seasonal forecast information, if skilful, offers the potential

to improve the estimates of winter gas demand and improve security of supply.

Seasonal forecasting of winter climate in North-western Europe and the Atlantic

has improved over the last decade (Scaife et al., 2014b; Athanasiadis et al., 2017).

The North Atlantic Oscillation (NAO) is the dominant mode of winter variability

in this region and its phase dictates the general characteristics of the winter pe-

riod, including average temperature, wind speed and storminess over much of the

European continent (Hurrell, 1995). Skilful forecasts of the winter NAO are now

possible (Scaife et al., 2014b; Athanasiadis et al., 2014; Dunstone et al., 2016) and

this has been shown to be useful for predicting impacts on society, such as sea ice

cover (Karpechko et al., 2015), transport delays (Palin et al., 2016) and river flows

(Svensson et al., 2015).

The use of seasonal forecast information by the energy industry is in its infancy

with only a few studies demonstrating their potential benefits (De Felice et al. 2015;

Clark et al. 2017; Torralba et al. 2017; Bett et al. 2017; Troccoli et al. 2018), and to

date none have addressed gas demand forecasting. Clark et al. (2017) have shown

that skilful forecasts of winter mean wind power density and electricity demand in

the UK are possible using forecasts of wind speed and the NAO respectively. This

result combined with the fact that gas demand is more strongly anti-correlated with

temperature than electricity demand (Thornton et al. 2016; DECC 2013) suggests

that seasonal weather forecasts may also allow skilful gas demand forecasts. In

addition, the energy industry’s desire for tailored seasonal forecast information is

high, as demonstrated by the positive feedback following a recent Met Office winter

trial, where seasonal weather forecast briefings were provided.
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The aim of this paper is to assess the skill in forecasting the weather-driven

component of both winter mean gas demand and the number of high gas demand

days over winter, using seasonal forecasts of climate. Winter is defined as the months

of December, January and February and the skill of the 3-monthly average forecast

from early November is assessed, giving a lead time of one to three months.

5.3 Data and methodology

5.3.1 Gas demand data

A dataset of the daily total gas demand of Great Britain (GB) covering the pe-

riod April 1996 to March 2018, in giga (109) Watt hours (GWh), was provided

by National Grid. The gas demand value represents the total demand from resi-

dential and large industrial premises (non daily-metered and daily-metered demand

respectively) and includes shrinkage (gas leaks and theft). It does not include gas

consumers directly connected to the national transmission network, such as gas-fired

power stations and large industrial units (National Grid, 2012a). The variation in

daily demand over the 22 year period is shown in black in the upper panel of fig-

ure 5.1, where a clear annual cycle is evident, with higher demand during the colder

winter months and lower demand during the warmer summer months.

The variation in winter mean demand is shown in figure 5.2 (dotted black line)

and highlights a general reduction over the 22 year period. The demand variability is

only weakly anti-correlated with winter mean temperature variability (r = −0.39),

much lower than might be anticipated given the known drivers of gas demand.

Thornton et al. (2016) demonstrated that low-frequency variability in both elec-

tricity and gas demand over a similar period was not driven by temperature, but

was rather thought to relate to socio-economic changes over the period. Possible

reasons for the reduction in gas demand over the period include more efficient gas

boilers, better home insulation with more double glazing, increasing gas prices and

a continued shift away from heavy industry (BEIS, 2017).
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Figure 5.1: Upper: Daily GB gas demand timeseries (black) and harmonic fit
(red), April 1996–March 2018. Lower: Daily GB gas demand timeseries where
low-frequency variability has been removed. N.B. These plots are an extension of
those in Figures 3.1 and 3.7
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Figure 5.2: The winter mean of GB gas demand (‘D’, black dotted), demand time-
series where low-frequency variability has been removed (‘Dd’, solid black) and UK
mean temperature (‘T’, red). Pearson correlation coefficients (r) are also given
highlighting the much closer relationship between demand and temperature once
low-frequency demand variability has been removed. The winter year is labelled
according to the January and February of the winter.
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To accurately assess the weather-driven component of gas demand and its pre-

dictability, much of the demand variability that is not driven by the weather needs

firstly to be removed. Thornton et al. (2016) developed a methodology to remove

demand variability on timescales greater than 5 years (referred to as low-frequency

variability), whilst retaining demand variability on a daily, seasonal and inter-annual

timescale. This approach is used here and the first step involves identifying the

slowly evolving background demand. This is achieved by fitting a smoothly evolv-

ing second order Fourier expansion to the daily demand data and is shown in red in

figure 5.1. A gradual reduction in both the annual mean gas demand and magni-

tude of the annual gas demand cycle is seen over the data period. This background

demand is then removed from the daily demand timeseries and replaced with a

climatological-mean annual demand cycle. The resultant demand timeseries, where

low-frequency variability has been removed, is used in the subsequent analysis and

is shown in black in the lower panel of figure 5.1. The highest daily demand over

the data period can be seen to shift from the winter of 2003 to 2018 (compare upper

and lower panels). Full details of the methodology to remove low-frequency demand

variability are given in Thornton et al. (2016).

Following the removal of low-frequency demand variability, the strength of the

correlation between winter mean temperature and demand increases from −0.39 to

−0.87, better reflecting the known relationship (Thornton et al. 2016, see figure 5.2).

The low-frequency variability in observed winter temperature over the 22 year period

is small. Consequently, when the 5-year running mean temperature trend is removed,

its correlation with demand barely changes (r = −0.85).

The predictability of two characteristics of the winter gas demand are inves-

tigated, the winter mean gas demand and the number of high demand days per

winter.

5.3.2 Seasonal forecast data

The Met Office’s global environment model (HadGEM3-GC2, Williams et al. 2015)

consists of global models of the atmosphere, the land surface (Best et al., 2011),

the ocean (Madec, 2008) and sea-ice (Hunke and Lipscomb, 2010). Both the opera-

tional seasonal forecast system, GloSea5 (MacLachlan et al., 2015), and the decadal

prediction system, DePreSys3 (Dunstone et al., 2016), are built around this same

model. The atmosphere component has a resolution of 0.83◦ longitude and 0.55◦

latitude (about 60km at mid-latitudes), with 85 vertical levels and an upper bound-

ary at 85km. The ocean model’s resolution is 0.25◦ in both latitude and longitude,
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with 75 vertical levels.

In GloSea5 a set of retrospective forecasts, called a ‘hindcast’ set, is available for

winters 1993–2016. Ten ensemble hindcast members are available from each calendar

week. The three nearest weeks of hindcasts centred around the desired start time are

collected together. For example, for a winter forecast of Dec–Jan–Feb with a one-

month lead time, we use the hindcast start dates of 25th October, 1st November and

9th November, giving a total of 30 ensemble members per winter. The DePreSys3

hindcast set is available for winters 1981–2018 and includes 40 ensemble members

initialised on the 1st November. In both systems, ensemble member differences are

created using a stochastic physics scheme (MacLachlan et al., 2015).

Although small differences in initialisation exist between the GloSea5 and De-

PreSys3 hindcast sets, the two ensembles are considered to be directly comparable

(Scaife et al., 2014b; Dunstone et al., 2016), giving a combined ensemble set of 70

members for winters 1997 to 2016. This large size is beneficial as the prediction skill

of a system typically improves with ensemble size, because the noise between en-

semble members is reduced, leaving a clearer ensemble mean forecast signal (Scaife

et al., 2014b; Eade et al., 2014; Siegert et al., 2016; Scaife and Smith, 2018).

5.3.3 Climate Predictors

Various climate indices are considered as possible predictors of winter gas demand

based on atmospheric temperature or the large scale pressure field. These climate

indicators are calculated for both observations and forecasts. As a proxy for obser-

vations, the gridded 6-hourly instantaneous data sets of the ‘Interim’ version of the

ECMWF Reanalysis (ERAI, Dee et al. 2011) are used. The data has a resolution of

0.75◦ longitude by 0.75◦ latitude and is available over the gas demand data period.

Three variables are used, 2m temperature, mean sea level pressure (MSLP) and the

geopotential height of the 500hPa pressure level (Z500). The 6–hourly data is firstly

averaged to a daily mean value and then the following indices are calculated:

• Winter mean UK temperature : temperature is averaged over the region of

10◦W–5◦E and from 50–60◦N to give a UK mean temperature.

• Winter mean NAO: The MSLP is averaged over the regions of Iceland (63–

70◦N, 25–16◦W) and the Azores (36–40◦N, 28–20◦W) (Dunstone et al., 2016).

For each region the winter pressure anomaly from the long term climatology

is established and then the difference in these anomalies (Azores − Iceland) is
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determined. The same diagnostic of the geopotential height field on the 500hPa

pressure level is used to give a mid–troposphere NAO index (NAOZ500).

• Winter mean UK North-South pressure difference (∆P): Thornton et al. (2017)

found that the winter variation in GB daily electricity demand was strongly

influenced by the regional pressure field to the north and south of the UK.

An index was defined as the difference in pressure between a northern box

(27◦W–21◦E, 57–70◦N) and a southern box (same longitudes, 38–51◦N), for

regions see figure 4 in Thornton et al. (2017). This is effectively a measure

of the average westerly winds over the UK. This more UK centred pressure

difference index is used here and a mid-tropospheric version is again calculated

using the difference in the geopotential height field of the 500hPa pressure level

(∆Z).

• Number of high demand weather type days per winter (NWT ): Thornton et al.

(2017) found that four large-scale high pressure weather patterns drive low

temperatures and high electricity demand in the UK (see figure 4.11, Chapter

4). The weather types were identified by applying K-means clustering to the

daily MSLP fields of the wider region. Here we explore whether predictions of

the number of such days per winter is a good predictor of winter gas demand.

A day is defined as a high demand weather type day if it is sufficiently similar

to one of the previously identified cluster centroids. To test the similarity two

distance measures are used. A day must have both a higher pattern correlation

with a cluster centroid and a smaller absolute pressure difference from that

centroid, than the member within the original cluster which is most dissimilar

to its centroid.

The same climate indices are also calculated using the forecast data. An index

is calculated for each ensemble member individually and then these are averaged

to give an ensemble mean index. Due to the significant signal to noise issue when

predicting the climate in the mid-latitudes (Scaife et al., 2014b; Eade et al., 2014;

Scaife and Smith, 2018), the ensemble mean climate index is used as the climate

predictor, rather than the individual ensemble member values. From here onwards,

‘climate index’ refers to the combined ensemble mean of the climate index.

5.3.4 Methods for assessing forecast skill

For a climate index to be a skilful predictor of gas demand, it must have both a

strong observed relationship with gas demand and be well predicted by the climate
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forecast system itself. Both are assessed using correlation coefficients: the Pearson

correlation (rP ) when the variables are continuous (e.g. winter mean gas demand,

temperature) and the Spearman rank correlation (rS) if either of the variables is

discrete (e.g. the number of high demand days per winter).

Skill in predicting gas demand is established by assessing the relationship strength

between the forecast climate index and the observed gas demand variable, following

the approach of Bett et al. (2017). The ability of the climate index to predict above

median, above upper tercile or the correct tercile of winter demand is assessed using

the Heidke skill score (HSS).

To assess probabilistic forecast skill, a linear regression model is made between

observed winter mean demand and the forecast climate index. The skill of proba-

bilistic forecasts for the demand categories above can then be assessed, using the

Brier and Rank Probability Skill Scores (BSS and RPSS respectively), employing

leave-one-out cross validation. A preliminary assessment of the reliability of the

probabilistic forecasts is also given. For a comprehensive description of the different

statistical measures see Wilks (2006).

5.4 Results

5.4.1 Using temperature as a predictor of winter mean gas

demand

Figure 5.3 summarises the prediction skill of winter mean gas demand using temper-

ature as the predictor. As discussed previously, observed winter mean temperature

is strongly anti-correlated with GB winter mean gas demand (rP = −0.87, see fig-

ure 5.3a, this is a repeat of figure 5.2, and is included to allow comparison with the

predictions). The skill in forecasting winter mean temperature across North-western

Europe and the Atlantic is shown in figure 5.4. Temperatures are skilfully forecast

over many areas of the North Atlantic and over Scandinavia. In contrast there is

little skill over continental Europe. Much of the skill over the ocean is however

related to the low-frequency warming trend, such that when the 5 year running-

mean winter-mean temperature trend is removed the prediction skill is negligible

over most of the North Atlantic (not shown). There is significant skill in predicting

the average temperature over the UK region, but the correlation magnitude is still

relatively small (rP = 0.38, see Table 5.1 and figure 5.3b). A similar skill level is

found when a 5 year running-mean temperature trend is removed.
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Figure 5.3: Using temperature to predict winter mean gas demand. a) Timeseries
of the winter mean GB gas demand and winter mean temperature. b) Timeseries
of winter mean temperature and winter mean hindcast temperature. c) Regression
relationship between hindcast temperature and observed demand (blue), the predic-
tion interval (central 95% - light grey, central 75% - dark grey), and the observed
terciles of gas demand are shown (red dashed lines). d) Timeseries of winter mean
gas demand (black) and central regression prediction (blue) and prediction inter-
val (grey). The Pearson correlation coefficients (rP ) are given for a) - c). Note,
the temperature axes are inverted in a) and b) to allow easier comparison with gas
demand.
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Temperature skill
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Figure 5.4: Map of the winter mean temperature forecast skill: the Pearson correla-
tion coefficient between hindcast and observed temperature. Statistically significant
skill at the 5% level is shown by stippling using a 1-sided Fisher Z test.

A forecast of UK average winter mean temperature is not found to be a good

predictor of winter mean gas demand. Although the Pearson correlation coefficient

between the hindcast temperature and observed demand has the correct sign (neg-

ative), its low magnitude (|rP | = 0.24) means it is not statistically significant at the

5% level. A large spread in the relationship can be seen in figure 5.3c, leading to

little variation in the probabilistic prediction of winter mean demand from year to

year (figure 5.3d). Although the deterministic HSSs are positive for above median

and above upper tercile demand, the equivalent probabilistic skill scores are worse

or similar to those of a climatological forecast (e.g. RPSSter = 0.03, see Table 5.2).

In summary, although temperature variability drives a significant proportion of de-

mand variability, forecast temperature is not a good predictor of winter mean gas

demand due to the limited skill in predicting UK temperatures.

119



Chapter 5. Seasonal prediction of winter gas demand

Climate Index Obs relationship Climate Index Gas demand
(C) rP (Dobs, Cobs) skill, rP (Cobs, Chc) skill, |rP | (Dobs, Chc)

Temperature -0.87 0.38 0.24
NAO -0.62 0.63 0.40

NAOZ500 -0.66 0.63 0.55
∆P 0.70 0.60 0.49
∆Z 0.71 0.58 0.57
NWT 0.66 0.56 0.57

Table 5.1: Column 1: Pearson correlation coefficient (rP ) between winter mean gas
demand (Dobs) and observed winter mean climate index (Cobs). Column 2: The
hindcast skill in predicting the climate index (correlation of observed and hindcast
climate index). Column 3: The hindcast skill in predicting winter mean gas demand
(magnitude of correlation between Dobs and Chc). All data considers winters 1997–
2016. Bold values indicate the correlation is significant at the 5% level using a
1-sided Fisher Z test.

Climate Index HSSmed BSSmed HSSupper BSSupper HSSter RPSSter

Temperature 0 .40 0.09 0.12 -0.13 0.25 0.03
NAO 0.40 0.18 0.56 0.12 0.32 0.18

NAOZ500 0.40 0.26 0.78 0.41 0.40 0.33
∆P 0.60 0.19 0.56 0.18 0.32 0.26
∆Z 0.40 0.28 0.56 0.30 0.47 0.32
NWT 0.60 0.33 0.78 0.30 0.62 0.34

Table 5.2: A summary of verification skill scores for predicting winter mean gas
demand when using the different climate predictors. The Heidke skill Score (HSS),
the Brier Skill Score (BSS) and the Ranked Probability Skill Score (RPSS), for
above median demand (med), above upper tercile demand (upper) and considering
all terciles (ter). Scores greater than zero indicate the forecast is better than random
chance (in the case of the HSS) and better than a climatological forecast for the BSS
and RPSS, following Wilks (2006). Bold (Italics) signifies the score is significant at
the 5% (10%) level. Significance is assessed using a 1000 member bootstrap, where
the skill score is calculated between the observed demand timeseries and a randomly
sampled (without replacement) hindcast timeseries. A value is significant if it is
greater or equal to the 95th (90th) percentile of the bootstrap distribution.
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5.4.2 Using the atmospheric circulation as a predictor of

winter mean gas demand

All circulation-based indices (NAO, NAOZ500, ∆P, ∆Z and NWT ) have a strong

observed relationship with winter mean gas demand (rP of ∼ 0.6–0.7, see Table 5.1,

column 1). The UK centred circulation indices (∆P, ∆Z) have a marginally stronger

relationship with gas demand than the NAO indices, which likely reflects their better

representation of flow direction and strength over the UK. However none of the

circulation indices have as strong a relationship with demand as winter mean UK

temperature.

The skill in predicting the winter MSLP across North-western Europe and the

wider North Atlantic is shown in the left panel of figure 5.5. Skill is found at both

high (60◦–70◦N) and low (30◦–40◦N) latitudes. In contrast, over the mid-latitudes

(40◦–60◦N) including over the UK there is not significant prediction skill. A similar

picture is seen for the Z500 field (figure 5.5, right). Nevertheless, skilful predictions

of the winter mean circulation indices are possible (rP ∼ 0.6, see Table 5.1, column

2), as the indices measure the difference in pressure between the skilfully predicted

low and high latitude regions. This skill is important because it is the gradient in

pressure which drives surface weather conditions. The total number of high demand

weather type days per winter is also skilfully predicted at the 5% level (rP = 0.56).

This weather type skill effectively demonstrates skill in predicting the frequency of

days where high pressure influences the UK in winter and is consistent with previous

studies (Athanasiadis et al., 2014).

Winter mean gas demand is skilfully predicted when using any of the circulation

indices as the predictor, with correlations between hindcast index and observed

demand ranging from approximately 0.4 to 0.6 (see Table 5.1, column 3). Predictions

of winter mean demand greater than the median or upper tercile are skilful, showing

improvements over using a random or climatological forecast (scores often exceeding

0.25, see Table 5.2). For below lower tercile demand all predictors give positive HSSs

(∼ 0.3–0.6), however only NAOZ500, ∆P and ∆Z give skilful probabilistic forecasts

(BSSs of 0.05–0.12). This suggests a possible asymmetry, with better forecast skill

for higher demand winters than lower demand winters, which could be beneficial

given their larger impact.

Figure 5.6 demonstrates the skill in predicting winter mean gas demand using

∆Z as the climate predictor. The strong observed relationship between ∆Z and de-

mand is shown in figure 5.6a, and the prediction skill of ∆Z is shown in figure 5.6b.
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MSLP skill
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Figure 5.5: Map of the winter mean forecast skill for MSLP (left) and 500hPa
geopotential height (right): the Pearson correlation coefficient between the hindcast
and observed fields from 1994-2016. Statistically significant skill at the 5% level is
shown by stippling using a 1-sided Fisher Z test.

A significant linear relationship exists between observed demand and hindcast ∆Z

(r = 0.57, see figure 5.6c), leading to a variation in the forecast of gas demand from

year to year (figure 5.6d). The probability of above median demand, above upper

tercile demand, and the correct tercile category is skilfully forecast and better than

using a climatological forecast (BSSmed = 0.28, BSSupper = 0.30, RPSSter = 0.32).

Use of the linear regression model between hindcast climate index and observed

demand, means forecasts are automatically bias adjusted and probabilities are re-

liable, for example see figure 5.7. Due to the small number of winters available,

the reliability is only assessed across 4 probability bins. An operational forecast

could therefore present the risk of an event using 4 categories, e.g. the probability

(P) of above tercile demand is ‘low’ (P < 0.25), ‘below median’ (0.25 ≤ P < 0.5),

‘above median’ (0.50 ≤ P < 0.75) or ‘high’ (P ≥ 0.75), rather than giving actual

probabilities.
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Figure 5.6: Using the winter mean Z500 North-South height difference (∆Z) to
predict winter mean gas demand. a) Timeseries of the winter mean GB gas demand
and ∆Z. b) Timeseries of observed and hindcast ∆Z. c) Regression relationship
between hindcast ∆Z and observed demand (blue) and the prediction interval (grey).
d) Timeseries of winter mean gas demand (black) and central regression prediction
(blue) and prediction interval (grey). See figure 5.3 for details.
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Figure 5.7: Reliability diagrams for probabilistic forecasts of winter mean gas de-
mand using ∆Z as the climate predictor, for above median (left) and above upper
tercile (right) demand. A perfectly reliable forecast would lie along the 1:1 line
(black). The sample climatological probability is also given (red dotted). The lower
bar charts show the distribution of forecast probabilities made during the hindcast
period, ideally these would be flat, with each probability bin well sampled.

To explore how many ensemble members are needed to ensure a skilful forecast

of gas demand, figure 5.8 shows how the prediction skill varies with ensemble size.

Increasing the ensemble size from 1 to 30 leads to a rapid increase in prediction skill

(the correlation increases from ∼0.1 to 0.5). Increasing the ensemble size even more

leads to further improvements in the prediction skill, but at a much slower rate.

Nevertheless, higher skill would likely be possible with more members.

In summary, skilful prediction of winter mean gas demand is possible using a

forecast of the winter mean atmospheric circulation. The improvement over using a

temperature forecast occurs because of the better prediction skill of the circulation

indices. This may reflect the larger region over which the circulation indices are

calculated, increasing the forecast signal strength over noise. The poorer forecast

skill of the temperature index may also reflect the too weak NAO–temperature

relationship in the ensemble mean forecasts (see figure 2 of Clark et al. 2017).
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Figure 5.8: The impact of ensemble size on hindcast skill, when predicting winter
mean gas demand using winter mean ∆Z. The skill is measured using the Pearson
correlation coefficient. 1000 samples of the correlation have been generated by ran-
domly sampling the ∆Z ensemble members each winter, to give alternative hindcast
ensemble mean timeseries. The mean correlation of the bootstrap samples is shown.
For a sample size of 20, statistical significance at the 5% level using a 1-sided Fisher
Z test, is achieved with a correlation of at least 0.379.
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5.4.3 Predicting the number of high gas demand days over

the winter period

A day is classed as a high demand day if its demand is equal to or greater than the

95th percentile of daily winter demand calculated over all winters. Between 1997

and 2016 the observed number of high gas demand days per winter (‘NG’) varies

between 0 and 15 (see black line, Figure 5.9a). Winters 2010 and 2011 had the largest

number of high gas demand days, such that the energy system operator had to issue

a number of gas balancing alerts (DECC, 2011; National Grid, 2011). These alerts

encourage additional supplies of gas to become available, often following an increase

in gas price. As these events stress the energy supply system an obvious question

is whether their likelihood is predictable ahead of the winter. There is a strong

correlation between winter mean gas demand and NG (rS = 0.70). Consequently, if

mean demand is skilfully predicted, NG may also be predictable to some extent.

1995 2000 2005 2010 2015 2020
0
2
4
6
8
10
12
14
16

N
G

a) rS  =0.53

−400

−350

−300

−250

−200

−150

−100

O
b
s 
∆
Z
 (
m
)

-320 -280
Hindcast ∆Z (m)

0
2
4
6
8

10
12
14
16

O
b
s 
N
G

b)

rS  =0.64

Figure 5.9: Using atmospheric circulation to predict the number of high gas demand
days per winter (NG). a) Observed timeseries of NG and winter mean ∆Z. b) The
relationship between hindcast ∆Z and observed NG. The median count and hindcast
∆Z are indicated with a dotted red line. The Spearman rank correlation coefficients
are also given (rS).

Although observed winter mean temperature has a reasonable relationship with
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NG (rS = −0.55), temperature is not a useful predictor of NG (rS = −0.11 between

NG and hindcast winter mean temperature, see Table 5.3, column 2). All circulation

indices do however give skilful predictions of NG, with Spearman rank correlation

magnitudes of approximately 0.4 to 0.6 (same Table).

Climate Index Obs relationship NG skill
(C) rS (NGobs, Cobs) |rS| (NGobs, Chc)

Temperature -0.55 0.11
NAO -0.49 0.42

NAOZ500 -0.47 0.63
∆P 0.54 0.54
∆Z 0.53 0.64
NWT 0.55 0.57

Table 5.3: Column 1: Spearman rank correlation coefficient (rS) between observed
NG (NGobs) and observed winter mean climate index (Cobs). Column 2: Hindcast
skill in predicting NG (correlation magnitude between NGobs and Chc). All data
considers winters 1997–2016. Bold values indicate the correlation is significant at
the 5% level using a 1-sided Fisher Z test.

A demonstration of the prediction skill of NG, using winter mean ∆Z as the

predictor, is shown in figure 5.9. Given NG is discrete and limited to positive num-

bers, linear regression is not suitable for modelling its relationship with ∆Z. Due to

the small sample size there is also considerable uncertainty in the form of the rela-

tionship between observed ∆Z and the NG. Consequently we do not try to model

the relationship, rather we assess the prediction skill using a deterministic approach.

Figure 5.9b shows the relationship between hindcast ∆Z and observed NG. As the

predicted atmospheric flow over the UK becomes less westerly (i.e. ∆Z becomes less

negative), NG increases. The contingency table for above median counts show that

the hit rate is far higher than the false alarm rate (see Table 5.4), leading to a HSS

of 0.6 (statistically significant at the 5% level using a 1000 member bootstrap as per

Table 5.2). For above upper tercile counts, the HSS is positive (HSS = 0.34) but it

is not statistically significant at either the 5% or 10% levels. Very similar results are

found for the other atmospheric circulation predictors, whilst a temperature based

prediction is no better than when using a random forecast (HSS ≤ 0).

In summary, given a forecast of the atmospheric circulation, we can give a skilful

forecast of above median counts of the number of high gas demand days per winter.

A longer timeseries is needed to assess the predictability of winters with a higher

number of high demand days.
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Above median Observed
count Yes No

P
re
d
ic
te
d

Yes
8 2

Hits False alarms

No
2 8

Misses Correct rejections

Hit rate: 80%
False alarm rate: 20%

Table 5.4: Contingency table for above median count of the number of high demand
days per winter, using ∆Z as the predictor.

5.5 Conclusions

The predictability of the weather-driven component of Britain’s winter gas demand

is assessed from early November using a range of climate predictors. Two compo-

nents of gas demand are considered: winter mean gas demand and the number of

high demand days over the winter period. The forecast skill is analysed from 1997 to

2016 using a large ensemble of retrospective climate forecasts from the Met Office’s

seasonal and decadal prediction systems. The climate predictors analysed are winter

means of temperature, the NAO and a UK centred North-South pressure difference

(at the surface and in the mid-troposphere). An additional predictor, based on the

frequency of high demand weather types over the winter period, is also analysed.

Forecast skill is assessed using a range of deterministic and probabilistic skill mea-

sures with a focus on the risk of higher demand winters. The main conclusions

are:

• All circulation-based indices give skilful forecasts of winter mean gas demand.

This is because such indices are both strongly correlated with gas demand and

are skilfully predicted ahead of the winter period.

• A method for giving operational gas demand forecasts is demonstrated, based

on a regression relationship between the climate predictor and observed gas

demand. Skilful and reliable probabilistic forecasts of the risk of above median,

above upper tercile and the correct tercile of winter mean demand are possible.

• A large ensemble of hindcast members is needed to give a skilful prediction

of winter mean gas demand, reflecting the known signal to noise problem of

seasonal forecasting in the Atlantic sector.
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• Although winter mean temperature is the climate index most highly correlated

with winter mean gas demand, due to the lower seasonal prediction skill of

temperature, it does not give skilful predictions of winter mean demand.

• A skilful forecast of above median counts of the number of high gas demand

days per winter is possible using a forecast of the winter mean atmospheric

circulation.

The skilful prediction of winter gas demand demonstrated here, offers the poten-

tial for improved planning and resilience of Britain’s energy system. For example, a

more accurate forecast of winter demand could reduce the risk of gas supply short-

ages and related energy price spikes. It would be of interest to assess the skill of

winter demand forecasts with a longer lead time, for example from early September

or October, and when averaged over a shorter period, such as individual months,

as both would clearly be useful. The use of an atmospheric circulation index to

predict energy demand could also give skilful forecasts in other regions, provided

demand is driven by the weather and skilful circulation forecasts are available. Sea-

sonal weather forecasts offer the first outlook for the coming winter, but they should

be used in conjunction with other nearer term forecasts, such as monthly outlooks

through to day ahead forecasts, to maximise the preparedness of the energy industry

for extreme demand events.
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Conclusions

This PhD aims to improve the understanding of the impacts of weather and atmo-

spheric circulation on Britain’s energy system in winter. It explores how atmospheric

variability influences both the demand for electricity and gas and the availability

of wind power. Particular attention is paid to weather-driven extremes of energy

demand, due to their significant impact on the wider energy system. Their magni-

tude and likelihood is quantified and their driving atmospheric circulation patterns

identified. To better understand the contribution that wind power can make to the

security of energy supplies, the availability of wind power during extreme demand

is analysed. In addition, to potentially improve the energy sector’s preparedness for

winter, the ability of seasonal climate forecasts to predict the weather-driven com-

ponent of winter energy demand is explored. A summary of the findings for each

thesis question posed and their place within the wider literature, is given below.

6.1 Energy demand variability

6.1.1 How has Britain’s energy demand varied over the re-

cent period and what has driven this variability?

Observed daily electricity and gas demand in GB have been analysed between 1975-

2013 and 1996-2013 respectively. Long term trends in annual mean demand are seen,

with demand peaking in the early to mid 2000s. Although temperature has been

shown to be the dominant weather driver of demand variability in Britain (Psiloglou

et al., 2009), it cannot explain the long-term trends seen here, rather socio-economic

drivers are thought to be responsible. A strong correlation between demand and the
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strength of the economy is found prior to the peak in demand. However, after the

demand peak, this relationship breaks down and other socio-economic drivers such

as embedded generation and energy saving measures are thought to be responsible

for the subsequent decline in demand. Once such low-frequency demand variability

is removed, both electricity and gas demand are strongly anti-correlated with daily

mean temperature (relec = -0.90 , rgas = -0.94). After taking the annual cycles of tem-

perature and demand into account, winter has the strongest demand-temperature

relationship. Approximately two-thirds of electricity demand variability, and over

four-fifths of gas demand variability are linearly accounted for by temperature vari-

ability. In winter there is also high temperature sensitivity, with a 1◦C reduction

in daily temperature typically giving a ∼1% increase in daily electricity demand

and a 3% – 4% increase in daily gas demand. Compared to electricity demand,

gas demand is found to have a stronger anti-correlation with temperature, a larger

relative annual cycle, a weaker weekly cycle and a greater sensitivity to temperature

change. These differences are consistent with the higher proportion of gas demand

that is consumed for domestic heating compared to electricity demand.

Advances relative to previous research (Hor et al. 2005, Psiloglou et al. 2009)

include: a new method for removing non-weather driven demand variability; quan-

tification of the demand-temperature relationship in each season and identification

of the season with the strongest relationship; and a comparison of the influence of

temperature on gas and electricity demand.

6.1.2 What is the risk and magnitude of weather-driven ex-

treme demand events today?

Artificial estimates of daily demand have been made back to 1772 using detrended

temperature observations and the modern demand–temperature regression relation-

ships. The current risk and magnitude of weather-driven extreme demand events

have then been quantified. The 1 in 20 year peak day electricity and gas demand

estimates are approximately 15% and 45% above the last decade’s average win-

ter demand respectively. The coldest day over the last ∼240 years (once the long

term trend has been removed) would have resulted in an electricity and gas demand

estimate of 17% and 57% above the average winter day respectively.

The month of December 2010 and the winter of 2009/2010 are recent examples

of very cold GB conditions (Maidens et al. 2013, Cattiaux et al. 2010). The risk

today of a month having at least as much electricity or gas demand as December
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2010 is estimated to be one in ∼34 years (20–60 years). The risk of a winter having at

least as much electricity or gas demand as the 2009/2010 winter is estimated to be

one in ∼18 years (12–27 years). The long term trend in temperature means that the

risk of a December 2010 or a winter 2009/2010 demand has approximately halved.

This appears to be the first assessment of weather-driven extreme energy de-

mand risk in the published literature.

6.2 The balance of electricity demand and wind

power

The availability of wind power during different electricity demand conditions in GB

has been analysed between 1979 and 2013. Daily wind power availability has been

estimated using reanalysis wind speeds and an idealised wind power model. This

wind power estimate has then been compared with daily observations of total GB

electricity demand.

6.2.1 What is the relationship between wind power and

electricity demand and to what extent can it be ex-

plained by meteorology?

For the majority of the year, as demand increases, average available wind power

also increases. This reflects the variation in temperatures and wind speeds with

season, with calmer, warmer conditions in summer and cooler, windier conditions

in late autumn and early spring. However in winter, average wind power reduces by

a third between lower and higher demand. This winter relationship is shown to be

driven by the large scale weather patterns affecting Northern Europe. The change

from predominantly strong, warm, westerly winds, to colder, calmer, easterly winds

explains the reduction in wind power supply as demand increases.

During highest winter demand a modest recovery in average wind power is found.

This partial recovery is associated with a reversed north-south pressure gradient, the

building of high pressure to the north of GB and strengthening easterly winds. These

average relationships hide considerable daily variability, where for a given demand,

a wide range of wind power availability is possible.

These results confirm the generally positive relationship between GB wind power

and electricity demand across the year and the negative relationship in winter (Sin-
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den, 2007), and the general influence of weather patterns on demand and wind power

supply (Oswald et al. 2008, Leahy and Foley 2012, Brayshaw et al. 2012). Advances

include: quantification of the reduction in wind power with increasing electricity

demand, discovery of the partial recovery in wind power during highest demand;

the dependence of the demand-wind power relationship on the north-south pressure

difference across the UK; and the associated contrasting influence of westerly versus

easterly weather patterns.

6.2.2 Can wind turbines provide power during high demand

periods?

Approximately one-third of high demand days have wind power above the winter

average, and two-thirds below. This is caused by a range of high pressure weather

types which generate similarly cold conditions over GB, but varying wind power

supply. For example, high pressure over Scandinavia typically produces high demand

and above average wind power in GB, associated with cold, strong easterly winds.

In contrast, high pressure over Greenland typically produces high demand but below

average wind power, caused by cold, but weak northerly winds over GB. However,

during peak demand, although days do exist with very little onshore and offshore

wind power, half of days have above average wind power, due to more days with

strong easterly winds.

These findings demonstrate that wind power can contribute to the supply mix

during high and peak demand. However, the relationship is complex, such that

certain weather types provide good wind power, whilst others limit availability. The

spatial distribution of wind power availability varies across these weather types,

indicating that a spread of wind turbines across Britain would maximise the average

availability of wind power during high demand. Offshore wind power is also found

to be more consistent, with a smaller percentage reduction in wind power supply

with increasing demand.

The range in available wind power found during high electricity demand days,

explains the range in results seen previously in the published literature (Oswald

et al. 2008, Zachary and Dent 2012, Harrison et al. 2015, Sinden 2007, Zachary

et al. 2011, Brayshaw et al. 2012), especially given the short data lengths often

considered. Advances relative to previous research include: quantification of the

likelihood of different wind power supply conditions during high electricity demand;

identification of the variety of weather patterns responsible for generating high GB
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demand; and mapping of the spatial variation in wind power availability during the

different high demand weather types.

6.2.3 Can interconnection help improve the security of en-

ergy supply?

There is a risk of concurrent high electricity demand and low wind power days across

many parts of Europe, associated with extensive high pressure systems. Neighbour-

ing countries may therefore struggle to provide additional capacity to GB when its

demand is high and its wind power low. The Iberian Peninsula is the main excep-

tion, where demand is likely to be near normal and wind power higher than normal,

when the British energy system is under strain.

Previous research has highlighted the north-south dipole in winter mean wind

speeds across Europe under different phases of the NAO and its potential impacts

on wind power (Hurrell 1995, Brayshaw et al. 2011, Ely et al. 2013, Jerez et al.

2013). The research here has demonstrated that at the daily timescale, under the

different high GB demand weather types identified, the north-south dipole in wind

speeds across Europe broadly remains. This variation in wind power across Europe

under different weather regimes has subsequently been confirmed by Grams et al.

(2017).

6.3 Seasonal predictability of energy demand

The predictability of the weather-driven component of Britain’s winter gas demand

has been assessed using climate forecasts beginning in early November. The forecast

skill has been analysed from 1997 to 2016 using a large ensemble of retrospective

climate forecasts from the Met Office’s seasonal and decadal prediction systems. The

climate predictors analysed include winter means of temperature, the NAO, a UK

centred north-south pressure difference (at the surface and in the mid-troposphere)

and the frequency of high demand weather types over the winter period. Low-

frequency variability in gas demand, which is not driven by temperature but thought

to relate to socio-economic changes, has been removed prior to analysis of prediction

skill.
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6.3.1 Can seasonal weather forecasts predict winter mean

gas demand and the number of high gas demand days

over the winter period?

Skilful forecasts of winter mean gas demand are possible using a prediction of winter

mean atmospheric circulation. This skill arises because the circulation indices are

both strongly correlated with gas demand in observations, and they are also skilfully

predicted ahead of the winter period. Predictions of winter mean demand greater

than the median or upper tercile are skilful, showing improvements over using a

climatological forecast. Such skill is only achieved with a sufficiently large ensem-

ble of hindcast members, reflecting the known signal to noise problem of seasonal

forecasting in the Atlantic sector (Scaife and Smith, 2018). Although winter mean

temperature is the climate index most highly correlated with winter mean gas de-

mand, due to the lower seasonal prediction skill of temperature, it does not give

skilful predictions of winter mean demand.

A skilful forecast of above median counts of the number of high gas demand

days per winter (∼ 1 per winter) is possible using a forecast of the winter mean

atmospheric circulation. However, a longer timeseries of demand data and seasonal

hindcasts is needed to assess the predictability of winters with a higher number of

high demand days.

This is the first study to demonstrate skill in predicting winter mean GB gas

demand and the number of high demand days over the winter period. The assess-

ment builds on the electricity demand study of Clark et al. (2017) by extending the

range of circulation predictors considered, assessing probabilistic skill and exploring

extreme demand risk.

6.4 Implications and recommendations for future

work

This research has shown that aspects of the British energy system are strongly

influenced by the diverse range of weather conditions experienced in winter. The size

of Britain’s land mass and coastal regions means the energy system is highly sensitive

to synoptic scale weather systems, which are a dominant feature of the winter climate

in the North Atlantic region. The combination of synoptic weather systems and the

strong meridional and zonal temperature gradients in the region produce a very
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variable winter climate in Britain. Energy demand and wind power supply are

shown to be highly sensitive to meteorological conditions and consequently they are

also highly variable.

6.4.1 Extreme energy demand

Understanding the risk of extreme demand periods is crucial for maintaining security

of supply and resilience of the energy system. However given energy demand records

are relatively short, gaining reliable extreme demand estimates is challenging. Here,

the use of much longer climate records to better determine weather-driven demand

risk is demonstrated. This could be further extended by use of initialised climate

model simulations, referred to as the ‘UNSEEN’ methodology (Thompson et al.,

2017). A large ensemble of hindcast runs from a coupled prediction system (e.g.

GloSea5 or DePreSys3), for the recent period, could be mined to explore the risk of

historical and unprecedented GB temperature extremes. The benefits of this method

are twofold: the total length of the model simulations available is significantly longer

than the observational record; and the use of a recent, initialised hindcast set means

the simulations are representative of today’s climate.

Given the weather types associated with high demand have been established,

the risk of demand extremes could also be estimated using the frequency of high

demand weather types in observational records or model simulations. A similar

analysis could also be applied to climate model projections to assess the risk of

high demand periods in the future. Operational memory of historical energy system

events is relatively short, with mitigation efforts often focussed on the most recent

extreme impacts. Through an improved estimation of weather-driven extreme de-

mand risk, the resilience of the current energy system to climate variability can be

better understood.

6.4.2 Supply - demand balance

The balancing of electricity supply and demand is becoming ever more complicated

due to the increase in variable generation sources, such as wind power. The research

in this PhD has highlighted the important role that atmospheric circulation plays in

the balance between wind power and electricity demand. This improved understand-

ing could help the industry and Government in the following ways: to improve the

interpretation of how a particular weather forecast may impact the supply-demand

balance; to better quantify the contribution that wind power can make within the
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wider energy system; and to better understand how the planned increase in both

wind power capacity and electricity demand (associated with the electrification of

heating), could influence the future management of the energy system.

The real-time balancing of electricity supply and demand is very complex, with

multiple sources of generation needing to be considered and limited transmission

capacity. Building on the research here, an improved assessment of the impact of

weather and climate variability on the supply-demand balance could be achieved.

Firstly, a more realistic GB wind power estimate could be determined by taking

account of the current distribution and characteristics of the GB turbine fleet (for

example as done by Cannon et al. 2015). Secondly, other renewable sources such as

solar and hydro-power could be included in the assessment. Thirdly, the analysis of

supply and demand could be undertaken at a higher temporal resolution, to better

reflect the sub-hourly management of the system. For example, climate reanalyses

at an hourly resolution are available and could be combined with sub-daily demand

data, to better assess the energy balance across the day. Fourthly, climate data

could be applied to more sophisticated models of the GB electricity system, to

better account for transmission constraints.

This analysis of GB energy demand and wind power supply could also be re-

peated using climate projection data, to understand how the future energy balance

in winter could be affected by anthropogenic climate change. In addition, if summer

temperatures in Britain increase sufficiently into the future, then air-conditioning use

could increase markedly. The availability of wind and solar power during heatwave-

driven demand peaks could consequently become important and would also be worth

investigation.

6.4.3 Forecasting of energy demand

The use of short-term weather forecasts in the management of the energy system is

now common place. However the use of forecasts with a longer lead-time is much

more limited, due to the increase in forecast uncertainty. Recent European Union

funded research programs are helping to raise awareness of seasonal forecast skill

and are encouraging the use of seasonal forecasts by the wider energy industry (e.g.

Troccoli et al. 2018). This PhD highlights that even though seasonal predictions can

only skilfully forecast the general characteristics of winter climate in the North At-

lantic region, they can still provide information that is potentially useful for Britain’s

energy industry. This and other research (e.g. Clark et al. 2017), suggests it is

timely to begin operational production of climate driven energy demand forecasts
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for Britain in winter. To ensure the effective use of such probabilistic forecasts, close

collaboration between industry practitioners and climate forecast producers would

be needed.

This research has focussed on the seasonal predictability of winter (December to

February) energy demand, with forecasts initialised in early November. The current

‘Winter Outlook’ report produced by National Grid, is released in mid-October. To

fully inform this report a winter forecast with a longer lead time would be beneficial,

such as forecasts initialised in early September, or early October. An assessment of

forecast skill for both longer lead times and for other periods during the winter (e.g.

January to March) would therefore be worth undertaking.

Feedback from a recent Met Office trial where monthly and seasonal climate

forecasts were shared with the energy industry, highlighted that monthly forecasts

were deemed most useful. Monthly climate forecasts were used to better anticipate

energy price fluctuations and energy system running costs, to inform trading posi-

tions and to estimate the risk of coming energy shortages. An assessment of the

ability of climate forecasts to predict month ahead energy demand would conse-

quently be worth undertaking. In addition, given blocking high pressure systems

and their related cold-waves put Britain’s energy system under significant strain,

improved understanding of the mechanisms and predictability of such events at the

monthly and seasonal timescale would also be very useful.

6.5 Concluding remarks

This PhD has highlighted the significant impact of weather and climate variability

on the British energy system in winter. Atmospheric circulation is found to play an

important role in the generation of weather-driven extreme demand events and in

the contribution that wind power can make in meeting that demand. The better

quantification of extreme demand risk and the availability of skilful winter demand

forecasts, should help the energy industry better prepare for and manage weather-

driven demand variability. With the drive to reduce the emissions of greenhouse

gases and to increase renewable energy generation, knowledge of the impacts of

weather on the energy system will become increasingly important.
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6.6 Personal research ambitions

This PhD has given me a strong interest in our ability to forecast societally relevant

impacts a season or more ahead. Within this PhD I have focussed on how to estab-

lish the underlying climate - impact relationship, explored the synoptic conditions

associated with extreme impacts and investigated our ability to give a relevant sea-

sonal forecast. I have shown that atmospheric circulation and dynamics are critical

to many aspects of this work, although I have not spent much time exploring the

underlying mechanisms of the climate system. The breadth of dynamical processes

that can influence the winter in the North Atlantic and European region makes

its study fascinating. I would consequently like to better understand the interac-

tion of different forcing factors on European climate, such as the influence of the

stratospheric polar vortex or the tropical Pacific. It would also be interesting to

understand the role of these teleconnections in mid-latitude blocking and whether

their contribution varies between Greenland and Scandinavian blocking events, given

their differing impacts.

The ability of climate models to represent these key teleconnections is funda-

mental for successful forecasting of winter climate in the North Atlantic and Eu-

ropean region. I am keen to better understand the current deficiencies of seasonal

forecast models and to help investigate those that are particularly relevant for end

user decision making. For example, a small change in the location of a persistent

blocking high can greatly influence the weather experienced in the UK over an ex-

tended period. A study of the ability of current seasonal systems to forecast the

details of the atmospheric circulation relevant for UK winter climate would therefore

be very interesting. Also I would like to investigate the ability of models to forecast

within season variability, for example if any large scale shifts during the season are

expected, or if there is a changing risk of extreme events.

Decision makers often have a set timetable for making their decisions throughout

the year, consequently an assessment of the skill of seasonal forecasts across the year,

with differing lead times, would improve the usability of such forecasts. With the

recent improvements in decadal forecasting of European climate, it would also be

interesting to explore whether the current level of prediction skill is useful for societal

decision making. For example, is the skill of forecasting annual mean temperature

or accumulated rainfall, or their variation through the seasons, useful for energy

demand or water resource planning? Alternatively, can a 2 to 5 year mean forecast

of climate be informative? With the improving coordination and communication of
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seasonal and decadal forecasts, society will increasingly expect such forecasts to be

used to reduce climate related impacts. I hope to play my part in helping improve

the accuracy and the application of these forecasts.
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