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Abstract

The thesis contributes to the quantitative measurement of model risk of popular

models for market risk measures (focusing on Value-at-Risk and Expected Short-

fall, denoted by VaR and ES) and volatility forecasting in several ways, and it

consists of three main chapters.

The first main contribution is the introduction of measurement of the model

risk of ES as the optimal correction needed to pass several ES backtests. We in-

vestigate the properties of our proposed measures of model risk from a regulatory

perspective. The empirical results show that for the DJIA index, the smallest

corrections are required for the ES estimates built using GARCH models. Fur-

thermore, the 2.5% ES requires smaller corrections for model risk than the 1%

VaR, which advocates the replacement of VaR with ES as recommended by the

Basel Committee. Also, if the model risk of VaR is taken into account, then the

corrections made to the ES estimates reduce by 50% on average.

The second main contribution is the development of a new scoring function-

based model risk estimation methodology for measuring the joint model risk of

the pair of risk measures, VaR and ES, at a given significance level. A simulation

v
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study is carried out to illustrate and analyze the proposed model risk measure

across various market risk models. The newly proposed technique accounts for

a large proportion of true model risk for a wide set of models popular in the

risk management literature. An empirical analysis illustrates its application for

different asset classes. The RiskMetrics model and Historical Simulation have the

highest level of joint model risk and the highest ES model risk for various assets

among all models considered.

The third main contribution is the introduction of a new model risk estimation

methodology for volatility models based on the QLIKE loss function. The reli-

ability of the proposed measure has been verified via simulations and compared

with the theoretical model risk measure. The efficiency of volatility models can be

improved after adjusting variance estimates for model risk. In an empirical study

based on several assets, among the models considered, the RiskMetrics method,

RW1000 and the ARCH-type models are the most affected by model risk. We

find that after crises, model risk increases for poorly fitting volatility models.
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Chapter 1

Introduction

1.1 Motivation for the Thesis

Measuring, forecasting and controlling financial risk have been tremendously im-

portant amongst academics, policymakers, regulators and finance practitioners,

as suggested by Christoffersen (2012), Andersen et al. (2013), McNeil et al. (2015)

and others. The common categories of financial risk, which we have been dealing

with for many years, are market risk, credit risk and operational risk. Due to the

long-lasting adverse consequences of the 2008 global financial crisis, the Federal

Reserve (2011) raises awareness of model risk and provides supervisory guidance

on managing model risk (also see the guidelines of the European Banking Au-

thority, 2014). From their point of view, the term model refers to a quantitative

approach or system that digests inputs and produce quantitative estimates using

statistical, economic, financial techniques and assumptions, and the use of models

1



1.1. Motivation for the Thesis 2

invariably comes with cost. Model risk can negatively affect the decisions of reg-

ulators and risk managers in evaluating the risks and defining capital adequacy

requirements, as well as lead to financial losses for institutional investors who

heavily depend on models in making investment decisions.

Regarding the increasingly extensive use of models and the growing complexity

of models, model risk is prevailing and inevitable, for example, in pricing models

and risk measurement models, so measuring and managing this type of risk are

becoming necessary and nontrivial. In order to manage model risk properly like

other types of risk, the regulators suggest that banks should identify the sources

of model risk and assess the magnitude of model risk. Based on the significant

work of Kerkhof et al. (2010) which first distinguishes the sources of model risk

in the context of econometric modeling, this thesis is focused on three main

components of the total model risk: 1) parameter estimation risk arises when

model parameters are inaccurately estimated, which has been frequently discussed

in the current literature; see for example, Christoffersen and Gonçalves (2005),

Hartz et al. (2006), Escanciano and Olmo (2010a) and Pitera and Schmidt (2018);

2) model misspecification risk1 arises when the model is misspecified, documented

in Cont (2006) who studies the impact of this component on the pricing models

different from our focus on the market risk models; 3) identification risk arises

when some information is not detected and considered for forecasting.

The focus of this thesis is on measuring the model risk of risk measures in

the context of market risk. Market risk, as a significant risk type, refers to the
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risk of a financial portfolio due to changes in the market prices of the underlying

assets such as stock, foreign exchange, bond and so forth. The statistical risk

measures, Value-at-Risk (VaR) and Expected Shortfall (ES), are widely accepted

for market risk measurement and management. The VaR measure quantifies the

minimum loss of holding a financial portfolio which should be only exceeded with

a small critical probability (typically 1% or 2.5%) over some time period (on

a daily basis, for example). As required by the Basel Committee on Banking

Supervision (2011), market risk should be measured by ES which is defined as

the average loss beyond the VaR threshold.

In the risk management literature (e.g. Christoffersen, 2012), VaR and ES are

often defined as positive risk measures (we follow this sign convention in Chapter

2), which can be interpreted as positive losses of the financial portfolios. However,

VaR and ES are defined as negative measures in the scoring function literature

(e.g. Fissler and Ziegel, 2016), and are interpreted as negative log returns. To keep

consistency with the scoring function literature, we use negative risk measures in

Chapter 3. For the statistical computation of VaR and ES measures, a variety of

risk models produce model-dependent risk estimates, meaning that the VaR and

ES measures are exposed to model risk that occurs when a potentially not-well

suited risk model leads to imperfect risk estimates (the definition of model risk

is taken from Barrieu and Scandolo, 2015).

Also, the forecasting of the volatility of financial times series plays a crucial

role in estimating risk measures and other applications in the financial world,
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for example, in pricing sophisticated derivatives. The current extensive volatility

modeling literature covers the family of autoregressive conditional heteroscedas-

ticity (ARCH) models, stochastic volatility models as well as realized volatility

models, in a univariate or multivariate setting (see a comprehensive overview of

volatility models in Bauwens et al., 2012). Naturally, the use of these finan-

cial econometric techniques that compute volatility estimates invariably presents

model risk.

To manage model risk more effectively, it is of much interest to quantify the

model risk of risk models as well as of volatility models. To the best of our

knowledge, the literature on measuring the model risk of risk models or volatility

models is limited. Ideally, if for a given model the true values of target variables

(risk or volatility estimates) were observable, then one could measure model risk

based on the distance between the true values and the estimated ones. However,

the difficulty in measuring the model risk of risk or volatility estimates is that the

target variables are latent and not observed ex-post, so the measurement of model

risk becomes challenging. The ultimate goal of this thesis is to quantify model

risk, account for this type of risk as part of capital requirements as requested

by the regulatory authorities, and further facilitate the advance of model risk

management.
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1.2 Overview of the Thesis

This thesis offers several model risk estimation methodologies which are aimed

at numerically estimating the model risk of market risk models or univariate

volatility models.

Firstly, this thesis quantifies ES model risk as a correction required for ES

estimates of a given model in order to pass several ES backtests jointly, which

links model error and statistical testing. In terms of ES backtesting, a time

series of desirable ES forecasts should have an appropriate frequency of exceptions

which refer to the realized observations (e.g., returns) beyond the corresponding

VaR (e.g. VaR in returns), the absence of volatility clustering in the tail and

a suitable magnitude of the exceptions. Regarding these desirable criteria, we

mainly implement the unconditional/conditional coverage test for ES of Du and

Escanciano (2016), and the Z2 test of Acerbi and Szekely (2014) (additionally,

the exceedance residual test of McNeil and Frey, 2000 is used as an alternative to

the Z2 test). Such a backtesting-based correction methodology for ES can be a

practical method to improve ES estimates, and whilst not perfect, this provides

a possibility of measuring ES model risk.

Moreover, Artzner et al. (1999) argue that effectively regulated measures of

risk (market and nonmarket risks) should satisfy the coherence properties, namely,

monotonicity, translation invariance, subadditivity and positive homogeneity. We

examine whether the aforementioned properties hold for our proposed ES model
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risk measure from a regulatory perspective. For our chosen measure of ES model

risk which considers the unconditional and conditional coverage tests for ES

jointly, all the desirable properties hold except for the subadditivity.

Additionally, we analyze the impact of VaR model risk on ES model risk,

primarily for two reasons: 1) for a given model, VaR model risk can affect the

calculations of ES estimates, as the inaccuracy of VaR estimates is carried over

to the estimated ES which is often a by-product of the VaR estimation procedure

(see, e.g. Patton et al., 2019); 2) in terms of this proposed backtesting-based

correction technique, wrong VaR estimates may distort the backtesting results,

thus leading to inappropriate corrections of ES estimates.

The empirical analysis shows that the 2.5% ES is less affected by model risk

than the 1% VaR across different models, thus advocating the replacement of the

1% VaR with the 2.5% ES. Also, if VaR model risk is removed first, then the

corrections made to the ES estimates reduce by 50% on average.

Secondly, this thesis develops a scoring function-based model risk estimation

methodology that fills in a gap between the scoring function literature and the

model risk literature. As the optimal risk estimates can be uniquely obtained via

minimizing the expected score of a given scoring function within the FZ class

(Fissler et al., 2016) that is strictly consistent for the pair of risk functionals

(VaR, ES), we estimate the joint (VaR, ES) model risk of a certain risk model

as the average distance between the estimated (VaR, ES) and the improved pair

of (VaR, ES) estimates based on a given FZ scoring function over a model risk
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evaluation window, as well as estimate ES model risk solely as a by-product.

To allow comparisons with true model risk, we illustrate the newly proposed

model risk estimation methodology with a simulation study in which three specific

FZ scoring functions are used. We find a high similarity between the true and

estimated values of joint (VaR, ES) model risk as well as for ES model risk using

a wide set of models popular in the risk management literature, as evidenced by

correlations varying from 0.8 to 0.987 and an explanatory power of our proposed

model risk measures above 50%. Our proposed scoring function-based model

risk measures satisfy all coherence properties of a measure of risk except for the

subadditivity in the simulated scenarios numerically.

We also conduct an empirical study to highlight the application of the scoring

function-based model risk estimation method for different asset classes, showing

that the RiskMetrics method and Historical Simulation have a very high level of

joint model risk and ES model risk, among all the models considered, particularly

during crisis periods. In addition, the models suffering from model risk, which

fail the backtests, can survive the backtesting procedure after adjusting the risk

estimates for model risk.

Risk models and volatility models share the latent feature of the target pre-

diction(s), so the scoring function-based model risk estimation methodology for

market risk models is extended to the analysis of model risk measurement of

volatility models.

Thus, this thesis introduces a model risk estimation methodology based on
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the MSE or QLIKE loss function to quantify the model risk of volatility models.

This analysis not only reinforces the model risk estimation methodology based

on scoring functions but contributes to measuring model risk in the volatility

forecasting literature. The MSE and QLIKE loss (scoring) functions which are

strictly consistent for volatility estimates are considered due to their widespread

use in assessing the accuracy of volatility models (Patton, 2011). We estimate

the model risk of volatility models based on the distance from the raw volatility

estimates to the improved ones obtained by minimizing the expected score of

MSE or QLIKE loss function, considering two different optimization strategies:

1) the first one is via making additive adjustments on the volatility estimates and

2) the second is via making multiplicative adjustments on the volatility estimates.

In a simulation analysis, we consider different optimization strategies to im-

prove on variance estimates, compare different lengths of optimization windows

and model risk evaluation windows, and then recommend the QLIKE-based model

risk estimation methodology with additive adjustments made to the volatility es-

timates, as we find that the proposed method leads to high correlations, averaging

from 0.88 to 0.98, between the estimated and true model risk measures. Particu-

larly the technique based on an optimization window τ2 = 500 and a model risk

evaluation window n1 = 250 is highly consistent with the true model risk mea-

sure, and can explain 65% of the true model risk on average across the models.

We examine the coherence properties of a reasonable measure of model risk for

our proposed technique, and find that the required properties are satisfied.
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In an empirical study, we explore the effect of different volatility proxies (the

squared return and the 5-min realized variance, respectively) on the proposed

QLIKE-based model risk measures, concluding that the model risk measure using

the squared return as volatility proxy generally produces a higher level of model

risk for the badly fitting models (the RiskMetrics method, RW1000 and the ARCH

models), compared with the model risk measure that uses the realized variance.

The level of estimated model risk based on the QLIKE loss function is not sensitive

to the use of the volatility proxy across various models in general. After adjusting

variance estimates for model risk, the degree of predictability of volatility models

has been improved as evidenced by an increase in the values of adjusted R2 of the

MZ regressions. In addition, applying our proposed methodology to several asset

classes, we find that the RiskMetrics method, the historical volatility measure

RW1000 and the ARCH-type models are most affected by model risk, and that

the volatility models applied to various assets carry a higher level of model risk

during stressed market states than in normal market states, as expected. We also

show that model misspecification risk generally plays a more dominant role than

parameter estimation risk.

1.3 Original Contributions

The model-dependent estimates of market risk models or univariate volatility

models are undoubtedly affected by the model risk of these models per se. With
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the growing awareness of model risk management, measuring the magnitude of

model risk becomes essential but challenging. This thesis, consisting of three

main chapters, contributes to quantifying the model risk of common models in the

context of standard market risk measures (VaR and ES) and volatility forecasting.

(1) Firstly, the original contributions of estimating ES model risk include:

• we derive the theoretical formulae for the biases of ES due to estimation and

misspecification risk, as well as for the corrections of ES;

• we introduce a backtesting-based correction methodology for ES, and we provide

corrections for ES model risk;

• we consider the desirable coherence properties of a measure of risk for our

proposed method, via simulations;

• we consider the impact of VaR model risk on the model risk of ES;

• we illustrate the backtesting-based correction methodology using Monte Carlo

simulations and an empirical analysis on different asset classes.

(2) Secondly, the original contributions of estimating the joint (VaR, ES)

model risk of risk models include:

• we link model risk to the FZ class, showing the sensitivity of model ranking to

the FZ class in the presence of model risk;

• we propose a general FZ scoring function-based model risk estimation method-

ology to estimate the joint (VaR, ES) model risk and the ES model risk;

• we verify the measures of joint model risk and ES model risk via simulations;

• we examine the coherence properties of a reasonable measure of risk for the
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aforementioned measures via simulations;

• we apply this methodology to several asset classes and across various models;

• we show that adjusting for model risk has a positive effect on backtesting;

• we compare the two major model risk components, estimation risk and mis-

specification risk, of market risk models.

(3) Thirdly, the original contributions of estimating the model risk of univari-

ate volatility models include:

• we develop a model risk estimation methodology for volatility estimates based

on scoring functions;

• we recommend a model risk estimation method based on the QLIKE loss func-

tion using an additive structure, through a simulation analysis;

• we investigate the desirable coherence properties of a measure of risk for our

proposed technique via simulations;

• we apply the QLIKE-based model risk estimation method to different asset

classes and across various models;

• we consider the effect of volatility proxy on our proposed method empirically;

• we show that the efficiency of volatility models can be improved after adjusting

variance estimates for model risk as evidenced by an increase in the adjusted R2

of the MZ regressions;

• we decompose model risk into estimation risk and misspecification risk across

various models, and we reinforce the reliability of the proposed technique via

panel regressions of model risk components as endogenous variable.
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1.4 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 focuses on ES model

risk and proposes a backtesting-based correction methodology for ES; Chapter

3 introduces a scoring function-based model risk estimation method to quantify

the joint (VaR, ES) model risk and the individual ES model risk, of market risk

models; Chapter 4 develops a model risk estimation methodology for volatility

estimates, considering the choice of scoring function and volatility proxy. Chapter

5 summarizes the main findings and discusses further research that builds on the

findings presented in this thesis.

For a better reading experience, we make each chapter self-contained. As

such, we (re)introduce variables and abbreviations in each chapter. Whenever

possible, we endeavour to follow consistent notations throughout this thesis.

Notes

1Noticeably, some studies use the term model risk for model misspecification risk; see e.g.

Escanciano and Olmo (2010a). To avoid any confusion throughout this thesis, we distinguish

between model risk and model misspecification risk; the former refers to the total model risk,

while the latter refers to the component misspecification risk.



Chapter 2

Model Risk of Expected Shortfall

2.1 Introduction

For risk forecasts like Value-at-Risk (VaR) and Expected Shortfall (ES)1, the

forecasting process often involves sophisticated models. The model itself is a

source of risk in getting inadequate risk estimates, so assessing the model risk of

risk measures becomes vital as could be seen during the global financial crisis when

the pitfalls of inadequate modelling were revealed. Also, the Basel Committee

(2012) advocates the use of the 2.5% ES as a replacement for the 1% VaR that has

been popular for many years but has been highly debatable for its underestimation

of risk.

Though risk measures are gaining popularity, a concern about the model risk

of risk estimation arises. Based on a strand of literature, the model risk of risk

measures can be owed to the misspecification of the underlying model (Cont,

13
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2006), the inaccuracy of parameter estimation (Berkowitz and Obrien, 2002), or

the use of inappropriate models (Dańıelsson et al., 2016; Alexander and Sarabia,

2012). As such, Kerkhof et al. (2010) decompose model risk into estimation risk,

misspecification risk and identification risk2.

To address these different sources of model risk, several inspiring studies look

into the quantification of VaR model risk followed by the adjustments of VaR

estimates. One of the earliest works is Hartz et al. (2006), considering estima-

tion error only, where the size of adjustments is based on a data-driven method.

Alexander and Sarabia (2012) propose to quantify VaR model risk and correct

VaR estimates for estimation and specification errors mainly based on probability

shifting. Using Taylor’s expansion, Barrieu and Ravanelli (2015) derive the up-

per bound of the VaR adjustments, only taking specification error into account,

whilst Farkas et al. (2016) derive confidence intervals for VaR and Median Short-

fall and propose a test for model validation based on extreme losses. Dańıelsson

et al. (2016) argue that the VaR model risk is significant during the crisis periods

but negligible during the calm periods, computing model risk as the ratio of the

highest VaR to the lowest VaR across all the models considered. However, this

way of estimating VaR model risk is on a relative scale. It has been observed

that model risk affects test statistics and so hypothesis testing (West, 1996; Es-

canciano and Olmo, 2010a)3. To take the effect of model risk of risk estimates

into account, (1) an approach is to modify the test statistics (West, 1996); (2)

an alternative is to modify the risk estimates, which can be carried out in two
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different ways: (2.1) based on specific distances as in Kellner et al. (2016) and

Huggenberger et al. (2018) or (2.2) based on backtests. Kerkhof et al. (2010)

make absolute corrections to VaR forecasts based on regulatory backtesting mea-

sures. Similarly, Boucher et al. (2014) suggest a correction for VaR model risk,

which ensures various VaR backtests are passed. These studies link model error

and statistical testing, and show how backtesting can give corrections for model

estimates4. Whilst not perfect, such a methodology can be a practical tool to

improve risk estimates and provide a proxy for model risk. With the growing

literature on ES backtesting (see selected ES backtests in Table 2.B.1, Appendix

2.B), measuring the model risk of ES has become plausible.

Figure 2.1.1 shows the disagreement between the daily historical VaR and ES

with significance levels 1% and 2.5%, repectively, based on the DJIA index (Dow

Jones Industrial Average index) daily returns from 28/12/1903 to 23/05/2017.

During the crisis periods, the difference between the historical ES and VaR be-

comes wider and more positive, which supports the replacement of the VaR with

the ES measure; nevertheless, the clustering of exceptions when ES is violated is

still noticeable. In other words, the historical ES does not react to adverse changes

immediately when the market returns worsen, and also it does not immediately

adjust when the market apparently goes back to normal.

Another example is around the 2008 financial crisis, presented in Figure 2.1.2,

which shows the peaked-over-ES (α = 2.5%) and three tiers of corrections (la-

belled as #1, #2 and #3 on the right-hand side) made to the daily historical ES
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estimates (α = 2.5%), based on a one-year rolling window. Adjustment #1 with

a magnitude of 0.005 (about 18% in relative terms) added to the daily ES esti-

mates can avoid most of the exceptions that occur during this crisis. The higher

the adjustment level (#2 and #3), the more the protection from extreme losses,

but even an adjustment of 0.015 (adjustment #3) still has several exceptions.

However, too much protection is not favorable to risk managers, implying that

effective adjustments (not too large or too small) for ES estimates are needed to

cover for model risk. In this chapter, we mainly focus on several ES backtests

with respect to the following properties5 of a desirable ES forecast: one refer-

ring to the expected number of exceptions, one regarding the absence of violation

clustering, and one about the appropriate size of exceptions.

To the best of our knowledge, we are the first to quantify ES model risk as a

correction needed to pass various ES backtests (Du and Escanciano, 2016; Acerbi

and Szekely, 2014; McNeil and Frey, 2000), and examine whether our chosen

measures of model risk satisfy certain desirable properties which would facilitate

the regulations concerning these measures. Also, we compare the correction for

the model risk of VaR (α = 1%) with that for ES model risk (α = 2.5%) based on

different models and different assets, concluding that the 2.5% ES is less affected

by model risk than the 1% VaR. Regarding the substantial impact of VaR on

ES in terms of the ES calculations and the ES backtesting, if VaR model risk is

accommodated for, then the correction made to ES forecasts reduces by 50% on

average.
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The structure of Chapter 2 is as follows: Section 2.2 analyzes the sources

of ES model risk focusing on estimation and specification errors, and performs

Monte Carlo simulations to quantify them; Section 2.3 proposes a backtesting-

based correction methodology for ES model risk, considers the properties of our

chosen measures of model risk and also investigates the impact of VaR model risk

on the model risk of ES; Section 2.4 presents the empirical study and Section 2.5

concludes.

2.2 Model risk of Expected Shortfall

2.2.1 Sources of model risk

We first establish a general scheme (see Figure 2.2.1) in which the sources of model

risk of risk estimates are shown. Consider a portfolio affected by risk factors, and

the goal is to compute risk estimates such as VaR and ES. The first step is the

identification of risk factors, and this process is affected by identification risk,

which arises when some risk factors are not identified, with a very high risk of

producing inaccurate risk estimates. The next step is the specification of risk

factor models which, again, will have a large effect on the estimation of risk.

This is followed by the estimation of the risk factor model (this, in our view, has

a medium effect on the risk estimate). In step 3, the relationship between the

portfolio P&L and the risk factors is considered and the formulation of this model

will have a high effect on the estimation of the risk. The estimation of this will



2.2. Model risk of Expected Shortfall 20

have a medium effect on the risk estimation. Step 4 links the risk estimation with

the dependency of the P&L series on the risk factors.

For example, when computing the VaR of a portfolio of derivatives, step 1

would identify the sources of risk, step 2 would specify and estimate the models

describing these risk factors (underlying asset returns most importantly), step 3

would model the P&L of the portfolio as a function of the risk factors, and in

step 4 the risk model would transform P&L values into risk estimates.

The diagram shows that the main causes of model risk of risk estimates are

(1) identification error, (2) model estimation error (for the risk factor model, the

P&L model or the risk model), which arises from the estimation of the parameters

of the model and (3) model specification error (for the risk factor model, the

P&L model or the risk model), which arises when the true model is not known.

Other sources of model risk that may give wrong risk estimates are, for example,

granularity error, measurement error and liquidity risk (Boucher et al., 2014).

2.2.2 Bias and correction of Expected Shortfall

Most academic research on the adequacy of risk models mainly focuses on two of

the sources of model risk: estimation error and specification error. Referring to

Boucher et al. (2014), the theoretical results about the two sources of VaR model

risk are presented in Appendix 2.A. In a similar vein, we investigate the impact

of the earlier mentioned two errors on the ES estimates, deriving the theoretical
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Figure 2.2.1: Risk estimation process

Input: financial data

Step 1:

a) Risk factor identification (H)

Step 2:

a) Risk factor model specification (H)

b) Risk factor model estimation (M)

Step 3:

a) P&L model specification (H)

b) P&L model estimation (M)

Step 4:

a) Risk model specification (H)

b) Risk model estimation (M)

Output: risk estimates

This diagram shows the sources of model risk of risk estimates. H and M represent high
and medium impacts on risk estimates, respectively.

formulae for estimation and specification errors, as well as correction of ES. VaR6,

for a given distribution function F and a given significance level α, is defined as:

V aRt(α) = −inf{q : Ft(q) ≥ α}, (2.2.1)

where q denotes the quantile of the cumulative distribution F. ES, as an abso-

lute downside risk measure, measures the average losses exceeding VaR, taking

extreme losses into account; it is given by:

ESt(α) =
1

α

∫ α

0

V aRt(u)du (2.2.2)
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Estimation bias of Expected Shortfall

Assuming that the data generating process (DGP), a model with a cumulative

distribution F for the returns, is known and the true parameter values (θ0) of

this ‘true’ model are also known, the theoretical VaR, denoted by ThVaR(θ0, α)

and the theoretical ES, denoted by ThES(θ0, α), both at a significance level α,

can be computed as:

ThV aR(θ0, α) = −qFα = −F−1
α (2.2.3)

ThES(α) =
1

α

∫ α

0

ThV aR(θ0, u)du (2.2.4)

Now, we assume that the DGP is known, but the parameter values are not

known. The estimated VaR in this case is denoted by V aR(θ̂0, α), where θ̂0 is an

estimate of θ0. The relationship between the theoretical VaR and the estimated

VaR is:

ThV aR(θ0, α) = V aR(θ̂0, α) + bias(θ0, θ̂0, α) (2.2.5)

We also have that:

ThV aR(θ0, α)− E(V aR(θ̂0, α)) = E(bias(θ0, θ̂0, α)) (2.2.6)

where E[bias(θ0, θ̂0, α)] denotes the mean bias of the estimated VaR from the
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theoretical VaR as a result of model estimation error. Based on this, we can

write the estimation bias of ES(θ̂0, α), and we have that

ThES(θ0, α)− E[ES(θ̂0, α)] =
1

α

∫ α

0

E[bias(θ0, θ̂0, u)]du, (2.2.7)

Ideally, correcting for the estimation bias, the ES estimate, denoted by ES(θ̂0, α),

can be improved as below:

ESE(θ̂0, α) = ES(θ̂0, α) +
1

α

∫ α

0

E[bias(θ0, θ̂0, u)]du (2.2.8)

Specification and estimation biases of Expected Shortfall

However, in most cases the ’true’ DGP is not known, and the returns are assumed

to follow a different model, given a cumulative distribution (F̂ ) for the returns

with estimated parameter values θ̂1, where θ0 and θ̂1 can have different dimensions

depending on the models used and their values are expected to be different. This

gives the following value for the estimated VaR:

V aR(θ̂1, α) = −qF̂α = −F̂−1
α (2.2.9)

The relationship between the true VaR and the estimated VaR is given as:

ThV aR(θ0, α) = V aR(θ̂1, α) + bias(θ0, θ1, θ̂1, α) (2.2.10)
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where θ1 and θ̂1 have the same dimension under the specified model, but θ1

denotes the true parameter values different from the estimated parameter values

of θ̂1. Similarly:

ThV aR(θ0, α)− E(V aR(θ̂1, α)) = E(bias(θ0, θ1, θ̂1, α)) (2.2.11)

where E[bias(θ0, θ1, θ̂1, α)] denotes the mean bias of the estimated VaR from the

theoretical VaR as a result of model specification and estimation errors. Accord-

ing to equation (2.2.2), the mean estimation and specification biases of ES can

be formulated as below:

ThES(θ0, α)− E[ES(θ̂1, α)] =
1

α

∫ α

0

E[bias(θ0, θ1, θ̂1, v)]dv (2.2.12)

Correcting for these biases, the estimated ES, denoted by ES(θ̂1, α), can be im-

proved as:

ESSE(θ̂1, α) = ES(θ̂1, α) +
1

α

∫ α

0

E[bias(θ0, θ1, θ̂1, v)]dv (2.2.13)

In practice, the choice of the risk model for computing VaR and ES forecasts

is usually subjective, along with specification errors (and other sources of model

risk). In Appendix 2.C, we give a review of risk forecasting models used in this

chapter.
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2.2.3 Monte Carlo simulations

In this section, assume a simplified risk estimation process (Figure 2.2.1) so that

only one risk factor exists. Thus, the identification risk and the P&L model

specification and estimation risks are not modelled, and we are left with the

specification and estimation risks for the risk factor model and, consequently,

for the risk model, namely steps 2 and 4. Following the theoretical formulae for

estimation and specification errors of the ES estimates, Monte Carlo simulations

are implemented to investigate the impacts of these two errors on the estimated

ES.

We simulate the daily return series assuming a model, thus knowing the theo-

retical ES. Then, the parameters are estimated using the same model as specified

to generate the daily returns, thus giving the value of the estimation bias of ES,

as in equation (2.2.7). We also forecast ES based on other models to examine the

values of joint estimation and specification biases of ES, as in equation (2.2.12).

In our setup7, a GARCH(1,1) model with normal disturbances (GARCH(1,1)-

N) is assumed to be the ‘true’ data generating process, given by:

rt = µ+ εt (2.2.14)

εt = σt · zt, zt ∼ N (0, 1) (2.2.15)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (2.2.16)
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Using market data, we first estimate the parameters8 of this model. Next, we

simulate 1,000 paths of 1,000 daily returns, compute one-step ahead ES forecasts

under several different models and compare these forecasts with the theoretical

ES. The purpose of Monte Carlo simulations is to compute the perfect corrections

for the model risk of ES forecasts. The second and third columns in Table 2.2.1

present the annualized ES forecasts and theoretical ES at 5%, 2.5% and 1%.

We compare the theoretical ES given by the data generating process with the

estimated ES based on the same specification in Panel A of Table 2.2.1, showing

that the mean estimation bias is close to 0 for the 5%, 2.5% and 1% ES estimates.

Also, the estimation bias can be reduced by increasing the size of the estimation

period as suggested by Du and Escanciano (2016). The standard error of the bias

decreases when α increases, as expected. In Panel B, the mean specification and

estimation biases are computed from the theoretical ES and the historical ES. The

negative values of the bias show that the estimated ES is more conservative than

the theoretical ES, whilst the positive values of the bias refer to an estimated ES

lower than the theoretical ES. Panel C examines the specification and estimation

biases of the Gaussian Normal ES estimates. In this case, the Gaussian Normal

ES estimates are more conservative than the theoretical ES. The specification

and estimation biases of the ES estimates computed from EWMA are positive

as shown in Panel D, which requires a positive adjustment to be added to the

EWMA ES estimates.
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The specification and estimation biases in Panel B, C and D are much higher

than the estimation bias in Panel A in absolute value, indicating that the spec-

ification error has a bigger importance than the estimation error. Overall, our

results indicate that an adjustment is needed to correct for the model risk of ES

estimates.

2.3 Measuring ES model risk

2.3.1 Backtesting-based correction methodology for ES

If a data generating process is known, then it is straightforward to compute the

model risk of ES, as shown in Table 2.2.1. In a realistic setup, the ‘true’ model

is unknown, so it is impossible to measure model risk directly. By correcting the

estimated ES and forcing it to pass backtests, model risk is not broken into its

components, but the correction would be for all the types of model risk consid-

ered jointly. In this way, the backtesting-based correction methodology for ES,

proposed in this chapter, provides corrections for all the sources of ES model risk.

Comparing the ex-ante forecasted ES with the ex-post realizations of returns,

the accuracy of ES estimates is examined via backtesting. For a given backtest,

we can compute the correction needed for the ES forecasts made by a risk model,

Mj, so that the adjusted ES passes this backtest. The value of ES corrected via
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backtesting, ESBi,j, is written as:

ESBi,j(θ̂1, α) = ESj(θ̂1, α) + C∗i,j (2.3.1)

The minimum correction is given by:

C∗i,j = min{Ci,j|ESj,t(θ̂1, α) + Ci,j passes the ith backtest, t = 1, ..., T, Ci,j ≥ 0}

where {ESj,t(θ̂, α), t = 1, ..., T} denotes the forecasted ES made using model Mj

during the period from 1 to T. A correction, Ci,j = Ci,j(θ0, θ1, θ̂1, α), is needed

to be made so that the ith backtest of the ES estimates is passed successfully;

of these, C∗i,j is the minimum correction required to pass the ith ES backtest. In

this chapter, i ∈ {1, 2, 3, 4}; C1,j, C2,j, and C3,j refer to the correction required to

pass the unconditional coverage test for ES and the conditional coverage test for

ES introduced by Du and Escanciano (2016), and the Z2 test proposed by Acerbi

and Szekely (2014), respectively. Additionally, the exceedance residual test by

McNeil and Frey (2000), associated with C4,j, is an alternative to the Z2 test. By

learning from past mistakes, we can find the appropriate correction made to the

ES forecasts, through which the model risk of ES forecasts can be quantified.

In this chapter, we define model risk as MRI : Rn × VM → R+, where

MRI ((X0,t),Mj) refers to the maximum of the optimal corrections C∗i,j made to

ES forecasts of a series of empirical observationsX0,t during the period t = 1, ..., T ,
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which ensures that certain backtests I are passed. VM represents a set of models

with Mj ∈ VM . This definition can be transformed into the following definition

of model risk MR : Rn × Rn × Rn → R+:

MRI ((X0,t), (vj,t), (ej,t)) = max
I

(C∗i,j). (2.3.2)

In this notation, X, v, and e denote the empirical observations and, respec-

tively, the one-step ahead VaR and ES forecasts made for time t. The subscripts

j and i refer to the model j used to build risk forecasts and the ith backtest,

accordingly. The superscript I refers to a set of ES backtests used to make cor-

rections for ES model risk. For example, if I = {1,2,3}, we find the maximum

correction needed to pass the unconditional coverage test (UCES test), the condi-

tional coverage test (CCES test) and the Z2 test jointly. Likewise, we also consider

I = {1,2} or {1,2,3,4}. Clearly, this representation of model risk shows that it

is affected by the data and the risk model used to make VaR and ES forecasts.

In the following, for simplification we use the notation X = (X0,t), vj = (vj,t),

ej = (ej,t), and MRI = MR given I.

2.3.2 Backtesting framework for ES

Backtesting, as a way of model validation, checks whether ES forecasts satisfy

certain desirable criteria. Here we consider that a good ES forecast should

have an appropriate frequency of exceptions, absence of volatility clustering in
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the tail and a suitable magnitude of the violations. Regarding these attractive

features, we mainly implement the unconditional/conditional coverage test for

ES (UCES/CCES test), and the Z2 test (Du and Escanciano, 2016; Acerbi and

Szekely, 2014).

Exception frequency test

Based on the seminal work of (Kupiec, 1995), in which the unconditional coverage

test (UCV aR test) for VaR considers the number of exceptions, Du and Escanciano

(2016) investigate the cumulation of violations and develop an unconditional cov-

erage test statistic for ES. The estimated cumulative violations Ĥt(α) are defined

as:

Ĥt(α) =
1

α
(α− ût)1(ût 6 α) (2.3.3)

where ût is the estimated probability level corresponding to the daily returns (rt)

in the estimated distribution (F̂t) with the estimated parameters (θ̂1), and Ωt−1

denotes all the information available until t− 1.

ût = F̂ (rt,Ωt−1, θ̂1) (2.3.4)

The null hypothesis of the unconditional coverage test for ES, H1, is given by:

H1 : E
[
Ht(α, θ0)− α

2

]
= 0 (2.3.5)
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Hence, the simple t-test statistic9 and its distribution is:

UES =

√
n
(

1/n
∑n

t=1 Ĥt(α)− α/2
)

√
α(1/3− α/4)

∼ N(0, 1) (2.3.6)

Exception frequency and independence test

The conditional coverage test (CCV aR test) for VaR is a very popular formal

backtesting measure (Christoffersen, 1998). Inspired by this, Du and Escanciano

(2016) propose a conditional coverage test for ES and give its test statistic. The

null hypothesis of the conditional coverage test for ES, H2, is given by:

H2 : E
[
Ht(α, θ0)− α

2
|Ωt−1

]
= 0 (2.3.7)

Du and Escanciano propose a general test statistic to test the mth-order depen-

dence of the violations, following a Chi-squared distribution with m degrees of

freedom. In the present context, the first order dependence of the violations is

considered, so the test statistic follows χ2(1). During the evaluation period from

t = 1 to t = n, the basic test statistic0, CES(1), is written as:

CES(1) =
n3

(n− 1)2
·

(∑n
t=2(Ĥt(α)− α/2)(Ĥt−1(α)− α/2)

)2

(∑n
t=1(Ĥt(α)− α/2)(Ĥt(α)− α/2)

)2 ∼ χ2(1) (2.3.8)

Escanciano and Olmo (2010b) point out that the VaR (and correspondingly,

ES) backtesting procedure may not be convincing enough due to estimation risk
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and propose a robust backtest. In spite of that, Du and Escanciano (2016) agree

with Escanciano and Olmo (2010b) that estimation risk can be ignored and the

basic test statistic is robust enough against the alternative hypothesis if the es-

timation period is much larger than the evaluation period. In this context, the

estimation period (1,000) we use is much larger than the evaluation period (250),

so the robust test statistic is not considered.

Exception frequency and magnitude test

Acerbi and Szekely (2014) directly backtest ES by using the test statistic (Z2

test):

Z2 =
T∑
t=1

rtIt
TαESα,t

+ 1 (2.3.9)

It, an indicator function, is equal to 1 when the forecasted VaR is violated, oth-

erwise, 0. The Z2 test is non-parametric and only needs the magnitude of the

VaR violations (rtIt) and the predicted ES (ESα,t), thus easily implemented and

considered a joint backtest of VaR and ES forecasts. The Z2 score at a certain

significance level can be determined numerically based on the simulated distribu-

tion of Z2. If the test statistic is smaller than the Z2 score10, the model is rejected.

The authors also demonstrate that there is no need to do Monte Carlo simulations

to store the predictive distributions due to the stability of the p-values of the Z2

test statistic across different distribution types. Clift et al. (2016) also support

this test statistic (Z2) by comparing some existing backtesting approaches for ES.
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In the Z2 test, ES is jointly backtested in terms of the frequency and the mag-

nitude of VaR exceptions. Alternatively, we also use a tail losses based backtest

for ES, proposed by McNeil and Frey (2000), only taking into account the size of

exceptions. The exceedance residual (ert), conditional on the VaR being violated

(It), is given below:

ert = (rt + ESα,t) · It (2.3.10)

here rt denotes the return at time t, and ESα,t represents the forecasted ES for

time t. The null hypothesis of the backtest is that the exceedance residuals are

on average equal to zero against the alternative that their mean is greater than

zero. The p-value used for this one-sided bootstrapped test is 0.05.

2.3.3 Properties of measures of model risk

We introduce some basic notations and assumptions: we assume a r.v. A defined

on a probability space (Ω,F , P ), and FA the associated distribution function. If

FA ≡ FB, the cumulative distributions associated with A and B are considered

the same and we write A ∼ B. In the same fashion, we will write A ∼ F , if

FA ≡ F . A measure of risk is a map ρ : Vρ → R, defined on some space of r.v.

Vρ.

Artzner et al. (1999) propose four desirable properties of measures of risk

(market and nonmarket risks), and argue that effectively regulated measures of

risk should satisfy the four properties stated below:
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1) Monotonicity : A,B ∈ Vρ, A ≤ B ⇒ ρ(A) ≥ ρ(B).

2) Translation invariance: A ∈ Vρ, a ∈ R⇒ ρ(A+ a) = ρ(A)− a.

3) Subadditivity : A,B,A+B ∈ Vρ ⇒ ρ(A+B) ≤ ρ(A) + ρ(B).

4) Positive homogeneity : A ∈ Vρ, h > 0, h · A ∈ Vρ ⇒ ρ(h · A) = h · ρ(A).

ES is considered coherent as a result of satisfying the above four properties,

whilst VaR is not due to the lack of subadditivity (Acerbi and Tasche, 2002). As

model risk is becoming essential from a regulatory point of view, we are examining

whether the above properties hold for our proposed measure of model risk of ES.

Regarding this measure of model risk, the four desirable properties of risk

measures mentioned above are considered below:

1. Monotonicity :

1a) For a given model Mj, and two data series X, Y with X ≤ Y , it is

desirable to have that MR(X, vj, ej) ≥MR(Y, vj, ej).

1b) For a data series X, models M1,M2 ∈ VM , v1 < v2, e1 < e2, it is desirable

to have that MR(X, v1, e1) ≥MR(X, v2, e2).

The property 1a) states that the risk estimates (vj, ej) of model Mj that is

applied to the data series Y are not able to accommodate for bigger losses

associated with the data series X and thus should have a higher model risk,

which is in line with the argument of Dańıelsson and Zhou (2017). The prop-

erty 1b) is a natural requirement that, for a given return series, models that
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forecast low values of VaR and ES risk estimates should carry a higher model

risk (and require higher corrections).

2. Translation invariance:

2a) For a given model Mj, a series of data X, and a constant a ≤ vj, it is

desirable to have that MR(X + a, vj − a, ej − a) = MR(X, vj, ej).

2b) For a given model Mj, a series of data X, and a constant a ∈ R+, it is

desirable to have that MR(X + a, vj, ej) ≥MR(X, vj, ej)− a.

2c) For a given model Mj, a series of data X, and a constant a ∈ R+, it is

desirable to have that MR(X, vj + a, ej + a) ≥MR(X, vj, ej)− a.

Generally, when shifting the observations with a constant and lowering the

values of VaR and ES forecasts by the same amount, the model risk is expected

to stay constant in the case of 2a). In 2b) and 2c), if the real data or the risk

forecasts are shifted with a positive constant (a), the model risk would be

larger than (or equal with) the difference between the previous model risk and

the size of the shift.

3. Subadditivity

3a) For a given model Mj, (v1j, e1j), (v2j, e2j) and (v1+2,j, e1+2,j) are estimates

based on X1, X2 and X1 +X2, it is desirable to have that:

MR(X1 +X2, v1+2,j, e1+2,j) ≤MR(X1, v1j, e1j) +MR(X2, v2j, e2j).

The property 3a) is desirable, since we expect that the model risk is smaller in

a diversified portfolio than the sum of the model risks of the individual assets.

However, the desirability of subadditivity for measures of risk is an ongoing
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discussion. Cont et al. (2010) point out that subadditivity and statistical

robustness are exclusive for measure of risks, and that robustness should be a

concern to the regulators. Also, Krätschmer et al. (2012, 2014, 2015) argue that

robustness may not be necessary in a risk management context. Subadditivity,

expressed in this format, is not too important because we rarely use the same

model for two different data sets.

4. Positive homogeneity

4a) For a given model Mj, and a data series X, h > 0, h ·X ∈ VM , we have

that MR(h ·X, h · vj, h · ej) = h ·MR(X, vj, ej).

The property 4a) states that the change in the size of the investment is con-

sistent with the change in the size of model risk.

Property: Assuming model risk is computed as in equation (2.3.2), the following

properties will hold:

(1) For I = {1,2}, properties 1a), 1b), 2a), 2b), 2c) and 4a).

(2) For I = {1,2,3}, properties 1a), 1b), 2a) and 4a).

We mainly consider two measures of ES model risk: (1) When we compute the

model risk of ES in terms of the UCES and CCES tests (I ={1,2}), allowing for

the frequency and clustering of exceptions, all properties considered above hold,

except for subadditivity; (2) when we compute the model risk of ES in terms of

the UCES, CCES and Z2 tests (I ={1,2,3}), allowing for the frequency, clustering

and size of exceptions, 2b) and 2c) of translation invariance and subadditivity are
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not satisfied, whilst the rest still hold. Due to the nature of the Z2 test, translation

invariance is not guaranteed. This is not necessarily a problem, because shifting

data or risk estimates with a constant is not encountered routinely.

Next, let’s look at subadditivity in more detail and we are going to give an

example why it is not always satisfied for MRI={1,2,3}. Inheriting an example

from Dańıelsson et al. (2013), we consider two independent assets, X1 and X2,

but with the same distribution, specified as:

X = ε+ η, ε ∼ IIDN (0, 1), η =


0 with a probability 0.991

−10 with a probability 0.009

(2.3.11)

Based on this, we generate two series of data with 5,000 observations for X1 and

X2. Considering the Gaussian Normal or GARCH(1,1)-GPD model used to make

one-step ahead VaR and ES forecasts at different significance levels with a rolling

window of length 1,000, we measure the model risk of ES forecasts based on the

two models by the backtesting-based methodology. Then we compare the model

risk of an equally weighted portfolio of (X1 +X2), MRI
12, with the sum of model

risks of X1 and X2, MRI
1 +MRI

2, shown in Figure 2.3.1. The upper figure shows

that the model risk of ES of an equally weighted portfolio based on the Gaussian

Normal model is higher than the sum of model risks of ES of the two individual

assets at some significance levels such as 2.5%. One possible explanation for this

is that the Gaussian Normal model is not appropriate to make ES forecasts at
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these alpha levels. In the lower figure where the model used offers a better fit,

the model risk of the portfolio is much lower than the sum of model risks based

on the GARCH(1,1)-GPD model. Therefore, subadditivity is not guaranteed for

our measure of model risk. However, in our applications, similar to the second

part of Figure 2.3.1, subadditivity is satisfied when the model fits the data well.

2.3.4 The impact of VaR model risk on the model risk of

ES

The backtesting-based correction methodology for ES shows that the correction

made to the ES forecasts can be regarded as a barometer of ES model risk. VaR

has been an indispensable part of ES calculations and the ES bakctests used in

this chapter. For instance, the Z2 test (Acerbi and Szekely, 2014) is commonly

considered as a joint backtest of VaR and ES. For this reason, it is of much interest

to explore to what extent the model risk of VaR is transferred to the model risk of

ES. On the one hand, ES calculations may be affected by the model risk of VaR,

since the inaccuracy of VaR estimates is carried over to the ES estimates as seen

in equation (2.2.2). On the other hand, the wrong VaR estimates may have an

impact on backtesting, thus leading to inappropriate corrections of ES estimates.

As such, the measurement of the ES correction required to pass a backtest is likely

to be affected by VaR model risk. To address this, as an additional exercise, we

compute the optimal correction of VaR for model risk (estimated at the same
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significance level as the corresponding ES) as in Boucher et al. (2014)11. Then

we use the corrected VaR for ES calculation, estimating ES corrected for VaR

model risk. Consequently, based on the backtesting-based correction framework,

the optimal correction made to the ES, corrected for VaR model risk, is gauged

as a measurement of ES model risk alone.

2.3.5 Monte Carlo simulations of ES model risk

According to the backtesting-based correction methodology for ES, we quantify

ES model risk by passing the aforementioned ES backtests based on Monte Carlo

simulations, where we simulate 5,000 series of 1,000 returns using a GARCH(1,1)-t

model with model parameters taken from Kratz et al. (2018), specified below:

rt = σtZt, σ2
t = 2.18× 10−6 + 0.109r2

t−1 + 0.890σ2
t−1, (2.3.12)

where Zt follows a standardised Student’s t distribution with 5.06 degrees of

freedom.

We implement several well known models (see details in Appendix 2.C) for

comparison, such as the Gaussian Normal distribution, the Student’s t distribu-

tion, GARCH(1,1) with normal or standardised Student’s t innovations, GARCH(1,1)-

GPD, EWMA, Cornish-Fisher expansion as well as the historical method.

It is known that ES considers average extreme losses which VaR disregards.

Consequently, it is of interest to investigate the adequacy of ES estimates in



2.4. Empirical Analysis 42

measuring the size of extreme losses and also quantify ES model risk by passing

the Z2 test inasmuch as the Z2 test considers the frequency and magnitude of

exceptions. Table 2.3.1 shows the mean values of the optimal absolute and relative

corrections (in the 3rd and 5th columns) made to the daily ES (α = 2.5%),

estimated by different methods, in order to pass the Z2 test without considering

the impact of VaR model risk on the ES calculations and ES backtesting, as

well as the mean values of the absolute and relative optimal correction (in the

4th and 6th columns) made to the daily ES after correcting VaR model risk. In

this simulation study, the data generating process is specified by GARCH(1,1)-

t as in equation (2.3.12). Thus, according to the last two rows in Table 2.3.1,

ES estimates are only subject to estimation risk measured by the mean of the

absolute optimal correction, 0.0001, which is much smaller than the mean values

of the optimal corrections associated with the other models, which are different

from the DGP. This shows that misspecification risk plays a crucial role in giving

accurate ES estimates, and also applies when we correct for VaR model risk.

The mean values of the optimal corrections made to the ES estimates generally

decrease after excluding the impact of VaR model risk on ES model risk.

2.4 Empirical Analysis

Based on the same set of models used in the previous section, we evaluate the

backtesting-based correction methodology for ES using the DJIA index from
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Table 2.3.1: Optimal correction for ES based on the Z2 test, before and after
correcting VaR

Model Mean ES Abs. C3 Abs. C∗3 Rel. C3 Rel. C∗3
(∗10−2) (∗10−2)

Historical 0.062 0.45 0.41 7.1% 6.6%
EWMA 0.046 0.73 0.70 15.7% 14.9%
Gaussian Normal 0.047 0.91 0.87 19.5% 18.4%
Student’s t 0.060 0.40 0.36 6.6% 6.0%
GARCH(1,1)-N 0.039 0.08 0.08 2.2% 1.9%
Cornish-Fisher 0.097 0.03 0.03 0.3% 0.3%
GARCH(1,1)-GPD 0.046 0.03 0.02 0.7% 0.6%
GARCH(1,1)-t 0.045 0.01 0.01 0.3% 0.3%
DGP 0.046 0.00 0.00 0.1% 0.1%

This table presents the mean values of the absolute and relative optimal correction,
obtained by passing Z2 test, made to daily ES (α = 2.5%), estimated by different models.
Based on the DGP (GARCH(1,1) with standardised student’s t disturbances), we first
simulated 5,000 series of 1,000 daily returns. Then ES estimates are obtained by using
different methods with a rolling window of length 1,000. By passing the Z2 test with
a backtesting window of length 250, the optimal correction made to the daily ES are
calculated. C3 represents the optimal corrections made to ES forecasts required to pass
the Z2 test; C∗3 stands for the optimal corrections made to the corrected ES allowing
for VaR model risk, required to pass the Z2 test.
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01/01/1900 to 05/03/2017 (29,486 daily returns in total). Based on equation

(2.3.1), we quantify the model risk of ES as the maximum of minimum correc-

tions required to pass the ES backtests12 and make comparisons among different

models, where backtesting is performed over a year. Moreover, we examine this

measure of model risk based on different asset classes by using the GARCH(1,1)-

GPD model due to its best performance shown in the case of the DJIA index.

Figure 2.4.1 shows the relative corrections made to the daily ES, estimated

at different significance levels, of four models: EWMA, GARCH(1,1)-N, Gaus-

sian Normal, and Student’s t, when considering the frequency of the exceptions

(passing the UCES test). ES forecasts are computed with a four-year moving

window and backtested using the entire sample. The level of relative corrections

is decreasing when alpha is increasing, implying that the ES at a smaller signifi-

cance level may need a larger correction to allow for model risk. Not surprisingly,

the dynamic approaches, GARCH(1,1)-N and EWMA, require smaller corrections

than the two static models in general, though the Student’s t distribution per-

forms better at capturing the fat tails than the EWMA model, for example, at

1% and 1.5% significance levels.

Figure 2.4.2 presents the optimal corrections made to the daily ES forecasts

based on various forecasting models with regard to passing the unconditional cov-

erage test for ES (UCES test), the conditional test for ES (CCES test) and the

magnitude test (Z2 test), respectively, where ES is estimated at a 2.5% significance

level using a four-year moving window13 and the evaluation period for backtesting
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procedures is one year. This figure shows that a series of dynamic adjustments

are needed for the daily ES (α = 2.5%) across all different models, especially

during the crisis periods. This is in line with our expectation of model inade-

quacy in the crisis periods. The smaller the correction, the more accurate the ES

estimates, therefore the less the model risk of the ES forecasting model. Among

the models considered, the historical, EWMA, Gaussian Normal and Student’s

t models require larger corrections than the others when considering the three

backtests jointly, indicating that they have higher model risk than the others.

Particularly, the GARCH(1,1)-GPD performs the best. Also, the Cornish-Fisher

expansion, GARCH(1,1)-GPD, and GARCH(1,1)-t models require the smallest

adjustments in order to pass the UCES, CCES, and Z2 tests, accordingly. Notice-

ably, the ES forecasts made by the non-GARCH models need larger corrections

in order to pass the Z2 test that refers to the size of the exceptions, compared

with these corrections required by the UCES and CCES test particularly during

the 2008 financial crisis. Thus, the GARCH(1,1) models are more able to capture

the extreme losses, as expected.

We present the time taken to arrive at the peak of the optimal corrections in

Figure 2.4.3, for the UCES, CCES and Z2 tests, which shows that more than a

decade is needed to get the highest correction required to cover for model risk

(also see Appendix 2.D, Table 2.D.1 for the dates when the highest corrections are

required). When considering the UCES and CCES tests, the highest values of the

optimal corrections made to the daily ES of various models are achieved before the
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Figure 2.4.2: Dynamic optimal corrections for the daily ES
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(c) Based on the Z2 test
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This figure shows dynamic optimal corrections made to the daily ES estimates
(α = 2.5%) associated with various models for the DJIA index from 01/01/1900 to
23/05/2017, required to pass the UCES , CCES and Z2 tests, respectively. The param-
eters are re-estimated using a four-year moving window (1,000 daily returns) and the
evaluation window for backtesting is one year.
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21st century (except that the highest value of the optimal corrections made to the

Student’s t ES is found around 2008, required to pass the UCES test), indicating

that based on past mistakes we could have avoided the ES failures using these two

tests, for instance, in the 2008 credit crisis. Nevertheless, when considering the

three tests jointly, all the models, except for the GARCH models, find the peak

values of the optimal corrections around 2008. Therefore, the GARCH models are

more favorable than the others in avoiding model risk. This way, we could have

been well prepared against the 2008 financial crisis if the GARCH(1,1) models

were used to make ES forecasts. This is also supported by the results shown in

Appendix 2.D, Figure 2.D.2, which presents extreme optimal corrections of ES

forecasts based on different models, required to pass various backtests.

In Table 2.4.1, we measure the model risk of ES forecasts made by various risk

models for the DJIA index, and compare the model risk of the 2.5% ES with that

of the 1% VaR. Besides, we look into how ES model risk is affected by the model

risk of VaR as discussed in section 2.3.4. Panel A and Panel B give the maximum

and mean values of the absolute and relative optimal corrections to the daily ES

(α = 2.5%) across various risk models with respect to the aforementioned three

backtests and an alternative to the Z2 test. The largest absolute corrections

are needed for the Gaussian Normal and Student’s t models, whilst the GARCH

models perform well in capturing extreme losses. With the requirement of passing

the three backtests jointly, the GARCH(1,1)-GPD performs best and requires

a correction of 0.0011 made to the daily ES against model risk. We present
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Figure 2.4.3: Ratio of dynamic optimal correction to the maximum optimal
correction over the entire period
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(b) Based on the CCES test
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(c) Based on the Z2 test
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This figure shows the ratio of dynamic optimal correction over the maximum of the
optimal corrections over the entire period, in which the optimal correction is made to
the daily ES estimates (α = 2.5%) associated with various models by passing the UCES,
CCES, Z2 tests.
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Table 2.4.1: Maximum and mean of optimal corrections for ES and VaR

Model Mean ES (VaR) Max C1 Max C2 Max C3 Max C4 Mean C1 Mean C2 Mean C3 Mean C4

Panel A: Maximum and mean of the absolute optimal corrections (∗10−2) to the daily ES (α= 2.5%)
Historical 0.031 2.50 9.80 11.86 8.43 0.13 0.20 0.53 0.11
EWMA 0.024 13.55 9.30 12.41 5.55 0.69 0.37 0.74 0.56
Gaussian Normal 0.025 8.73 9.64 14.33 9.66 0.72 0.42 0.84 0.63
Student’s t 0.030 21.84 12.12 13.15 9.14 1.13 0.38 0.73 0.19
GARCH(1,1)-N 0.023 10.11 9.90 4.08 4.79 0.20 0.08 0.33 0.30
GARCH(1,1)-t 0.031 8.69 10.41 1.18 3.93 0.29 0.15 0.01 0.10
Cornish-Fisher 0.050 1.40 7.60 9.75 22.94 0.05 0.14 0.29 0.09
GARCH(1,1)-GPD 0.028 2.95 2.85 3.60 4.09 0.11 0.08 0.09 0.04

Panel B: Maximum and mean of the relative optimal corrections to the daily ES (α= 2.5%)
Historical 0.031 98.5% 319.0% 436.8% 274.4% 4.5% 6.1% 18.2% 3.9%
EWMA 0.024 318.8% 399.3% 537.5% 295.8% 26.0% 11.6% 30.7% 24.4%
Gaussian Normal 0.025 269.0% 214.3% 672.0% 420.9% 27.4% 13.4% 35.8% 27.5%
Student’s t 0.030 479.8% 241.1% 480.8% 337.1% 39.6% 9.8% 25.5% 7.1%
GARCH(1,1)-N 0.023 560.4% 397.2% 133.7% 296.1% 8.4% 3.4% 13.4% 13.4%
GARCH(1,1)-t 0.031 155.0% 317.4% 23.4% 162.0% 8.7% 4.1% 0.2% 3.1%
Cornish-Fisher 0.050 52.2% 240.1% 339.0% 182.1% 1.8% 2.2% 9.8% 1.5%
GARCH(1,1)-GPD 0.028 157.7% 134.4% 121.4% 192.8% 5.8% 3.0% 2.5% 1.5%

Panel C: Maximum and mean of the relative optimal corrections to the daily VaR (α= 1%)
Historical 0.030 78.2% 280.9% 213.0% 213.0% 2.9% 7.7% 22.6% 22.6%
EWMA 0.024 101.8% 297.8% 313.7% 313.7% 6.3% 10.8% 42.1% 42.1%
Gaussian Normal 0.024 139.4% 423.5% 305.5% 305.5% 7.3% 14.3% 41.7% 41.7%
Student’s t 0.028 89.1% 366.2% 235.3% 235.3% 4.2% 10.0% 28.1% 28.1%
GARCH(1,1)-N 0.022 50.5% 298.1% 434.9% 434.9% 2.3% 6.5% 63.7% 63.7%
GARCH(1,1)-t 0.030 7.1% 173.9% 236.5% 236.5% 0.0% 1.5% 32.0% 32.0%
Cornish-Fisher 0.050 36.6% 180.1% 105.4% 105.4% 0.8% 2.4% 12.6% 12.6%
GARCH(1,1)-GPD 0.027 22.6% 204.9% 337.3% 337.3% 0.2% 2.5% 43.2% 43.2%

Panel D: Maximum and mean of the relative corrections to the daily ES, corrected for VaR model risk
Historical 0.032 46.4% 248.6% 190.0% 213.8% 2.4% 5.6% 8.3% 4.0%
EWMA 0.026 68.5% 308.6% 229.1% 295.7% 4.5% 4.3% 15.3% 19.7%
Gaussian Normal 0.026 186.2% 203.1% 249.6% 293.4% 8.0% 4.6% 15.7% 20.9%
Student’s t 0.032 165.2% 132.2% 208.2% 235.1% 8.1% 3.3% 10.7% 5.7%
GARCH(1,1)-N 0.023 189.4% 421.1% 119.8% 295.8% 6.0% 2.9% 9.4% 12.4%
GARCH(1,1)-t 0.031 171.3% 317.4% 23.1% 162.0% 0.3% 2.3% 0.2% 3.1%
Cornish-Fisher 0.052 23.6% 176.0% 121.2% 105.9% 1.1% 3.1% 4.2% 1.3%
GARCH(1,1)-GPD 0.028 147.7% 134.4% 99.8% 192.8% 4.2% 3.0% 2.0% 1.9%

This table presents the maximum and mean of the absolute and relative optimal cor-
rections made to the daily 2.5% ES, the relative optimal corrections made to the daily
1% VaR, as well as the relative optimal corrections made to the corrected ES after VaR
model risk is accounted for, using different backtests across various models, based on the
DJIA index from 01/01/1900 to 23/05/2017, downloaded from DataStream. Based on
various forecasting models, ES and VaR are forecasted with a four-year moving window
(1,000 daily returns), and the mean ES and VaR are calculated over the entire sample.
In Panel A, B, and D, C1, C2, C3 and C4 denote the optimal corrections made to
the ES estimates, accordingly, required to pass the unconditional coverage test (UCES
test), the conditional coverage test (CCES test), and the magnitude tests (Z2 test and
the exceedance residual test). In Panel C, C1, C2, and C3 (C4 is the same as C3, to be
consistent with other panels) represent the optimal corrections made to VaR forecasts,
required to pass Kupiec’s unconditional coverage test, Christoffersen’s conditional cov-
erage test and Berkowitz’s magnitude test, respectively. The relative correction is the
ratio of the optimal correction over the average daily ES (or VaR); backtesting is done
over 250 days.
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the relative corrections in Panel B, expressed as the optimal corrections over

the average daily ES. When looking at the three backtests jointly, the EWMA,

Gaussian Normal and Student’s t models face the highest ES model risk with the

mean values of the relative corrections at 30.7%, 35.8%, and 39.6%, respectively,

thereby needing the largest buffers; whilst the GARCH(1,1)-GPD model has the

best performance with a mean value of the relative optimal correction of 5.8%.

Applying the backtesting-based correction methodology to the 1% VaR as

in Boucher et al. (2014)14, we compute the relative corrections made to one-step

ahead VaR forecasts by passing three VaR backtests15, reported in Panel C of Ta-

ble 2.4.1. The results show that the Cornish-Fisher expansion and GARCH(1,1)-t

models outperform the other models, requiring the smallest corrections for VaR

model risk. Comparing Panel B and Panel C, it can be seen that the peak values

of the relative correction required to pass the UCV aR and CCV aR tests for VaR

estimates are generally (with a few exceptions) smaller than the corresponding

values for ES estimates, whilst the ES estimates require much smaller corrections

than the VaR estimates when considering the Z2 test or its alternative. That is,

the ES measure is more able to measure the size of the extreme losses than the

VaR measure, just as Colletaz et al. (2013) and Dańıelsson and Zhou (2017) ar-

gue. When the three backtests are considered jointly, the 2.5% ES is less affected

by model risk than the 1% VaR.

It is interesting to compare our results with those of Dańıelsson and Zhou

(2017). In their Table 1, they show that VaR estimation has a higher bias than ES
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estimation, but a smaller standard error. However, this is based on a simulation

study that focuses on estimation risk. The results presented in the empirical

part of their paper somewhat contradict their theoretical expectation of VaR

being superior to ES, and it can be argued that this is caused by the presence of

specification error. So when only estimation error is considered, VaR is superior to

ES, but when both estimation error and specification error are considered jointly,

our results show that ES outperforms VaR, being less affected by model risk.

Supplementary to the backtesting-based correction methodology for ES, we

examine the impact of VaR model risk on the model risk of ES in Panel D,

Table 2.4.1. For all the models, the relative optimal corrections (shown in Panel

D) required to pass the three ES backtests jointly, made to the daily ES after

accommodating for VaR model risk, are smaller than the relative corrections

(shown in Panel B) made to the daily ES when VaR is not corrected for model

risk. Thus, ES is less affected by model risk, when VaR model risk is removed

first. Roughly speaking, the corrections for model risk to the ES estimates reduce

by about 50% if the VaR estimates are corrected for model risk. Also, we find

further evidence in Table 2.D.3, Appendix 2.D to support the previous result that

GARCH models are less affected by model risk, thus are preferred to make risk

forecasts, when compared with the other models considered.

Additionally, we apply this proposed methodology to different asset classes

(equity, bond and commodity from 31/10/1986 to 07/07/2017), as well as the

FX (USD/GBP) and Microsoft (MSFT) shares (adjusted or non-adjusted for
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dividends) from 01/01/1987 to 04/10/2017. Panel A and B of Table 2.4.2 re-

port the absolute and relative corrections required for the GARCH(1,1)-GPD ES

(α = 2.5%) of various asset classes16. The higher the corrections, the more unreli-

able the ES forecasts of the specified model for the data. We find that commodity

ES carries the highest model risk with the highest mean value of the relative op-

timal correction at 5.2% required to pass the three tests jointly, provided that

a GARCH(1,1)-GPD model is used. This is consistent with the statistical prop-

erties of the dataset considered, namely that commodity returns are fat-tailed

and negatively skewed. Interestingly, in Table 2.D.2 of Appendix 2.D we find

that commodity ES does not provide enough buffer against unfavorable extreme

events in the global financial crisis, since the largest adjustments are needed in

2008 and 2009, suggesting that commodity ES suffers the highest model risk over

the crisis period. However, equity and bond ES could have avoided the failures

around 2008. Panel C shows the maximum and mean of the relative optimal

corrections made to the 1% VaR, obtained by passing the three VaR backtests.

Clearly, for the three different asset classes, the 1% VaR forecasts require much

higher corrections than the 2.5% ES forecasts made by the GARCH(1,1)-GPD

model, thereby carrying a higher model risk by considering the three backtests

jointly as can be seen in the last column.

To get a further insight into the model risk of ES estimates of specific assets,

we conduct a case study on the USD/GBP foreign currency and the MSFT stock

(adjusted or non-adjusted for dividends) listed in the Nasdaq Stock Market. We
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consider that ES is estimated at a significance level of 2.5%, and we have a po-

sition of 1 million dollars in each asset. Table 2.4.3 shows the dollar exposures

to the model risk of the GARCH(1,1)-GPD ES when investing in the USD/GBP

exchange rate or by purchasing the Microsoft stock, respectively. The average

2.5% ES of the FX and MSFT (adjusted) investments are $14,291 and $48,879,

accordingly. The mean model risks, considering the three ES backtests jointly,

are $1,371 and $1,350 for FX and MSFT (adjusted). It is inappropriate to con-

sider a certain ES backtest, since the mean of the dollar exposures for FX with

respect to different backtests varies from $107 to $1,371. Also, the non-adjusted

MSFT equity has a much higher model risk than its counterparts, because the

share prices shocked by dividend distributions are more volatile and therefore the

risk model used is more vulnerable in this case. These examples show why it

is necessary for banks to introduce enough protection against model risk when

calculating the risk-based capital requirement introduced in Basel Committee on

Banking Supervision (2011).

Our empirical analysis shows that, when forecasting ES, the GARCH(1,1)

models are preferred, whilst the static models (e.g. the Gaussian Normal and

Student’s t models) and EWMA should be avoided. This is in contrast to the

recommendations of Boucher et al. (2014) made for the model risk of VaR, namely

that the EWMA VaR is preferred. Also, the 2.5% ES is the preferred measure of

risk since it is less affected by model risk than the 1% VaR across different models

or based on different assets, especially after VaR model risk is removed first. Using
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Table 2.4.3: Dollar exposures to model risk of the GARCH(1,1)-GPD ES.

Asset Mean ES Max C1 Max C2 Max C3 Mean C1 Mean C2 Mean C3

FX USD/GBP 14,291 11,100 3,300 8,700 1,371 107 152

MSFT (adjusted) 48,879 106,400 19,800 62,200 212 646 1,350
MSFT (non-adjusted) 65,200 2,500 3,500 34,700 6 129 3,168

The table presents dollar exposures to the model risk of GARCH(1,1)-GPD ES (α =
2.5%) of the USD/GBP exchange rate and Microsoft equity, based on various ES back-
tests. The USD/GBP spot rate and MSFT share prices from 01/01/1987 to 04/10/2017
are downloaded from DataStream and Bloomberg, respectively. All the outcomes are in
dollar units, computed by using a four-year moving window and a one-year backtesting
period, based on the GARCH(1,1)-GPD model. C1, C2 and C3 represent the dollar
values of the optimal corrections required to pass the UCES, CCES and Z2 tests accord-
ingly, when considering a position of 1 million dollars in the asset specified in the first
column.

the GARCH(1,1)-GPD model to make ES forecasts of various asset classes, we

find that commodity ES carries the highest model risk especially around 2008,

compared to equity and bond ES.

2.5 Conclusions

In this chapter, we propose a practical method to quantify ES model risk based

on ES backtests. Model risk is considered as an optimal correction required to

pass several ES backtests jointly. These ES backtests are tailored to the following

characteristics of ES forecasts: 1) the frequency of exceptions; 2) the absence of

autocorrelations in exceptions; 3) the magnitude of exceptions. We theoretically

examine the desirable properties of model risk from a regulatory perspective.

Considering the UCES and CCES tests for our chosen measure of model risk,
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all the desirable properties hold, whilst subadditivity is not guaranteed and our

results show that it is generally satisfied by well-fitting models.

We compare the 2.5% ES with the 1% VaR in terms of model risk across

different models and based on different assets. We find that the 2.5% ES is

less affected by model risk than the 1% VaR, needing a smaller correction to

pass the three ES backtests jointly. Besides, commodity ES carries the highest

model risk especially around 2008, compared to equity and bond ES, provided

that the GARCH(1,1)-GPD model is used. Moreover, we consider the impact of

VaR model risk on ES model risk in terms of the ES calculations and the ES

backtests. If VaR model risk is first removed, then ES model risk reduces further

by approximately 50%.

Our results are strengthened when the standard deviations of the corrections

for model risk are considered: the GARCH(1,1) models not only require the

smallest corrections for model risk, but the level of the corrections are the most

stable, when compared to the other models considered in our study.



Appendices

2.A Theoretical analysis of estimation and spec-

ification errors of VaR

Estimation bias and correction of VaR

Based on equation (2.2.5) and (2.2.6), correcting for the estimation error, the

VaR estimate can be written as:

V aRE(θ̂0, α) = V aR(θ̂0, α) + E(bias(θ0, θ̂0, α)) (2.A.1)

This tells us that the mean bias of the forecasted VaR from the theoretical VaR

is caused by estimation error.

58
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Specification and estimation biases and correction of VaR

Based on equation (2.2.10) and (2.2.11), correcting for these biases (specification

and estimation biases), the VaR estimate can be written as:

V aRSE(θ̂1, α) = V aR(θ̂1, α) + E(bias(θ0, θ1, θ̂1, α)) (2.A.2)

The mean of the estimation and specification biases for VaR can be considered

as a measurement of economic value of the model risk of VaR.

2.B Backtesting measures of VaR and ES
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Table 2.B.1: Selected backtesting methodologies for VaR and ES

VaR backtests ES backtests

Exception Frequency Tests: Exception Frequency Tests:
(1)UCV aR test- Kupiec (1995) (1)UCES test- Du and Escanciano (2016)
(2)data-driven- Escanciano and Pei (2012)

(2)risk map- Colletaz et al. (2013)
(3)traffic light- Moldenhauer and Pitera
(2019)

Exception Independence Tests: Exception Independence Tests:
(1)independence test-Christoffersen (1998)
(2)density test- Berkowitz (2001)
Exception Frequency and Independence
Tests:

Exception Frequency and Indepen-
dence Tests:

(1)CCV aR test- Christoffersen (1998) (1)CCES test- Du and Escanciano (2016);
Costanzino and Curran (2015, 2018)

(2)dynamic quantile-Engle and Manganelli
(2004);Patton et al. (2019)

(2)dynamic quantile- Patton et al. (2019)

(3)multilevel test- Campbell (2006)
(4)multilevel test-Leccadito et al. (2014)
(5)multinomial test-Kratz et al. (2018) (3)multinomial test-Kratz et al. (2018);

Emmer et al. (2015); Clift et al. (2016)
(6)two-stage test- Angelidis and Degiannakis
(2006)
Exception Duration Tests: Exception Duration Tests:
(1)duration test- Christoffersen and Pelletier
(2004)
(2)duration-based test- Berkowitz et al. (2011)
(3)GMM duration-based test- Candelon et al.
(2010)
Exception Magnitude Tests: Exception Magnitude Tests:
(1)tail losses- Wong (2010) (1)tail losses- Wong (2008); Christoffersen

(2009); McNeil and Frey (2000)
(2)magnitude test-Berkowitz (2001)
Exception Frequency and Magnitude
Tests:

Exception Frequency and Magni-
tude Tests:

(1)risk map- Colletaz et al. (2013)
(2)quantile regression- Gaglianone et al. (2011)

(1)Z2 test-Acerbi and Szekely (2014)
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2.C Risk forecasting models

In the following, we focus on several commonly discussed models for computing

one-step ahead VaR and ES forecasts (Christoffersen, 2012) using a rolling window

of length τ at a significance level α.

Historical Simulation

Among all the models considered in this chapter, Historical Simulation17 is the

simplest and easiest to implement, in which the forecasting of risk estimates is

model free, based on past return data. VaR is computed as the empirical α-

quantile (Q̂(·)) of the observed returns Xt, Xt+1, ..., Xt+τ−1, and its formulation

is given below

V̂ aR
α

t+τ = −Q̂α(Xt, Xt+1, ..., Xt+τ−1). (2.C.1)

ES is the expected value of the returns in the tail, and it is computed as

ÊS
α

t+τ = −

∑i=t+τ−1
i=t XiI{Xi<−V̂ aR

α

t+τ}∑i=t+τ−1
i=t I{Xi<−V̂ aR

α

t+τ}

, (2.C.2)

where I(·) is equal to 1 when the empirical return is smaller than the negative

value of VaR, otherwise 0.
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Gaussian Normal distribution

Simply assuming that the observed returns follow a normal distribution, the one-

step ahead return is r̂t+τ = µ̂t+τ + σ̂t+τΦ
−1
α , where µ̂t+τ and σ̂2

t+τ are mean and

variance of the previous τ observations Xt, Xt+1, ..., Xt+τ−1, and Φ denotes the

cumulative distribution function of the standard normal distribution. In this case,

we compute V aRα
t+τ as

V̂ aR
α

t+τ = −µ̂t+τ − σ̂t+τΦ−1
α . (2.C.3)

ES can be derived as

ÊS
α

t+τ = −µ̂t+τ + σ̂t+τ
φ (Φ−1

α )

α
, (2.C.4)

where φ denotes the density function of the standard normal distribution.

Student’s t distribution

Here, we consider a symmetric Student’s t, capturing the fatter tails and the more

peak in the distribution of the standardised returns as compared with the normal

case. Let X denote a Student’s t variable with the pdf defined as below:

ft(d)(x; d) =
Γ((d+ 1)/2)

Γ(d/2)
√
dπ

(1 + x2/d)−(1+d)/2, for d > 2, (2.C.5)
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where Γ(·) is the gamma function and d is the degree of freedom larger than

2. The one-step ahead return is r̂t+τ = µ̂t+τ + σ̂t+τ t
−1
α (d̂), where t−1

α (d̂) refers

to the empirical α-quantile of the standardised returns following a Student’s t

distribution with estimated parameter d̂. VaR can therefore be computed as

V̂ aR
α

t+τ = −µ̂t+τ − σ̂t+τ t−1
α (d̂). (2.C.6)

ES is given by

ÊS
α

t+τ = −µ̂t+τ + σ̂t+τ
ft(d̂)

(
t−1
α (d̂)

)
α

, (2.C.7)

where µ̂t+τ and σ̂2
t+τ are mean and variance of the previous τ observations.

GARCH models

The Gaussian Normal and Student’s t distributions are fully parametric ap-

proaches and belong to the location-scale family with the general expression for

the returns r̂t+τ = µ̂t+τ + σ̂t+τzt+τ , where the mean µt+τ and standard deviation

σt+τ are the location and scale parameters, respectively. zt+τ is the empirical

quantile of the assumed distribution of the standardised returns such as the stan-

dard normal distribution in the normal case. The GARCH models play a crucial

role in the location-scale family with time-varying conditional variances and a

modeled distribution for the standardised residuals, thus being considered dy-

namic approaches, as opposed to the static models (the Guassian Normal and

Student’s t distributions). Considering GARCH(1,1) models with the normal or
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Student’s t disturbances (GARCH(1,1)-N or GARCH(1,1)-t), the time-varying

conditional variance is written as

σ̂2
t+τ = ω + αX2

t+τ−1 + βσ̂2
t+τ−1 (2.C.8)

Within the estimation window t, t+1, ..., t+τ , the model parameters (µ, ω, α, β; d)

are estimated via maximum likelihood estimation with the constraints: ω, α, β >

0, α+β < 1, and d > 2. For GARCH(1,1)-N, the formulae for computing VaR and

ES are the same as equation (2.C.3) and (2.C.4). We can refer to equation (2.C.6)

and (2.C.7) to make VaR and ES forecasts using the GARCH(1,1)-t model.

Exponentially Weighted Moving Average

The exponentially weighted moving average method (EWMA) is a special case of

the GARCH(1,1) model with normal disturbances, as the conditional variance is

expressed as

σ̂2
t+τ = (1− λ)X2

t+τ−1 + λσ̂2
t+τ−1, λ = 0.94. (2.C.9)

VaR and ES are computed as in equations (2.C.3) and (2.C.4).

GARCH with Extreme Value Theory

The advantage of extreme value theory is to model the tail distribution, thereby it

focuses on the extreme values in the tail. In this chapter, we use the GARCH(1,1)

model with standardised t disturbances, combined with the EVT methodol-
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ogy (GARCH(1,1)-GPD). First, we obtain the standardised empirical losses via

GARCH(1,1), assuming they are distributed as a standardised t distribution.

Xt+τ = σ̂t+τSt
−1(d), σ̂2

t+τ = ω + αX2
t+τ−1 + βσ̂2

t+τ−1, (2.C.10)

where St−1(d) denotes the inverse of the cumulative distribution function of a

standardised t distribution with its pdf expressed as

ft̃(d)(x̃; d) = C(d)(1 + x̃2/(d− 2))−(1+d)/2, for d > 2, (2.C.11)

where

C(d) =
Γ((d+ 1)/2)

Γ(d/2)
√
π(d− 2)

. (2.C.12)

x̃ is a standardised random variable distributed as a standardised t distribution

with mean 0, variance 1 and degree of freedom larger than 2. Then we fit Gener-

alized Pareto Distribution (GPD) to excesses y over the given threshold u, where

GPD(y; ξ, β) =


1− (1 + ξy/β)−1/ξ, if ξ > 0

1− exp(−y/β), if ξ = 0

(2.C.13)

with β > 0 and y ≥ u. The tail index parameter ξ controls the shape of the

tail. When ξ is positive, the tail distribution is fat-tailed. Consequently, in this
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approach VaR could be computed as:

V̂ aR
α

t+τ = σ̂t+τV aRz(α), (2.C.14)

where

V aRz(α) =

(
u+

β̂

ξ̂

((
α

k/n

)−ξ̂
− 1

))
(2.C.15)

with k the number of peaks over the threshold and n the total number of stan-

dardised empirical observations. ES is given by

ÊS
α

t+τ = σ̂t+τESz(α), (2.C.16)

where

ESz(α) = V aRz(α)

(
1

1− ξ̂
+

(β̂ − ξ̂u)

(1− ξ̂)V aRz(α)

)
. (2.C.17)

Cornish-Fisher expansion

The Cornish-Fisher expansion (Christoffersen, 2012) allows for skewness and kur-

tosis to make VaR and ES forecasts by using the sample moments without any

assumption on the returns.

V̂ aR
α

t+τ = −σ̂t+τCF−1
α (2.C.18)
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where σ̂2
t+τ is the variance of the previous τ observations, and CF−1

α is expressed

below:

CF−1
α = Φ−1

α +
ζ̂1

6

[
(Φ−1

α )2 − 1
]

+
ζ̂2

24

[
(Φ−1

α )3 − 3Φ−1
α

]
− ζ̂2

1

36

[
2(Φ−1

α )3 − 5Φ−1
α

]
(2.C.19)

ES is formulated as

ÊS
α

t+τ = −σ̂t+τESCF (α) (2.C.20)

where

ESCF (α) =
−φ(CF−1

α )

α

[
1 +

ζ̂1

6
(CF−1

α )3 +
ζ̂2

24

[
(CF−1

α )4 − 2(CF−1
α )2 − 1

]]
(2.C.21)

ζ̂1 and ζ̂2 represent the skewness and excess kurtosis of the standardised returns,

calculated based on the past τ observations.

2.D Empirical results
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Figure 2.D.1: Historical maximum of optimal adjustments for ES estimates

(a) Based on the UCES test
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(b) Based on the CCES test
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(c) Based on the Z2 test
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This figure presents the historical maximum of required optimal adjustments made to the
daily ES estimates (α = 2.5%) of various models for the DJIA index from 01/01/1900
to 23/05/2017, obtained by passing the UCES, CCES and Z2 tests, respectively.
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Table 2.D.1: Dates associated with the highest values of the absolute mini-
mum corrections made to the daily ES of various models

UCES test CCES test Z2 test
Model Date C1 Date C2 Date C3

Historical 1 16/06/1930 0.0250 29/10/1929 0.0980 20/04/2009 0.1186
2 11/09/2009 0.0240 14/12/1914 0.0570 30/03/2009 0.1176
3 20/11/2008 0.0230 30/10/1930 0.0300 05/03/2009 0.1172
4 12/12/1929 0.0220 13/12/1915 0.0280 19/05/2009 0.1167

EWMA 1 15/08/1932 0.1355 15/10/1935 0.0930 20/04/2009 0.1241
2 08/08/1932 0.1196 18/10/1935 0.0898 05/03/2009 0.1238
3 09/11/1931 0.1010 17/10/1935 0.0897 30/03/2009 0.1229
4 22/06/1931 0.0744 16/10/1935 0.0893 05/05/2009 0.1225

Gaussian Normal 1 17/08/1932 0.0873 15/10/1935 0.0964 20/04/2009 0.1433
2 13/09/1935 0.0861 18/10/1935 0.0927 05/03/2009 0.1431
3 12/09/1935 0.0859 17/10/1935 0.0925 30/03/2009 0.1421
4 16/09/1935 0.0850 16/10/1935 0.0921 05/05/2009 0.1418

Student’s t 1 29/05/2009 0.2184 25/10/1935 0.1212 05/03/2009 0.1315
2 15/09/1932 0.1475 04/10/1935 0.1118 20/04/2009 0.1308
3 11/10/1932 0.1324 28/10/1935 0.1041 30/03/2009 0.1300
4 08/09/1932 0.1206 29/10/1935 0.1005 02/03/2009 0.1299

GARCH(1,1)-N 1 14/12/1962 0.1011 02/06/1915 0.0990 29/03/1938 0.0408
2 19/12/1962 0.0990 10/06/1915 0.0775 29/10/1929 0.0403
3 27/03/1931 0.0484 01/03/1915 0.0744 14/04/1988 0.0397
4 26/03/1931 0.0471 02/03/1915 0.0721 08/08/1930 0.0396

GARCH(1,1)-t 1 24/08/1932 0.0869 08/06/1915 0.1041 08/08/1930 0.0118
2 25/08/1932 0.0854 25/05/1915 0.1022 28/10/1928 0.0095
3 26/08/1932 0.0812 03/03/1915 0.1002 12/12/1929 0.0086
4 02/02/1932 0.0427 09/06/1915 0.0999 21/07/1930 0.0084

Cornish-Fisher 1 06/11/1929 0.0140 28/10/1930 0.0760 01/12/2008 0.0975
2 29/10/1929 0.0130 29/10/1929 0.0750 08/12/2008 0.0951
3 10/02/1930 0.0120 14/12/1914 0.0540 29/12/2008 0.0933
4 28/10/1929 0.0110 19/10/1987 0.0280 20/11/2008 0.0915

GARCH(1,1)-GPD 1 24/09/1986 0.0295 14/12/1914 0.0285 14/04/1988 0.0360
2 26/09/1986 0.0294 07/05/1915 0.0284 25/03/1988 0.0358
3 23/09/1986 0.0293 15/12/1914 0.0283 08/01/1988 0.0344
4 21/11/1986 0.0292 14/05/1940 0.0132 10/03/1988 0.0343

This table presents the dates associated with the highest values of the absolute minimum
corrections made to the daily 2.5% ES of various models based on different ES backtests.
The calculations are based on the DJIA index daily returns from the 1st January 1900 to
the 23rd May 2017, downloaded from DataStream. We make the 2.5% one-step ahead
ES forecasts based on various models with a four-year moving window and backtest
ES estimates in the evaluation period of 250 days. C1, C2 and C3 denote the optimal
corrections required to pass the unconditional coverage test (UCES test), the conditional
coverage test (CCES test) and the magnitude test (Z2 test), respectively.
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Table 2.D.2: Dates associated with the highest values of the absolute mini-
mum corrections made to the GARCH(1,1)-GPD ES for different assets

UCES test CCES test Z2 test
Asset Dates C1 Dates C2 Dates C3

equity 1 30/10/2001 0.0283 27/08/2002 0.0033 21/01/2008 0.0093
2 26/10/2001 0.0282 05/09/2002 0.0028 12/02/2008 0.0063
3 22/10/2001 0.0281 19/09/2002 0.0027 10/10/2008 0.0057

bond 1 05/07/2013 0.0033 14/05/1999 0.0004 05/08/1994 0.0034
2 01/08/2013 0.0027 21/04/1995 0.0001 16/09/1994 0.0033
3 09/08/2013 0.0026 15/08/1991 0.0000 06/05/1994 0.0032

commodity 1 30/04/1993 0.0065 20/12/1994 0.0007 17/02/2009 0.0211
2 28/04/1993 0.0064 19/12/1994 0.0005 20/02/2009 0.0198
3 26/04/1993 0.0063 07/03/2008 0.0004 19/11/2008 0.0190

This table presents the dates regarding the highest values of the absolute minimum cor-
rections made to the GARCH(1,1)-GPD ES (α = 2.5%) for different assets by passing
different ES backtests. The empirical data is downloaded from DataStream. For the eq-
uity, we use a composite index with 95% “MSCI Europe Index” and 5% “MSCI World
Index”; for the bond, we use the “Bank of America Merrill Lynch US Treasury &
Agency Index”; for the commodity, we use the “CRB Spot Index”, from 31/10/1986
to 07/07/2017. We compute the GARCH(1,1)-GPD ES of different assets at a 2.5%
coverage level by using a four-year moving window and backtest ES estimates in the
evaluation period of 250 days. The variables C1, C2 and C3 denote the optimal cor-
rections required to pass the unconditional coverage test (UCES test), the conditional
coverage test (CCES test) and the magnitude test (Z2 test), respectively.
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Figure 2.D.2: Left tail of the cumulative distribution of the negative of
required optimal adjustments made to the daily ES estimates

(a) Based on the UCES test
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(b) Based on the CCES test
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(c) Based on the Z2 test
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This figure shows the left tail of the cumulative distribution (using Gaussian Kernel
smoothing) of the negative of required optimal adjustments made to the daily ES es-
timates (α = 2.5%) for the DJIA index from 01/01/1900 to 23/05/2017, in order to
pass the UCES (panel a), CCES (panel b), and Z2 (panel c) tests, respectively.
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Table 2.D.3: Means and standard deviations of optimal corrections for the
2.5% ES and 1% VaR

Model Mean C1 Mean C2 Mean C3 Std. dev Std. dev Std. dev
of C1 of C2 of C3

Panel A: Means (∗10−2) and standard deviations of the absolute optimal
corrections made to the daily ES (α = 2.5%).
Historical 0.13 0.20 0.53 0.0039 0.0108 0.0157
EWMA(λ=0.94) 0.69 0.37 0.74 0.0133 0.0108 0.0179
Gaussian Normal 0.72 0.42 0.84 0.0135 0.0111 0.0200
Student’s t 1.13 0.38 0.73 0.0125 0.0098 0.0186
GARCH(1,1)-N 0.20 0.08 0.33 0.0039 0.0038 0.0067
GARCH(1,1)-t 0.29 0.15 0.01 0.0051 0.0063 0.0006
Cornish-Fisher 0.05 0.14 0.29 0.0019 0.0076 0.0104
GARCH(1,1)-GPD 0.11 0.08 0.09 0.0039 0.0035 0.0038

Panel B: Means and standard deviations of the relative optimal
corrections made to the daily ES (α = 2.5%).
Historical 4.5% 6.1% 18.2% 0.1215 0.3050 0.5010
EWMA(λ=0.94) 26.0% 11.6% 30.7% 0.4263 0.3034 0.6769
Gaussian Normal 27.4% 13.4% 35.8% 0.4339 0.3095 0.7991
Student’s t 39.6% 9.8% 25.5% 0.3823 0.2167 0.5933
GARCH(1,1)-N 8.4% 3.4% 13.4% 0.1530 0.1471 0.2415
GARCH(1,1)-t 8.7% 4.1% 0.2% 0.1430 0.1556 0.0138
Cornish-Fisher 1.8% 2.2% 9.8% 0.0586 0.1085 0.3373
GARCH(1,1)-GPD 5.8% 3.0% 2.5% 0.2087 0.1169 0.0952

Panel C: Means and standard deviations of the relative optimal corrections made
to the daily VaR (α = 1%), by passing VaR backtests.
Historical 2.9% 7.7% 22.6% 0.0978 0.3168 0.3425
EWMA 6.3% 10.8% 42.1% 0.1565 0.3065 0.5226
Gaussian Normal 7.3% 14.3% 41.7% 0.1830 0.4392 0.5100
Student’s t 4.2% 10.0% 28.1% 0.1275 0.3822 0.3974
GARCH(1,1)-N 2.3% 6.5% 63.7% 0.0601 0.2271 0.7828
GARCH(1,1)-t 0.0% 1.5% 32.0% 0.0019 0.1134 0.4904
Cornish-Fisher 0.8% 2.4% 12.6% 0.0366 0.0989 0.2040
GARCH(1,1)-GPD 0.2% 2.5% 43.2% 0.0155 0.1461 0.6180

Panel D: Means and standard deviations of the relative optimal corrections made
to the daily ES (α = 2.5%), after VaR model risk is first removed.
Historical 2.4% 5.6% 8.3% 0.0648 0.2495 0.2437
EWMA 4.5% 4.3% 15.3% 0.1029 0.2460 0.3306
Gaussian Normal 8.0% 4.6% 15.7% 0.1835 0.1801 0.3545
Student’s t 8.1% 3.3% 10.7% 0.1879 0.1183 0.2834
GARCH(1,1)-N 6.0% 2.9% 9.4% 0.1142 0.1479 0.1834
GARCH(1,1)-t 0.3% 2.3% 0.2% 0.0323 0.1349 0.0133
Cornish-Fisher 1.1% 3.1% 4.2% 0.0317 0.0965 0.1462
GARCH(1,1)-GPD 4.2% 3.0% 2.0% 0.1736 0.1167 0.0750

This table presents means and standard deviations of the absolute and relative correc-
tions made to the daily 2.5% ES, the relative corrections made to the daily 1% VaR,
and the relative corrections required for the 2.5% ES after VaR model risk is excluded
first, based on the UCES, CCES and Z2 backtests. The calculations are based on the
DJIA index from 01/01/1900 to 23/05/2017, downloaded from DataStream.
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2.E Simulated Bias

Similar to Table 2.2.1, we conduct a simulation study to show the impacts of

estimation and specification biases on the ES forecasts in Table 2.E.1. Assuming

a different data generating process, Markov Switching with 2 regimes combined

with GARCH(1,1) with normal innovations (denoted by MS(2)-GARCH(1,1)-N)

introduced by Klaassen (2002), we simulate 1000 paths of 1000 daily returns, thus

computing the theoretical ES forecasts. The specification of the data generating

process for the daily returns is given as below:

rt =
√
hstZt, Zt ∼ IIDN (0, 1), st = {1, 2}, (2.E.1)

st denotes the possible states of the market at time t, 1 and 2, in which the

conditional variance dynamics follow a GARCH(1,1) process and are specified as:

hst = ωst + αstr
2
t−1 + βst

2∑
i=1

pijhi,t−1, (2.E.2)

where pij represents the probability of state j at time t conditional that the market

is in state i at time t-1, and hi,t−1 is the conditional variance in state i at time

t−1. The constraints on the parameters are ωst , αst and βst > 0 in order to ensure

the positivity of the variance dynamics. The results are based on the DJIA index

from 03/01/2000 to 30/12/2011, the estimated parameters are ω1 = 1.1198e−04,

α1 = 0.0025, and β1 = 0.9152; ω2 = 8.2761e−07, α2 = 0.0677, β2 = 0.9152 with



2.E. Simulated Bias 74

the probabilities p11 = 0.7726 and p22 = 0.9938. We run simulations using these

parameters and make one-step ahead ES forecasts as equation (2.C.4) for the

simulated data series using the MS(2)-GARCH(1,1)-N model, historical method,

Gaussian Normal distribution as well as the EWMA model, thereby giving the

corresponding estimation and specification biases in Table 2.E.1.
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Notes

1Alternatives are Median Shortfall (So and Wong, 2012), and expectiles (Bellini and Bignozzi,

2015).

2Estimation risk refers to the uncertainty of parameter estimates. Misspecification risk is

the risk associated with inappropriate assumptions of the risk model, whilst identification risk

refers to the risk that future sources of risk are not currently known and included in the model.

3When it comes to backtesting risk estimates, Escanciano and Olmo (2010a), in their Theo-

rem 1 of the first paper, show how estimation risk and specification risk (which they call model

risk) affect the test statistic (Sp) of the unconditional coverage backtest for VaR:

Sp = 1√
P

n∑
t=R+1

[
It,α(θ0)− FWt−1

(mα(Wt−1, θ0))
]

+ E
[
g′α(Wt−1, θ0)fWt−1

(mα(Wt−1, θ0))
] 1√

P

n∑
t=R+1

H(t− 1)︸ ︷︷ ︸
Estimation risk

+
1√
P

n∑
t=R+1

[
FWt−1

(mα(Wt−1, θ0))− α
]

+ oP (1)︸ ︷︷ ︸
Model risk

.

4Rather than calibrating model risk based on statistical significance testing, assessing model

risk concerning the space of possible models is of prominent importance in the Bayesian model

averaging literature. Brock et al. (2003, 2007) study the role of model risk in policy evaluation

and propose the model averaging method. However, this technique is difficult to use in the

applications we have in mind, since it requires the specification of prior probabilities over the

model space. Additionally, risk assessment of a particular model typically calls for quantification

of risk by means of a single number representing the required capital reserve.

5Similar characteristics of a desirable VaR estimate are considered by Boucher et al. (2014).

6The values of VaR and ES are considered positive in this chapter.

7We also consider a different model, MS(2)-GARCH(1,1)-N, as the data generating process,

and give simulated biases in Table 2.E.1, Appendix 2.E.
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8The parameters of GARCH(1,1)-N estimated from the DJIA index (1st Jan 1900 to 23rd

May 2017) are : µ = 4.4521e−04; ω = 1.3269e−06; α = 0.0891; and β = 0.9017.

9 we use the p-value = 0.05 in this chapter. For different p−values, the results are essentially

similar to those presented in this chapter.

10The critical value related to the 5% significance level for the Z2 test is -0.7, which is stable

for different distribution types (Acerbi and Szekely, 2014).

11To find the optimal correction of VaR accommodating for model risk, two VaR backtests are

considered. The VaR backtests are Kupiec’ s unconditional coverage test (Kupiec, 1995), and

Christoffersen’s conditional coverage test (Christoffersen, 1998). We do not include Berkowitz’s

magnitude test (Berkowitz, 2001), because in principle it is very similar to the magnitude test

for ES (it checks the size of exceptions).

12The UCES and CCES tests for all the distribution-based ES are examined in the setting

proposed by Du and Escanciano (2016), whilst the Cornish-Fisher expansion and the historical

method are entertained in the same setting but in a more general way. ES for the asymmet-

ric and fat-tailed distributions (Broda and Paolella, 2011) can also be examined using these

backtests.

13The results computed using a five-year moving window and a three-year moving window

are very similar to those required here (available from the authors on request).

14Boucher et al. (2014) only present the results for the 5% VaR.

15The three VaR backtests are Kupiec’s unconditional coverage test (Kupiec, 1995), Christof-

fersen’s conditional coverage test (Christoffersen, 1998) and Berkowitz’s magnitude test (Berkowitz,

2001).

16See the data source in the note to Table 2.4.2.

17Other varieties of Historical Simulation, such as Filtered Historical Simulation, are found

in (Christoffersen, 2012).



Chapter 3

Scoring Function-Based Model

Risk of Risk Models

3.1 Introduction

Managing financial risk is paramount to corporate companies. The measurement

of different types of risk is required to satisfy investors and regulators. The

most used statistical risk measures, Value-at-Risk (VaR) and Expected Shortfall

(ES)1, are of particular interest in assessing market risk which refers to the risk

arising from a change in the value of a financial position due to the unexpected

price movements of primary risk factors such as stock prices, commodity prices

or interest rates. As required by the Basel Committee on Banking Supervision

(2019), market risk should be measured by ES which is defined as the average

loss beyond the VaR threshold.

78
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Nevertheless, the statistical computation of these risk measures not only de-

pends on model choice, meaning that the VaR and ES measures are subject to

model risk, but the true risk is not observable ex-post, so it is challenging to

perform backtesting. Hence, the decisions taken by managers may be impaired

by model risk and accounting for this additional risk is requested by the Federal

Reserve and the European Banking Authority. Financial companies tend to be

conservative in managing model risk by adding an extra capital buffer, irrespec-

tive of the value of model risk. To this end, quantifying the model risk of the risk

estimation methods and incorporating it into the regulatory capital have become

nontrivial and significant in the advance of model risk management.

In this chapter we propose an improved methodology to measure and com-

pare the two main model risk components, parameter estimation risk and model

specification risk, of market risk models by analyzing the pair (VaR, ES) based

on the FZ scoring functions introduced by Fissler and Ziegel (2016). We first

show that in the presence of model risk, the ordering of competing (VaR, ES)

models is sensitive to the choice of FZ scoring function. Secondly, we put for-

ward a general FZ scoring function-based model risk computation methodology

to estimate the joint (VaR, ES) model risk and the ES model risk of a certain

model, at a given significance level. Thirdly, in a simulation study, we verify the

above proposed measurement of the joint (VaR, ES) model risk and, separately,

of the ES model risk alone, by using several specific FZ scoring functions which

are positively homogeneous of degree 0, 0.5 and -1. Lastly, we highlight that our
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proposed scoring function-based measures of joint model risk and ES model risk

satisfy all the desirable coherence properties except for the subadditivity property

which is not always satisfied.

Jorion (1996) signals early on the existence of risk in estimating VaR. With the

increasingly intensive use of complex risk models, the concern among academics2

about model risk has grown after the global financial crisis in 2008, and it has

prompted a line of research in the accuracy of risk models. The performance of

VaR models has been investigated and then further improved in several strands of

recent studies: 1) the quantification of model risk of a given market risk model de-

veloped around a reference model (see e.g., Kerkhof et al., 2010; Lönnbark, 2013;

Glasserman and Xu, 2014; Barrieu and Scandolo, 2015; Dańıelsson et al., 2016); 2)

the computation of model risk based on numerical algorithms like the bootstrap-

ping technique, leading to more computational burden (see e.g., Christoffersen

and Gonçalves, 2005); 3) the calculation of model uncertainty associated with

the backtesting procedures for which Escanciano and Olmo (2010a,b) proposed

robust test statistics allowing for parameter estimation risk (also see the esti-

mation bias correction of Pitera and Schmidt, 2018) and model misspecification

risk. Furthermore, Boucher et al. (2014) suggest a correction to VaR estimates

required to pass several backtests tailored to some criteria; considering the ac-

curacy of ES models, Lazar and Zhang (2019) develop a similar methodology to

adjust ES estimates that would pass certain ES backtests. Although these stud-

ies take the model uncertainty of VaR or ES models into account and compute a
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backtesting-based correction for risk forecasts, their approaches do not quantify

model risk numerically as such.

In addition, the subject of modeling and backtesting ES has generated a lot

of interest recently, Acerbi and Szekely (2014), Colletaz et al. (2013), Du and

Escanciano (2016), Emmer et al. (2015), Fissler et al. (2016), Kratz et al. (2018),

and Kellner and Rösch (2016) being major contributions to this topic. Since the

estimation of ES is often a by-product of the VaR estimation procedure, referred

to the more recent literature (e.g., Patton et al., 2019), the model risk of the

ES is closely linked to that of VaR at a given significance level. Hence, we are

motivated to measure directly the magnitude of model risk of joint (VaR, ES)

forecasts at a certain significance level.

Market risk models may carry three sources of model risk (Kerkhof et al.,

2010 and Boucher et al., 2014): 1) misspecification error, arising when the model

is misspecified; 2) estimation risk, occurring due to the inaccurate parameter

estimation for the model; 3) non-nested information sets of two different models

leading to identification problems, when not all the information is detected and

considered for forecasting. The current scoring function literature documents that

scoring functions work well to estimate model parameters for financial risk models

(Patton et al., 2019) and to rank the predictive performance of competing models

(e.g., Ehm et al., 2016 and Nolde and Ziegel, 2017a). Patton (2019) links forecast

evaluation to specific sources of model risk, arguing that since VaR models may be

impacted by misspecification error, estimation error and nonnested information
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sets (that is, identification risk), the ranking of VaR models may be sensitive

to the choice of the generalized piecewise linear (GPL) scoring function which

is strictly consistent for VaR. Motivated by Patton (2019), we bridge the gap

between the scoring function literature and model risk literature, proposing a

methodology to estimate the model risk of the pair (VaR, ES) forecasts, based

on the FZ scoring functions discussed in Fissler and Ziegel (2016).

The coherence properties that a risk measure should satisfy as introduced by

Artzner et al. (1999) are important from a regulatory perspective. Here we ana-

lyze the coherence properties of our scoring function-based model risk estimation

methodology via simulations. In particular, the subadditivity property, which has

been a major concern of the VaR measure and the main theoretical advantage of

the ES measure (Garcia et al., 2007 and Dańıelsson et al., 2013), is revisited for

the model risk measure proposed in this chapter.

The structure of Chapter 3 continues as follows. Section 3.2 is focused on the

sensitivity of ranking (VaR, ES) models to the choice of the FZ scoring function in

relation to the major sources of model risk. Section 3.3 proposes an FZ scoring

function-based model risk measure of (VaR, ES) risk measures, illustrating its

effectiveness via simulations and Section 3.4 examines its properties in a realistic

simulation study. Section 3.5 applies our proposed model risk measure to a set

of real-world financial data and Section 3.6 concludes.
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3.2 Model risk in relation to scoring functions

3.2.1 Scoring functions

We start with some background information and introduce notations that we

follow from Nolde and Ziegel (2017a). A risk measure ρ is defined on some

space of random variables, for example, a random variable R taking values in

an observation domain B ⊆ R. FR denotes the cumulative distribution function

of the return R assumed to have a finite mean. A series of risk measure esti-

mates Θ1(R), ...,ΘT (R) take values in an action domain A ⊆ Rk, where Θi(R) =

(ρ1(R), ..., ρk(R)) is a k-dimensional vector of risk measures, for i = 1, . . . , T . The

emphasis in our study being on VaR and ES measures (that is, k = 2), let vα

denote the VaR measure and eα for the ES measure at a given significance level

α ∈ (0, 1), such as α = 2.5%, recommended by the Basel Committee on Banking

Supervision (2019). VaR and ES at an α critical level are computed as:

vα(F ) = inf{r ∈ R : FR(r) ≥ α}, eα(F ) =
1

α

∫ α

0

vu(F )du. (3.2.1)

Hence, vα and eα have negative values, following the sign convention of Ziegel

et al. (2020). Without loss of generality, we shall omit henceforth the subscript

α from vα and eα.

Definition 1. A scoring function3 is a map S : A × B → R. For a given

family of probability measures P , the scoring function S is considered consistent
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for the vector of risk measure(s), Θ(R), with respect to the class P , if for all

Y = (Y1, ..., Yk), any R and all P ∈ P :

EP [S (Θ(R),R)] ≤ EP [S (Y,R)]

When there is no equality in the above condition for all Y 6= Θ(R), S is called

strictly consistent for the vector of risk measures Θ(R) which are called elicitable.

Gneiting (2011) proves that VaR is elicitable, since it can be uniquely obtained

by minimizing the expected score given by the GPL scoring function which is

strictly consistent for VaR, but at the same time ES is not elicitable (see Ziegel,

2016). However, Fissler and Ziegel (2016) argue that VaR and ES are jointly

elicitable under the assumption that the conditional distributions of returns are

continuous, and formally provide a class of scoring functions strictly consistent

for this pair of risk functionals Θ = [v, e]. For a critical level α, considering

two increasing continuously differentiable functions G1 and G2 = G ′2 such that

E[G1(z)] exists and limz→−∞G2(z) = 0, and a realization of return denoted by

r, the class of strictly consistent scoring functions4 for the pair of risk measures

(v, e) is given below (hereafter, FZ scoring functions):

SFZ(r, v, e;α,G1, G2) =
(
1{r≤v} − α

)
(G1(v)−G1(r)) (3.2.2)

+ G2(e)

(
1

α
1{r≤v}(v − r)− (v − e)

)
− (G2(e)− G2(r))
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Definition 2. A scoring function S within the FZ family is called positively

homogeneous of some order b ∈ R if for all v = (v1, ..., vn), e = (e1, ..., en) and all

r

S(λr, λv, λe;α,G1, G2) = λbS(r, v, e;α,G1, G2), for all λ > 0.

Upon rescaling the data, positive homogeneity will ensure that the same param-

eter estimates are derived, or the same orderings of models are obtained, using

the same form of scoring function (see details in Efron, 1991 and Patton, 2011).

This is a desirable feature for forecast ranking (Patton, 2011). Nolde and Ziegel

(2017a) streamline the full class of FZ family in (3.A.2) such that the resulting

scoring differences are positively homogeneous of degree b. This is equivalent to:

if b < 0 : G1(z) = −c0, G2(z) = c1(−z)b + c0,

if b = 0 : G1(z) = d01{z≤0} + d′01{z>0}, G2(z) = −c1 log(−z) + c0,

and if b ∈ (0, 1) : G1(z) = (d′11{z>0} − d11{z≤0})|z|b + c0, G2(z) = −c1(−z)b + c0;

(3.2.3)

for constants5 c0, d0, d
′
0 ∈ R with d0 ≤ d′0, d1, d

′
1 ≥ 0 and c1 > 0. For b ≥ 1, there

is no positively homogeneous scoring function. The computational assumption

that ES is strictly negative is being used. Throughout this chapter, we use the

notation “FZ0” coined by Patton et al. (2019) for the 0-homogeneous case: if
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and only if G1(z) = 0 and G2(z) = −1/z in (3.A.2), it can be written as:

SFZ0(r, v, e;α) = − 1

αe
1{r≤v}(v − r) +

v

e
+ log(−e)− 1.

3.2.2 Model risk in relation to the FZ class

In his seminal paper, Patton (2019) investigates the sensitivity of ranking risk

models to different scoring functions, making three assumptions with respect to

identification risk, estimation risk as well as misspecification risk, accordingly:

1) the information sets of the forecasters are nested, so FBt ⊆ FAt or FAt ⊆ FBt

for all t, and they do not lead to identical optimal forecasts for all t; 2) if the

forecasts are based on models, then the models are free from estimation error; and

3) if the forecasts are based on models, then the models are correctly specified

for the statistical functional(s) of interest. One of his major findings is that, if

any of the assumptions above is not satisfied by the VaR models (in other words,

the VaR risk measure models come with identification risk, parameter estimation

risk or misspecification risk), then the ordering of VaR models may be sensitive

to the choice of scoring function within the GPL class. Inspired by this, we

draw a connection between the FZ scoring functions for the pair (VaR, ES) at

an α critical level and different sources of model risk in the following proposition,

similar to Proposition 4 in Patton (2019):

Proposition 1 (a) Under the aforementioned three assumptions, the ranking of
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two risk models (A,B) by comparing the expected score of FZ0 scoring function,

SFZ0,A and SFZ0,B, is sufficient for their ranking by any (strictly consistent) FZ

scoring function S defined in (3.A.2). That is, for all S ∈ SFZ and the pair (VaR,

ES) measures estimated at an α significance level,

E [SFZ0,B] Q E [SFZ0,A] =⇒ E
[
S(rt, v̂

B
α,t, ê

B
α,t)
]
Q E

[
S(rt, v̂

A
α,t, ê

A
α,t)
]
. (3.2.4)

(b) If any of Assumptions 1,2 and 3 fails to hold, then the ranking of these two

risk models may be sensitive to the choice of the FZ scoring function.

Proposition 1(a) shows that conditioning on the absence of model risk will

warrant that the ranking of risk models by the FZ0 scoring function is consistent

with the ordering given by any other FZ scoring function; Proposition 1(b) states

that if model risk is present, the ranking of risk estimation procedures may be

affected by the choice of (strictly consistent) scoring function. Proofs adapted

from Patton (2019) are given in the supplemental appendix.

3.2.3 Sensitivity of model ranking to the FZ class in the

presence of model risk

Regarding Proposition 1(b), we provide three examples showing that the ranking

of risk models is sensitive to the choice of FZ scoring function when model risk is

present. Specifically, we compute the average loss (score) difference between two

competing models. This technique is widely accepted, see Gneiting (2011), Nolde
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and Ziegel (2017a) and Patton (2019). For instance, if model A has a smaller

expected loss than model B, implying a negative average loss difference between

model A and model B, then model A dominates model B. Nolde and Ziegel (2017a)

find that model comparison based on the expected score of a given FZ scoring

function should be made on a sample large enough in order to reduce the effect

of the data on the stability of ranking competing models. As in Nolde and Ziegel

(2017b), we use a window length of 2,000 to compute the expected score (of FZ

class) in the following simulation and empirical study so that the quality of risk

measures could be evaluated without outliers’ effect. Our calculations confirm

that 2,000 data points are sufficient to achieve stability (for the sample average

score to converge to the true mean score).

(i) First, consider the case characterized by the presence of identification risk

when non-nested information sets are applied to two competing risk models, based

on the positively homogeneous FZ class specified in (3.2.3). We first simulate

10,000 daily stock returns according to the AR(1)-GARCH(1,1) model specified

below:

rt = µt + σtεt, εt ∼ iid N(0, 1), (3.2.5)

where µt = 0.03 + 0.05rt−1, σ2
t = 0.05 + 0.88σ2

t−1 + 0.05σ2
t−1ε

2
t−1.

Next, we compute daily VaR and ES estimates at an α significance level, free

of estimation and misspecification risk, based on the non-nested information sets
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(thus leading to identification risk):

v̂At = µt + σ̄Φ−1(α), êAt = µt +
σ̄

α

∫ α

0

Φ−1(x)dx; (3.2.6)

v̂Bt = µ̄+ σtΦ
−1(α), êBt = µ̄+

σt
α

∫ α

0

Φ−1(x)dx;

where the unconditional mean and volatility are µ̄ = 0.0316 and σ̄ = 0.8452,

respectively, given the known parameters in (3.2.5). The first pair of risk func-

tional only utilizes the information on the conditional mean (µt) associated with

the AR(1) process, referred to as the mean forecast A; while the second pair only

employs the variance (σ2
t ) associated with the GARCH(1,1) process, referred to

as the volatility forecast B.

The right figure of panel (a) in Figure 3.2.1 shows average FZ loss differences

between the mean forecast and volatility forecast along with the degree of homo-

geneity, [-1,1), when one-step ahead VaR and ES measures are computed using a

rolling window of length 1,000 at multiple significance levels based on the simu-

lated data. The positive loss differences suggest that the volatility forecast fits the

simulated data better than the mean forecast, indicating that at more extreme

α levels, the volatility forecast performs better in capturing the variations of the

data than the mean forecast. The average loss differences can be negative for less

extreme α levels (for example, α = 50%), showing that the mean forecast is favor-

able in making risk forecasts. This is in line with Figure 5 in Patton (2019). The

switching sign of the average loss differences for different FZ scoring functions is
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Figure 3.2.1: Sensitivity of model ranking to the choice of scoring function

This figure presents average loss differences against positive homogeneity from -1 to
1. Panel (a): loss differences between the mean forecast and the volatility forecast in
(3.2.6); panel (b): loss differences between the estimations based on estimation windows
of 1,000 and 500; panel (c): loss differences between NEVT and NFHS. In all panels:
the left figure presents average loss differences with 95% confidence intervals in grey
for daily risk measures at α = 2.5% when 1,000 paths of 2,000 returns are simulated,
and the right figure presents average loss differences for daily risk measures at multiple
levels in a simulated path of 10,000 (panel a) or 2,000 (panel b and c) returns.
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clearly identified where VaR and ES are estimated at α = 40% and 50%. This

is consistent with Proposition 1(b), arguing that the ordering of competing risk

models is affected by the choice of the FZ scoring function. Nevertheless, at the

regulatory coverage level of α = 2.5% for VaR and ES, the ranking of these two

models based on various FZ scoring functions, though subject to identification

risk, is still consistent as shown in the right figure of panel (a), which may support

the use of FZ0 scoring function for forecast evaluation. In order to exclude the

effect of noise of the simulated data on switching signs, the left figure of panel (a)

presents the average loss differences within the 95% confidence intervals in grey,

based on simulating 1,000 paths of 2,000 daily returns.

(ii) Secondly, consider the sensitivity of ranking two risk models affected by

parameter estimation risk, in our case when the length of estimation windows

varies, to the choice of scoring function. We choose a simple GARCH(1,1) pro-

cess with Student’s t innovations to simulate financial returns, using the model

parameters in Kratz et al. (2018) who fitted a t-GARCH(1,1) model on the daily

log-returns of S&P500 index between 2000-2012. The model is written as:

rt = σtZt, Zt ∼ iid St(5.06), (3.2.7)

where σ2
t = 2.18× 10−6 + 0.109r2

t−1 + 0.890σ2
t−1,

{Zt}t∈N is an i.i.d sequence of Student’s t distributed random variables with de-

grees of freedom equal to 5.06. Then we use the same GARCH(1,1) specification
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with Student’s t disturbances to compute the daily VaR and ES estimates at mul-

tiple levels with different parameter estimation windows, L1=1,000 and L2=500,

where L = {L1, L2}:

v̂Lt = σ̂St−1
α (d̂), êLt =

σ̂

α
· fSt(d̂)

(
St−1

α (d̂)
)
. (3.2.8)

The values of average loss differences between the estimations based on the

longer estimation window and the shorter one are mostly negative for all the

significance levels considered, and they converge to zero as the degree of homo-

geneity increases, occasionally turning positive, as can be seen from the right

figure of panel (b) in Figure 3.2.1, in which a path of 2,000 returns is generated

by the DGP in (3.2.7). On the left figure of panel (b) we simulate 1,000 paths

of 2,000 returns, compute the daily risk estimates at α = 2.5%, and generate

the average loss differences with the 95% confidence intervals in grey. Panel (b)

provides evidence that the choice of scoring function may have an effect on the

ranking of the (VaR, ES) models subject to estimation risk.

(iii) Thirdly, we show that the ranking of two misspecified risk models (with

parameter estimation risk present) may be affected by the choice of FZ scoring

function. In this case, we implement the same DGP as in (3.2.7). In order

to compute the daily VaR and ES measures at a certain significance level, we

fit a GARCH(1,1) model with normal innovations to the simulated return data

and then obtain the standardized residuals which tend to be fat-tailed, using a
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rolling window scheme with a window length of 1,000. Subsequently, we employ

different risk estimation models on the standardized residuals. First, we apply the

generalized Pareto distribution (GPD) parameter estimation procedure under the

extreme value theory, developed by McNeil and Frey (2000), to model the tail

distribution of these residuals, with the threshold chosen as the 12% quantile

as in Nolde and Ziegel (2017a). This is denoted by NEVT. Specifically, we fit

the distribution of exceedances (y) beyond the threshold (u) with GPD(y; ξ, β)

shown as below, where ξ and β are the shape and scale parameters with β > 0,

respectively:

GPD(y; ξ, β) =


1− (1 + ξy/β)−1/ξ, if ξ > 0,

1− exp(−y/β), if ξ = 0;

for all y ≥ u.

Then for a given significance level, the pair of risk estimates (VaR, ES) obtained

with NEVT is analytically given by:

v̂EV Tt = −σ̂vevt(α), êEV Tt = −σ̂eevt(α),

where vevt(α) =

(
u+

β̂

ξ̂

((
α

k/τ

)−ξ̂
− 1

))
,
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and eevt(α) = vevt(α) ·

(
1

1− ξ̂
+

(β̂ − ξ̂u)

(1− ξ̂)vevt(α)

)
.

In the above formulae, k is the number of exceedances and τ represents the total

number of standardized empirical observations. All model parameters are esti-

mated using a rolling window of length 1,000. Secondly, we use Filtered Historical

Simulation (FHS) to estimate the lower tail of the innovations without assuming

any conditional distribution for the data, for which we perform bootstrapping

10,000 times (Ruiz and Pascual, 2002), which is referred to as NFHS. Then, we

combine the estimated GARCH variances with the upper (1 − α)-percentile of

the standardized residuals (Ẑt) to compute daily VaR and ES measures:

v̂FHSt = −σ̂vfhs(α), êFHSt = −σ̂efhs(α);

where vfhs = percentile
{
{−Ẑi,t}Ni=1, 100(1− α)

}
,

and efhs =
1

Nα

N∑
i=1

(−Ẑi,t)1(−Ẑi,t > vfhs).

The right figure of panel (c) in Figure 3.2.1 shows the advantage of EVT in mod-

eling the tail distribution especially at small α levels. We can differentiate two

misspecified risk models using below zero-homogeneity scoring functions due to
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the non-zero values of average loss differences, whilst this is not the case when us-

ing above zero-homogeneity scoring functions. The left figure of panel (c) presents

the 95% confidence intervals of average loss differences for risk measures at 2.5%

level.

Overall, the above three realistic simulation-based scenarios show that in the

presence of model risk, the ordering of competing (VaR, ES) risk models is sensi-

tive to the choice of FZ scoring function with degrees of homogeneity between -1

and 1, indicating that model risk indeed matters in making model comparisons

based on the expected FZ score. This provides a possible explanation for the

results of Fissler et al. (2019) who describe the properties of scoring functions

using different definitions of order sensitivity. They conclude that the FZ scoring

function is order-sensitive on line segments (see their Definition 3.3), meaning

that the scoring function is linearly increasing between the true functional value

(true risk) and any risk functional. In other words, denoting the vector of true

(VaR, ES) by z, for any given vector η, the scoring function of an estimate z+ sη

where s ∈ [0,∞] is linearly increasing in s. Although the true value of (VaR, ES)

is never known in practice, the optimal risk estimates can be uniquely obtained

via minimizing the expected score of a given scoring function due to the joint

elicitability of (VaR, ES) (Fissler and Ziegel, 2016). In addition, the relationship

between the expected score and the size of model risk is not clear. In the remain-

ing part of Chapter 3, our purpose is to quantify the model risk of a (VaR, ES)

risk model via minimizing the expected score of a certain FZ scoring function.
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3.3 Scoring function-based model risk measure

In this section, we assess the model risk of a set of widely known risk models

considered also in Nolde and Ziegel (2017a) (a review of these risk models is pro-

vided in Appendix 3.B): the nonparametric method is Historical Simulation (HS);

the semi-parametric methods include the GARCH(1,1) models with the normal,

standardized Student’s t, and skewed t innovations combined with the Filtered

Historical Simulation technique (NFHS, TFHS, and SKTFHS); the parametric

methods include the GARCH(1,1) processes with the normal, standardized Stu-

dent’s t, and skewed t distributed innovations (NFP, TFP, and SKTFP), as well

as these models combined with the Extreme Value Theory (EVT) methodology

(NEVT, TEVT, and SKTEVT). We also consider the newly proposed semipara-

metric models6 based on the FZ0 minimization of Patton et al. (2019): the one-

factor GAS model (denoted by FZ1F), the GARCH model via FZ minimization

(denoted by GFZ) as well as the hybrid GAS/GARCH model (denoted by Hybrid

for brevity), and add the EWMA model (λ = 0.94, also called RiskMetrics) to

the parametric approaches. We use these risk estimation methods to compute the

ex-ante one step ahead VaR and ES estimates at a given significance level using

rolling windows of length 1,000.

In the following, our scoring function-based model risk framework is con-

structed based on: 1) a time series of observed ex-post realizations of returns

rt, ..., rt+T and 2) for a given significance level α, a time series of ex-ante daily
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(VaR, ES) measures (v̂jt , ê
j
t), ..., (v̂

j
t+T , ê

j
t+T ) made by risk model j ∈ {1, ...,m} of

m ≥ 1 competing risk models.

3.3.1 Scoring function-based joint model risk measure

Ideally, if the pair of true risk measures were known, it would be straightforward

to compute the distance from the estimated risk measures to the true ones, thus

measuring the size of model risk.

Definition 3. For the risk functional(s) Z and all F : F → D ⊆ R2, consider

ẑjt = (v̂jt , ê
j
t), and zt = (vt, et), such that ẑjt and zt ∈ D. {ẑji }t≤i≤t+n is a time

series of risk estimates made by model j ∈ {1, ...,m}, where we have m competing

models over the model risk evaluation period, with 0 ≤ n ≤ T , whilst {zi}t≤i≤t+n

is the time series of true values of risk measures Z given by the true model over

the same period. The joint model risk measure pj[t,t+n] of a risk model j over the

evaluation window [t, t+ n] is defined as:

pj[t,t+n] =
1

n+ 1
·
t+n∑
i=t

√
(v̂ji − vi)2 + (êji − ei)2. (3.3.1)

However, the true values of risk measures zi = (vi, ei) are unknown in practice.

As such, we propose a pragmatic method to estimate the joint model risk of a

(VaR, ES) risk model: first, we calculate the optimum multipliers7 {xj1,i} and

{xj2,i} by minimizing the expected score over the multiplier estimation window8 i

from t+ k to t+ τ + k with window length of τ + 1, where k = 0 : T − τ . For any
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risk model j, the time series of {v̂ji } and {êji} are estimated at an α significance

level, then these time-varying multipliers are the solution to the minimization

exercise:

(xj1,t+τ+k, x
j
2,t+τ+k) = arg min

(X1,X2)

1

τ + 1
·
t+τ+k∑
i=t+k

SFZ
(
ri, X1 · v̂ji , X2 · êji ;α

)
.(3.3.2)

In the above, {ri} is the daily return series, X1 and X2 are multipliers of v̂ji and

êji , respectively, and we use the restrictions that X1 · v̂ji > X2 · êji , with X1, X2 > 0.

Next, we approximate the joint (VaR, ES) model risk ρj[t+τ,t+τ+n] of risk model

j as the average distance between ẑji and zj,mini across the model risk evaluation

window [t + τ, t + τ + n]. Here zj,mini = (xj1,i · v̂
j
i , x

j
2,i · ê

j
i ) is an improved pair

of risk estimates after the estimated multipliers (obtained via FZ minimization)

are applied:

ρj[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

√
(v̂ji − x

j
1,i · v̂

j
i )

2 + (êji − x
j
2,i · ê

j
i )

2. (3.3.3)

The solution in (3.3.2) shows that if the multiplier is larger (smaller) than 1,

the corresponding risk estimate is underestimated (overestimated). To this ex-

tent, ρj[t+τ,t+τ+n] in (3.3.3) provides an approximation of the true joint model

risk pj[t+τ,t+τ+n] in (3.3.1). For simplicity, we will henceforth omit the subscripts

of pj[t+τ,t+τ+n] and ρj[t+τ,t+τ+n], and use pj and ρj for the true joint model risk

measure and our proposed joint model risk measure estimate of a risk model j.
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In order to gauge the degree of similarity between the theoretical and es-

timated measures of model risk, we first compute Pearson’s linear correlation

coefficient CM = Correl(pM, ρM) between the two series to see whether our FZ

scoring function-based joint model risk estimate ρM approximates the true joint

model risk measure pM across the set of risk models M which is the set of risk

models discussed in Appendix 3.B. As the correlation only considers the strength

of the linear relationship between the true and estimated joint model risk across

the set of models M, we also use the τMx = τx(p
M, ρM) correlation coefficient

from Emond and Mason (2002) that extends the nonparametric Kendall’s τb mea-

sure, in order to estimate the possibly nonlinear association between the true and

estimated joint model risk measures over a set of models M. The values of τx

can vary from -1 (perfect inversion) to 1 (perfect agreement), with a value of 0

indicating that the true joint model risk measure and the corresponding scoring

function-based joint model risk measure estimate are independent.

In addition, we also compute the proportion ψj of true joint model risk (pj)

explained by our joint model risk estimate (ρj) over the model risk evaluation

period, defined as ψj = ρj/pj.
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3.3.2 Scoring function-based individual model risk mea-

sure

In order to consider individual VaR and ES model risk, assuming that the true

VaR and ES (v, e) are known, we calculate the average absolute biases (Bjv,Bje) of

the estimated VaR and ES from the true risk measures over the evaluation period

from t to t+ n as follows:

Bjv =
1

n+ 1
·
t+n∑
i=t

∣∣v̂ji − vi∣∣ , Bje =
1

n+ 1
·
t+n∑
i=t

∣∣êji − ei∣∣ . (3.3.4)

In practice, we can derive the individual VaR and ES model risk measures

(ρjv, ρ
j
e) of model j built upon the optimum multipliers (x1,i, x2,i) in (3.3.2) as-

signed to the estimated VaR and ES (v̂i, êi) over the model risk evaluation period

from t+ τ to t+ τ + n:

ρjv =
1

n+ 1
·
t+τ+n∑
i=t+τ

|v̂ji − x1,i · v̂ji |, ρje =
1

n+ 1
·
t+τ+n∑
i=t+τ

|êji − x2,i · êji |. (3.3.5)

Similar to CM and τMx , we compute CMv , CMe , τMx,v and τMx,e to measure the level

of correlation between our scoring function-based individual model risk measures

in (3.3.5) and the true values of individual model risk computed in equation

(3.3.4), over a certain evaluation period across a set of models (M) considered:

CMv = Correl(BMv , ρMv ), CMe = Correl(BMe , ρMe ).
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τMx,v = τx(BMv , ρMv ), τMx,e = τx(BMe , ρMe ).

For model j, ψjv = ρjv/Bjv (ψje = ρje/Bje) shows the proportion of true model risk

captured by our model risk measure in terms of the VaR (ES) measure over the

evaluation period.

3.3.3 Simulation study

To verify how our FZ scoring function-based model risk estimation methodology

works in a simulation setting (which allows comparisons with the true model

risk), as in Dimitriadis and Bayer (2019), we implement three different positively

homogeneous FZ scoring functions of degree b = 0, 0.5 and−1, presented in Table

3.3.1. These are natural examples of scoring functions, and we denote them by

S1, S2 and S3. These degrees of homogeneity correspond to G2(z) = − log(−z),

G2(z) = −
√
−z as well as G2(z) = −1/z, respectively. In order to put the

emphasis on the ES (Ziegel et al., 2017), we fix G1(z) = 0 in (3.2.3).

Table 3.3.1: Three FZ scoring functions with different degrees of positive
homogeneity

Positive homogeneity (b) FZ scoring function

0 S1 = − 1
αe
1{r ≤ v}(v − r) + v

e
+ log(−e)− 1

0.5 S2 = 1
2
√
−e

(
1
α
1{r ≤ v}(v − r)− (v − e)

)
+
√
−e

-1 S3 = 1
e2

(
1
α
1{r ≤ v}(v − r)− (v − e)

)
+ 1

e

In our simulation study, the GARCH(1,1) model with Student’s t distributed

residuals, specified in (3.2.7), is used as the data generating process, denoted by
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DGP1. We also adopt the Markov Switching GARCH(1,1) model with normal

disturbances (Klaassen, 2002) as DGP2 shown below:

rt =

√
ĥstZt, Zt ∼ iid N(0, 1), st = {1, 2}, (3.3.6)

where ĥst = ω̂st + β̂str
2
t−1 + γ̂st

2∑
i=1

pijĥi,t−1, ω̂st , β̂st and γ̂st > 0;

st = 1 or 2 shows the possible market state at time t; pij denotes the probabil-

ity of state j at time t conditional that the market is in state i at time t − 1;

ĥi,t−1 denotes the conditional variance in state i at time t − 1. The model pa-

rameters used for simulation in DGP2 are: ω̂1 = 1.8960e−04, β̂1 = 0.15841 and

γ̂1 = 0.41507; ω̂2 = 2.4130e−05, β̂2 = 0.56147 and γ̂2 = 0.41507; p11 = 0.4323

and p22 = 0.9992, estimated from the S&P500 daily returns from 2001/01/01 to

2018/05/20 (4492 observations). Then we simulate 5,000 returns by each data

generating process and compute daily VaR and ES measures using rolling win-

dows of length 1,000 across the set of models. With respect to the FZ scoring

functions (S1, S2 and S3), Figure 3.3.1 compares the mean values of true joint

model risk (shown in horizontal lines) with the average estimated joint model risk

(shown in bars) over the time period, for various (VaR, ES) risk models based

on the simulated data generated by the aforementioned two data generating pro-

cesses, DGP1 and DGP2. Regarding the FZ scoring function-based joint model

risk measure in (3.3.3), at 2.5% critical level we calculate the estimates for the
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given set of models using a rolling window with the length of n1 = 250. This

choice of the window length9 for calculating model risk follows the supervisory

requirement by the Basel Committee on Banking Supervision (2019) that a one-

year backtesting period (i.e. 250 trading days) is needed to confirm the quality of

a model. We compute the true values of joint model risk using (3.3.1). The mag-

nitude of joint model risk based on our methodology is generally smaller than

its true value, with a few exceptions. Historical Simulation (HS) is the worst

method in forecasting the daily 2.5% VaR and ES under the two different DGPs

since it has the highest level of joint model risk among all the models examined.

The parametric approaches seem to perform best (except for the EWMA model,

which is the second-worst due to high persistence to the shocks), followed by the

semiparametric models. This is in line with the results reported in Table 5 of

Patton et al. (2019), showing that the parametric models estimated by Maximum

Likelihood estimation outperform the FZ0 minimization-based semiparametric

models in computing risk estimates.

From a dynamic perspective, over two different model risk evaluation windows

n1 = 250 and n2 = 1,000, Figure 3.3.2 gives the evolution of true joint model risk

(on the left side) and the FZ0-based joint model risk estimates (on the right

side) of the daily (VaR, ES) at 2.5% coverage level across various risk models,

for returns simulated via DGP1. In terms of the joint model risk measures in

the right panel, the measure based on the shorter window (n1 = 250) indicates

more variation of joint model risk than the measure based on the longer eval-
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uation window (n2 = 1,000). The estimated model risk illustrated in the right

subpanels presents a high resemblance to the dynamics of true model risk in the

left subpanels. As expected, the joint model risk computed over a window of

n1 = 250 is more sensitive to market events as indicated by the more volatile

solid line in Figure 3.3.3 for the EWMA model. Beyond that, using a long model

risk evaluation window such as n3 = 100, 000 is not sensible due to the possible

structural breaks in the data generating process.

To get a closer look, we report three measures of similarity between the true

joint model risk and our joint model risk estimates10 in Panel A of Table 3.3.2,

taking into account the risk models and time consistency simultaneously. The

first measure is the average correlation (C̄M) between the true and estimated

joint model risk of various (VaR, ES) models over time. These correlations are

at least 0.946 (0.800) under DGP1 (DGP2), suggesting the proposed FZ-based

joint model risk measures closely related to the true joint model risk. Considering

scoring functions with different levels of homogeneity, we find that S3, with pos-

itive homogeneity parameter b equal to -1, offers the highest correlations, whilst

S2 (b = 0.5) leads to the lowest correlations in general. Also, the correlations are

higher when the model risk evaluation window is longer. The second measure

we report is the average explanatory power (ψ̄M) over a set of models M. We

find that the joint model risk measure is able to capture on average more than

50% of the true model risk of joint risk estimates under these two data generating

processes. As a third measure we look at the degree of similarity τ̄Mx , and find
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that, our FZ scoring function-based joint model risk measure exhibits a signifi-

cant resemblance to the true joint model risk measure, with τ̄Mx equal to at least

0.536 (0.644) under DGP1 (DGP2).

Figure 3.3.4 depicts the dynamic correlation between the true and estimated

joint model risk of a series of models when the estimated joint model risk is

calculated based on S1, S2 and S3 in two different evaluation windows n1 = 250

and n2 = 1,000, under DGP1. The joint model risk measure based on the -1

homogeneous FZ scoring function (S3) in a given evaluation window exhibits the

strongest dynamic correlation with the true joint model risk, followed by the S1-

based joint model risk measure. Moreover, Figure 3.3.5 shows the distributions

of the FZ0-based joint (VaR, ES) model risk over an evaluation window of n1

= 250 for the selected models when simulating 5,000 paths of 1,000 returns by

DGP1. One-step ahead VaR and ES are calculated at 2.5%. We find that the

EWMA model is the worst-performing in making risk estimates as evidenced by

the highest mean and largest dispersion of joint model risk estimates among the

selected models.

For chief risk officers of companies as well as for regulators it would be very

useful to be able to disentangle the effects of different sources of model risk.

Hence, we decompose the joint model risk into estimation risk and specification

risk in the simulation study, illustrated in panel (a) of Figure 3.3.6. To evalu-

ate the estimation risk of a given model, we first estimate the parameters of a

certain model based on the return series of S&P500 index from 03/01/2000 to
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Figure 3.3.5: Histograms of FZ0 -based joint model risk estimates of selected
risk models

This figure shows the histograms of the FZ0-based joint model risk over an evaluation
window of n1 = 250 for the selected models, based on the simulated 5,000 paths of 1,000
returns under DGP1. The plots are ordered from left to right and top to bottom by the
ascending values of mean and standard deviation.
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31/12/2007, simulate 5,000 paths of 1,000 returns and then re-estimate the model

in a rolling window of 1,000 to make one-step ahead risk estimates at 2.5% level.

Subsequently, we compute the FZ0-based estimation risk in an evaluation win-

dow of n1 = 250 for a given set of risk models. The FZ0-based joint model risk of

a certain (VaR, ES) model, comprised of estimation risk and misspecification risk,

is calculated based on the simulated data generated by the GARCH(1,1) process

with standardized Student’s t innovations (TFP). Comparing the GARCH(1,1)

models with the fully parametric normal and skewed t disturbances (NFP and

SKTFP), we notice that SKTFP is less misspecified than NFP but has a larger

estimation risk due to the higher number of parameters included in the model.

Comparing the FHS, the EVT and the fully parametric method (FP) applied to

the distribution of the standardized residuals extracted from the GARCH(1,1)

models, FHS has the highest estimation risk, followed by EVT and FP, as dis-

played in panel (b) of Figure 3.3.6.

Regarding the FZ-based individual ES model risk measure, the average cor-

relations C̄Me between the true and estimated values of ES model risk of various

models are shown in Panel B of Table 3.3.2, which share similar values to the av-

erage correlations (C̄M) between the true and estimated joint model risk in Panel

A, Table 3.3.2. Supplemental to C̄Me , the values of τ̄Mx,e are above 0.5 generally,

signaling a high degree of similarity between the true and FZ-based ES model

risk measures. Generally, for both DGP1 and DGP2, the FZ-based ES model

risk measures can explain more than half of the true model risk of ES estimates
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Figure 3.3.6: FZ0 -based joint model risk

(a) Estimation risk and misspecification risk

(b) Estimation risk

This figure shows the components of FZ0-based joint model risk of (VaR, ES) models at
α = 2.5%. We simulate 5,000 paths of 1,000 returns using model parameters estimated
from the S&P500 index from 03/01/2000 to 31/12/2007. Panel (a): the data generating
process is the GARCH(1,1) process with Student’s t innovations (TFP). Panel (b): the
FHS, EVT and FP estimation methods are implemented for the normal, Student’s t
and skewed t distributions of the standardized residuals.
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as shown by the average explanatory power (ψ̄Me ) in Panel B. Hence, the ES

model risk measure via FZ minimization is almost as efficient as the FZ-based

joint model risk measure. Nevertheless, the true and estimated VaR model risk

are less correlated under DGP1 and DGP2 as seen in Panel C of Table 3.3.2,

indicating that the FZ-based VaR model risk measure is less adequate than the

FZ-based ES model risk measure.

The simulation study confirms that our FZ scoring function-based joint model

risk and ES model risk measures are practical tools to measure the model risk of

risk models.

3.4 Properties of model risk measures

To facilitate the regulation of model risk measures, similarly to other measures of

risks (e.g., market risk), we investigate whether the proposed FZ scoring function-

based model risk measure has the coherence properties of an acceptable positive

measure ρ(·) of risk (McNeil et al., 2015), where X and Y are returns of two

different financial assets:

i) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

ii) Positive homogeneity: for any positive number h ∈ R+, ρ(h ·X) = h · ρ(X).

iii) Monotonicity: for random variables of payoffs X and Y with X ≤ Y , ρ(X) ≥

ρ(Y ).

iv) Translation invariance: for any cash position represented by a ∈ R, ρ(X+a) =
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ρ(X)− a.

Concerning the above axioms, we consider the likewise properties for our pro-

posed model risk measures which are defined as positive measures in this chapter,

in contrast to negative VaR and ES estimates following the sign convention of risk

measures used in the scoring function literature. Let ρMR(X, v̂jX , ê
j
X) be the joint

model risk of a risk model j with v̂jX and êjX being the VaR and ES estimates11

made by model j for the financial asset X, and let ρMR
e (X, v̂jX , ê

j
X) be the scor-

ing functioned-based ES model risk (similar notation for asset Y or a portfolio

X + Y ). The following properties are considered for the joint model risk and ES

model risk measures:

1. Subadditivity ρMR(X+Y, v̂jX+Y , ê
j
X+Y ) ≤ ρMR(X, v̂jX , ê

j
X)+ρMR(Y, v̂jY , ê

j
Y ).

This property lines up with the diversification effect that the joint model risk

of a certain risk estimation model fitted to a diversified portfolio of different

assets is lower than the sum of the joint model risk of the same risk model

applied to each asset.

2. Positive homogeneity

For any h ∈ R+, ρMR(h ·X, h · v̂jX , h · ê
j
X) = h · ρMR(X, v̂jX , ê

j
X).

The joint model risk will be scaled by the same size as long as all the inputs

are rescaled by a positive number h.

3. Monotonicity

If |v̂1
X − vX | ≥ |v̂2

X − vX | and |ê1
X − eX | ≥ |ê2

X − eX |, ρMR(X, v̂1
X , ê

1
X) ≥

ρMR(X, v̂2
X , ê

2
X).
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As expected, the pair of risk functional (v̂1
X , ê

1
X) for the first model is more

distant from the perfect risk estimates (vX , eX) than the corresponding risk

estimates of the second model (v̂2
X , ê

2
X), then it will have higher joint model

risk.

4. Translation invariance

For a constant a > êjX , ρMR(X + a, v̂jX − a, ê
j
X − a) = ρMR(X, v̂jX , ê

j
X).

This is also called risk free condition, stating that the joint model risk is

expected to be unaffected when a constant a is added to X and risk estimates

are adjusted with the same amount.

We verify via simulations that our proposed model risk estimation method-

ology satisfies the properties of positive homogeneity, monotonicity as well as

translation invariance. We place a particular focus on the subadditivity property

as Dańıelsson et al. (2013) do for the VaR measure. Given a certain risk model,

we examine whether our model risk measure applied to a portfolio consisting of

two assets is lower than the sum of model risk of individual assets (if not, we

have a violation of subadditivity) in the following simulated scenarios displayed

in Figure 3.4.1, which presents the percentage of subadditivity violations of joint

model risk and ES model risk measures.

Consider that assets X and Z are independent but share the same Student’s t

distribution with degrees of freedom ν1 = 2, ν2 = 4, ν3 = 10, and ν4 = 50, and asset

Y defined as Y = cX +
√

1− c2Z, so X and Y are correlated with correlation
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coefficient c. Consider two cases: in the first one X and Y are independent

(c1 = 0); in the second case X and Y are correlated with c2 = 0.5. We then

simulate 500 paths of 3,250 returns by the Student’s t distribution with different

degrees of freedom for the two risky assets, X and Y . Equally weighted portfolios

(X + Y ) are constructed based on the simulated data. We calculate the 1%,

2.5% and 10% daily VaR and ES for the two assets and portfolios, using the

Historical Simulation method (HS), and then compute the FZ0-based model

risk, including joint model risk and ES model risk, in a model risk evaluation

window of 250 days. As highlighted in Figure 3.4.1, the portfolio with higher

correlations leads to a higher subadditivity violation rate. The ES model risk

measure has a higher violation rate of subadditivity than the corresponding joint

model risk measure. Generally, the closer the return distributions of assets are

to the normal distribution (the Student’s t distribution converges to the normal

distribution as the degree of freedom increases to the infinity), the higher the

rate of subadditivity violations. In general, the higher the α level, the higher the

violation rate. Thus, the subadditivity property is not guaranteed to be satisfied

by the model risk measures.

3.5 Empirical Investigation

Here, we focus on several types of assets using daily market data from 01/01/1980

to 20/02/2019, downloaded from DataStream: 1) BARCLAYS equity price (BAR-
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CLAYS); 2) S&P500 Index (S&P500); 3) Gold bullion price (GOLD); 4) Stan-

dard & Poor’s Goldman Sachs Commodity Index total return (GSCI); and 5)

FX EUR/USD rate (EUR/USD). First, we compute the daily log returns and

construct the out-of-sample daily VaR and ES measures using rolling windows of

1,000 observations for the set of models M. Next, we find the optimized multi-

pliers for the pair of risk by minimizing the FZ scoring functions in a multiplier

estimation window of the length 2,000 (τ = 1, 999) as in Nolde and Ziegel (2017b).

We consider the S1 and S3-based model risk measures in the empirical analysis

since the S2-based model risk measure does not cover well the true model risk, as

illustrated in Figure 3.3.4. We apply our scoring function-based model risk mea-

sures to market data using a model risk evaluation window with length of 250

(n = 249), as the Basel Committee on Banking Supervision (2019) recommends

the prior 12 months (around 250 trading days) as the backtesting period for risk

measures.

Table 3.5.1 presents the dollar values of annualized average S1 and S3-based

joint model risk of (VaR, ES) risk models at 2.5% level, assuming that an investor

holds a position of 1 million dollars in each asset. The EWMA model performs the

worst, leading to misestimation of risk averaging $398,250. The GFZ, FZ1F and

Hybrid models proposed by Patton et al. (2019) are less affected by joint model

risk than the GARCH(1,1) model with normal innovations (NFP) and the His-

torical Simulation (HS), in line with the results in their paper. The GARCH(1,1)

models combined with the Extreme Value Theory (TEVT and SKTEVT) as well
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as the SKTFP model carry the lowest average joint model risk. Given a certain

asset, the S1 and S3-based joint model risk measures are able to identify the same

risk model in general as having the lowest level of joint model risk, but the joint

model risk measure based on S3 is more conservative due to the larger values of

joint model risk compared with the measure based on S1.

Panel (a) of Figure 3.5.1 captures the dynamic joint model risk based on FZ0

(S1) of the daily 2.5% VaR and ES measures across various risk models applied to

the daily log return series for BARCLAYS from 01/01/1980 to 20/02/2019. This

signals the rising and significant joint model risk of various (VaR, ES) models

during the crisis periods, confirming the discussion on model risk in Dańıelsson

et al. (2016). Our method reveals the dynamics of model risk corresponding to

the market events, though there is a a-year delay due to the model risk evalu-

ation window of 250 trading days. Out of all the models studied, the EWMA

and HS methods are the least reactive to the market and thus display the highest

joint model risk. We also find that the GARCH based models adapt to the price

movements more quickly and exhibit lower joint model risk. Misspecification

risk generally contributes more than estimation risk to the (FZ0-based annual-

ized) joint model risk, and usually peaks during the turmoil periods, when the

GARCH(1,1) model with normal innovations (NFP) produces daily risk estimates

at 2.5% for BARCLAYS, as shown in panel (b) of Figure 3.5.1.

Additionally, Figure 3.5.2 displays the dynamics of optimized multipliers re-

quired for the daily 2.5% VaR and ES of several risk models, obtained via FZ0
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Figure 3.5.1: Dynamic FZ0 -based annualized joint model risk in dollars for
BARCLAYS

(a) Comparison of joint model risk of various models

(b) Decomposition of joint model risk of NFP

This figure shows the dynamic FZ0-based joint model risk of daily (VaR, ES) estimates
at α = 2.5% for various models in panel (a) as well as the decomposition of FZ0-based
joint model risk of the GARCH(1,1) model with normal innovations (NFP), based on the
log returns of BARCLAYS from 01/01/1980 to 20/02/2019. The model risk evaluation
period is 250. The average absolute ES across various models is about 9× 105 dollars.
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minimization, based on daily returns of BARCLAYS. The models examined in

this figure tend to underestimate risk due to the multipliers for the risk estimates

being larger than 1 most of the time.

The Basel Committee on Banking Supervision (2019) requires using a 10-day

trading period for large cap equities and a 60-day trading period for exchange

rates for risk calculation purposes, so we also compute risk estimates over a 10-

day and 60-day period, for BARCLAYS and EUR/USD, accordingly. In Table

3.5.2 we report the dollar values of annualized average joint model risk of the

10-day (60-day) risk measures for BARCLAYS (EUR/USD) with the average

annualized absolute values of ES for easy comparison, assuming that an investor

holds a position of 1 million dollars in each asset. We extrapolate to multi-day

risk estimates from daily risk measures using the “square root of time” rule12,

as recommended by the Basel Committee on Banking Supervision (2019) and

following the practice of companies. The GARCH model with FZ minimization

(GFZ) has the least model risk as compared to the average absolute values of the

corresponding ES, whilst the EWMA model is the most affected by model risk

when applied to these two assets. Comparing Table 3.5.1 and Table 3.5.2, the

joint model risk of the 10-day risk measures for BARCLAYS is about 1-4 times

as high as the joint model risk of daily risk measures. For the exchange rate, the

joint model risk of the 60-day risk measures is about 2-4 times the joint model

risk estimate of daily risk measures, so the dependence of the joint model risk

estimate on the time horizon is not linear.
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Table 3.5.2: Dollar values of annualized average joint model risk of multi-day
risk measures

BARCLAYS EUR/USD
Models Avg. |ES| S1 S3 Avg. |ES| S1 S3

TFP 896,532 205,370 224,626 244,629 39,789 46,938
SKTFP 894,279 204,047 224,574 241,536 39,194 46,672

NFP 800,890 109,065 123,362 217,672 35,371 45,582
TEVT 901,541 210,180 229,640 235,270 31,383 37,881

SKTEVT 901,627 210,368 229,855 235,230 31,312 37,896
NEVT 903,136 190,638 199,306 234,576 32,074 39,447

EWMA 878,577 313,232 292,048 224,115 77,304 90,682

TFHS 899,498 202,466 219,875 236,164 31,090 37,378
SKTFHS 899,558 202,818 220,279 236,124 30,933 37,510

NFHS 902,109 183,341 188,568 235,521 31,826 39,587
GFZ 887,250 125,872 129,999 236,154 20,894 20,485

FZ1F 941,150 207,973 199,803 232,316 26,357 30,977
Hybrid 922,855 195,070 194,253 242,548 25,881 27,073

HS 1,063,175 314,956 284,969 253,760 48,129 51,934

This table reports the dollar values of annualized average joint model risk of the 10-day
(60-day) risk measures at α = 2.5% for BARCLAYS (EUR/USD) from 01/01/1980 to
20/02/2019, as compared to the average of absolute ES, assuming an investment of 1
million dollars in each asset. The values in bold are the lowest dollar values of average
annualized joint model risk.
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In Table 3.5.3 we present the backtesting results (1 for pass and 0 for failure)

of several ES and VaR backtests for various risk models applied to the daily return

series of BARCLAYS from 03/01/2000 to 01/01/2002 before and after the opti-

mum multipliers, obtained based on FZ0, are used to improve the precision of the

2.5% daily VaR and ES estimates. With respect to VaR backtests, we use the like-

lihood ratio unconditional coverage test (UCV aR) developed by Kupiec (1995) and

the likelihood ratio conditional coverage test (CCV aR) by Christoffersen (1998),

which remain widely used (Nieto and Ruiz, 2016) amongst academics and prac-

titioners. We also include the dynamic quantile regression-based test (DQ) for

VaR, proposed by Engle and Manganelli (2004), considered a more effective VaR

evaluation method (see Berkowitz et al. 2011). To backtest ES, we apply the

exceedance residual test (ER) of McNeil and Frey (2000), the Z2 test of Acerbi

and Szekely (2014) as well as the unconditional/conditional coverage test (UCES

and CCES) of Du and Escanciano (2016) to assess the frequency, magnitude and

independence of excessive losses (see a detailed description of these ES backtests

in Section 2.3.2). Our results show that adjusting for model risk does have a

positive effect on backtesting, and the models suffering from model risk which

fail the backtests can survive the backtesting procedure after adjusting the risk

estimates for model risk, as indicated by 0∗ in Table 3.5.3.

As expected, when increasing the α levels of the VaR and ES estimates, the

joint model risk of the risk models decreases. This is illustrated in Table 3.5.4

which reports the average annualized FZ0-based joint model risk of risk measures
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at 1%, 2.5% and 5% coverage levels across various models applied to the daily

return series of BARCLAYS from 01/01/1980 to 20/02/2019. This is also high-

lighted in Figure 3.5.3 showing the average joint model risk of TFP, TFHS and

HS against α levels. TFHS has less joint model risk than TFP at low coverage

levels, since TFHS is better at capturing the extreme losses in the tail, while HS

is the worst, as expected.

Figure 3.5.3: Average FZ0 -based joint model risk along with multiple α
levels

This figure shows the average joint model risk of models TFP, TFHS and HS against α
levels, computed over 250 days, based on BARCLAYS from 01/01/1980 to 20/02/2019.

Beyond the scoring function-based joint model risk measure, we also examine

the FZ-based ES model risk measure. Figure 3.5.4 displays the ratio of the FZ0-

based ES model risk over the average of absolute ES at 2.5% critical level with

a model risk evaluation window of 250 across various risk models applied to the

daily return series of BARCLAYS from 01/01/1980 to 20/02/2019.

After the Lehman Brothers’ collapse in 2008, the model risk of the 2.5% ES

computed with the HS model, the EWMA model and the GARCH(1,1) with

normally distributed innovations (NFP) inflate to more than 60%, 40% and 20%,
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respectively, of the average of absolute ES in the evaluation window, whilst the

ES model risk is only around 10% of the average absolute ES for the other models,

see Figure 3.5.4. Moreover, in Table 3.5.5 we report the average ratio of ES model

risk associated with the 0 and -1 homogeneous FZ scoring functions (S1 and S3)

over the absolute value of average ES at 2.5% level for various assets over the same

set of models and evaluation window of n1 = 250. Generally, the FZ-based ES

model risk of risk models applied to the S&P500 Index is much higher compared

to other asset classes. Except for the worst-performing models (EWMA and HS),

the average ratio of ES model risk over the average absolute ES varies between

2% to 10%. Similarly to the joint model risk, the S3-based ES model risk measure

is generally higher than the S1-based ES model risk measure.

3.6 Conclusions

In this chapter, we disentangle the components of model risk of financial market

risk models based on strictly consistent FZ scoring functions applied to the risk

functionals (VaR, ES). We show that, when model risk is present, the ordering

of (VaR, ES) models is sensitive to the FZ specification function, although the

model ranking is not sensitive to the choice of homogeneous FZ scoring function

when the pair of (VaR, ES) is estimated at small critical levels (e.g., 2.5%).

Instead of focusing on model comparison, we quantify the joint model risk of

(VaR, ES) risk models and also the ES model risk solely, based on the FZ scoring
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functions. The proposed model risk methodology framework is confirmed with a

simulation study in which we use three specific FZ scoring functions which are

0, 0.5 and -1 positively homogenous. We find a high similarity between the true

and estimated model risk of (VaR, ES) risk measures as well as for the ES model

risk, across various risk models, with correlations varying from 0.8 to 0.987, with

an explanatory power above 50%.

In our simulation analysis, the newly proposed measures of joint model risk

and ES model risk satisfy numerically all coherence properties of a measure of

risk, except for the subadditivity property. This essential property, sometimes

called the diversification of risk property, is not always satisfied numerically but

it holds true in most of our simulated scenarios when risk measures are estimated

at small α levels (e.g., 1% and 2.5%). The empirical results point out that the

EWMA model and Historical Simulation have a very high level of joint model

risk and ES model risk among all models considered, particularly during extreme

events. In addition, the backtesting performance of these models is improved

upon adjusting for model risk.

The scoring function-based model risk methodology could facilitate other ex-

tensions for quantifying the model risk of risk models. For instance, by replacing

the FZ class with the GPL class, the individual VaR model risk can be examined

in a similar manner and this may invite further research. Other interesting future

research could consider the model risk of using the “square root of time” rule and

also consider theoretical proofs for the properties of model risk measures.



Appendices

3.A Proofs

The following proofs are adapted from Patton (2019).

Proof. Proof of Proposition 1a). Here we show that under assumptions 1)-3),
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B
t )
]
≥ E

[
SαFZ(rt, v̂

A
t , ê
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First, we prove that E
[
SαFZ0(rt, v̂

B
t , ê

B
t )
]
≥ E

[
SαFZ0(rt, v̂

A
t , ê

A
t )
]

=⇒ FBt ⊆ FAt for all t.

Starting from E
[
SαFZ0(rt, v̂

B
t , ê

B
t )
]
≥ E

[
SαFZ0(rt, v̂

A
t , ê

A
t )
]

we assume that FAt ⊆

FBt for a t. This implies that E
[
SαFZ0(rt, v̂

A
t , ê

A
t )|FB

]
≥ E

[
SαFZ0(rt, v̂

B
t , ê

B
t )|FB

]
a.s.

for t, since (v̂At , ê
A
t ) ∈ FA ⊆ FB, and thus E

[
SαFZ0(rt, v̂

A
t , ê

A
t )
]
≥ E

[
SαFZ0(rt, v̂

B
t , ê

B
t )
]

by the Law of Iterated Expectations.

The inequality E
[
SαFZ0(rt, v̂

A
t , ê

A
t )
]
≥ E

[
SαFZ0(rt, v̂

B
t , ê

B
t )
]

can be satisfied if and

only if E
[
SαFZ0(rt, v̂

A
t , ê

A
t )|FB

]
= E

[
SαFZ0(rt, v̂

B
t , ê

B
t )|FB

]
a.s. for t.

The FZ class is restricted to the assumption that any pair of cumulative distri-
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bution function F i
t , i ∈ {A,B} from this class, are strictly increasing with unique

α-quantiles (Fissler and Ziegel, 2016). Let v̂it be the unique solution to α = F i
t (v

i
t),

and êit = 1
α

∫ v̂it
−∞ xf

i
r(x)dx, for i ∈ {A,B}. The necessity and sufficiency of strict

consistency of the FZ class for joint VaR and ES estimation (see details in Fissler

and Ziegel, 2016), including FZ0, implies that v̂it is the solution to the following

minimization problem:

v̂it = arg min
v̂

E
[
SαFZ0(rt, v̂, ê)|F it , ê =

1

α

∫ v̂

−∞
xf ir(x)dx

]
, for i ∈ {A,B}

(3.A.1)

Corroborating this with E
[
SαFZ0(rt, v̂

A
t , ê

A
t )|FB

]
= E

[
SαFZ0(rt, v̂

B
t , ê

B
t )|FB

]
a.s.

for all t, leads to (v̂At , ê
A
t ) = (v̂Bt , ê

B
t ). However, the last equality is in contradiction

with assumption 1) that the nested information sets do not give identical optimal

forecasts.

Next, we are going to prove that FBt ⊆ FAt =⇒ E
[
SαFZ(rt, v̂

B
t , ê

B
t )
]
≥ E

[
SαFZ(rt, v̂

A
t , ê

A
t )
]
,

where SFZ is any loss function of the FZ class. From the necessary condition

of strictly consistent FZ scoring functions (Fissler and Ziegel, 2016), for any

Sα ∈ SαFZ , the solution to the minimization of expected losses based on any strict

consistent function with the FZ class is defined in equation (3.A.1). It is straight-

forward to show that α = E [1{rt ≤ v̂it}|F it ] and that this condition holds for all

possible distributions of rt. Since FBt ⊆ FAt for all t, E
[
Sα(rt, v̂

B
t , ê

B
t )|FBt

]
≥

E
[
Sα(rt, v̂

A
t , ê

A
t )|FAt

]
, for any Sα ∈ SαFZ . Applying the Law of Iterated Expecta-

tions, we have E
[
Sα(rt, v̂

B
t , ê

B
t )
]
≥ E

[
Sα(rt, v̂

A
t , ê

A
t )
]
, for all Sα ∈ SαFZ .
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Proof. Proof of Proposition 1b). In the following, we give the analytical proofs

for Proposition 1b) under three scenarios.

(i) First, when the information sets are non-nested violating assumption 1),

we consider a simple example below: Y = −(X + Z), where X is uniformly

distributed as Unif(0, 10), Z has a triangular distribution Tri(0, 12), and X and

Z are independent.

Given that α = 50%, we assume that the risk estimates based on model A

condition on X and those based on model B condition on Z. Since X and Z are

independent, then:

v̂a = −(X +Median[Z]), Median[Z] = M [Z] ≈ 3.51,

êa = E [Y | Y ≤ v̂a] = −E [X + Z | Z ≥M [Z]] = −E[X]− E [Z | Z ≥M [Z]] ,

v̂b = −(Z +Median[X]), Median[X] = M [X] = 5,

êb = E
[
Y | Y ≤ v̂b

]
= −E [X + Z | X ≥M [X]] = −E[Z]− E [X | X ≥M [X]] .

For a critical level α, considering two increasing continuously differentiable func-

tions G1 and G2 such that E[G1(X)] exists, limx→−∞G2(x) = 0 and G ′2 = G2,

and a realization denoted by r, the class of FZ scoring functions is as follows:

SFZ(r, v, e;α,G1, G2) =
(
1{r≤v} − α

)
(G1(v)−G1(r)) (3.A.2)

+ G2(e)

(
1

α
1{r≤v}(v − r)− (v − e)

)
− (G2(e)− G2(r))
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Next, within the FZ class we calculate the expected losses, S̄0 and S̄1, depending

on G1(z) and G2(z) as in (3.A.2). Let G1(z) = 0, G2(z) = −1/z, and G2(z) =

− log(−z), and thus S̄0 is the expected loss. Also, taking G1(z) = 0, G2(z) =

−1/z2, and G2(z) = −1/z, allows the computation of S̄1. The expected loss S̄0

(the same expression is obtained for S̄A1 ) associated with model A is:

S̄A0 (y, v̂a, êa;α,G1, G2) =
G2(e)

α
E [1 {−(X + Z) ≤ −(X +M [Z])} · (Z −M [Z])]

+ eG2(e)− G2(e)−G2(e)E[v]

=
G2(e)

α
E [1 {Z ≥M [Z]} · (Z −M [Z])] + eG2(e)

− G2(e)−G2(e)E[−(X +M [Z])].

For model B, the expected loss S̄B0 (the same expression is obtained for S̄B1 ) is

computed below:

S̄B0 (y, v̂b, êb;α,G1, G2) =
G2(e)

α
E [1 {X ≥M [X]} · (X −M [X])] + eG2(e)

− G2(e)−G2(e)E[−(Z +M [X])].

Finally we obtain that:

S̄A0 = 2.489 < S̄B0 = 2.532; S̄A1 = −0.170 > S̄B1 = −0.191.

(ii) Secondly, our setup is that based on the nested information sets, the
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risk models (A and B) are subject to estimation error, though they are correctly

specified: we have that Y = −(X+Z), where X and Z are independent, uniformly

distributed as Unif(−10, 0) and Unif(0, 12), respectively.

Then, the probability density function of Y is easily derived as:

fY (y) =



12+y
120

, for − 12 < y < −2,

1
12
, for − 2 < y < 0,

10−y
120

, for 0 < y < 10.

We compute risk estimates at α = 50%. model A gives optimal risk estimates

without any conditioning information as below:

v̂a = Median[Y ] = My = −1, êa = E [Y | Y ≤ v̂a] = E [Y | Y ≤My] .

Model B conditions on Z, and makes the risk estimates by estimating Median[X].

Forecaster B estimates Median[X] using n = 1 observation of X. Since X and

Z are independent, the risk estimates are predicted as:

v̂b = −(X̃ + Z),

êb = E
[
Y | Y ≤ v̂b

]
= −E

[
X + Z | X ≥ X̃

]
= −E

[
X | X ≥ X̃

]
− E [Z] .

To compute êb, we will use the result below, since X̃ and X have the same
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distribution:

E
[
X | X ≥ X̃

]
= E

[
X · 1{X ≥ X̃}

]
= E

[
E
[
1{X ≥ X̃} | X

]
X
]

= E [Fx̃(X)X] = E [Fx(X)X] .

Therefore, êb = −E [Fx(X) ·X]−E[Z]. ForX ∼ Unif(L,U), we have E [Fx(X)X] =

1
6
· (L+ 2U).

The expected loss S̄0 (the same expression is obtained for S̄A1 ) associated with

model A:

S̄A0 (y, v̂a, êa;α,G1, G2) =
G2(e)

α
E [1 {Y ≤My} · (My − Y )]

+ eG2(e)− G2(e)−G2(e)My.

For model B, we calculate the expected loss S̄B0 (the same expression is obtained

for S̄B1 ) as follows:

S̄B0 (y, v̂b, êb;α,G1, G2) =
G2(e)

α
E
[
1

{
X ≥ X̃

}
· (X − X̃)

]
+ eG2(e)

− G(e)−G2(e)E[−(X̃ + Z)]

To compute S̄B0 and S̄B1 , since X̃ and X have the same distribution, we will use
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that

E
[
X̃ | X ≥ X̃

]
= E

[
X̃ · 1{X ≥ X̃}

]
= E

[
E
[
1{X ≥ X̃} | X̃

]
X̃
]

= E
[
(1− Fx(X̃)) · X̃

]
= E[X]− E [Fx(X)X] .

Thus we get that:

S̄A0 = 1.853 > S̄B0 = 1.466; S̄A1 = −0.852 < S̄B1 = −0.231.

(iii) Finally, we consider the case of misspecified models, although these models

are without estimation error given the nested information sets. For simplicity,

assume that the DGP is Y = −X,X ∼ Unif(0, 10). The parameters of the linear

models A and B (subject to misspecification error) are different from (0,1), and

let (β0, β1) = (0.33, 0.67) and (γ0, γ1) = (−0.25, 1.25) for A and B, respectively.

In this example, models A and B are conditioning on the same information set

and they are free of estimation error, predicting the risk estimates at α = 50% as

follows:

v̂a = −β0 − β1X, êa = −E [X · 1 {(1− β1)X ≥ β0}] ,

v̂b = −γ0 − γ1X, êb = −E [X · 1 {(1− γ1)X ≥ γ0}] .
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In the following, we will use that:

E [1 {(1− β1)X ≥ β0}] =



1− Fx
(

β0
1−β1

)
, for β1 < 1,

Fx

(
β0

1−β1

)
, for β1 > 1,

1{β0 ≤ 0}, for β1 = 1.

E [X · 1 {(1− β1)X ≥ β0}] =



E
[
X · 1{X ≥ β0

1−β1}
]
, for β1 < 1,

E
[
X · 1{X ≤ β0

1−β1}
]
, for β1 > 1,

E[X] · 1{β0 ≤ 0}, for β1 = 1.

A similar expression is obtained for model B by replacing (β0, β1) with (γ0, γ1).

The expected loss S̄0 (the same expression holds for S̄A1 ) associated with model

A is derived as:

S̄A0 (y, v̂a, êa;α,G1, G2) = (1− β1)
G2(e)

α
E[X · 1{X ≥ β0

1− β1

}]

− β0
G2(e)

α
E[1{X ≥ β0

1− β1

}]

+ β0G2(e) + β1G2(e)E[X] + eG2(e)− G2(e).
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In case of model B, the expected loss S̄B0 (the same expression holds for S̄B1 ) is:

S̄B0 (y, v̂b, êb;α,G1, G2) = (1− γ1)
G2(e)

α
E[X · 1{X ≤ γ0

1− γ1

}]

− γ0
G2(e)

α
E[1{X ≤ γ0

1− γ1

}]

+ γ0G2(e) + γ1G2(e)E[X] + eG2(e)− G2(e).

Numerically, the results of this example conclude our proof:

S̄A0 = 1.883 < S̄B0 = 116.504; S̄A1 = −0.259 S̄B1 = −2410.

3.B Risk measurement models

In our investigations we use a set of widely known risk models considered in

Nolde and Ziegel (2017a): the nonparametric method includes Historical Simu-

lation (HS); the semi-parametric methods include the GARCH(1,1) models with

the normal, standardised Student’s t, and skewed t innovations, combined with

Filtered Historical Simulation (NFHS, TFHS, and SKTFHS). The parametric

methods include the GARCH(1,1) processes with the normal, standardised Stu-

dent’s t, and skewed t distributed innovations (NFP, TFP, and SKTFP), as well

as the same distributions combined with the Extreme Value Theory methodol-
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ogy (NEVT, TEVT, and SKTEVT). In addition, we include the newly proposed

semiparametric models based on FZ0 minimization of Patton et al. (2019) (FZ1F,

GFZ and Hybrid), and add the EWMA model to the set of parametric approaches.

These risk estimation methods are used to compute the ex ante one step ahead

VaR and ES measures, at a given significance level, using rolling windows of

length L = 1, 000.

3.B.1 Nonparametric approaches

Relying on the historical data series of returns {r}, we use the easy-to-implement

Historical Simulation model (HS) to compute model-free the daily VaR and ES

at α significance level at time t over the previous L = 1, 000 observations:

v̂HSt = percentile
{
{r}t−1

t−L, 100α
}
, êHSt =

t−1∑
i=t−L

ri · 1{ri ≤ v̂HSt }

t−1∑
i=t−L

1{ri ≤ v̂HSt }
. (3.B.1)

3.B.2 Semiparametric approaches

For the GARCH(1,1)-FHS models, we incorporate the GARCH(1,1) processes

with the normal, standardised Student’s t, and skewed t disturbances, keeping

the non-parametric nature of Historical Simulation in these disturbances. The

risk measures by NFHS, TFHS, and SKTFHS are estimated in section 2.3.

Patton et al. (2019) propose several semiparametric models in which the model

parameters are estimated by minimizing the FZ0 scoring function. We use the
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one-factor GAS model (denoted by FZ1F), the GARCH model via FZ minimiza-

tion (denoted by GFZ) as well as the hybrid GAS/GARCH model (denoted by

Hybrid) they propose.

3.B.3 Parametric approaches

The EWMA model (the RiskMetrics model) is a simple variance model that

captures the persistence of a shock to the variance dynamics. The risk estimates

under EWMA at time t are

v̂EWMA
t = µ̂t + σ̂tΦ

−1(α), êEWMA
t = µ̂t +

σ̂t
α

∫ α

0

Φ−1(x)dx (3.B.2)

where µ̂t is the average return within the estimation window and the conditional

variance is estimated as: σ̂2
t = (1− λ)r2

t−1 + λσ̂2
t−1, with λ = 0.94.

We also compute the VaR and ES measures for the GARCH(1,1) models:

rt = σ̂tZt, Zt ∼ F (3.B.3)

σ̂2
t = ω̂ + β̂r2

t−1 + γ̂σ2
t−1, where β̂ + γ̂ < 1,

F denotes a cumulative Normal, Student’s t or Skewed t distribution for the

residuals. The parameters ω̂, β̂ and γ̂ are estimated via Maximum Likelihood

Estimation in a moving window of L = 1, 000. Subsequently, the VaR and ES
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estimates are written as:

v̂FPt = σ̂tF
−1(α), êFPt =

σ̂t
α

∫ α

0

F−1(x)dx. (3.B.4)

For the extreme value approach, we fit the GPD distribution to the exceedances

beyond the threshold in the standardised residuals obtained by the GARCH(1,1)

process with various innovations. The risk forecasts are displayed in section 2.3.

Additionally, to allow for switching market states, the extended Markov Switch-

ing GARCH(1,1) model with normal disturbances (Klaassen, 2002) is also em-

ployed:

rt =

√
ĥstZt, Zt ∼ iid N(0, 1), st = {1, 2}, (3.B.5)

where ĥst = ω̂st + β̂str
2
t−1 + γ̂st ·

∑2
i=1 pijĥi,t−1, ω̂st , β̂st and γ̂st > 0; st = 1 or 2,

showing the possible market state at time t; pij denotes the probability of state j

at time t conditional that the market is in state i at time t− 1 and ĥi,t−1 denotes

the conditional variance dynamics in state i at time t− 1. In this case, we write

the VaR and ES estimates as:

v̂MS
t =

√
ĥstΦ

−1(α), êMS
t =

√
ĥst

α

∫ α

0

Φ−1(x)dx. (3.B.6)
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Notes

1The primary focus of this chapter is on the standard regulatory VaR and ES measures, but

other variants like expectile-based value-at-risk (expected shortfall) (Newey and Powell, 1987;

Kuan et al., 2009) and mark to market value-at-risk (MMVaR) (Boudoukh et al., 2004; Chen

et al., 2019) have been discussed in the academic literature. Detering and Packham (2016)

propose a model risk measure applicable to derivatives contracts trading that improves over the

price range measure introduced in Cont (2006) as a yardstick of model contingent claim pricing

uncertainty. The latter is incompatible with regulatory capital charges while the former can be

used for reserve buffer computations and it is based on value-at-risk or expected shortfall.

2See Embrechts et al. (2014) for a comprehensive discussion.

3See more properties of scoring functions in Davis (2016) and Gneiting (2011).

4In (3.A.2), 1 denotes the indicator function; the first summand is the GPL family and only

depends on VaR; the second summand depends on VaR and ES. That is, ES is not elicitable

per se, but jointly elicitable with VaR. On most occasions, G2(r) is disregarded (see Nolde and

Ziegel 2017a).

5The simulation study undertaken by Nolde and Ziegel (2017a) shows that the values of the

constants are irrelevant.

6Here we used the Matlab codes ( http://public.econ.duke.edu/ ap172/) provided by Patton

et al. (2019), for which we are very grateful.

7The optimization to find a constrained minimum of a multivariate function shown in equa-

tion (3.3.2) is done in MATLAB by implementing the ‘fmincon’ function with the ‘sqp’ algorithm

which guarantees the existence of a solution, as discussed in Nocedal and Wright (2006).

8In this chapter, we compute the optimized multipliers using a multiplier estimation window

length of 2,000 in order to reduce the effect of data noise (Nolde and Ziegel, 2017a,b). That is,

τ = 1, 999 throughout this chapter.
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9We also compute the model risk over the course of a four-year backtesting period, around

1,000 trading days. The results are available upon request.

10The alternative measure replacing the formulation in (3.3.3) with the RMSE type produces

similar results.

11We consider VaR and ES as negative risk measures throughout this chapter.

12An excellent discussion on the “square root of time” rule used to compute multi-day risk

measures can be found in Diebold et al. (1997) and Dańıelsson and Zhou (2017).



Chapter 4

Model Risk of Volatility Models

4.1 Introduction

Volatility forecasting often constitutes a significant impact in many applications,

for example, in derivatives pricing, statistical risk measure estimation and invest-

ment decision-making. If the volatility forecast is wrong, then the implications

can be widespread. The existing enormous volatility modeling literature cov-

ers the family of autoregressive conditional heteroscedasticity (ARCH) models,

stochastic volatility models as well as volatility models based on realized data, in

a univariate or multivariate setting (see an extensive overview of volatility mod-

els in Bauwens et al., 2012). This chapter contributes to the line of volatility

modeling literature in measuring and managing model risk numerically.

The primary issue in evaluating the accuracy of volatility models is that the

target variable (e.g., the true variance denoted by σ2) is unobservable and latent

148
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(Hansen and Lunde, 2006 and Patton, 2011). This is addressed by using a condi-

tionally unbiased variance estimator of the true conditional variance (hereafter,

also called the volatility proxy and denoted by σ̂2), namely the daily squared

return, the realized variance, or the range-based variance to name the main ones

(see Alizadeh et al., 2002; Barndorff-Nielsen and Shephard, 2002, and Andersen

et al., 2003).

One strand of the volatility forecasting literature focuses on the accuracy of

a single model. A simple and well-known approach to evaluate the accuracy of a

single volatility model is the Mincer and Zarnowitz (1969) (MZ) regression. This

method1 regresses the conditionally unbiased proxy (σ̂2
t ) for the true variance on

the variance forecast (ht) of a given model and estimates an intercept parameter

(α) (indicating systematic over/under-estimation) and a coefficient (β), and it is

written as σ̂2
t = α + βht + et. The null hypothesis of the forecast optimality is

that H0 : α = 0 and β = 1. The R2 of the regression equation is considered as a

criterion for the accuracy (efficiency) of the volatility forecasting model. Instead

of evaluating a single model, a second strand considers model comparisons based

on scoring functions. The pairwise comparisons between two competing forecasts

(see the tests of Diebold and Mariano, 1995 and West, 1996 as well as a general

discussion in Giacomini and White, 2006) and the multiple comparisons among

volatility models (e.g., Hansen and Lunde, 2005, and Hansen et al., 2011) have

been well-documented.

The drawback of the MZ regression and the pairwise comparison tests is that
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the noisy volatility proxy may distort the results, as argued by Hansen and Lunde

(2006) and Patton (2011). To solve this problem, Patton (2011) proposes a class

of robust and homogeneous scoring functions for the volatility, which leads to an

invariant inference in the ranking of competing models to the choice of volatility

proxy. Within the proposed family of scoring functions, the mean square error

(MSE) and QLIKE scoring functions are widely accepted for the evaluation of

volatility forecasting models as in Forsberg and Ghysels (2007), Bauwens et al.

(2012), Engle and Siriwardane (2018) and others.

Although an extensive study of volatility forecast comparisons has been con-

ducted around the average loss, or distance between the estimated variances of

competing models over a forecasting period (e.g., Patton, 2011 and Hansen and

Lunde, 2005), much less is known about the exact magnitude of model risk of

the volatility forecast of a given model. Since the true volatility is never known

in practice, any volatility model is considered to be exposed to unobserved and

implicit model risk associated with the distance between the raw volatility esti-

mates to the true volatility. We approximate this type of model risk based on

the distance between the imperfect variance estimates and the improved variance

estimates based on the MSE or QLIKE loss function, thus facilitating model risk

management for volatility models.

We develop a model risk estimation methodology for volatility models, consid-

ering the choice of scoring function (MSE or QLIKE) and the effect of volatility

proxy. We estimate the model risk as the average distance between the raw
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and improved variance estimates over a model risk evaluation window (typically

250 trading days, similar to the backtesting period for statistical risk measures

as suggested by the Basel Committee on Banking Supervision, 2019), in which

an improvement is achieved by minimizing the expected score of a given robust

scoring function (MSE or QLIKE) using a volatility proxy for a given univariate

volatility model.

We study this methodology via Monte Carlo simulations by comparing dif-

ferent optimization strategies and different lengths of optimization windows and

model risk evaluation windows. Then the simulation results show that the QLIKE-

based model risk estimation method with additive adjustments made to the

volatility estimates, which we propose in this chapter, is a good approximation

of true model risk according to several measures of similarity, based on the set

of volatility models considered. We mainly use different specifications within the

broad GARCH class, and find that the proposed method at least has a correlation

of 0.88 with the true model risk measure across various models considered.

Considering the desirable coherence properties (Artzner et al., 1999) of a man-

ageable (from a regulatory perspective) measure of risk for our proposed QLIKE-

based model risk estimation methodology, we find that all properties are satisfied

except for the subadditivity. Despite this, the proposed measure of model risk can

be effectively regulated as the monotonicity, positive homogeneity and translation

invariance properties hold.

In an empirical study we apply the proposed model risk measure associated
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with different volatility proxies (the squared return and the realized variance) to

different asset classes, showing that the level of estimated model risk based on the

QLIKE loss function is not sensitive to the choice of volatility proxy across various

models in general. The model risk of volatility models adapts to market events,

particularly increasing when the market becomes very volatile. The increase in

the values of R2 of the MZ regressions after adjusting variance estimates for

model risk shows that model risk has a negative effect on the predictive accuracy

of volatility models. We also disentangle the model risk of volatility models into

parameter estimation risk and model misspecification risk, and conclude that

model misspecification risk generally plays a more dominant role than parameter

estimation risk.

The rest of Chapter 4 proceeds as follows: Section 4.2 introduces a model

risk estimation methodology based on the MSE and QLIKE loss functions, as

well as the definitions of model risk measures; Section 4.3 justifies the QLIKE-

based model risk measure via simulations, and Section 4.4 examines the desirable

coherence properties of this measure; Section 4.5 applies the proposed QLIKE-

based model risk measure to different asset classes; Section 4.7 concludes.
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4.2 Quantifying model risk

4.2.1 Evaluating volatility models using scoring functions

The discriminatory analysis between competing models is conducted based on

scoring functions. A scoring function is defined as a function S : R+ ×H → R+

and H is a compact subset of R++, where R+ and R++ represent the non-negative

and positive parts of the real line, respectively.

In terms of model comparisons, the evaluation of volatility forecasting mod-

els depends on the choice of volatility proxy σ̂2 and scoring function S. To

compare two time series of competing volatility forecasts, {hk} and {hj}, of

model k and j over a period from t to t + τ , we compare the expected scores

E
[
S(σ̂2, hk)

]
= 1

τ+1
·
t+τ∑
i=t

S(σ̂2
i , h

k
i ) and E [S(σ̂2, hj)] = 1

τ+1
·
t+τ∑
i=t

S(σ̂2
i , h

j
i ), given a

volatility proxy σ̂2 and scoring function S. A smaller expected score indicates the

superior forecasting ability of a volatility model. For a given scoring function and

volatility proxy, the optimal volatility forecast denoted by h∗t can be obtained by

minimizing the expected score and is defined as below, where Ft−1 denotes the

time t− 1 information set (see Patton, 2011; this is further generalized for point

forecasts of interest in Gneiting, 2011):

h∗t ≡ arg min
h∈H

E
[
S(σ̂2

t , h)|Ft−1

]
. (4.2.1)

We consider the MSE and QLIKE scoring (loss) functions (denoted by Smse or
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Sqlike) in this chapter. The robustness property of scoring functions distinguishes

the MSE and QLIKE scoring functions from a number of widely used scoring

functions in volatility forecast applications in that the ordering of any two (possi-

bly imperfect) volatility forecasts by the expected score of MSE or QLIKE is the

same whether the ordering is done using the true conditional variance or some

conditionally unbiased variance (Patton, 2011). These two prominent robust scor-

ing functions are listed below, when a conditionally unbiased volatility proxy σ̂2

is used:

MSE : Smse(σ̂
2, h) = (σ̂2 − h)2; QLIKE : Sqlike(σ̂

2, h) = log(h) +
σ̂2

h
(4.2.2)

4.2.2 Measuring model risk of volatility models

In the following, we quantify the model risk of volatility model j for a time series

of observed daily volatility proxy σ̂2
t , ..., σ̂

2
t+T and a time series of out-of-sample

daily variance estimates hjt , ..., h
j
t+T (computed in our case using rolling windows)

at time t, t+ 1,..., t+ T .

Definition 1. If the sequence of true variances {σ2} is known, and the volatil-

ity forecaster produces a time series of conditional variance forecasts {hj} by using

volatility model j, then the true model risk of volatility model j over a model risk
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evaluation window from t to t+ n is quantified by pj[t,t+n]
2:

pj[t,t+n] =
1

n+ 1
·
t+n∑
i=t

∣∣σ2
i − h

j
i

∣∣ . (4.2.3)

In practice, the true variance σ2 is unobservable, which can be recovered by

the observed volatility proxy σ̂2. Thus, the proxy p̂j[t,t+n] of the true model risk

of model j is calculated as below:

p̂j[t,t+n] =
1

n+ 1
·
t+n∑
i=t

∣∣σ̂2
i − h

j
i

∣∣ . (4.2.4)

In order to approximate the true model risk of volatility models based on

scoring functions, we consider two estimation methods related to different op-

timization strategies via making the additive or multiplicative improvements to

variance forecasts, under (i) an additive structure or (ii) a multiplicative structure:

(i) Given a volatility model j, based on (4.2.5) we find an optimized constant3

c∗,S,ja,t+τ+k (added to a series of variance forecasts {hji}t+τ+k
i=t+k ) by minimizing the

expected score of some scoring function S over an optimization window from

t+ k to t+ τ + k of length τ + 1, where k = 0 : T − τ . Parameter ca is restricted

so that hji + ca > 0 is satisfied for all i in order to ensure the positivity of variance

forecasts:

c∗,S,ja,t+τ+k = arg min
ca

1

τ + 1
·
t+τ+k∑
i=t+k

S
(
σ̂2
i , h

j
i + ca

)
. (4.2.5)

As the optimization window of length τ +1 is rolled forward at every step, a time
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series of optimized increments {c∗,S,ja,i }t+τ+n
i=t+τ is generated for variance estimates of

model j. Subsequently, the estimated model risk of model j over a model risk

evaluation window from t + τ to t + τ + n is given by ρS,j1,[t+τ,t+τ+n], under an

additive structure:

ρS,j1,[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

∣∣∣(hji + c∗,S,ja,i )− hji
∣∣∣ . (4.2.6)

(ii) In an approach different from the one based on an optimized incremental com-

ponent in (4.2.5), we calculate an optimized multiplier c∗,S,jm,t+τ+k that is assigned

to the conditional variance forecasts {hji}t+τ+k
i=t+k via minimizing the expected score

over an optimization window from t + k to t + τ + k with window length τ + 1,

where k = 0 : T − τ . Parameter cm is constrained to satisfy c > 0:

c∗,S,jm,t+τ+k = arg min
cm

1

τ + 1
·
t+τ+k∑
i=t+k

S
(
σ̂2
i , h

j
i · cm

)
. (4.2.7)

Then the model risk of volatility model j is estimated by ρS,j2,[t+τ,t+τ+n] under a

multiplicative structure:

ρS,j2,[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

∣∣∣(hji · c∗,S,jm,i )− hji
∣∣∣ . (4.2.8)

In the following, we will omit the subscripts for the time intervals of pj[t,t+n], p̂
j
[t,t+n],

ρS,j1,[t+τ,t+τ+n] and ρS,j2,[t+τ,t+τ+n] for brevity. In order to detect the similarity of model
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risk estimation measures defined in (4.2.4), (4.2.6) and (4.2.8) to true model risk

measure defined in (4.2.3), we first compute Pearson’s linear correlation coefficient

CM = Correl(pM, p̂M or ρS,M) between true model risk (pM) and model risk

measure estimates across the set of volatility modelsM discussed in Table 4.3.1, in

which ρS,M = ρS,M1 or ρS,M2 . This can only show a linear relationship between the

two series, so we additionally consider the possibly nonlinear association between

true model risk and model risk measure estimates by using the τMx = τx(p
M, p̂M

or ρS,M) correlation coefficient from Emond and Mason (2002) that extends the

nonparametric Kendall’s τb measure. For a model j, the explanatory power of

model risk estimation measure over true model risk measure is defined as ψj =

ρS,j/pj or p̂j/pj, where ρS,j can be ρS,j1 or ρS,j2 .

4.3 Simulation study

In this section, we verify via simulations whether the model risk estimation

methodology is able to capture the size of true model risk of a given volatil-

ity model. Considering that the conditional distribution of financial time se-

ries is often fat-tailed and asymmetric, we use the GARCH(1,1) model with the

skewed Student’s t distributed innovations (SKTGARCH), allowing for kurtosis



4.3. Simulation study 158

and skewness, as the data generating process that is specified as:

rt =
√
htZt, Z ∼ skewed Student’s t (ν, λ), (4.3.1)

ht = ω̂ + α̂r2
t−1 + β̂ht−1,

where rt denotes a realization of return and ht denotes the one-step ahead con-

ditional variance forecast at time t. The density function of the standardized

returns Z is f(z|ν, λ) (see Appendix 4.A), in which ν is the degree of freedom pa-

rameter and λ is the skewness parameter. The model parameters4 are estimated

on the S&P500 Index daily returns from 2000/01/03 to 2010/12/31 (2869 obser-

vations): ω̂ = 7.8183e−07, α̂ = 0.0770, β̂ = 0.9205, ν̂ = 7.1845 and λ̂ = −0.0848.

Using these values, we generate a time series of 10,000 daily returns.

Based on the simulated returns, we employ 19 volatility models5 specified in

Table 4.3.1 to make one-step ahead conditional variance estimates. More pre-

cisely, the models are: 1) historical volatility measures (RW250 and RW1000),

which are non-parametric; 2) the RiskMetrics model with λ = 0.94; 3) the au-

toregressive conditional heteroscedasticity (ARCH(1)) models (Engle, 1982) with

one lag, combined with four specifications6 for the standardised errors following

the normal, Student’s t, skewed Student’s t and generalized error distributions,

respectively; and 4) specifications of the generalized autoregressive conditional

heteroskedasticity models combined with the aforementioned four distributional

assumptions for the standardised errors, including the symmetric GARCH(1,1)
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models (Bollerslev, 1986), as well as the models of EGARCH(1,1) (Nelson, 1991)

and GJR-GARCH(1,1) (Glosten et al., 1993) with leverage terms to consider

asymmetry in volatility clustering.

Table 4.3.1: Volatility models for one-step ahead conditional variance fore-
casts

RW250: ht = 1
249

∑t−1
i=t−250

(
ri − 1

250

∑t−1
i=t−250 ri

)2

RW1000: ht = 1
999

∑t−1
i=t−1000

(
ri − 1

1000

∑t−1
i=t−1000 ri

)2

RiskMetrics: ht = (1− λ)r2
t−1 + λht−1, where λ = 0.94

ARCH(1): ht = ω + αr2
t−1

GACRH(1,1): ht = ω + αr2
t−1 + βht−1

EGARCH(1,1): log(ht) = ω + α

[
|rt−1|√
ht−1

− E{ |rt−1|√
ht−1

}
]

+ κ( |rt−1|√
ht−1

) + β log(ht−1)

GJR-GARCH(1,1): ht = ω + αr2
t−1 + ξ1{rt−1 < 0}r2

t−1 + βht−1

This table shows that for all (G)ARCH specifications rt =
√
htZt, where Zt denotes

the standardized return and follows the normal, Student’s t, skewed Student’s t and
generalized error distributions.

We first compute the daily variance estimates using rolling windows with

length 1,000 (except for the RW250 method, for which we use the previous 250

observations to compute the historical variance in a rolling window scheme). Then

for each model, we calculate the model risk of the daily volatility forecasts using

the squared return as the volatility proxy for a given scoring function (Smse or

Sqlike), considering several optimization windows of length τ1 = 250, τ2 = 500,

τ3 = 1, 000 and τ4 = 2, 000 with respect to the expected score and two model risk

evaluation windows of length n1 = 250 and n2 = 1, 000.

Panel (a) of Figure 4.3.1 presents the dynamic correlation7 between true model

risk in (4.2.3) and estimated model risk in (4.2.6) based on the MSE and QLIKE
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loss functions under an additive structure across all the models considered in

this chapter, based on data simulated by the SKTGARCH model, whilst panel

(b) shows that the model risk estimation method that assumes a multiplicative

structure in (4.2.8) leads to lower correlations between the true and estimated

model risk. Thus, in the remaining part of this chapter, we only estimate model

risk using the additive structure and present the corresponding results. Also, we

find that the longer the model risk evaluation window, the higher the correlation

between the true and estimated model risk. Moreover, Figure 4.3.2 illustrates the

average percentage of true model risk explained by the QLIKE-based model risk

measure estimates under an additive structure, calculated using an optimization

window of length τ2 = 500 and model risk estimation windows of length n1 = 250

and n2 = 1, 000. Across all the models considered, the model risk estimation

measure computed over a shorter model risk evaluation window (n1 = 250) can

capture a larger part of true model risk than the measure computed over a longer

window (n2 = 1, 000). Besides, this QLIKE-based model risk estimation method

explains up to about 80% of true model risk.

In order to measure the similarity of model risk measure estimates to true

model risk, Table 4.3.2 reports average values of the correlation, τx correlation

coefficient and explanatory power (denoted by C̄M, τ̄Mx and ψ̄M respectively).

In panel A, we report the results of model risk measures based on the MSE and

QLIKE loss functions, considering the squared return as the volatility proxy. We

find that the model risk estimation method based on the QLIKE loss function
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Figure 4.3.1: Dynamic correlation between true model risk and estimated
model risk

(a) Under an additive structure

(b) Under a multiplicative structure

Panel (a) and panel (b) of this figure show the dynamic correlation between true model
risk in (4.2.3) and estimated model risk under the additive structure in (4.2.6) and under
the multiplicative structure in (4.2.8) across various volatility models accordingly, based
on data simulated by the SKTGARCH model. Model risk of daily volatility forecasts is
estimated using scoring function Smse or Sqlike, and the squared returns are used as the
volatility proxy. We consider optimization windows τ1 = 250, τ2 = 500, τ3 = 1, 000 and
τ4 = 2, 000 and model risk evaluation windows n1 = 250 and n2 = 1, 000.
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Figure 4.3.2: Average percentage of true model risk explained

This figure shows the average percentage of true model risk explained by the QLIKE-
based model risk defined in (4.2.6), using an optimization window of length τ2 = 500.

outperforms the one based on the MSE loss function, as the former generally

has a higher correlation (and τx coefficient) with the true model risk measure for

a given optimization window and model risk evaluation window. The QLIKE-

based technique is highly consistent with the true model risk measure with a

correlation averaging from 0.88 to 0.98. In terms of the length of optimization

windows, the QLIKE-based model risk estimation methodology using a window

length of τ3 = 1, 000 generally leads to the highest correlation with the true model

risk measure for a given model risk window, which is followed by estimation using

a window length of τ2 = 500 as shown in panel A. Nevertheless, the latter method

is able to explain a higher proportion of true model risk.

In panel B of Table 4.3.2, we look at the similarity of the true model risk proxy
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Table 4.3.2: Similarity of model risk measures to true model risk measure

Panel A: Similarity of the MSE or QLIKE-based model risk measure

Model risk measure optimization
window length

model risk win-
dow length

C̄M τ̄Mx ψ̄M

ρSmse1

τ1 = 250 n1 = 250 0.91 0.68 115%
n2 = 1, 000 0.96 0.67 88%

τ2 = 500 n1 = 250 0.87 0.73 92%
n2 = 1, 000 0.94 0.88 60%

τ3 = 1, 000 n1 = 250 0.82 0.79 66%
n2 = 1, 000 0.91 0.87 44%

τ4 = 2, 000 n1 = 250 0.73 0.88 41%
n2 = 1, 000 0.86 0.94 29%

ρ
Sqlike
1

τ1 = 250 n1 = 250 0.89 0.65 96%
n2 = 1, 000 0.98 0.61 85%

τ2 = 500 n1 = 250 0.88 0.81 65%
n2 = 1, 000 0.97 0.95 50%

τ3 = 1, 000 n1 = 250 0.92 0.88 43%
n2 = 1, 000 0.96 0.99 34%

τ4 = 2, 000 n1 = 250 0.89 0.92 32%
n2 = 1, 000 0.94 1.00 26%

Panel B: Similarity of the true model risk proxy measure

p̂
n1 = 250 0.35 1.00 832%
n2 = 1, 000 0.44 1.00 763%

This table presents several ways to measure the degree of similarity of model risk mea-

sures (ρSmse1 , ρ
Sqlike
1 , p̂) to true model risk measure, based on daily returns simulated by

the SKTGARCH model: C̄M and τ̄Mx represent average values of linear and nonlinear
association between true and estimated model risk; ψ̄M shows the average explanatory
power of model risk measures across the set of volatility models. We consider optimiza-
tion windows τ1 = 250, τ2 = 500, τ3 = 1, 000 and τ4 = 2, 000 and model risk evaluation
windows n1 = 250 and n2 = 1, 000. The volatility proxy is the squared return.
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measure estimates to true model risk, and find the average correlations around

0.35 and 0.44 which are less than half of the corresponding values presented in

panel A. Additionally, the true model risk proxy measure tends to over-estimate

model risk that would be more than seven times of true model risk. From a

dynamic perspective, Figure 4.3.3 compares the dynamic correlation of the true

model risk proxy measure and the QLIKE-based model risk measure with the true

model risk measure, where the squared return is used as the volatility proxy and

model risk is computed over a model risk evaluation window n1 = 250. Unlike the

QLIKE-based model risk measure, the true model risk proxy measure is unable to

give a reasonable approximation of true model risk in that its negative correlation

with true model risk measure occurs frequently.

Generally, we can conclude based on the simulation analysis that the scoring

function-based model risk estimation methodology using the additive structure

defined in (4.2.6) can be a practical tool to provide a rational approximation of

true model risk of volatility models, particularly when the QLIKE scoring function

is used for optimization over windows τ2 = 500 and τ3 = 1, 000.

4.4 Properties of model risk estimates

To facilitate model risk management from the regulators’ perspective, a reason-

able positive measure ρ(·) of risk should satisfy the coherence properties (McNeil

et al., 2015): 1) Monotonicity: for returns r1 and r2 with r1 ≤ r2, we have that
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ρ(r1) ≥ ρ(r2); 2) Positive homogeneity: for any positive number k ∈ R+, we have

that ρ(k · r) = k · ρ(r) where r denotes the returns; 3) Translation invariance: for

any a ∈ R, we have that ρ(r + a) = ρ(r) − a; and 4) Subadditivity: for any r1

and r2, we have that ρ(r1 + r2) ≤ ρ(r1) + ρ(r2).

In a similar vein, we focus on the properties of the QLIKE-based model risk

measure denoted by ρSqlike,j(r, hj) using the squared returns r2 as the volatility

proxy in which r denotes the daily returns of a certain asset and hj denotes one-

step ahead variance forecasts of a model j. Consider the following properties that

a reasonable measure of the model risk of volatility models should satisfy:

i) Monotonicity : If σ2 < hi < hj or σ2 > hi > hj for all t, then ρSqlike,i(r, hi) <

ρSqlike,j(r, hj), assuming that two different volatility models i and j produce vari-

ance estimates hi and hj respectively, when applied to the returns r of a certain

asset.

This property states that if the variance estimates of a certain model are closer

to the true variances σ2, then this model will carry a lower level of model risk.

ii) Positive homogeneity : For k ∈ R+ and a model j, ρSqlike,j(k · r, k2 · hj) =

k2 · ρSqlike,j(r, hj), given the returns r of a certain asset and the corresponding

variance estimates hj of volatility model j.

This states that if the return data is rescaled by a positive constant k and the

variance estimates are rescaled by k2, then the model risk will be resized by k2

as well.
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iii) Translation invariance: For a model j, if a constant a with 0 > a > max(σ2−

hj) and σ2 < hj, or with 0 < a < min(σ2−hj) and σ2 > hj for all t, ρSqlike,j(r, hj+

a) = ρSqlike,j(r, hj) + |a|.

This property says that when the variance estimates are shifted by a constant

a that satisfies the condition 0 > a > max(σ2 − hj) with σ2 < hj, or 0 < a <

min(σ2 − hj) with σ2 > hj, then the model risk of model j will increase by the

absolute value of a.

iv) Subadditivity : ρSqlike,j(r(X+Y ), h
j
(X+Y )) < ρSqlike,j(rX , h

j
X) + ρSqlike,j(rY , h

j
Y ),

considering that a model j produces the variance estimates hjX , hjY and hj(X+Y )

when applied to individual assets X and Y , and an equally weighted portfolio

(X + Y ) consisting of these two assets.

This states that for a given volatility model, the model risk for an equally weighted

portfolio comprised of assets X and Y is lower than the sum of model risk for

the constituents. This property should not be required for measures of model

risk of volatility models, as it does not follow the expected behavior of model risk

measures.

Via Monte Carlo simulations, we find that the properties of monotonicity, positive

homogeneity and translation invariance hold for the QLIKE-based model risk

estimation method using the squared return as the volatility proxy, whilst the

subadditivity property does not. In Figure 4.4.1, we revisit the subadditivity

property of our proposed model risk measure in simulated cases as in Dańıelsson
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et al. (2013), and report the subadditivity violation rates.

Specifically, assuming that assets X and Z are independent but follow the

same Student’s t distribution with the degree of freedom ν = 2, 4, 10, and 50, we

construct asset Y defined as Y = cX +
√

1− c2Z, thereby being correlated with

asset X with a correlation coefficient c. We consider two cases: in the first one

X and Y are independent (c1 = 0); in the second case X and Y are correlated

(c2 = 0.5). We simulate 500 paths of 1750 returns for X and Y , and build

an equally weighted portfolio (X + Y ). Subsequently, we make one-step ahead

variance estimates by using the RW1000 model and compute the QLIKE-based

model risk over an optimization window τ2 = 500 and a model risk evaluation

window n1 = 250 for the individual assets and the portfolio. If the model risk

of the portfolio is larger than the sum of individual model risk of the component

assets, the subadditivity property will be violated for this simulated path. As the

results show, the subadditivity violations are very high.

4.5 Empirical application

In this section, we apply the QLIKE-based model risk measure under the additive

structure in (4.2.6) using an optimization window of length τ2 = 500 and τ3 =

1, 000 for empirical illustrations, as this measure shows high correlations with

the true model risk measure as evidenced by Figure 4.3.1 and Table 4.3.2 in the

simulation study. A shorter model risk evaluation period n1 = 250 is used, since
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it is in line with the backtesting period of market risk models, and based on this

shorter evaluation period, the proposed model risk estimation method captures a

higher proportion of true model risk than the method based on a longer evaluation

period n2 = 1,000.

We illustrate the QLIKE-based model risk estimation method for several as-

set classes with daily data (30/12/1983 - 21/10/2019), downloaded from DataS-

tream: 1) FTSE100 Index close prices (FTSE100); 2) JP Morgan Chase close

prices (JPM); 3) Europe Brent spot prices (dollars per barrel) for Crude Oil

(Crude Oil); and 4) Foreign exchange USD/GBP rates (USD/GBP). To consider

an alternative volatility proxy for the conditionally unbiased variance estimator,

we also download the daily close prices and the 5-min realized variances of the

FTSE100 Index (04/01/2000 to 10/10/2019) from the realized library of Oxford-

Man Institute of Quantitative Finance8. We compute daily log-returns of differ-

ent assets and then produce out-of-sample one-step ahead variance forecasts in a

rolling window scheme (all the models detailed in Table 4.3.1 use rolling windows

of length 1,000 to build volatility forecasts, except for RW250 using windows of

length 250).

Table 4.5.1 reports average ratios9 of the QLIKE-based model risk estimates

based on two proxies, namely the squared returns and 5-min realized variances,

to estimated variances. Model risk estimates are calculated over two optimization

windows τ2 = 500 and τ3 = 1000 and a model risk window n1 = 250, using daily

returns and 5-min realized variances of the FTSE100 Index from 04/01/2000 to
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Table 4.5.1: Average ratios of the QLIKE-based model risk estimates, using
different volatility proxies, to estimated variances

The volatility proxy σ̂2 is
squared returns 5-min realized variances

Models τ2 = 500 τ3 = 1000 τ2 = 500 τ3 = 1000

RiskMetrics 51.6% 33.4% 47.1% 33.5%
RW1000 57.5% 36.9% 53.0% 36.9%
RW250 16.6% 12.4% 14.4% 8.3%
NARCH 36.9% 25.9% 36.2% 26.7%
TARCH 36.9% 27.8% 35.9% 27.5%
SKTARCH 36.9% 28.0% 36.0% 27.5%
GEDARCH 37.5% 27.3% 36.8% 27.4%
NGARCH 7.4% 4.8% 8.7% 8.1%
TGARCH 7.3% 5.1% 8.8% 8.3%
SKTGARCH 7.1% 5.0% 8.5% 8.0%
GEDGARCH 7.4% 5.2% 8.7% 8.1%
NEGARCH 8.0% 4.7% 8.3% 4.0%
TEGARCH 8.7% 4.9% 8.4% 4.2%
SKTEGARCH 9.0% 5.2% 8.6% 4.4%
GEDEGARCH 8.2% 4.6% 8.3% 4.0%
NGJR 8.0% 6.5% 9.0% 6.6%
TGJR 7.6% 6.3% 8.5% 6.2%
SKTGJR 7.6% 6.2% 8.5% 6.1%
GEDGJR 7.8% 6.4% 8.8% 6.4%

This table presents average ratios of the QLIKE-based model risk estimates, using dif-
ferent volatility proxies, to estimated variances. The daily prices and the 5-min realized
variances of the FTSE100 Index range from 04/01/2000 to 10/10/2019. The volatility
proxies used are squared returns and 5-min realized variances. The optimization window
length is τ2 = 500 and τ3 = 1000; the model risk evaluation window length is n1 = 250.
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10/10/2019. We find that for the badly fitting models, the proposed technique,

using squared returns as the volatility proxy, generally estimates a higher level of

model risk than the one using realized data as the proxy. Here, the badly fitting

models are defined as those affected by model risk amounting to more than 25%

of estimated variances, and these include the RiskMetrics method, RW1000 as

well as the ARCH models. Generally, the average ratio of estimated model risk

to estimated variances is not sensitive to the use of the volatility proxy due to

the similar values of the level of model risk estimated over the same optimization

window.

Regardless of the volatility proxy used for the computation of the QLIKE-

based model risk estimates, it is interesting to notice in Table 4.5.1 that the model

risk estimation method based on an optimization window of τ2 = 500 always gives

higher ratios of model risk estimates than the method based on an optimization

window of τ3 = 1, 000 for the set of models. To get a better understanding of this

phenomenon, in Figure 4.5.1 we compare the additive adjustments with respect

to the optimization windows τ2 = 500 and τ3 = 1, 000, and show the time series of

adjustments, obtained based on the QLIKE loss function and the squared return

used as the volatility proxy, made to volatility estimates of several selected models,

using the FTSE100 Index returns from 04/01/2000 to 10/10/2019. Clearly, the

QLIKE-based model risk measure computed over τ2 = 500 in panel (a) responds

to market events in a more timely and effective manner. It allows a higher level

of additive adjustments, which also supports its higher explanatory power in
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Figure 4.5.1: Dynamic additive adjustments made to volatility estimates of
selected models

(a) Optimization window τ2 = 500

(b) Optimization window τ2 = 1000

The figure displays dynamic additive adjustments made to volatility estimates of selected
models, based on the QLIKE loss function, for the FTSE100 Index from 04/01/2000
to 10/10/2019. The optimization windows τ2 = 500 and τ3 = 1, 000 are considered and
the volatility proxy is the squared return.
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the simulation study, as compared with the measure computed over τ3 = 1, 000

days presented in panel (b) of Figure 4.5.1. Therefore, in terms of the QLIKE-

based model risk measures, an optimization window of τ2 = 500 is recommended

to warrant effective adjustments for model risk and high consistency with true

model risk at the same time.

Figure 4.5.2: Time-varying ratios of the QLIKE-based model risk estimates
to estimated variances

This figure shows time-varying ratios of the QLIKE-based model risk estimates to es-
timated variances. The squared return is used as the volatility proxy. Model risk is
computed over n1 = 250 trading days using an optimization window of length τ2 = 500,
based on the FTSE100 Index from 04/01/2000 to 10/10/2019.
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Figure 4.5.2 shows the time-varying ratios of the QLIKE-based model risk

estimates of various models to variance estimates where the volatility proxy used

is the squared return (this can be compared with Figure 4.B.1 of Appendix 4.B,

in which the alternative proxy is the 5-min realized variance). Model risk is

estimated over n1 = 250 trading days with an optimization window τ2 = 500 for

FTSE100. Within the sample period, the RiskMetrics method, RW1000 and the

ARCH models are characterised by higher ratios of model risk over the variance

forecasts, compared with the rest of the models considered. Noticeably, when the

market is highly volatile, the model risk of volatility models increases in general.

For example, the FTSE100 Index experiences its most uncertain period around

2009, following which the ratios of estimated model risk to estimated variances

of various models reach the peak level around 2010 due to the evaluation period

for model risk having a length of n1 = 250 (about one year).

It is common practice to use the adjusted R2 of the Mincer-Zarnowitz (MZ)

regression to assess the degree of predictability of the volatility models. We use

the 5-min realized variance as endogenous variable and the estimated variance, or

rather the improved variance estimate for model risk as explanatory variable in

the MZ regression. In order to analyze the performance of the forecasted volatility

adjusted for model risk, in Figure 4.5.3 we compute the change in the adjusted

R2 of the MZ regressions (displayed in bars), which shows a very similar pattern

to the average ratio (displayed in lines) of model risk estimate over estimated

variance. The model risk estimates are computed over an optimization window
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Figure 4.5.3: Change in the adjusted R-squared of the MZ regressions when
adjusting for model risk

(a) Using the squared return as the volatility proxy

(b) Using the 5-min realized variance as the volatility proxy

This figure shows the change in the adjusted R2 of the MZ regressions in which the
5-min realized variance and the variance forecast are dependent and independent vari-
ables, accordingly, based on the FTSE Index data from 04/01/2000 to 10/10/2019,
after adjusting variance estimates for the QLIKE-based model risk of different volatility
models. An optimization window τ2 = 500 and a model risk window n1 = 250 are
considered.
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τ2 = 500 and model risk evaluation window n1 = 250, based on the QLIKE

loss function related to the squared return and the realized variance as volatility

proxies, for the FTSE100 Index returns from 04/01/2000 to 10/10/2019. After

taking model risk into account, the volatility models have more predictive ability

as evidenced by an increase in the adjusted R2 across the set of models considered.

In general, the higher the model risk, the higher the increase in the adjusted R2

of the MZ regressions when adjusting for model risk of various models.

A second application based on several asset classes from 30/12/1983 to 21/10/2019

is illustrated in Table 4.5.2 which presents average ratios of the QLIKE-based

model risk to variance forecasts for the set of models given in Table 4.3.1. Here

we use squared returns as the volatility proxy and compute the model risk based

on optimization windows of length τ2 = 500 and τ3 = 1, 000, and a model risk

evaluation window of length n1 = 250. For all assets considered, the RW1000

method carries the highest level of model risk among the set of volatility models,

followed by the RiskMetrics method as well as the ARCH(1) models. Inter-

estingly, volatility models have the highest model risk when applied to the JP

Morgan Chase stock as compared with the other assets in general.

In Figure 4.5.4 we plot the time-varying ratios of the QLIKE-based model risk

over variance estimates of two models (SKTGARCH(1,1) in panel a and Risk-

Metrics in panel b, respectively) applied to various assets, based on data from

30/12/1983 to 21/10/2019. We estimate model risk based on a model risk win-

dow n1 = 250 and an optimization window τ2 = 500, using the squared return
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Figure 4.5.4: Time-varying ratios of the QLIKE-based model risk to esti-
mated variances, given a specific model applied to various assets

(a) SKTGARCH(1,1)

(b) RiskMetrics

This figure shows time-varying ratios of the QLIKE-based model risk to estimated vari-
ances, given a specific model applied to various assets. The volatility proxy is squared
return and model risk is computed over n1 = 250 trading days using an optimization
window of length τ2 = 500, based on data from 30/12/1983 to 21/10/2019.
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as the volatility proxy. Considering the contrasting models, SKTGARCH(1,1)

and RiskMetrics, we notice that the ratios of estimated model risk over the vari-

ance forecasts fluctuate dramatically between 1% and 115% for different assets.

Particularly for the equity JP Morgan Chase, the peak value (about 115%) of

the ratios of model risk estimates of the RiskMetrics model is around four times

higher than for the SKTGARCH(1,1) model (about 30%). As such, the investors

need to be conscious of the level of model risk of volatility models for different

assets that increases in uncertain times.

The components of model risk estimates are of much interest for the regula-

tory authority, practitioners and academics. The major sources of model risk are

parameter estimation risk and model misspecification risk (Kerkhof et al., 2010).

Figure 4.5.5 disentangles the QLIKE-based model risk estimates of volatility mod-

els into these two types of risk: panel (a) decomposes the model risk across vari-

ous models; whilst panel (b) shows the time-varying values of the components of

model risk for the GEDARCH model. The calculation of model risk is done over

an optimization window τ2 = 500 and a model risk evaluation window n1 = 250.

The squared return is used as the volatility proxy. For a given volatility model,

we compute estimation risk via simulations of this model with model parameters

estimated on the FTSE100 Index from 30/12/1983 to 21/10/2019. Model mis-

specification risk generally contributes more to the total model risk than parame-

ter estimation risk across various models and over time, as illustrated in panel (a)

and panel (b) respectively, though a few exceptions appear when GARCH(1,1)
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Figure 4.5.5: Decomposition of the QLIKE-based model risk of volatility
models

(a) Average model risk across various models

(b) Time-varying model risk of GEDARCH

This figure shows components of the QLIKE-based model risk estimates for various
models in panel (a) and for the GEDARCH model in panel (b), based on FTSE100
from 30/12/1983 to 21/10/2019. An optimization window τ2 = 500 and a model risk
evaluation window n1 = 250 are considered, and the volatility proxy is the squared
return.



4.5. Empirical application 182

models are considered. When the market becomes volatile, model misspecifica-

tion risk is aggravated. After the 2008 global financial crisis, we find that the

estimate of model misspecification risk peaks, as can be seen in panel (b).

In an additional exercise, we investigate the relation between the constituents

of model risk estimates and model dependent variance forecasts. Based on the

daily prices and the 5-min realized variances of the FTSE100 Index from 04/01/2000

to 10/10/2019, the model risk of the set of volatility models is computed based

on the QLIKE loss function over an optimization window τ2 = 500 and a model

risk evaluation window n1 = 250, using the squared return as the volatility proxy,

and then it is decomposed into model misspecification risk and parameter esti-

mation risk. Table 4.5.3 reports the coefficients, the associated t statistics with

White (1980) standard errors robust to heteroscedasticity adjusted for clusters as

well as the adjusted R2 of the panel regressions based on a fixed-effects (within)

estimation. More specifically, we regress model misspecification (estimation) risk

estimates on the explanatory variables which are related to: RET is the average

daily return; RV 5 is the average 5-min realized variance and V ar is the average

variance estimate over the past 250 days. The results show an increase by 0.177

(0.196) in the values of adjusted R2 after containing information on the models

when model misspecification (estimation) risk is as endogenous variable. To this

end, our proposed methodology can spot the inefficiency of volatility models in

making volatility forecasts regarding major sources of model risk, which reinforces

the reliability of this proposed technique.
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4.6 Alternative measure of model risk

We consider an alternative definition of model risk measure, i.e. the RMSE

formulation based on squared differences instead of the MAE formulation based

on absolute differences in Section 4.2. For example, we can compute true model

risk as below, rather than using the expression in (4.2.3):

pj[t,t+n] =

√√√√ 1

n+ 1
·
t+n∑
i=t

(
σ2
i − h

j
i

)2
. (4.6.1)

In a similar manner, we can derive RMSE formulations for the true model risk

proxy and the model risk estimates based on the MSE and QLIKE loss functions

to replace (4.2.4), (4.2.6) and (4.2.8).

Table 4.6.1 reports the degree of similarity of the QLIKE-based model risk

estimate to the true model risk, in which model risk is computed in RMSE for-

mulations, based on simulated daily returns by the SKTGARCH(1,1) model. We

consider different lengths of optimization windows and model risk windows and

use the squared return as the variance proxy. Comparing with Panel A of Ta-

ble 4.3.2, we find that the RMSE formulated model risk estimates in Table 4.6.1

derive similar values of correlations but tend to overestimate the magnitude of

model risk, compared with the MAE formulated model risk estimates. Thus, our

proposed model risk measure based on the MAE formulation are preferable over

the alternative measure based on the RMSE formulation.
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Table 4.6.1: Similarity of the QLIKE-based model risk estimate to the true
model risk, using RMSE alternatives

Model risk estimate optimization
window length

model risk win-
dow length

C̄M τ̄Mx ψ̄M

ρ
Sqlike
1

τ1 = 250 n1 = 250 0.90 0.66 1.26
n2 = 1, 000 0.97 0.61 1.15

τ2 = 500 n1 = 250 0.88 0.83 0.71
n2 = 1, 000 0.95 0.92 0.56

τ3 = 1, 000 n1 = 250 0.92 0.92 0.51
n2 = 1, 000 0.94 1.00 0.42

τ4 = 2, 000 n1 = 250 0.89 0.96 0.44
n2 = 1, 000 0.93 1.00 0.36

This table shows similarity between the true model risk and QLIKE-based model risk
estimates for the set of volatility models, computed using RMSE formulations based on
data simulated by the SKTGARCH model. The squared return is used as the variance
proxy. We consider optimization windows of length τ1 = 250, τ2 = 500, τ3 = 1000 and
τ4 = 2000 and model risk windows of length n1 = 250 and n2 = 1000.

4.7 Conclusions

To assess the accuracy of volatility models which are of much importance in the

financial world, we propose a new model risk estimation methodology based on

scoring functions to measure the model risk of volatility models. We investigate

this methodology considering the choice of volatility proxy (the squared return

or the 5-min realized variance) and loss function (MSE or QLIKE) for a set of

univariate models. It would be interesting to consider the model risk of volatility

models in a multivariate setting in future research.

In a simulation analysis, we consider different optimization strategies to im-
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prove on variance estimates, compare different lengths of optimization windows

and model risk evaluation windows, and then recommend the QLIKE-based model

risk estimation methodology with additive adjustments made to the volatility es-

timates, as we find that the proposed method leads to high correlations, averaging

from 0.88 to 0.98, between the estimated and true model risk measures. Partic-

ularly the technique based on an optimization window of length τ2 = 500 and a

model risk evaluation window of length n1 = 250 is highly consistent with the

true model risk measure, and can explain 65% of the true model risk on average

across the models. We examine the desirable properties of a reasonable measure

of model risk for our proposed technique, and find that the required properties

are satisfied.

In an empirical study, we explore the effect of different volatility proxies on

the proposed QLIKE-based model risk measure, concluding that the model risk

measure using the squared return as volatility proxy generally produces a higher

level of model risk for the badly fitting models (the RiskMetrics method, RW100

and the ARCH models), compared with the model risk measure that uses the

realized variance. The level of estimated model risk based on the QLIKE loss

function is not sensitive to the use of the volatility proxy across various models

in general. After adjusting variance estimates for model risk, the degree of pre-

dictability of volatility models has been improved as evidenced by an increase in

the values of adjusted R2 of the MZ regressions.

In addition, applying our proposed methodology to several asset classes, we
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find that the RiskMetrics method, the historical volatility measure RW1000 and

the ARCH models are most affected by model risk, and that the volatility models

applied to various assets carry a higher level of model risk during stressed market

states than in normal market states, as expected. We also show that model

misspecification risk generally contributes more to model risk than parameter

estimation risk.



Appendices

4.A Density functions for error distributions

Normal density function

The probability density function of the normal distribution is:

f(z|µz, σz) =
1

σz
√

2π
exp−(z−µz)2/2σ2

z ,

where µz and σz denote the mean and standard deviation of z.

Student’s t density function

The Student’s t density function is written as:

f(z|ν) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
νπ

1

(1 + z2

ν
)
ν+1
2

,

where ν denotes the degrees of freedom and Γ(·) denotes the Gamma function.
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Skewed Student’s t density function

Following Hansen (1994), the skewed Student’s t density function is given as:

f(z|ν, λ) =


bc
(

1 + 1
ν−2

(
bz+a
1−λ

)2
)−(ν+1)/2

, if z < −a/b,

bc
(

1 + 1
ν−2

(
bz+a
1+λ

)2
)−(ν+1)/2

, if z ≥ −a/b,

where the degree of freedom parameter ν with 2 < ν < ∞ controls the kurtosis

and the skewness parameter λ is −1 < λ < 1. The constants a, b and c are given

by:

a = 4λc

(
ν − 2

ν − 1

)
, b2 = 1 + 3λ2 − a2, and c =

Γ
(
ν+1

2

)√
π(ν − 2)Γ(ν

2
)
.

Generalized error distribution (GED) density function

The probability density function of the generalized error distribution of the stan-

dardized residuals z beyond the threshold u is shown as below, where ξ and β are

the shape and scale parameters with β > 0, respectively:

f(z|ξ, β) =


1− (1 + ξz/β)−1/ξ, if ξ > 0,

1− exp(−z/β), if ξ = 0,

for all z ≥ u.
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4.B Additional results

Figure 4.B.1 reports the time-varying ratios of the QLIKE-based model risk esti-

mates of various models to variance estimates where the volatility proxy used is

the 5-min realized variance, which can be compared with Figure 4.5.2.

Table 4.B.1 reports the panel regression coefficients of misspecification (esti-

mation) risk on the variables as shown in the first column, which can be compared

with Table 4.5.3.
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Figure 4.B.1: Time-varying ratios of the QLIKE-based model risk estimates
to estimated variances

This figure shows time-varying ratios of the QLIKE-based model risk estimates to es-
timated variances. The 5-min realized variance is used as the volatility proxy. Model
risk is computed over n1 = 250 trading days using the optimization window length of
τ2 = 500, based on the FTSE100 Index from 04/01/2000 to 10/10/2019.
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Notes

1Other transformations of the latent variables in similar regressions are discussed by Jorion

(1995), Bollerslev and Wright (2001), and Hansen and Lunde (2006).

2This definition is based on absolute differences. We also use an alternative formulation based

on squared differences with similar (albeit weaker) results which are available in Appendix 4.B.

3We use the default “interior-point” method in MATLAB for a constrained minimization

problem.

4The model parameters are constrained to satisfy that ω̂, α̂, β̂ > 0, α̂ + β̂ < 1, 2 < ν̂ < ∞

and −1 < λ̂ < 1.

5See a comprehensive review of volatility models in Hansen and Lunde (2005).

6Density functions for standardised error distributions considered here are shown in Ap-

pendix 4.A.

7We also examine the model risk measures related to the formulation of RMSE as alternatives

to (4.2.3), (4.2.4), (4.2.6) and (4.2.8), and then produce the similar dynamic correlation between

true and estimated model risk as seen in Figure ?? of Appendix 4.B.

8Thanks to the data available from https://realized.oxford-man.ox.ac.uk/.

9The purpose of computing the ratio of model risk to the variance forecast of a given model

is to make an easy comparison across various volatility models and assets.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings and Contributions

of the Thesis

This thesis makes significant contributions to the quantification of model risk of

the widely used risk models and volatility models using several methods. It thus

provides guidance on model risk management for the regulatory authorities, risk

managers and financial decision-making for practitioners.

In Chapter 2, we quantify the model risk of ES as an optimal correction needed

for ES to pass several ES backtests jointly, regarding the desirable backtesting

criteria: 1) an appropriate frequency of exceptions; 2) the absence of autocor-

194
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relations in exceptions; and 3) a suitable magnitude of exceptions. Considering

whether the backtesting-based correction method for ES satisfies the coherence

properties of a measure of risk from a regulatory point of view, in a simulation

study we find that all the properties hold for our chosen measure of ES model

risk with respect to the UCES and CCES tests, except that the subadditivity

property is not guaranteed. We compare the 2.5% ES with the 1% VaR in terms

of model risk across different models and based on different assets. We find that

the 2.5% ES is less affected by model risk than the 1% VaR, needing a smaller

correction to pass the three ES backtests jointly. Besides, commodity ES carries

the highest model risk especially around 2008, compared to equity and bond ES.

Moreover, we consider the impact of VaR model risk on ES model risk in terms of

the ES calculations and the ES backtests. If VaR model risk is first accounted for,

then ES model risk reduces by approximately 50%. The results are strengthened

when the standard deviations of the corrections for model risk are considered:

the GARCH(1,1) models not only require the smallest corrections for model risk,

but the level of the corrections are the most stable, when compared to the other

models considered in this study.

In Chapter 3, we develop a general scoring function-based model risk estima-

tion methodology to quantify joint (VaR, ES) model risk and ES model risk, and

disentangle the components of model risk of financial market risk models, based

on strictly consistent FZ scoring functions applied to the risk functionals (VaR,

ES). We show that, when model risk is present, the ordering of (VaR, ES) models
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is sensitive to the FZ specification function, although in the simulated cases the

model ranking is not sensitive to the choice of homogeneous FZ scoring func-

tion when the pair of (VaR, ES) is estimated at small critical levels (e.g., 2.5%).

The proposed model risk estimation methodology is confirmed with a simulation

study in which we use three specific FZ scoring functions which are 0, 0.5 and -1

positively homogenous. We find a high similarity between the true and estimated

model risk of (VaR, ES) risk measures as well as for the ES model risk, across

various risk models, with correlations varying from 0.8 to 0.987, with an explana-

tory power above 50%. In a simulation analysis, the newly proposed measures

of joint model risk and ES model risk satisfy numerically all coherence proper-

ties of a measure of risk, except for the subadditivity property. The empirical

results point out that, among all models considered the RiskMetrics model and

Historical Simulation have a very high level of joint model risk and ES model risk,

particularly during extreme events. In addition, the backtesting performance of

these models is improved upon adjusting for model risk.

In Chapter 4, we introduce a model risk methodology for volatility estimates

based on scoring functions. We study this methodology via simulations by com-

paring different optimization strategies and different lengths of optimization win-

dows and model risk evaluation windows, and then recommend the QLIKE-based

model risk estimation method with additive adjustments made to the volatility es-

timates, as we find that the proposed method leads to high correlations, averaging

from 0.88 to 0.98, between the estimated and true model risk measures. Partic-
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ularly the technique based on an optimization window of length τ2 = 500 and a

model risk evaluation window of length n1 = 250 is highly consistent with the

true model risk measure, and can explain 65% of the true model risk on average

across the models. We examine the desirable properties of a reasonable measure

of model risk for our proposed technique, and find that the required properties are

satisfied. In an empirical study, we explore the effect of different volatility prox-

ies (squared returns and 5-min realized variances, respectively) on the proposed

QLIKE-based model risk measures, concluding that the level of estimated model

risk based on the QLIKE loss function is not sensitive to the choice of volatility

proxy across various models in general. After adjusting the variance estimates for

model risk, the efficiency of volatility models can be improved as evidenced by an

increase in the values of adjusted R2 of the MZ regressions. Additionally, applying

our proposed methodology to several asset classes, we find that the RiskMetrics

method, the historical volatility measure RW1000 and the ARCH-type models

are most affected by model risk, and show that misspecification risk generally

contributes more to model risk than estimation risk.

5.2 Suggestions for Future Research

Whilst we believe that this thesis makes significant contributions to model risk

measurement of market risk models or of univariate volatility models, there are

still many gaps that need to be filled in, which would expand our knowledge
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about financial risk management. In the following, we discuss future research

that builds on the findings of this thesis in several directions.

Financial Risk This study produces model risk estimates for the models of mar-

ket risk measures and volatility forecasting in a univariate setting and identifies

the major sources of model risk, namely, parameter estimation risk and model

misspecification risk. First, the analysis may be extended to a multivariate set-

ting. In the diagram of risk estimation process for risk estimates shown in Figure

2.2.1 of Chapter 2, model risk arises at step 2 that would specify and estimate

the models describing the risk factors, which has been addressed in this study,

whilst it would be interesting to estimate model risk occurring at step 3 that

would model the P&L of a portfolio as a function of these risk factors.

Second, the scoring function-based model risk estimation methodology introduced

by Chapter 3 may facilitate other extensions for measuring model risk of the

predictive models. For example, one can investigate the individual VaR model

risk measure by replacing the FZ class with the GPL class.

Finally, whilst the coherence properties of our proposed model risk measures

based on scoring functions in Chapter 3 and Chapter 4 are examined via Monte

Carlo simulations, these properties await consideration on a theoretical front.

Scoring Function This thesis significantly contributes to the implications of

using scoring functions in measuring model risk. The current literature (e.g.

Gneiting, 2011 and Patton et al., 2019) documents the implications of using scor-
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ing functions in making model comparisons and estimating model parameters.

However, it is not very clear what consequences the choice of scoring function

will bring about. It may be worth connecting the analysis of model risk measures

based on a single scoring function to measures based on a combination of scor-

ing functions. Another extension would construct a model parameter estimation

methodology drawing on the combined scoring functions using different weights.

Backtesting Chapter 2 relates model error to statistical backtesting, and finds a

correction required for ES in order to pass ES backtests jointly. Another promising

avenue for future research would derive some backtesting methodologies for the

regulatory risk measures like VaR and ES which take into account the effect of

model risk on risk estimates.

Volatility Forecasting Chapter 4 shows that the model risk of the broad (G)ARCH-

type models increases following crisis periods, and that the forecasting ability of

these models can be improved after accounting for model risk. This invites the re-

search on improving on these models. Additionally, what is the relation between

model risk and volatility clustering? To what extent can model risk be explained

by economic/financial variables?

Relatedly, another interesting area of research lies in the stochastic volatility

models as well as the volatility models based on high-frequency data. One may

attempt to quantify the model risk and improve the forecasting accuracy of models

in these categories.
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