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Abstract 

Water transparency, usually denoted by Secchi disk depth (SSD), represents the first-order 

description of water quality and has important implications for the diversity and productivity 

of aquatic life. In China, lakes supply freshwater and ecosystem services to nearly a billion 

people. Therefore, real time monitoring of lake transparency is of great significance. 

Moreover, understanding how and why transparency varies in space and time in response to 

different driving forces is needed to understand, manage, and predict lake water quality. 

Based on the time-saving and low-cost Google Earth Engine cloud platform, this study 

developed a new algorithm for quickly mapping SDDs in Chinese lakes. SDDs were retrieved 

for 412 Chinese lakes (> 20 km2) for the period 2000–2018. Results demonstrated that lake 

water depth spatially differentiated transparency. Deep lakes usually had high transparency 

and water depth explained 88.81 % of the spatial variations. With increasing catchment 

vegetation coverage and lake water depth, 70.15 % of lakes witnessed increasing 

transparency during 2000–2018. Of these 42.72 % were significant (p<0.05). Transparency of 

deep lakes was generally determined by phytoplankton density not sediment resuspension. 

Minimum transparency occurred in summer. Future increases in lake water levels in response 

to factors such as climate change may contribute to further improvements in transparency. 

Management should focus on controlling eutrophication and increasing vegetation cover in 

catchments. 

  



2 
 

1. Introduction 

Lakes provide invaluable ecosystem services such as drinking water, spiritual/recreational 

places, and habitat that supports extensive biological diversity (Olmanson et al., 2008). With 

intensifying human activities and climate warming, however, many lakes have suffered from 

eutrophication (Wang et al., 2018), algal blooms (Ho et al., 2019), and transparency declines 

(McCullough et al., 2013). Water transparency, indicating the water depth where a Secchi 

disk or Secchi tube is no longer viewable, is one of the most intuitive, oldest, least expensive 

and easiest ways to evaluate water quality (Carlson, 1977; Lee et al., 2015; Tyler, 1968). 

Secchi disk depth (SDD) has been collected for nearly two centuries and regular 

measurement can reveal general trends in water quality (Feng et al., 2019; Lottig et al., 2014; 

McCullough et al., 2013; Olmanson et al., 2008). 

SDD is largely determined by optically active particulate matter, namely total suspended 

matter (TSM) or phytoplankton denoted by chlorophyll-a (Chl-a) usually, and can be 

monitored using satellite data observed from space (Feng et al., 2019; Lee et al., 2015; 

McCullough et al., 2013; Olmanson et al., 2008). With the advantages of large-scale 

synchronous observation and long-term image archive, satellite remote sensing is an optimal 

choice to explore SDD variations in lakes at different spatio-temporal scales (Feng et al., 

2019; McCullough et al., 2013; Olmanson et al., 2008). Generally, the traditional process for 

remotely monitoring SDD contains three steps. First, we need to download a large amount of 

satellite data from the source (Li et al., 2019; Shang et al., 2016), for example, the NASA 

ocean color site (https://oceancolor.gsfc.nasa.gov/). Second, we need to do the atmospheric 

correction using a professional software, the SeaWiFS data analysis system (SeaDAS) 

usually (IOCCG, 2018; Shi et al., 2018; Song et al., 2020). Then, a regional calibrated 

algorithm is applied to retrieve SDD from the corrected satellite data (McCullough et al., 

2012; Olmanson et al., 2008). These laborious and professional work make it hard to quickly 

map SDDs, especially for scattered lakes in a national or global scale. 

Since the 2010s, global users have access to the services offered by the Google Earth Engine 

(GEE) cloud platform (https://earthengine. google.com). The GEE cloud stores vast amounts 

of long-term archived satellite data and provides computational infrastructure plus online 

access to these data (https://code.earthengine.google.com/). Combining the available satellite 

images with petabyte processing power put real-time monitoring of earth’s lakes within reach 

(Pekel et al., 2016). Based on three million Landsat images from the GEE, Pekel et al. (2016) 

mapped global surface waters in high-resolution and revealed their long-term changes. 

Recently, Ho et al. (2019) also mapped surface phytoplankton blooms in global lakes using 

the Landsat 5 Thematic Mapper images since the 1980s from the GEE cloud platform. To the 

best of our knowledge, however, quickly mapping lake transparency in a large area using the 

GEE cloud platform has not been reported. 

China covers an area of 9.6 million square kilometers and has ∼2700 lakes with a surface 

area greater than 1 km2 (Ma et al., 2010; Zhang et al., 2019). Since China’s reform and 

opening-up in the 1980s, rapid economic development has exerted massive pressure on lake 

ecosystems and led to water quality deterioration (Duan et al., 2009; Huang et al., 2019; Tong 

et al., 2017). To improve lake environments, the Chinese government has implemented major 

strategies for alleviating general water pollution since 2000 (Huang et al., 2019; Qin et al., 

2007; Tong et al., 2017). These efforts mainly aim to control nutrient pollution in eastern 

Chinese lakes and have effectively improved water quality (Huang et al., 2019; Qin et al., 

2007; Zhou et al., 2017). However, the eastern zone only contains ∼40 % of Chinese lakes 

(Ma et al., 2010) and lakes in the western Qinghai-Tibet Plateau (39 %) were barely 

considered (Huang et al., 2019; Tong et al., 2017; Zhou et al., 2017). To better manage and 

improve lake water quality, a nationwide assessment is urgently needed. 
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The present study developed a new algorithm for quickly mapping lake SDD using the 

satellite data available from the GEE cloud platform. Then, mean SDDs at different time 

scales (climatology, year, and month) during 2000–2018 of 412 Chinese lakes with a water 

area large than 20 km2 were remotely estimated. Based on the multi-source earth science 

data, spatio-temporal variations of SDDs in Chinese lakes were analyzed. 

2. Materials and methods 

2.1. The study area 

China is the world's most populous country and the fourth largest in area. The digital 

elevation model (DEM) ranges from 0m in the east to 8790m in the west Qinghai-Tibet 

Plateau (Fig. 1). Annual mean air temperature is ∼25 ℃ in the south but about -5 ℃in the 

north and the Qinghai-Tibet Plateau (Liu et al., 2020a). The annual total precipitation in the 

southeast China can reach up to ∼3000mm but only ∼10mm in the northwest (Liu et al., 

2020a). Being influenced by the East Asian Monsoon, wind speed, air temperature, and 

precipitation vary seasonally (Song et al., 2020). Lakes in China are distributed from plain to 

plateau, encompass a wide range of biomes, and can be divided into five geographical zones 

(Ma et al., 2010; Wang and Dou, 1998): the Inner Mongolia-Xinjiang lake zone (IMXL), the 

Tibetan Plateau lake zone (TPL), the Yunnan-Guizhou plateau lake zone (YGPL), the 

northeast plain and mountain lake zone (NPML), and the eastern plain lake zone (EPL) (Fig. 

1). Lakes in the east EPL and NPML are characteristically shallow compared to lakes in other 

three west zones (Wang and Dou, 1998). 

2.2. In-situ data across China 

During 2003–2018, 2236 in-situ SDDs were measured in 299 Chinese lakes (Fig. 1, Table 1). 

Of them, 148, 110, 126, 285, and 1567 were located within the IMXL, TPL, YGPL, NPML, 

and EPL, respectively (Fig. 1, Table 1). In each fieldwork episode, SDD was measured at the 

boat’s shaded side using a 25-cm diameter Secchi disk by following the protocols proposed 

by NASA (Mueller et al., 2003). When measuring SDD, surface water within 0−30 cm water 

depth was collected using a standard 2-liter polyethylene water sampler. Back on shore, raw 

water was filtrated through Whatman GF/C™ (1.2-μm pore size, Φ47 mm) and Whatman 

GF/F (0.7-μm pore size, Φ47 mm) filters to obtain the Chl-a and TSM samples, respectively 

(Knap et al., 1994; Mueller et al., 2003). Note that TSM and Chl-a samples were not 

collected for all stations with SSD measurements. 

In the laboratory, the Chl-a sample was soaked with 90 % ethanol in the dark for 24 h (Liu et 

al., 2019). Then, the extracting solution was heated to 80−90℃ for 3−5 min and measured 

via a Shimadzu UV2401 Spectrophotometer by following the JGOFS protocols (Knap et al., 

1994). Finally, the Chl-a concentration was calculated using the measured light absorbance at 

630, 645, 663, and 750 nm (Knap et al., 1994; Liu et al., 2020b). TSM concentration was 

determined gravimetrically by drying the TSM sample repeatedly (40℃ for 6 h) until the 

weight difference was less than 0.01 mg (Liu et al., 2019; Strickland and Parsons, 1972). 

In addition to the above, monthly in-situ SDDs at 25 stations in Lake Taihu during 2000–

2015 were also included in the current study. More details about the sampling locations can 

be found in Shi et al. (2018). These data were usually collected in the first half of each month 

and stored in the Land and Watershed Data Center (http://lake.geodata.cn/). 

2.3. MODIS images in the GEE 

In this study, the long-term archived remote sensing data during 2000–2018 recorded by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite were 

adopted. With a daily revisiting period, the MODIS data have significant advantages in 
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monitoring highly dynamic lakes (Cao et al., 2017; Feng et al., 2019; McCullough et al., 

2012). This study used the daily land surface reflectance product (MOD09GA) with a spatial 

resolution of 500m×500 m. The MOD09GA was calibrated for atmospheric conditions such 

as Rayleigh scattering, gasses, and aerosols. It provides spectral reflectance at seven bands 

with central wavelengths of 469, 555, 645, 859, 1240, 1640, and 2130 nm, which can be used 

for monitoring inland waters (Feng et al., 2018). The MOD09GA also contains a quality 

assurance band, which labels the cloud state, shadow, land/water, aerosol quantity, snow/ice, 

and others. All the MOD09GA products are available in the GEE cloud platform (https:// 

developers.google.com/earth-engine/datasets/catalog/MODIS_006_ MOD09GA). 

2.4. Data on climate, geography, and human activities 

Monthly mean wind speed over the lakes during 2000–2018 was sourced from the European 

Centre for Medium-Range Weather Forecasts (ECMWF, www.ecmwf.int). Using the 

monthly mean wind speed, annual climatological values were further calculated. Lake areas 

in 1990, 1995, 2000, 2005, 2010, and 2015 were from Zhang et al. (2019). The DEM from 

the Shuttle Radar Topography Mission (DEM/ SRTM) with a spatial resolution of 30m was 

sourced from NASA (earthdata.nasa.gov). Using the DEM/SRTM, mean lake depth was 

calculated by a geo-statistical method (Messager et al., 2016). 

The lake catchment extents were identified using the WWF HydroBASINS tool provided by 

the USGS. To define the catchment extent, the HydroSheds dataset was processed with a 

user-friendly graphical interface (www.hydrosheds.org). We also checked the software output 

results manually. Then, using the lake catchment boundary data, the monthly mean land 

surface temperature during 2000–2018 was calculated from the monthly MODIS product 

MOD11A1; monthly mean normalized difference vegetation index (NDVI) was calculated 

from the monthly MODIS product MOD13A2. Both MOD11A1 and MOD13A2 were 

sourced from the USGS (https://lpdaac.usgs.gov/). Monthly total precipitation for each 

catchment was calculated from the monthly Tropical Rainfall Measuring Mission product 

TRMM3B43 (https://disc.gsfc.nasa.gov/). Using the monthly remote sensing products, 

climatological values of land surface temperature, NDVI, and precipitation were also 

computed. These calculations were proceed using the Matlab software 2012. 

As in other studies (Liu et al., 2020b; Zhou et al., 2017), we used population density to 

indicate human activity intensity. To calculate mean population density in each studied lake 

catchment, we adopted the reprocessed grid-based population density data in 2010, the 

middle year of the studied period 2000–2018. The data were with a spatial resolution of 

1000m×1000m (www.geodoi.ac.cn). 

2.5. Statistical analysis and accuracy assessment 

Correlation analyses were performed to indicate the direction (positive or negative) and 

strength (2-tailed significance test) of the linear relationships between SDD and various 

explanatory variables. Multiple general linear model (GLM) analyses were conducted to 

quantify the relative contributions of different impact factors (Feng et al., 2019; Tao et al., 

2015). Based on the information-theoretic approach and Akaike information criteria 
(Burnham and Anderson, 2002), the multiple GLM analysis can reduce model selection 
bias (Tao et al., 2015). All these statistical analyses were conducted in the SPSS 18 (IBM 
SPSS, Chicago, IL). 

Referring to Cao et al. (2018), the mean absolute percent difference (MAPD), root mean 

square error (RMSE), and bias were adopted to assess the modeling results. They are 

defined as Eq. (1). 
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 (1) 

where and are the in-situ and modeled SDDs, respectively. N denotes the 

total number of samples. 

3. The algorithm for quickly mapping SDD using GEE 

Using the in-situ SDDs (Section 2.2), we developed a remote sensing algorithm applicable to 

the MOD09GA dataset. For each in-situ SDD, synchronous cloud-free water reflectance 

within a time window of± 3 h was found by following the match-up criteria used by NASA 

(Bailey and Werdell, 2006). For the in-situ SDD higher than 200 cm, if no valid water 

reflectance was found, we expanded the time window from one to seven days in order. 

Kloiber et al. (2002) reported that increasing the time window between in-situ SDD and 

image collection within±7 days could yield reasonable results. 38 new match-ups were found 

by relaxing the time window. Moreover, the matched pairs within two pixels to the shore 

were removed to avoid the land adjacency effects (Feng and Hu, 2017). Finally, valid match-

ups were found for 489 in-situ SDDs in 128 lakes (Fig. 1). Of them, 366 (75 %) were selected 

randomly as the training dataset and the remaining 123 (25 %) were taken as the testing 

dataset. 

For lakes in the EPL with low SDDs, water reflectance of MODIS at the red band (R645) was 

usually adopted for remotely retrieving SDD or TSM (Feng et al., 2019; Li et al., 2019; Shi et 

al., 2018). To remotely monitor lakes in the TPL with high SDDs, however, Liu et al. (2017) 

used the water reflectance of MODIS at the green band (R555). Based on previous studies, 

therefore, we adopted both R645 and R555 to develop an algorithm for remotely retrieving 

SDDs in all Chinese lakes. For the training dataset, we tested various band combinations 

(ratio, difference) and evaluated their relations (linear, exponential, power, and polynomial) 

to in-situ SDDs. When using the mean values of R645 and R555, the power function was 

satisfactory, with R2=0.83 (Fig. 2a). The power function underestimated the SDDs in clear 

lakes, so we used a piecewise function to improve the algorithm performance (Fig. 2a). For 

lakes with high SDDs and low water reflectance, an exponential formula was used (Eq. (2), 

Fig. 2a). We tested the results when moving the intermediate variable R from 0 to 0.08 with 

an interval of 0.001 and achieved the best model performance when R=0.016. Therefore, for 

lake water with R ≤ 0.016, an exponential formula was used to remotely estimate SDD (Eq. 

(2), Fig. 2a). On the contrary, for lake water with R>0.016, a power function was applied to 

estimate SDD (Eq. (2), Fig. 2a). 

 (2) 

where R555 and R645 are surface reflectance of MOD09GA at the green and red bands, 

respectively. By dividing the constant π, the surface reflectance is converted to water-leaving 
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reflectance by ignoring the bidirectional effects (Wang et al., 2018). Moreover, the relaxed 

time window only increased match-ups with low water reflectance and did not show 

significant impacts on the model performance (Fig. S1). 

The two nearshore pixels were excluded, so only lakes with an area larger than 6.25 km2 can 

be monitored by the MODIS data with a spatial resolution of 500 m. However, most lakes are 

irregularly shaped. To ensure enough valid MODIS pixels left, we set the area threshold as 20 

km2. Based on the GEE cloud platform, the Eq. (2) was applied to daily MOD09GA during 

2000–2018 to remotely estimate SDDs in large Chinese lakes (> 20 km2). The QA band of 

MOD09GA was first used to mask out the land, cloud, cloud shadow, and snow/ice. Then, an 

OTSU algorithm was further applied on the normalized difference water index so as to 

remove the impacts of sun glint and aquatic vegetation. For a specific pixel, we obtained the 

monthly and annual mean SDDs by averaging all valid daily results. Then, the lake-based 

mean SDDs were further calculated. In the calculation, only ice-free results during May- 

September were used for the IMXL, TPL, and NPML (Cai et al., 2019). Moreover, lakes with 

valid SDDs in less than 10 years were not considered. Finally, 412 lakes were left to 

investigate the spatio-temporal variations of SDD and possible driving forces. 

4. Results and discussion 

4.1. The algorithm validation 

The newly developed algorithm was validated using the in-situ SDDs (Section 2.2). Eq. (2) 

was calibrated using the training dataset (N=366), for which the MAPD, RMSE, and bias 

were 32.42 %, 53.65 cm, and -26.47 %, respectively (Fig. 2b). The testing dataset (N=123) 

was used to evaluate the developed algorithm (Eq. (2)). The MAPD, RMSE, and bias were 

32.72 %, 48.91 cm, and -27.32 %, respectively (Fig. 2b). For China’ third largest freshwater 

lake (Lake Taihu in the EPL), annual mean SDD was calculated using the monthly in-situ 

data during 2000–2015 (Section 2.2) and compared with the satellite derived results. The 

MAPD, RMSE, and bias were 10.58 %, 5.74 cm, and 4.55 %, respectively (Fig. S2a). The 

satellite-derived annual mean SDD was also significantly linearly related to the measured 

results, with Pearson’s r = 0.53 and p < 0.05 (Fig. S2a). 

The new algorithm was also compared with three previously reported algorithms developed 

for the MODIS data (Feng et al., 2019; Lee et al., 2015; Li et al., 2019; Liu et al., 2017). 

1) Lee et al. (2015) proposed a mechanistic model relying on the diffuse attenuation 

coefficient at a wavelength with the maximum transparency to remotely estimate SDD. The 

synthesized dataset published by the IOCCG contains water reflectance, from which we 

estimated SDDs using the algorithms developed by Eq. (2) and Lee et al. (2015). The results 

showed that the MAPD, RMSE, and bias were 59.32 %, 1021.37 cm, and 28.14 %, 

respectively (Fig. 2c). Eq. 

(2) overestimates SDDs of highly clear waters (SDD > 2000 cm), leading to the high 

uncertainty in the differences (Fig. 2c). This was because Eq.(2) was calibrated using SDDs 

of 1.3–1650 cm for Chinese lakes (Table 1), but the IOCCG dataset covered a wide SDD 

range of 101.01–4246.51 cm. Using the algorithm of Lee at al. (2015), Feng et al. (2019) 

investigated the spatio-temporal variations of SDDs for lakes in the EPL. Comparing our 

modeled climatological mean SDDs during 2000–2018 in different lakes with their results, 

we obtained MAPD, RMSE, and bias of 35.68 %, 66.8 cm, and -35.13 %, respectively (Fig. 

2c). 

2) For lakes in the TPL, Liu et al. (2017) used only the water reflectance at the green band of 

MODIS (R555) to remotely retrieve SDD. For the 267 studied lakes in the TPL, the satellite-

derived climatological mean SDDs during 2000–2018 by this study were compared with 
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those from their algorithms. The MAPD, RMSE, and bias were 15.36 %, 31.98 cm, and -

0.01 %, respectively (Fig. 2d). 

3) For the fourth largest China’s freshwater lake (Lake Hongze), Li et al. (2019) derived 

annual mean SDDs from 2003 to 2017 using the MODIS data, as shown in Fig. S2b. 

Although the modeled annual mean SDDs by this study were lower than those by Li et al. 

(2019), probably due to our exclusion of the pixels adjacent to land with high SDDs (Section 

3), they were significantly linearly correlated (N=15; R2=0.39; p < 0.05). The MAPD, 

RMSE, and bias were 27.44 %, 14.39 cm, and -27.24 %, respectively (Fig. S2b). 

In summary, the satellite-derived SDDs from this study were comparable to those reported 

previously. Therefore, the newly developed algorithm could be applied to MOD09GA to 

remotely estimate SDDs in Chinese lakes. 

4.2. Impacts of water depth on the spatial variations 

Satellite-derived climatological SDD during 2000–2018 was used to represent its spatial 

distribution in different lakes across China. Although SDD varied spatially within a specific 

lake zone, high transparent lakes were generally located in the southwest plateau regions 

(Fig. 3a). During 2000–2018, the IMXL, TPL, YGPL, NPML, and EPL had mean SDDs of 

139.7 ± 193.96, 182.41 ± 184.29, 404.63 ± 363.98, 55.05 ± 33.46, and 92.9 ± 90.09 cm, 

respectively (Fig. 3b). On the whole, mean SSD in the three west mountainous lake zones 

(180.28 ± 171.29 cm) was double that in the two east plain zones (78.01 ± 40.54 cm). As 

shown in Fig. 3b, the highest mean SDD was found for the YGPL (404.63 ± 363.98 cm), and 

the lowest for the NPML (55.05 ± 33.46 cm). 72 of the 313 lakes in the three western zones 

were also characterized by low transparency, with mean SDDs below 50 cm (Fig. 3a). For the 

TPL, most lakes with low SDDs were located in the northwest with limited in-situ values 

(Figs. 1, 3a), which caused the obvious difference between the modeled and in-situ SDDs. 

(Fig. 3b). 

Lake SDD is co-determined by various environment variables in the lake and catchment 

(Feng et al., 2019). For Chinese lakes, in-situ data showed that SDD was significantly related 

to TSM (R2=0.84, p < 0.001, N=1792). TSM in the lake comes from three main sources: 

phytoplankton growth, sediment resuspension, and riverine input. For phytoplankton growth, 

temperature has an important influence (Rhee and Gotham, 1981) and was significantly 

negatively related to SDD (Fig. S3b, Table S1). For in-lake sediment resuspension, the wind 

is a key driver (Webster and Hutchinson, 1994; Xue et al., 2015) and water depth is a 

moderator (Carper and Bachmann, 1984). Both wind speed and water depth showed 

significant relationships to SDD (Figs. S3a, 3c, Table S1). Riverine inputted TSM are 

influenced by terrestrial soil erosion, controlled by basin precipitation, vegetation coverage 

(NDVI), and basin slope (Boardman and Favis-Mortlock, 1998; Wang et al., 2015, 2019; Yue 

et al., 2016). Human activities (population density) also impact TSM content via some means 

including increasing available nutrients for phytoplankton growth (Liu et al., 2020b; Wang et 

al., 2018), changing land cover which in turn impacts soil erosion (Wang et al., 2015), and 

mining sand which increases sediment resuspension (Cao et al., 2017). 

For Chinese lakes, the multiple GLM results showed that the spatial distribution of SDD was 

mainly influenced by water depth and wind speed (Fig. 3d). Lake water depth spatially 

correlated well with SDD. Considering all studied lakes (N=412), satellite-derived mean 

SDD was significantly linearly related to water depth, with R2=0.49 and p < 0.01 (Fig. 3c). 

Except for the NPML, significant linear relationships between SDD and water depth were 

also observed for the other four zones, respectively. As a whole, water depth explained 

88.81 % of the spatial variations of SDDs in Chinese lakes (Fig. 3d). For the IMXL, TPL, 



8 
 

YGPL, and EPL, its contributions were 72.91 %, 90.05 %, 44.36 %, and 35.47 %, 

respectively (Fig. 3d). It’s worth noting that wind speed also accounted for 36 % of the 

spatial variations of SDDs in shallow lakes in the EPL (Figs. 3d, S3a). 

4.3. Increasing transparency and catchment greening 

Generally, Chinese lakes had become more transparent over the past two decades. The 

overall trend was characterized by an annual mean increase of SDD by 2.77 ± 6.12 cm/yr 

(Fig. 4). Of the studied 412 lakes, 70.15 % witnessed increasing SDDs during 2000–2018 and 

42.72 % increased significantly (p < 0.05) (Fig. 4). Increase rates for the western lakes were 

high (Fig. 4), with mean values varying from the IMXL (3.56 ± 4.45 cm/yr), through the TPL 

(6.16 ± 6.42 cm/yr), to the YGPL (8.74 ± 7.67 cm/yr). Many eastern lakes also showed 

significant increasing SDDs, but with lower change rates of 1.98 ± 1.6 cm/yr and 0.99 ± 1.4 

cm/yr for the EPL and NPML, respectively (Fig. 4). Other studies also reported that eastern 

Chinese lakes had improved water quality indicated by nutrient concentration (Tong et al., 

2017; Zhou et al., 2017). For the EPL, Feng et al. (2019) reported that many lakes showed 

increasing SDDs during 2003−2016. The other 29.85 % lakes showed decreasing SDDs with 

a mean change rate of only -2.36 ± 2.58 cm/yr, and 10.44 % presented significantly (Fig. 4). 

Watershed vegetation coverage indicated by NDVI had important impacts on SDD changes 

during 2000–2018. Over the past decades, the Chinese government had launched some large-

scale vegetation rehabilitation projects, for example, the “Grain-for-Green Program” since 

1999 (Ostwald et al., 2011; Wang et al., 2015). These projects covered all Chinese provinces 

(www.stats.gov.cn) and increased afforestation area of 109.23×104 km2 during 2000–2018 

(Fig. S4a). As a result, NDVI increased in 382 lake catchments (92.72 %), with 277 

significantly (Figs. S4d, S5c). The multiple GLM results showed that increasing NDVI 

explained much of the significant SDD increases: 44.95 %, 37.87 %, 75.66 %, 58.12 %, and 

36.34 % for lakes in the IMXL, TPL, YGPL, NPML, and EPL, respectively (Table 2). For 

significant SDD decreases in the IMXL, TPL, NPML, and EPL, NDVI also explained 

12.11 %, 29.62 %, 24.5 %, and 30.45 %, respectively (Table 2). 

Climate change also showed apparent influences on SDD variations during 2000–2018, but 

differed regionally (Table 2). Climate change led to regional differences for changes in wind 

speed, temperature, and precipitation (Figs. S4b, S5a, Table S3). Increased wind speed 

happened to most lakes in the western zones (Fig. S5a). Increasing wind speed explained 

68.96 % and 21.80 % of SDD decreases in the IMXL and EPML, respectively (Table 2). 

Increased temperature was observed for many lakes in the TPL and EPL (Fig. S5b). 

Increasing temperature melted glaciers, raised lake water levels (Qiao et al., 2019; Zhang et 

al., 2019), and contributed 24.98 % of SDD increases in the TPL (Table 2). On the contrary, 

increasing temperature explained 23.65 % of SDD decreases in the EPL (Table 2). Increased 

precipitation happened to most studied lakes (Fig. S5d). For lakes in the EPL, increasing 

precipitation explained 27.81 % and 22.46 % of SDD increases and decreases, respectively 

(Table 2). It also explained 21.88 % of SDD decreases in the NPML (Table 2). 

4.4. Opposite seasonal cycles between west and east 

Using the monthly climatological SDD values of each studied lake, we manually identified 

the seasonal variability cycle of SDD. The results showed two general, but opposite, seasonal 

behaviors (Figs. 5,6). Type T1 showed a "triangular shape" with a maximum SDD in summer 

(June-August); in contrast, type T2 had an "inverted triangle shape" with a minimum SDD in 

summer (Fig. 6). More specifically, only ice free data during May-September were used for 

the three western zones. As a result, type T1 contained three subclasses (T11, T12 and T13) 

and type T2 included two subclasses (T21 and T22) (Fig. 6). For all studied lakes, there were 
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77 (18.69 %), 108 (26.21 %), 166 (40.29 %), 11 (2.67 %), and 50 (12.14 %) of the types T11, 

T12, T13, T21, T22, respectively (Fig. 5). For lakes in the TPL, 78 (42.39 %), 140 (76.09 %), 

and 44 (23.91 %) were in the types T12, T13, T22, respectively (Fig. 5f). Overall, 85.19 % of 

the studied lakes were in the type T1 (Fig. 6). 

All studied lakes in the EPL were identified as type T1 (Fig. 6). This seasonal cycle was 
reported previously in some case studies (Feng et al., 2012, 2019; Shi et al., 2018). Feng 
et al. (2019) had reported that many lakes in the EPL had peaked SDDs in summer. 
Lakes in the EPL had a mean water depth of only 3.42m (Table S3) and their SDDs were 
controlled by sediment resuspension (Feng et al., 2019; Zhang et al., 2006). 

Relationships between in-situ data proved the influence of inlake sediment 

resuspension. As shown in Fig. S6a-b, in-situ SDD was highly related to TSM (R2=0.79, p 
< 0.001) but lowly correlated with Chl-a (R2=0.09, p < 0.001). Wind speed in summer 
was weaker than that in winter (Fig. S7a). Moreover, precipitation in summer was 

significantly higher than that in winter (Fig. S7d). Abundant precipitation in summer 

raised lake water levels. For the three largest lakes, the Dongting, Poyang, and Chaohu, 
in-situ water levels were apparently higher in summer (Feng et al., 2019). Low wind 
speed and high water level led to weak sediment resuspension and high SDD in 

summer. For the Dongting and Poyang lakes, the stable lake flow conditions also 

contributed to the high SDDs in summer (Feng et al., 2012). 

All studied lakes in the YGPL belonged to type T2 (Fig. 6). These lakes were 
characterised by deep water with a mean depth of 27.09 m, high catchment vegetation 
coverage, and low soil erosion (Fig. S8, Table S3). The strong precipitation in summer 

(Fig. S7d) could not significantly elevate water depth for these deep lakes. Their SDDs 

were determined by algal production and seasonally changed following phytoplankton 
abundance. In-situ data showed that SDD was negatively correlated with Chl-a 
(R2=0.78, p < 0.01) and TSM was positively related to Chl-a (R2=0.82, p < 0.01) (Fig. 
S6c-d). High temperature was favorable for phytoplankton growth (Rhee and Gotham, 
1981) and caused low SDDs in summer (Fig. S7e). 

Lakes in the other three zones (IMXL, TPL, NPML) had a mixed distribution of types T1 
and T2 (Fig. 6). For Lake Hulun in the NPML, Song et al. (2017a) reported that the light 
attenuation of photosynthetically active radiation, negatively related to SDD, had a 
minimum value in summer (July-August), which was consistent with our SDD result 
(Fig. 6). The same as lakes in the EPL, lakes in types T12 and T13 were usually shallow 
with a mean depth of 8.05m and turbid with a mean SDD of 154.99 cm. Their SDDs were 
also majorly influenced by sediment resuspension. For in-situ data with SDDs<100 cm, 

SDD was also significantly related to TSM (R2=0.71, p < 0.01), but not to Chl-a (Fig. S6e). 

Interestingly, the month with maximum SDD was spatially different (Fig. 6) and roughly 
followed the movement of the summer strong rainfall staying in the EPL from mid-June 
to mid- July and gradually moving north to NPML from July to August (Chen et al., 2004; 
Chiang et al., 2017). On the contrary, as for lakes in the YGPL, type T22 lakes were 
relatively deep with a mean depth of 17.24m and limpid with a mean SDD of 219.66 cm. 
Their SDDs were also notably impacted by phytoplankton production. For in-situ data 
with SDDs>100 cm, SDD was also significantly related to both TSM and Chl-a, with p < 
0.01 (Fig. S6f). 
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Our data clearly showed the  different seasonal patterns of SDDs in Chinese lakes, while 
only ice-free months during May-September were considered for the IMXL, TPL, and 
NPML zones (Fig. 6). In fact, lake ice phenology varied for  different lakes even in the 
same zone (Cai et al., 2019). For  different lakes, therefore, taking all ice-free months 
into consideration could improve our understanding of seasonal patterns of SDDs in 
Chinese lakes. 

4.5. Theoretical explanations for spatio-temporal variability of SDD 

Theoretically, SDD is co-determined by three optically active components: colored dissolved 

organic matter (CDOM), Chl-a, and nonalgal particle (IOCCG, 2018). The latter two can be 

collectively referred to as TSM. For the large Chinese lakes (> 20 km2), SDDs were 

determined by TSM. First, in-situ SDD was significantly related to TSM, with R2=0.84 and p 

< 0.001 (N=1792). Moreover, previous studies reported that high CDOM was limited to 

small closed saline lakes in China (Song et al., 2017b). Third, light absorption by CDOM 

exponentially decreases with increasing wavelength, so its impacts on the developed 

algorithm using the green and red bands (Section 3) were considered as negligible. TSM had 

three main sources: sediment resuspension, autochthonous phytoplankton production, and 

allochthonous riverine input (Fig. 7). 

In-lake sediment resuspension followed the lake sedimentology principles impacted by wind 

and water depth (Håkanson and Jansson, 1983). Wind can drive sediment resuspension (Fig. 

7). This explained the wind’s effects on the spatial distribution of SDDs in the NPML (Fig. 

3d) and decreasing SDDs in the IMXL during 2000–2018 (Table 2). On the contrary, 

increasing water depth can weaken sediment resuspension (Fig. 7). TSM was mainly 

composed of suspended sediment (Fig. S6), so water depth had important impacts on the 

spatial distribution of SDDs in Chinese lakes (Fig. 3d). Precipitation also increased SDD 

during 2000–2018 by elevating the water level and vice versa (Table 2). What is more, the 

maximum SDD in summer differed spatially (Fig. 6) and followed the strong precipitation 

movement (Chen et al., 2004; Chiang et al., 2017). Increasing temperature in the TPL also 

increased SDD (Table 2, Fig. S5b) by elevating water level through melting glaciers (Qiao et 

al., 2019; Zhang et al., 2019). 

Autochthonous phytoplankton production followed the phenology principle. Temperature 

increase is favorable for phytoplankton growth (Edwards and Richardson, 2004; Rhee and 

Gotham, 1981). For lakes in the YGPL, SDDs were determined by phytoplankton density 

(Fig. S6c- d). In these cases, temperature explained 29.47 % of the spatial distribution of 

SDDs in the YGPL (Fig. 3d). High temperature also promotes algal proliferation (Edwards 

and Richardson, 2004; Rhee and Gotham, 1981) and caused minimum SDDs for type T2 

lakes in summer (Fig. 6). 

Allochthonous riverine TSM input followed the soil erosion principle codetermined by 

precipitation and vegetation coverage in lake catchment (Meester, 1987). Precipitation can 

transport terrigenous soil particles into the lake and decrease SDD. This was obvious for the 

NPML and EPL with high precipitation (Fig. S8c). On the contrary, vegetation coverage can 

reduce soil erosion with a consequent decline in riverine TSM input (Wang et al., 2015; Yue 

et al., 2016). This was observed for its significant effects on increasing SDDs during 2000–

2018 (Table 2). 

5. Conclusions 

In summary, this study developed a new algorithm that was used to rapidly map SDDs in 

large Chinese lakes (> 20 km2) from the MOD09GA data through the GEE cloud platform. 
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Water depth was a key impact factor on the spatio-temporal variability of transparency in 

Chinese lakes. First, overall, it explained 88.81 % of the spatial variations of SDDs. Second, 

during 2000–2018, increasing water depth increased SDD by weakening sediment 

resuspension, especially for lakes in the TPL. Third, water depth also influenced the seasonal 

variability cycle of SDD by changing the TSM (phytoplankton and suspended sediment) 

compositions. Future changes in lake levels in response to the processes described in this 

study may contribute to further increases in transparency. Management responses should 

focus on controlling lake eutrophication, a widely adopted strategy. Moreover, along with the 

long-term ecological restoration projects in China, improved vegetation coverage in 

catchments also had positive effects on increasing lake transparency. 
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Table 1. Statistical information about the in-situ SDDs collected in 299 Chinese lakes during 

2003-2018. For sampling locations, please refer to Fig. 1. “std” denotes the standard 

deviation. 
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Table 2 Mean contributions of different impact factors to annual changes of SDD. For each 

lake, the contributions were calculated by applying the multiple GLM analysis on annual 

mean data during 2000-2018. Numbers in the brackets denote how many lakes show 

significant SSD changes and are included in the statistics. Symbol “↑” denotes increase and 

“↓ “indicates decrease.  
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Fig. 1. The studied Chinese lakes and sampling stations. Only studied lakes with an area 

larger than 20 km2 are shown (N=412). All lakes are located within the five geographical 

zones: IMXL, TPL, YGPL, NPML, or EPL. The inset global map is sourced from Google 

Earth. 
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Fig. 2. The developed remote sensing algorithm for retrieving SDD and validation results. (a) 

The relationship between in-situ SDD and matched remote sensing reflectance of 

MOD09GA. (b) Comparisons between the satellite-derived and in-situ SDDs. (c) 

Comparisons between the modeled SDDs by this study and those by Feng et al. (2019) for 

lakes in the EPL and by Lee et al. (2015) for the synthesized dataset published by the 

International Ocean-Colour Coordinating Group (IOCCG, http://www.ioccg.org/). (d) 

Comparisons between the modeled SDDs by this study and those by Liu et al. (2017) for 

lakes in the TPL.  
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Fig. 3. Spatial pattern of SDD. (a) Satellite-derived climatological SDD during 2000-2018. 

According to the geographical features, five lake zones were defined: IMXL, TPL, YGPL, 

NPML, and EPL (Ma et al., 2010). Note that only ice-free results during May-September 

were used for the IMXL, TPL, and NPML (Cai et al., 2019). (b) Comparisons between in-situ 

and satellite-derived SDDs. (c) The linear relationship between SDD and lake water depth. 

(d) Impact contributions of different factors on the spatial distribution of SDDs in Chinese 

lakes. For all/regional lakes, the multiple GLM was applied on the climatological mean 

values of different lakes during 2000-2018 to quantify the contributions. Symbol “*” denotes 

p < 0.05.  
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Fig. 4. Annual variations of SDD during 2000-2018. (a) Change rate of annual mean SDD. 

(b) Statistic results of different change types. (c) Change rates for all the 412 studied lakes. 

Lakes in each zone are numbered by increasing longitude. 
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Fig. 5. Seasonal change types following one of the five prototypical pathways. (a) T11, (b) 

T12, (c) T13, (d) T21, and (e) T22 (Fig. 6). Grey lines show monthly climatological SDDs 

for different lakes, with colored symbols and lines showing pathway averages across lakes. 

(f) Statistic results of different types for the TPL zone.  
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Fig. 6. Seasonal SDD types for Chinese lakes. Detailed classification results are shown in 

Fig. 5. For the three west lake zones, only ice-free data during May-September were used. 

However, to illustrate the seasonal cycle, we labeled SDD in October to the right concept 

map. 
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Fig. 7. Conceptual model showing the mechanisms responsible for the effects of different 

impact factors on SDD. ①, ②, and ③ are three TSM sources. Symbols “+” and “-” denote 

the increasing and decreasing effects, respectively. 


