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ABSTRACT: This study analyzes the prediction of Indianmonsoon low pressure systems (LPSs) on an extended time scale

of 15 days by models of the Subseasonal-to-Seasonal (S2S) prediction project. Using a feature-tracking algorithm, LPSs are

identified in 11 S2S models during a common reforecast period of June–September 1999–2010, and then compared

with 290 and 281 LPSs tracked in ERA-Interim and MERRA-2 reanalysis datasets. The results show that all S2S

models underestimate the frequency of LPSs. They are able to represent transits, genesis, and lysis of LPSs; however,

large biases are observed in the Australian Bureau of Meteorology, China Meteorological Administration (CMA),

and Hydrometeorological Centre of Russia (HMCR) models. The CMAmodel exhibits large LPS track position error

and the intensity of LPSs is overestimated (underestimated) bymost models when verified against ERA-Interim (MERRA-

2). The European Centre for Medium-Range Weather Forecasts and Met Office models have the best ensemble spread–

error relationship for the track position and intensity, whereas the HMCR model has the worst. Most S2S models are

underdispersive—more so for the intensity than the position. We find the influence of errors in the LPS simulation on the

pattern of total precipitation biases in all S2S models. In most models, precipitation biases increase with forecast lead time

over most of the monsoon core zone. These results demonstrate the potential for S2S models at simulating LPSs, thereby

giving the possibility of improved disaster preparedness and water resources planning.

KEYWORDS: Ensembles; Forecast verification/skill; Forecasting; Hindcasts; Numerical weather prediction/forecasting;

Short-range prediction

1. Introduction

Monsoon low pressure systems (LPSs) are important synoptic-

scale cyclonic disturbances that are embedded in the South

Asian monsoon circulation. These systems, which have a

life-span of 3–5 days, most frequently form over the head of

the Bay of Bengal and adjoining land area, from where they

propagate in awest-northwest direction toward India (Daggupaty

and Sikka 1977; Godbole 1977; Boos et al. 2015; Hunt and Parker

2016). They transport large amounts of moisture over the

Indian subcontinent and are responsible for around 50% of the

summer season (June–September) rainfall in India (Rastogi

et al. 2018; Hunt and Fletcher 2019).

LPSs featuring surface wind speeds of 8.5–13.5m s21 or

mean sea level pressure anomalies of 4–8 hPa at the center are

referred to as monsoon depressions, whereas systems weaker

than this are referred to as monsoon low pressure areas

(Vishnu et al. 2020). Each summer, around 13–14 LPSs form,

half of which intensify into monsoon depressions (Boos et al.

2015; Sandeep et al. 2018).

Since peak composite precipitation rates from LPSs are

about 50mmday21 (Yoon and Chen 2005), high-impact flood

events are frequent over the Indian subcontinent during the

summer. Over the last decade, LPSs have triggered at least

three catastrophic floods in India: Uttarakhand (16–18 June

2013), Gujarat and Rajasthan (23–25 July 2017), and Kerala

(August 2018), thereby affectingmillions of people and causing

unprecedented damage to property (Ray et al. 2019; Hunt and

Menon 2020). Joseph et al. (2015) investigated the large-scale

monsoon environment during the Uttarakhand floods in T126

(;100 km) and T382 (;38 km) model versions of the Climate

Forecast System Version 2 (CFSv2) model. These two model

versions could predict the occurrence of the rainfall event 10–

12 days in advance, but the observed rainfall amount was un-

derestimated by ;35%–75%, with CFS T382 outperforming

CFS T126. The forecasts of heavy precipitation events can

improve if models correctly predict the position and intensity

of LPSs, which play such an important role in monsoon pre-

cipitation. Therefore, we would like to emphasize under-

standing of the predictions of LPSs on an extended time scale

of 15 days given the importance of this time scale to disaster

preparedness and long-term planning.

The regular occurrence of LPSs during the summer season

was first reported by Eliot (1884), and since then many structural

and dynamical aspects of LPSs have been explored (e.g., Godbole

1977; Ding et al. 1984; Sarkar and Choudhary 1988). In the last

decade, several studies have applied feature-tracking algorithms

to reanalysis datasets for identifying LPSs and examining their
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properties (e.g., Hurley and Boos 2015; Hunt and Parker 2016;

Hunt et al. 2016; Sørland and Sorteberg 2016; Vishnu et al.

2020). However, the prediction skill of LPSs remains unex-

plored. In contrast, there are numerous studies on the prediction

skill of tropical and extratropical cyclones in various models and

reanalysis datasets. Hodges et al. (2017) analyzed tropical cy-

clones (TCs) in six reanalysis datasets and inferred that low

spatial resolutions of reanalyses are responsible for an under-

estimation of the intensity of TCs when compared to observa-

tions. Hodges and Emerton (2015) investigated the prediction of

TCs in the Northern Hemisphere in the ECMWF ensemble and

deterministic prediction systems during May–October 2008–12.

They inferred that initial periods during forecasts had smaller

error growth, and the location of TCs was more predictable than

the intensity. They further inferred that ensemble forecasts are

underdispersive (i.e., the range of ensemble forecasts is not able

to fully represent all forecast states, and this might lead to

observations falling outside the range of ensemble fore-

casts)—more for the intensity than the location. Their finding is

similar to that of Hodges and Klingaman (2019) who inferred

that the Met Office Global Forecast model is underdispersive at

predicting the location of TCs in the western North Pacific.

Murakami (2014) showed that the highest-resolution reanalyses

are not always the best at simulating properties of TCs, thereby

suggesting that the simulation of TCs in reanalyses is highly

dependent on the model formulation and/or data assimilation.

The advent of grand ensemble prediction systems (EPSs)

like the THORPEX Interactive Grand Global Ensemble

(TIGGE) (Richardson et al. 2005) and the Subseasonal to

Seasonal (S2S) prediction project (Vitart et al. 2017) has en-

abled the research community to intercompare more EPSs

than in the past. Froude (2010, 2011) analyzed the predictions of

extratropical cyclones in both hemispheres in the TIGGE dataset

and concluded that the ensemblemean error of individual models

of the TIGGE dataset is less than the control and ensemble

members of the respectivemodels. The better performance of the

ensemble mean than ensemble members is also seen in the pre-

diction of TCs by the ECMWF ensemble and deterministic pre-

diction systems (Hodges and Emerton 2015). Lee et al. (2018)

studied theprediction ofTCs in six S2Smodels and concluded that

most of these models had skill at predicting TC genesis.

Unlike TCs, LPSs spend significant duration of their lifetime

over land and their propagation is confined mostly to the

monsoon trough region (Godbole 1977). Thus, the results of

TC predictions might not be entirely relevant for LPSs, thereby

highlighting the necessity of evaluating LPS predictions. In this

paper, we investigate the prediction of Indian monsoon LPSs

by 11 S2S models. The prediction time scale is confined to

15 days, which is within the time scales of numerical weather

prediction models. Hence, we carry out deterministic analyses

of LPS predictions by considering metrics used for evaluating

predictions of TCs and extratropical cyclones on similar time

scales (e.g., Froude 2010; Hodges and Emerton 2015). Our

objective is to understand the following aspects:

d How well do S2S models represent the frequency, intensity,

tracks, genesis (initial track position) and lysis (final track

position) of Indian monsoon LPSs?

d How do LPS position and intensity errors evolve with

forecast lead time in S2S models?
d How statistically reliable are S2S models at predicting LPSs?
d How do forecast lead time and the presence of LPSs influ-

ence the pattern of precipitation errors in S2S models?

FIG. 1. Flowchart outlining the steps followed in the identifi-

cation of monsoon low pressure systems in an ensemble member

of an S2S model and track matching with reanalysis datasets.

These steps are iterated for all ensemble members of 11 S2S

models. The threshold value a is determined for each model by a

sensitivity test.
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2. Data and methods

An outline of the steps followed in the methodology is

presented in Fig. 1.

a. S2S reforecasts

The S2S database consists of near-real-time forecasts

(with a lag of 3 weeks) and reforecasts from 11 global op-

erational centers: the Bureau of Meteorology, Australia

(BoM), the China Meteorological Administration (CMA),

the Environment and Climate Change Canada (ECCC),

the European Centre for Medium-Range Weather Forecasts

(ECMWF), theHydrometeorological Centre of Russia (HMCR),

the Institute of Atmospheric Sciences and Climate of the National

ResearchCouncil (ISAC-CNR), the JapanMeteorologicalAgency

(JMA), theKoreaMeteorologicalAdministration (KMA),Météo-
France/Centre National de RechercheMeteorologiques (CNRM),

the National Centers for Environmental Prediction (NCEP),

and theMetOffice (UKMO). Each reforecast is comprised of a

control reforecast and a number of perturbed reforecasts that

produce ensemble members. The reforecasts are archived on a

1.58 3 1.58 grid at a daily resolution. The S2S models have a

different reforecast period, but 1999–2010 is the common re-

forecast period. Hence, we have considered reforecasts starting

between May and September 1999–2010 in this study. Mean

sea level pressure, u and y winds at 850 hPa, and temperature at

925 hPa are used for tracking and post-tracking processes.

These variables are instantaneous once per day (0000UTC). In

addition, total precipitation is considered for investigating

precipitation errors. The total precipitation variable is accu-

mulated once per day for the BoM model and four times per

day for other S2S models. Barring ECCC, HMCR, ISAC-

CNR, and JMA models, all are ocean coupled. Details related

to the configuration of reforecasts are presented in Table 1.

For this study, the following model version dates have been

considered: 31 January 2017 for the JMA model, 8 June 2017

for the ISAC-CNR model, and 1 May 2014 for the CMA

model. These model versions outperform the respective pre-

vious versions in terms of factors such as ensemble size. For

models featuring on-the-fly configuration (i.e., reforecasts are

produced at the same time as real-time forecasts) such as

HMCR, ECCC, KMA, ECMWF, and UKMO, model versions

used in the year 2019 have been considered for maintaining

homogeneity.

b. Global precipitation measurement IMERG

The Global Precipitation Measurement (GPM) Integrated

Multisatellite Retrievals for GPM (IMERG) is a merged pre-

cipitation product that provides precipitation estimates on a

0.18 3 0.18 grid globally every half-hour (Huffman et al. 2015).

The IMERG combines intercalibrated observations from sat-

ellites in the GPM constellation and is available from June

2000 in three runs: early, late, and final (Tan et al. 2019). This

study uses the final runs of IMERG V06 to investigate pre-

cipitation errors, particularly over the monsoon core zone

(Rajeevan et al. 2010). The performance of the IMERG V06

precipitation product has not been evaluated so far for the

Indian monsoon; however, its previous versions have been

intercompared (Wang et al. 2018) and compared with other

datasets such as the TRMM Multisatellite Precipitation

Analysis (TMPA) and IMD gauge-based dataset (Prakash

et al. 2016; Liu 2016; Prakash et al. 2018) for the 2014

summer season. The IMERG shows notable improvements

over TMPA in capturing heavy rainfall over India during the

summer season and represents mean-monsoon rainfall more

realistically. It must be noted that IMERG has difficulty in

detecting rainfall over southeast and northeast India and

underestimates the frequency of heavy rainfall over parts of

northeast India due to the orography (Prakash et al. 2018).

For this study, IMERG data has been regridded to 18 3 18 to
make a fairer comparison with the coarser S2S dataset.

TABLE 1. Configuration of reforecasts in 11 S2Smodels, ERA-Interim, andMERRA-2 reanalysis datasets used in this paper. The intensity

threshold column shows the minimum intensity of monsoon low pressure systems considered in Figs. 4–6. Theminimum intensity is based on

the upper-quartile values of 850-hPa relative vorticity of monsoon low pressure systems in each model, ERA-Interim, and MERRA-2.

Model

Reforecast

length (days) Resolution

Ensemble

size

Reforecast

frequency

Ocean

coupled

Intensity

threshold (1025 s21)

BoM 62 ;28 3 28 (T47), L17 33 Six per month Yes 6.16

CMA 60 ;18 3 18 (T266), L40 4 Daily Yes 4.97

ECMWF 46 0.258 3 0.258 (Tco639), L91:
days 0–15

11 Two per week Yes 4.16

0.58 3 0.58 (Tco319), L91:
after day 15

ECCC 32 0.458 3 0.458, L40 4 Weekly No 3.99

HMCR 61 1.18 3 1.48, L28 10 Weekly No 2.97

ISAC-CNR 32 0.88 3 0.568, L54 5 Every 5 days No 4.43

JMA 33 ;0.58 3 0.58 (TL479), L100 5 Three per month No 3.92

KMA 60 ;0.58 3 0.58 (N216), L85 3 Four per month Yes 4.31

CNRM 61 ;0.78 3 0.78 (T255), L91 15 Four per month Yes 3.80

NCEP 44 ;18 3 18 (T126), L64 4 Daily Yes 4.17

UKMO 60 ;0.58 3 0.88 (N216), L85 7 Four per month Yes 4.35

ERA-Interim ;0.78 3 0.78 (N128), L60 3.97

MERRA-2 0.6258 3 0.58 5.11
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c. Tracking

The identification and tracking of LPSs in this study have

been performed in all ensemble members of 11 S2S models

using a feature-tracking algorithm (Hunt et al. 2016, 2018) on

850-hPa relative vorticity (Deoras et al. 2021). The feature-

tracking algorithm is applied to all ensemble members of 11

S2S models. The choice of using vorticity instead of mean sea

level pressure for tracking is justified since the former is less

sensitive to the background flow, low pressure systems are

identified at an earlier stage of development and mean sea

level pressure may be sensitive to the interpolation technique

and representation of orography in the model (Hoskins and

Hodges 2002). Moreover, production of good quality sta-

tistics is possible when vorticity is used since more features

are identified (Froude 2010). The feature-tracking algo-

rithm computes relative vorticity from 24-hourly u and

y winds on the 850-hPa level in all ensemble members of 11

S2S models. To filter out small-scale vorticity features that

are prevalent near orography, the spectral resolution is

truncated at T63 (;200 km at the Equator) and all local

maxima are located within a radius of 1000 km in the domain

08–408N, 408–1208E. For each such local maximum, local

positive nonzero values of relative vorticity are associated

and integrated to find the centroid of relative vorticity. For each

such point, the nearest neighbor is located and attached using

the kd-tree nearest-neighbor algorithm (Yianilos 1993).

In the tracking algorithm, the minimum 850-hPa relative

vorticity threshold was set to 13 1025 s21, which was useful in

filtering out weaker eddies as suggested by Hunt et al. (2016).

For further analysis, only those tracks that occurred between

June and September 1999–2010, lasted for more than 3 days

and had forecast lead times of less than 15 days (i.e., lysis within

15 days of each reforecasts) have been retained. Such tracks

are then subjected to a post-tracking filtering process, dis-

cussed in section 2d. The feature-tracking algorithm was also

applied to the European Centre for Medium-Range Weather

Forecasts interim reanalysis (ERA-I) dataset (Dee et al. 2011)

and Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2) (Gelaro et al. 2017). The

horizontal resolution of ERA-I is approximately 0.78 3 0.78,
whereas that of MERRA-2 is 0.6258 3 0.58. The outputs for

u and y winds at 850 hPa are 6-hourly in ERA-I and 3-hourly in

MERRA-2. During June–September 1999–2010, 290 and 281

LPSs were identified in ERA-I and MERRA-2, respectively,

which will serve as observed estimates for verifying the fre-

quency, position and intensity of LPSs in S2S models. The

additional verification against MERRA-2 will help in testing

the observational uncertainty of the results. This is essential

since the results might be sensitive to reanalysis datasets and

verification against ERA-I alone might confer an advantage to

the ECWMF model.

d. Temperature-pressure filtering

The output of the feature-tracking algorithm needs to be

filtered for further diagnostics since other features such as

tropical cyclones and heat lows are tracked along with LPSs. In

studies related to the tracking of TCs, presence of a warm-core

structure in various levels of the troposphere has been used

as a criterion to segregate TCs from other tracked features

(Camargo and Zebiak 2002; Camargo 2013; Camp et al.

2015). Since LPSs have a warm-over-cold core structure

(Godbole 1977; Hurley and Boos 2015; Hunt et al. 2016), we

focus on track filtering on the basis of temperature anomalies

at the 925-hPa level. In addition, the track filtering is done

using mean sea level pressure anomalies that help in removing

those track points featuring nonnegative pressure anomalies.

The temperature and pressure anomalies are considered at the

center of the tracked system at each time step.

The anomalies in this study have been calculated by following

a technique suggested by Vitart (2017). The climatologies of

FIG. 2. Seasonal average numbers of monsoon low pressure systems in all ensemble

members of 11 S2S models (green), MERRA-2 (royal blue), and ERA-Interim (purple)

over the period June–September 1999–2010. The multimodel mean (MMM) is also shown

(orange). Error bars show61 standard deviation about the mean and calculated across years.

Model results are normalized with respect to ensemble size and reforecast frequency.
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925-hPa temperature and mean sea level pressure have been

constructed by averaging all reforecasts starting the same day

and the same month, but excluding the actual year of refor-

ecasts. For example, for a reforecast starting on 1 June 1999,

the climatology will contain all reforecasts starting on 1 June

2000–10. The forecast anomalies are then calculated by sub-

tracting the climatologies from the ensemble member. The

threshold value of 925-hPa temperature anomaly was obtained

from sensitivity tests conducted for all tracks in all ensemble

members of 11 S2S models. For each temperature anomaly (d)

in a range, a fraction is calculated which represents a ratio

between the number of track points with a temperature

anomaly less than or equal to d and the total number of track

points. We then calculate the gradient of this fraction, and

d corresponding to the maximum gradient is selected as the

threshold value. A similar technique was followed byHunt and

Fletcher (2019). The result of sensitivity tests suggests a

threshold value of 0.5K for all ensemble members of 11 S2S

models. Thus, an entire track is removed from the tracked

dataset if all of its track points have 925-hPa temperature

anomaly greater than or equal to 0.5 K or nonnegative mean

sea level pressure anomaly.

e. Matching methodology

To validate LPSs identified in the S2S dataset against those in

reanalyses, we follow a technique of spatiotemporal matching in

which two tracks are considered to match if they meet certain

predefined spatial and temporal separation criteria. Froude

et al. (2007a) investigated the sensitivity of track diagnostics to

the choice of spatiotemporal matching parameters in the case

of extratropical cyclones. They found that the diagnostics

produced from matched tracks are unaffected in spite of dif-

ferences in the number of matched tracks that varied with

different parametric values.

In this study, the threshold values of the spatial separation

parameter were identified by sensitivity tests and the gradient

technique (similar to the one discussed in section 2d) con-

ducted for tracks in all ensemble members of 11 S2S models.

Using a technique similar to Froude et al. (2007b) and Froude

(2010), we consider a track in an ensemble member of an S2S

model to match with a track in reanalyses if the spatial sepa-

ration between the first two data points is less than a threshold

value a. The values of a are 600 km for the CNRM model,

200 km for the KMA model and 500 km for the remaining S2S

models. The spatial separation is considered for the first two

data points instead of the entire track duration since a track in

an ensemble member of an S2S model may begin very close to

its corresponding track in reanalyses, but diverge with increasing

forecast lead time. Ifmultiple data points of different tracks in an

ensemble member of an S2Smodel satisfy the spatial separation

criterion for a track in reanalyses, the data point with the least

temporal separation is chosen.

FIG. 3. Normalized histograms (green) of 850-hPa relative vorticity ofmonsoon low pressure systems calculated at each track point in all

ensemble members of (a)–(k) 11 S2S models, (m) ERA-Interim, and (n) MERRA-2 during June–September 1999–2010. (l) The multi-

model mean (MMM) is shown. Kernel density estimations using Gaussian kernels are also shown for respective individual models and

MMM (solid magenta), ERA-Interim (dashed orange), and MERRA-2 (dashed cyan). Histograms are normalized with respect to en-

semble size and reforecast frequency.
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For the purpose of this analysis, only those tracks that had

genesis within the first three days of a reforecast or that existed

already at initialization have been retained. This additional

constraint helps in eliminatingmatches that may have occurred

due to chance rather than as a real prediction (Froude et al.

2007b; Hodges and Emerton 2015).

3. Climatology of LPSs

In this section, we present the following verification results

related to LPSs:

d Seasonal average numbers.
d Intensity distribution.
d Track, genesis, and lysis density.

a. Seasonal numbers

The seasonal average numbers of LPSs in all ensemble

members of 11 S2S models, MERRA-2 and ERA-I during

June–September 1999–2010 are shown in Fig. 2 along with

the multimodel mean, for forecast lead times of less than

15 days. The S2S models exhibit a prominent spread in the

simulated frequency of LPSs, ranging from 9 (60.56) in the

BoM model to 18 (61.20) in the NCEP model. Compared

to 23.83 (63.26) and 23.42 (64.41) LPSs simulated per

season by ERA-I and MERRA-2, respectively, all S2S

models underestimate the frequency, with only 14.81

(60.99) LPSs per season in the multimodel mean. The

range in parentheses indicates one standard deviation

about seasonal average numbers of LPSs calculated across

1999–2010.

The low-frequency of LPSs simulated by models such as the

BoM could be related to a weak and poorly defined monsoon

trough, which provides cyclonic vorticity in the lower tropo-

sphere to spin up LPSs (Godbole 1977). In addition, the fre-

quency is also dependent on intraseasonal oscillations such as

the boreal summer intraseasonal oscillation (BSISO; Kikuchi

and Wang 2010). These aspects will be examined in a

future study.

b. Intensity distribution

The probability density of intensity (850-hPa relative vor-

ticity) of LPSs in all ensemble members of 11 S2S models,

multimodel mean, ERA-I, and MERRA-2 is shown in Fig. 3.

The intensity is considered at the center of each track at each

lead time (up to 15 days) since the maximum relative vorticity

is observed at the center of LPSs in the lower troposphere

(Godbole 1977). Gaussian kernel density estimation, which is a

nonparametric way to estimate the probability density function

using Gaussian kernels (Scott 2015), is also shown for com-

parison. Differences in the intensity distribution of LPSs can be

found among different S2S models; however, in all these

models and the multimodel mean (Fig. 3l), the largest proba-

bility density is observed for intensity in the range 2–3 3
1025 s21, which is in agreement with ERA-I (Fig. 3m). This

result was anticipated since not all LPSs intensify into stronger

systems such as monsoon depressions. For all S2S models ex-

cept the BoM model, the probability density of track points

FIG. 4. Monthly mean track density (transits computed for a 48 3 48 box centered on each grid point) of strong monsoon low pressure

systems (minimum intensity equal to the upper quartile in each model) tracked in all ensemble members of (a)–(k) 11 S2S models,

(m) ERA-Interim, and (n) MERRA-2 over the period June–September 1999–2010. (l) The multimodel mean track density is also shown.

Solid color lines illustrate different tracks featuring within the first 15 days of a reforecast starting early June 1999 in control runs of 11 S2S

models and during June–August 1999 in ERA-Interim and MERRA-2. Model results are normalized with respect to ensemble size and

reforecast frequency.
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featuring intensity more than 3 3 1025 s21 decreases rapidly,

which is also seen in ERA-I, but not in MERRA-2. The largest

probability density inMERRA-2 is seen for the intensity in the

range 3–4 3 1025 s21, following which there is a rapid decline

in the probability density. For the BoM and CMA models

(Figs. 3a,e, respectively), the probability density of track points

featuring intensity greater than or equal to 6 3 1025 s21 is

larger than ERA-I, but equal to MERRA-2 up to 83 1025 s21.

It must be noted that unlike ERA-I, all S2S models and

MERRA-2 have a noticeably smaller probability density of

track points featuring intensity in the range 1–2 3 1025 s21

than 2–33 1025 s21. This variation is due to a greater genesis of

weaker LPSs in ERA-I than in S2S models and MERRA-2. In

addition, LPSs in ERA-I have shorter lifetime than in S2S

models and MERRA-2.

c. Track density

Among monsoon low pressure areas and strong LPSs

(SLPSs) such as monsoon depressions, the latter are known

to have produced more catastrophic impacts in the Indian

FIG. 6. As in Fig. 4, but for lysis density. The number of lysis points is shown in each subplot.

FIG. 5. As in Fig. 4, but for genesis density. The number of genesis points is shown in each subplot.
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subcontinent than the former. Thus, it is essential to under-

stand how S2S models represent transits of SLPSs and how

they differ from reanalyses. In this study, we define SLPSs as

LPSs with minimum 850-hPa relative vorticity greater than or

equal to the third quartile of 850-hPa relative vorticity of all

LPSs in an individual S2S model (or reanalysis). The threshold

intensity values for S2S models, MERRA-2 and ERA-I are

provided in Table 1. The track density of SLPSs is calculated by

binning tracks in 48 3 48 boxes and then normalizing with re-

spect to ensemble size and reforecast frequency, similar to the

methods used in Camp et al. (2015) and Lee et al. (2018).

Example tracks starting early June 1999 in the control runs are

shown in the respective S2S models (Figs. 4a–k) and during

June–August 1999 in ERA-I (Fig. 4m) and MERRA-

2 (Fig. 4n).

All 11 S2S models are capable of simulating tracks of SLPSs

over the head of the Bay of Bengal and adjoining land area

(Figs. 4a–k); the NCEP, UKMO, CNRM, ECMWF, and KMA

models perform better than other S2S models. Tracks over

these regions are also observed in the multimodel mean

(Fig. 4l), which is in agreement with ERA-I (Fig. 4m) and

MERRA-2 (Fig. 4n). In the BoM (Fig. 4a) and JMA (Fig. 4h)

models, SLPSs tracks occur further south than in ERA-I,

whereas in CMA, the track direction is westward as a result

of easterly midtropospheric steering winds over the head of the

Bay of Bengal and central India (not shown). The CMA and

JMA models have a smaller track density compared to other

S2S models and reanalyses. In the HMCR model, tracks over

west-central India are not observed due to faster lysis (weaker

intensity) of SLPSs and their low count. Thus, S2S models

exhibit regional biases in simulating tracks of SLPSs, but the

performance of the MMM is good in general.

d. Genesis and lysis

In this subsection, genesis and lysis locations of SLPSs are

examined. Figures 5 and 6 show genesis and lysis densities of

SLPSs, which have been calculated by following the same

process discussed in section 3c. In addition, the density func-

tion is sampled by centering densities on each grid point sep-

arated by 18. This process is essential since low densities and

large domain size lead to numerical artifacts in contours. Most

S2Smodels correctly represent the primary genesis region over

the head of the Bay of Bengal and adjoining land area, which is

also represented in the multimodel mean (Fig. 5l). A secondary

genesis region over the eastern Arabian Sea and the western

coast of India is visible in the multimodel mean (Fig. 5l), ERA-I

FIG. 7. (a) The number of data points of tracks matched with ERA-I that are included in the statistics for (b), (c), and Figs. 9 and 10 as a

function of forecast lead time (days). The results are normalized with respect to ensemble size and reforecast frequency. (b) Error in the

position of monsoon low pressure systems (km) as a function of forecast lead time (days); and (c) bias in the intensity (1025 s21) of

monsoon low pressure systems as a function of forecast lead time (days). The shaded region indicates negative bias in the intensity. These

results are calculated for all ensemble members of 11 S2S models. The multimodel mean is also shown in dotted black in each subplot.

(d)–(f) As in (a)–(c), but for tracks matched with MERRA-2. Output from step 0 is not available for the BoM, JMA, KMA, and ECCC

models in all subplots.
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(Fig. 5m), and MERRA-2 (Fig. 5n); however, genesis over this

region is not represented in models such as the BoM (Fig. 5a).

In terms of lysis, most S2S models including the multimodel

mean (Fig. 6l) represent the primary lysis region over eastern

India and the secondary lysis region over parts of western and

central India; the UKMO, ECMWF, JMA, and KMA models

have representations that are the most similar to ERA-I and

MERRA-2. It must be noted that there are fewer genesis and

lysis points in 11 S2S models than in ERA-I and MERRA-2,

which could be due to factors such as differences in the in-

tensity of the monsoon trough. However, a detailed investi-

gation of such factors is beyond the scope of this study. Thus,

S2S models do a good job in general at simulating the primary

genesis, primary lysis and secondary lysis regions. The MMM

outperforms individual S2S models since it correctly simulates

all genesis and lysis locations.

4. The skill of LPS predictions

In this section, we discuss the following results:

d Relative skill of ensemble members.
d Spatial distribution of position errors.
d Control and ensemble mean error.
d Ensemble spread–error relationship.

a. Relative skill of ensemble members

In this subsection, the relative skill of all ensemble members

of 11 S2S models at predicting the position and intensity of

LPSs is examined. To calculate the position error, the geodesic

separation distance between each pair of matched tracks at

each lead time is considered during lead times of 0–15 days.

Figures 7a and 7d show the number of track points in S2S

models that match with those in ERA-I and MERRA-2,

respectively. These track points have been included in the

statistics discussed in this subsection as well as sections 4c and

4d. The multimodel mean is also shown. The results are nor-

malized with respect to ensemble size and reforecast fre-

quency. The number of data points decreases with an increase

in lead time due to the lysis of LPSs. This decrease is rapid in

many models after 4 days since only those LPSs that had their

genesis within the first 3 days of reforecasts or which existed

already at initialization have been considered (see section 2e).

Figures 7b and 7e show the position error of LPSs for all

ensemble members of 11 S2S models when matched with

ERA-I and MERRA-2, respectively, whereas Fig. A1 shows

these position errors for each model separately when LPSs are

matched with ERA-I. It can be found that the position error

increases with lead time in all models as well as the multimodel

mean, and this result is independent of the choice of the re-

analysis dataset. In addition, there are differences in the skill of

S2S models. When ERA-I is used for verification (Fig. 7b), the

CMAmodel has the lowest skill (the largest position error) for

all lead times, whereas the ECCC, UKMO, JMA, and KMA

models have higher skill (smaller position error) thanmost S2S

models. The CMAmodel has;3 days less skill than among the

best performingmodels such asUKMO.At 6 days, the position

error in the CMAmodel is 1000 km that becomes;1600 km by

15 days lead time. The large position error in this model can be

understood from the bias that leads to the westward propa-

gation of LPSs (such as SLPSs in Fig. 4e) instead of the ob-

served west-northwest propagation in ERA-I (Fig. 4m) and

MERRA-2 (Fig. 4n). The small position errors in the UKMO,

JMA and KMA models and the large position error in the

CMA model are also seen when LPSs are matched with

MERRA-2 (Fig. 7e). However, the magnitude of the error in

the CMA model is smaller as a result of a greater number of

westward moving LPSs in MERRA-2 than in ERA-I. It must

FIG. 8. (a)–(k) Difference in the position error (km) of monsoon low pressure systems between lead times 0–3 and 12–15 days in 11 S2S

models. The difference is calculated by subtracting the position errors during 0–3-day lead times from 12- to 15-day lead times for tracks

matched with ERA-I. (l) The multimodel mean of the difference in the position error is also shown.
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be noted that the range of the position error in theMME is very

similar in both verification results.

Figures 7c and 7f show biases in the intensity of LPSs for all

ensemble members of S2S models when matched with ERA-I

andMERRA-2, respectively, whereas Fig. A2 shows biases for

each model separately when LPSs are matched with ERA-I.

Similar to the position error, differences can be seen in the skill

of S2S models; when LPSs are matched with ERA-I, many

models including the mulitmodel mean overestimate the in-

tensity of LPSs at all lead times, except for the HMCR model

that underestimates the intensity beyond lead times of 1 day.

The intensity bias is the smallest at most lead times for the

JMA and CNRM models, whereas models such as the BoM

andHMCRexhibit the largest bias. A rapid increase in the bias

can be observed in the HMCR, BoM and ISAC-CNR models

at shorter lead times. However, when LPSs are matched with

MERRA-2, most models including the multimodel mean un-

derestimate the intensity of LPSs at all lead times, except for

models such as the BoM and ISAC-CNR. This underestima-

tion is a consequence of stronger LPSs in MERRA-2 than in

ERA-I. It must be noted that the HMCR (BoM) model ex-

hibits the largest negative (positive) intensity bias in both

verification results and the overall pattern of biases among

most models show consistency. These results suggest that using

ERA-I for verification does not give an advantage to the

ECMWF model since the latter does not exhibit the smallest

position error and intensity bias when verified against both

reanalysis datasets. This is opposite to the findings of Froude

(2010, 2011) inwhich verification of the results against ECMWF

analysis was considered to be a reason for the best performance

of the TIGGE-ECMWF model. The bias cannot be calculated

for the position error since this error is positive.

b. Spatial distribution of position errors

In this subsection, we investigate how forecast lead time

influences the spatial distribution of position errors of LPSs in

11 S2S models. Figure 8 shows the difference in position errors

of LPSs that match with those in ERA-I between lead times 0–

3 and 12–15 days in 11 S2Smodels, in order to quantify how the

errors may have changed over time. The multimodel mean is

also shown (Fig. 8l). The difference is calculated by subtracting

position errors during 0–3-day lead times from 12- to 15-day

lead times. The results confirm that position errors increase

with forecast lead time over most of the domain in all S2S

models, which is in agreement with Fig. 7b. The HMCRmodel

(Fig. 8k) outperforms the multimodel mean (Fig. 8l) for dif-

ference in the position error. In all models and the multimodel

mean, position errors are larger over theArabian Sea than over

the Bay of Bengal at lead times ofmore than 12 days. However,

large position errors over the Arabian Sea are not seen when

MERRA-2 is considered for verification (not shown). A

greater number of LPSs, which have their genesis over the

Arabian Sea, are tracked in MERRA-2 than in ERA-I. In

addition, LPSs reaching the Arabian Sea from the Bay of

Bengal have a longer life-span (and thus persist to longer lead

times) than those having their genesis over the Arabian Sea.

These factors reduce the position error over theArabian Sea in

MERRA-2.

FIG. 9. Ensemble mean error (solid red), control forecast error (solid black), and spread (dashed red) in the position of monsoon low

pressure systems in (a)–(k) 11 S2S models and (l) the multimodel mean. Errors and spread are calculated with respect to ERA-Interim.

The unit of position error is kilometers. Output from step 0 is not available for the BoM, JMA, KMA, and ECCC models.
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c. Control and ensemble mean error

An important advantage of an ensemble prediction system

(EPS) is that an ensemble mean provides a superior forecast

compared to a control since the process of averaging removes the

less predictable spatial scales (Leith 1974; Toth and Kalnay 1993,

1997; Hodges and Emerton 2015). In this subsection, the skill of

the ensemble mean at predicting the position and intensity of

LPSs is comparedwith the control forecast for 11 S2Smodels. The

ensemble mean error for an EPS is calculated by first computing

ensemble mean tracks of all LPSs in ensemble members that

match LPSs in ERA-I. For an EPS, the number of ensemble

members that have matching tracks and the length of such tracks

in each ensemble member varies for different LPSs. In previous

studies examining the prediction skill of EPSs, the tracks consid-

ered were those that were present in at least five ensemble

members (Froude et al. 2007b; Froude 2010, 2011). Since several

S2Smodels have atmost five ensemblemembers (seeTable 1), we

consider only those tracks in this diagnostic that are present in at

least two ensemblemembers. For anLPS, themean position error

in an EPS is calculated as the mean geodesic separation distance

between the ensemble mean track and its corresponding matched

track in ERA-I at each lead time. This process is iterated for all

LPSs in 11 S2Smodels to obtain ensemblemean errors for all S2S

models. It must be noted that for the BoMmodel, themean of the

control errors is considered since the EPS consists of three model

versions and thus three control runs.

Figures 9 and 10 show ensemble mean error, control error and

ensemble spread in LPS position and intensity, respectively, in all

S2S models when LPSs are matched with those in ERA-I. Similar

analyses are carried out using MERRA-2 (not shown). The en-

semble spreadwill bediscussed in section 4d. For the position error,

the ensemble mean provides an advantage over the control (i.e.,

the ensemblemean error is less than the control error) formost S2S

models; however, it provides very little advantage in the KMA

model (Fig. 9i) at lead times greater than 10 days. These results are

similar when MERRA-2 is used for verification—the ensemble

mean in most models provides an advantage over the control run,

but the difference between them is smaller than in ERA-I.

For the LPS intensity, the ensemble mean provides a little ad-

vantage over the control run for some S2S models such as the

NCEP(Fig. 10b),UKMO(Fig. 10c),CMA(Fig. 10e) andECMWF

(Fig. 10f) when ERA-I is considered. It does not provide any dis-

tinct advantage for the JMA model (Fig. 10h). However, the en-

semblemean inmostmodels provides a greater advantage over the

control run when MERRA-2 is considered for verification instead

ofERA-I. Thus, the ensemblemean ismore advantageous over the

control forecast for the intensity of LPSs than their position when

MERRA-2 is considered for verification.This result agreeswith the

findings of Froude (2010, 2011) for extratropical cyclones in the

TIGGE dataset. It must be noted that the multimodel mean pro-

vides anadvantageover themultimodel control for theposition and

intensity of LPSs when verified against ERA-I and MERRA-2.

d. Ensemble spread–error relationship

To ascertain the reliability of S2S models at predicting the

position and intensity of LPSs, the ensemble spread–error

FIG. 10. Ensemble mean error (solid red), control forecast error (solid black), and spread (dashed red) in the intensity of monsoon low

pressure systems in (a)–(k) 11 S2S models and (l) the multimodel mean. Errors and spread are calculated with respect to ERA-I. The unit

of intensity error is 1025 s21. Output from step 0 is not available for the BoM, JMA, KMA, and ECCC models.
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relationship is investigated. For a statistically reliable EPS, the

ensemble spread should be equal to the ensemble mean error

(Froude 2010). This means that the ensemble spread should be

able to cover all possible forecast outcomes and predict the

forecast error (Leutbecher and Palmer 2008; Hopson 2014).

However, EPSs tend to display underdispersion since not all

sources of forecast uncertainties related to initial conditions

and model errors are simulated (Buizza et al. 2005).

In this study, the ensemble spread for an LPS in an S2S

model is calculated as the mean geodesic separation distance

between the ensemble mean track and corresponding ensem-

ble member tracks at each lead time. The ensemble spread for

all S2S models is then calculated by repeating the process for

all matched LPSs in all S2S models. For the position of LPSs

(Fig. 9), the BoM (Fig. 9a), NCEP (Fig. 9b), UKMO (Fig. 9c)

and ECMWF (Fig. 9f) models have the best ensemble spread–

error relationship (i.e., the curves showing the ensemble spread

and ensemble mean error are the closest to each other) when

ERA-I is used for verification. The other S2S models are

underdispersive to varying degrees, with the HMCR model

having the worst ensemble spread–error relationship. In

MERRA-2 (not shown), the ECMWF model has the best

ensemble spread–error relationship among all S2S models;

this suggests that the result is not sensitive to the reanalysis

dataset used for verification.

For the intensity of LPSs (Fig. 10), there are larger differ-

ences between ensemblemean error and ensemble spread than

the position of LPSs. The NCEP (Fig. 10b), UKMO (Fig. 10c)

and ECMWF (Fig. 10f) models have the best ensemble spread–

error relationship, whereas the HMCR model (Fig. 10k) has

the worst. These results are consistent when verified against

MERRA-2 (not shown). The ensemble spread depends on the

number of ensemble members and the perturbation method.

Despite having fewer ensemble members, many S2S models

have better ensemble spread–error relationships than the

HMCR model. This suggests that the reason for the worst

FIG. 11. Difference in daily precipitation (mmday21) in the (a)–(c) JMA, (d)–(f) ECCC, (g)–(i) KMA, and (j)–(l) UKMOmodels. For

everymodel, the difference is calculated as model precipitationminus GPM IMERGprecipitation for (left) all days (days 0–3 and 12–15),

(center) low pressure system (LPS) days, and (right) non-LPS days in the same time range. Numbers indicate pattern correlation coef-

ficient between LPS days and all days and non-LPS days and all days.
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ensemble spread–error relationship in this model is perhaps the

perturbation method. However, this analysis requires a sensi-

tivity test with themodel, which is outside the scope of our study.

Compared to the position of LPSs, models are more under-

dispersive for the intensity; this result is similar to that of ex-

tratropical cyclones in the TIGGE dataset (Froude 2010, 2011).

5. Precipitation errors

In this section, we investigate how forecast lead time and the

presence or absence of LPSs influence seasonal mean precip-

itation errors in 11 S2S models. The S2S precipitation data has

been regridded to 18 3 18. The difference in daily precipitation

is calculated by subtracting IMERG precipitation from S2S

precipitation for forecast lead times of 12–15 days minus 0–

3 days. This difference is calculated for three cases: all days in

the time range, LPS days (when an LPS was present in the

domain) and non-LPS days. The pattern correlation coefficient

is also calculated to evaluate the strength of the relationship

between LPS days and all days as well as non-LPS days and

all days.

Figure 11 shows differences in daily precipitation in the

JMA,ECCC,KMAandUKMOmodels. In the JMA (Fig. 11a)

and ECCC (Fig. 11d) models, wet biases of 2–3mmday21 are

visible over most of the monsoon core zone, which increase to

;4mmday21 over western India. However, amostly dry bias is

visible in the same regions in the KMA (Fig. 11g) and UKMO

(Fig. 11j) models, which have a peak value of ;23mmday21.

The precipitation difference for other S2S models is shown

in the appendix (Figs. A3 and A4). Excluding the ISAC-CNR

model, other models exhibit wet biases over most of the

monsoon core zone; these biases are as large as;20mmday21

in the CMA model. Dry biases in the KMA and ISAC-CNR

models could be due to moisture biases, but this cannot be

investigated due to the unavailability of moisture-related pa-

rameters in the output data of these models. These results

suggest that precipitation error over the monsoon core zone

increases with forecast lead time in all 11 S2S models except

the KMA, UKMO, and ISAC-CNR models. The multimodel

mean of Coupled Model Intercomparison Project-5 (CMIP5)

and CMIP3 models exhibit wet biases (dry biases) over eastern

parts of the Arabian Sea (monsoon core zone) during the

summer season (Sperber et al. 2013); similar wet (dry) biases

are found in the JMA, ECCC, and CMA (ISAC-CNR and

KMA) models in this study.

The strong wet bias along the western coast of India in

models such as CMA is due the intensification of an offshore

trough (Francis and Gadgil 2006) at 12–15-day lead times

compared to 0–3 days. Over parts of the western coast, MSLP

decreases by ;2 hPa and specific humidity increases by ;3 3
1023 kg kg21 at the 850-hPa level during 12–15-day lead times

(not shown). In the UKMO model (not shown), specific hu-

midity over the same region decreases during 12–15-day lead

times, which causes the dry bias. The pattern correlation co-

efficient between LPS days and all days is 0.99 in most S2S

models, suggesting that LPSs influence the pattern of precipi-

tation errors in S2S models. Even in the ECCC and KMA

models, the pattern of precipitation errors is the most similar

between all days and LPS days instead of all days and non-LPS

days. It must be noted that the precipitation difference for 11

FIG. A1. (a)–(k) As in Fig. 7b, but position errors are shown separately for 11 S2S models. The transparent shaded regions indicate the

95% confidence intervals for the mean position errors, which are computed from the standard errors. Output from step 0 is not available

for the BoM, JMA, KMA, and ECCC models.
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S2S models is similar even when matched LPSs are considered

instead of unmatched LPSs (not shown).

6. Discussion and conclusions

In this paper, we have analyzed the prediction of Indian

monsoon low pressure systems (LPSs) by 11 models of the

Subseasonal-to-Seasonal (S2S) prediction project (Vitart et al.

2017). LPSs are a crucial component of the Indian monsoon

since they produce substantial rainfall in the Indian subcontinent

during the summer season. In spite of their important role for

water supply and for triggering catastrophic flood events in the

subcontinent, examining the potential for their predictability on

the time scales of numerical weather prediction and extended

range models remains less explored than for other phenomena

such as tropical cyclones. We used a feature-tracking algorithm

to track LPSs in all ensemble members of 11 S2S models during

the common reforecast period of June–September 1999–2010.

Tracks were then subjected to a post-tracking filtering process in

which tropical cyclones and heat lows were eliminated. The

retained LPSs were compared with 290 and 281 LPSs iden-

tified in ERA-Interim reanalysis (ERA-I) and Modern-Era

Retrospective Analysis for Research and Applications, ver-

sion 2 (MERRA-2) datasets, respectively, for the purpose of

verification. The results can be summarized as follows:

a. Representation of the frequency, intensity, tracks, genesis,

and lysis of LPSs

We found that the simulated seasonal frequency of LPSs in

all S2Smodels was smaller than in ERA-I andMERRA-2, with

the NCEP model having the largest frequency and the BoM

model having the smallest frequency. While examining the

probability density of the intensity of LPSs, we found that all

S2S models had a modal 850-hPa relative vorticity in the range

1–2 3 1025 s21. In MERRA-2, the largest probability density

was found for intensity in the range 3–4 3 1025 s21, which

suggests that there are stronger LPSs in this reanalysis than in

ERA-I and S2S models.

We defined strong LPSs (SLPSs) as systems featuring

minimum intensity (850-hPa relative vorticity) greater than

or equal to the third quartile intensity of all LPSs in an S2S

model or reanalysis datasets and examined their track

density, genesis and lysis given their role in triggering high-

impact flood events in the Indian subcontinent. We found

that all 11 S2S models including the multimodel mean rep-

resented transits of SLPSs over the head of the Bay of

Bengal and adjoining land area; the NCEP, UKMO, CNRM,

ECMWF, and KMA models had the best performance,

whereas the BoM, JMA, and CMA models exhibited larger

biases in their tracks. The observed west-northwest propa-

gation of SLPSs was not simulated by the CMA model since

themidtropospheric steeringwinds were easterly over the head

of the Bay of Bengal and central India. Tracks over west-

central India were not simulated by the HMCR model due to

faster lysis of SLPS and their low count. We also found that

most S2S models as well as the multimodel mean correctly

simulated the primary genesis region over the head of the Bay

of Bengal and adjoining land area as well as the primary lysis

region over eastern India. All the 11 S2S models had fewer

genesis and lysis points than ERA-I and MERRA-2.

FIG. A2. (a)–(k) As in Fig. 7c, but intensity biases are shown separately for 11 S2S models. The transparent shaded regions indicate the

95% confidence intervals for the mean intensity errors, which are computed from the standard errors. Output from step 0 is not available

for the BoM, JMA, KMA, and ECCC models.
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b. LPS position and intensity error

We investigated the position and intensity errors of LPSs;

the CMA model had the largest position error, whereas the

ECCC, UKMO, JMA, and KMA models had smaller position

errors than most S2S models when LPSs were verified against

ERA-I. These models had similar performance when verified

against MERRA-2, but a reduction in the position error in the

CMA model was seen due to a greater number of westward

moving LPSs in MERRA-2 than in ERA-I. We found that the

range of the position error was similar in the multimodel mean

when LPSs were verified against both reanalysis datasets.

Many S2S models including the multimodel mean exhibited a

positive bias in the intensity of LPSs at all lead times except the

HMCR model when verified against ERA-I. However, most

models including the multimodel mean underestimated the

intensity when LPSs were verified against MERRA-2. In both

cases, the bias was the largest for the BoM and HMCRmodels

and the overall pattern of biases among most models showed

consistency. We found that position errors increased with

forecast lead time over most of the domain in all S2S models

when verified against ERA-I—the errors were larger over the

Arabian Sea than the Bay of Bengal at lead times greater than

12 days. However, this was not seen when LPSs were verified

against MERRA-2, suggesting that the presence of more LPSs

over theArabian Sea inMERRA-2 than in ERA-I reduced the

position error.

c. The statistical reliability of S2Smodels at predicting LPSs

A good ensemble spread–error relationship is a desirable

property of an ensemble prediction system (EPS) since it in-

dicates the correct representation of all possible forecast out-

comes as well as the ensemble mean error by the ensemble

spread. We found that irrespective of the reanalysis used for

verification, the ECMWF and UKMO models had the best

ensemble spread–error relationship for the position and in-

tensity of LPSs, whereas the HMCR model had the worst,

possibly due to the perturbationmethod used in the model.We

found that most models were underdispersive for the position

and intensity of LPSs—models were more underdispersive for

the intensity than the position. These findings are similar to

FIG. A3. As in Fig. 11, but for the (a)–(c) NCEP, (d)–(f) ECMWF, (g)–(i) HMCR, and (j)–(l) CMA models.

JUNE 2021 DEORAS ET AL . 873

Unauthenticated | Downloaded 05/04/21 09:49 AM UTC



those for extratropical cyclones in the TIGGE dataset (Froude

2010, 2011). Froude (2010, 2011) suspected that the best per-

formance of the TIGGE-ECMWF model at predicting extra-

tropical cyclones was due to a bias toward the ECMWF

analysis used for verification in their studies. However, using

ERA-I for verification did not give an advantage to the

ECMWF model in our study.

d. The influence of forecast lead time and LPSs on the

pattern of precipitation errors

In the final phase of this study, we examined the role of

forecast lead time and LPSs in influencing precipitation errors

in S2S models. The growth of precipitation errors was consid-

ered by subtracting GPM IMERG precipitation from S2S

precipitation for forecast lead times of 12–15 days minus 0–

3 days. We found that S2S models, excluding the KMA,

UKMO, and ISAC-CNR models, exhibited a wet bias over

most of the monsoon core zone, thereby suggesting an increase

in precipitation error with forecast lead time. Models such as

CMA exhibited a strong wet bias (up to 20mmday21) over the

western coast of India, which was related to the intensification

of an offshore trough. We also found that the presence of LPSs

influenced the pattern of precipitation errors in all 11 models

since there was a strong positive pattern correlation between

precipitation errors on all days, and those during the presence

of LPSs.

This study opens a new realm of exploring the predictability

of LPSs on the time scales of numerical weather prediction

models and the extended range and contributes to over a

century of literature that has primarily looked at structural and

dynamical aspects of LPSs. The results of this paper are po-

tentially useful to meteorologists and disaster management

organizations. The most intense LPS related precipitation oc-

curs within ;1000 km from the LPS center. On several occa-

sions, the presence of LPSs have forced dam operators to

suddenly release dam water, thereby triggering dangerous

floods such as the 2018 Kerala flood (Lal et al. 2020). Thus, an

accurate prediction of an LPS track is crucial to issue flood

warnings and skillful forecast of LPSs at longer lead times can

help in improving flood forecasts and reservoir operations. Our

study presents the first ever evaluation of the prediction of

LPSs as well as their precipitation biases, which was a major

gap in the literature. Hence, we expect our results to encourage

researchers to carry out investigations on improving flood

FIG. A4. As in Fig. 11, but for (a)–(c) CNRM, (d)–(f) ISAC-CNR, and (g)–(i) BoM models.
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forecasting in India. Such results will ultimately benefit flood

forecasters and dam operators in developing an advanced flood

warning system. Further work is required to gain more un-

derstanding of factors including the structure of LPSs in the

S2S dataset that can influence the predictability of these

weather systems. In addition, the contribution of individual

models to the multimodel mean results discussed in this study

needs to be explored. Multimodel ensembles help in improving

the skill of weather forecasts by allowing better estimation of

factors such as the forecast uncertainty (Pegion et al. 2019).

However, some models can contribute a greater number of

older reforecasts to the multimodel ensemble than others due

to different initialization dates.
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APPENDIX

Errors in the Position and Intensity of Monsoon Low
Pressure Systems and Difference in Daily Precipitation

Figures A1–A2 show errors in the position and intensity of

monsoon low pressure systems, respectively, for each S2S

model when verified against ERA-Interim. Figures A3–A4

show the difference in daily precipitation for seven S2Smodels.
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