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Abstract

Employing a long-memory approach, we provide a study of the evolution of informational

efficiency in five major Bitcoin markets and its influence on cross-market arbitrage. While

all the markets are close to full informational efficiency over the whole sample period, the

degree of market efficiency varies across markets and over time. The cross-market dis-

crepancy in market efficiency gradually vanishes, suggesting the segmented markets are

developing to a consensus where all markets are equally efficient. Through a fractionally

cointegrated vector autoregressive (FCVAR) model we show that when the efficiency in

Bitcoin/USD and Bitcoin/AUD markets improves the cross-market arbitrage potential

narrows, whereas it widens when the efficiency in Bitcoin/CAD, Bitcoin/EUR, and Bit-

coin/GBP markets improves. A battery of robustness checks reassure our main findings.
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1. Introduction

The Efficient Market Hypothesis (EMH) has been extensively discussed in the finance

literature for decades since the seminal work by Fama (1970). While traditional tests

of market efficiency mainly treat the issue as a static question, arriving at either an

acceptance or rejection of the EMH, recent literature has quantified the extent to which

the market is efficient and shown that it can vary over time (See, e.g., Fernandez, 2010,

Tabak and Cajueiro, 2007, Wang and Liu, 2010, Wang et al., 2009). Rösch et al. (2017)

state that such time-varying property of market efficiency can be governed by the financial

frictions that vary over time. However, despite the financial frictions in the Bitcoin market

that can vary over time, the attention paid to the time-varying property of its market

efficiency is still surprisingly scant. The first part of our paper, therefore, addresses this

issue by studying the time-varying property of the Bitcoin market.

In parallel, due to the segmented nature of its trading venues, Bitcoin often exhibits re-

markable cross-market arbitrage opportunities. For example, Makarov and Schoar (2020)

find strong evidence that the Bitcoin market possesses a high degree of segmentation and

cross-market arbitrage potential. They ascribe this arbitrage potential to capital controls

along with insufficient regulatory supervision. Theoretically, Perlin et al. (2014) provide

a microstructure model in which such type of cross-market arbitrage to occur when the

speed of convergence towards the contemporaneous equilibrium price varies across mar-

kets. While there has been a growing body of literature on Bitcoin market efficiency

and arbitrage,1 few have looked into the relationship between the efficiency of segmented

markets and the cross-market arbitrage in Bitcoin. The second part of our paper fills this

gap by investigating the association between the dynamic market efficiency of segmented

markets and the cross-market arbitrage potential.

We categorise global Bitcoin trading into five segmented markets by the base currency

against which Bitcoin is traded, namely, Australia dollar (AUD), Canadian dollar (CAD),

Euro (EUR), British pound (GBP), and US dollar (USD).2 Using daily data from 1st

1See, e.g. Bariviera (2017), Hattori and Ishida (2020), Kroeger and Sarkar (2017), Nadarajah and

Chu (2017), Urquhart (2016), Wei (2018), Zargar and Kumar (2019).
2Our categorisation ensures a sample that is liquid and spans a long enough period that allows

for a meaningful dynamic efficiency analysis by rolling-window estimations. This categorisation is also

justified by the fact that most Bitcoin traders use only one fiat currency, usually their home currency,
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January 2013 to 7th January 2020 for the five Bitcoin markets, our study is conducted

in three steps.

First, we quantify the degree of market efficiency measuring the long-memory in the

price series. Traditionally, testing Bitcoin market efficiency is treated as a polar question

and conclusions are made mainly based on (1) whether the price process is a random

walk (Aggarwal, 2019, Nadarajah and Chu, 2017, Urquhart, 2016) and (2) whether the

returns are predictable (Shynkevich, 2020, Urquhart and McGroarty, 2016). Translated

into econometric terms, all above treatments attempt to answer the question that if the

price series has an integration order (d) of one (i.e. I(1) series). In reality, however, the

integration order (d) of the price series does not have to be restricted to integer values

such as 1 or 0. Instead, d might be a fractional value, implying a long memory process

in the prices, i.e. the reflection of the available information can be slowly-decayed over

a long time period. Given that the long-dependence is known to be characterised in the

Bitcoin market (Cheah et al., 2018, Takaishi and Adachi, 2020, Tiwari et al., 2018), a

serious bias and informational loss regarding the interpretation of the market efficiency

degree could occur unless we relax the premise of d of the price series to a fraction and

capture its long-memory feature.

Therefore, our paper allows for potential existence of fractional values of d to capture

the long-memory in the price series through which the degree of efficiency in the market

can be well gauged.3 Moreover, since our approach does not rely on any pricing model,

it avoids the famous joint hypothesis problem (Fama, 1991).4 Employing the Feasible

Exact Local Whittle (FELW) estimator of Shimotsu (2010) for the fractional integration

order (d) calculation, we show that all the five Bitcoin markets possess a high degree

of informational efficiency over the full sample period.5 Across a variety of estimation

bandwidths employed, our estimates of d values of Bitcoin prices remain generally close

in the trading (Makarov and Schoar, 2020).
3We measure the closeness to an efficient market through the absolute difference between d and 1.

This measure is denoted as D, whose value decreases as the degree of market efficiency increases and is

0 if the market is fully efficient. Detailed discussions regarding D are in Section 4.
4The joint hypothesis problem states that any attempts of testing whether information is properly

translated into an equilibrium price defined by a pricing model jointly test both EHM and that pricing

model (Fama, 1991).
5See a detailed discussion of the employed method for the calculation of d in Section 3.
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to unity, ranging from 0.841 for AUD (bandwidth = 0.4) to 1.099 for CAD (bandwidth

= 0.6). The main findings further remain robust when replacing the currently-employed

d estimator with alternatives.

Second, in the spirit of Bariviera (2017) and Rösch et al. (2017), our paper acknowl-

edges that the efficiency degree of the Bitcoin market can fluctuate over time and inves-

tigates the dynamic evolution of market efficiency. To this end, we recursively estimate

d on each market through a rolling window approach. It can be conducted by first re-

cursively estimating the fractional integration order (d) over a specified window size, and

then an indicator of market efficiency degree (denoted as D in the paper) that is defined

as the absolute difference between d and one. In doing so, we enable the degree of Bitcoin

market efficiency to evolve over time in a manner consistent with the Adaptive Market

Hypothesis (Lo, 2004), while a cross-market comparison of the efficiency is also possible.

A graphical analysis demonstrates that the degree of efficiency of each Bitcoin market

varies over time but generally remains highly close to efficient throughout the sample

period. However, in the period of 2016 to 2017 (the Bitcoin price boom), most markets

experienced a reduction in the degree of efficiency with the d value significantly less

than one but different from zero. More importantly, we observe that the discrepancy

in the degree of efficiency between markets shrinks gradually over time except for the

period of 2016 to 2017 that coincides with the Bitcoin boom. In the light of Makarov

and Schoar (2020), a possible explanation for the observed narrowing gap of the efficiency

degree across markets is that as the Bitcoin market matures, the cross-market information

exchanges are enhanced overtime and less arbitrage profits are available.

Third, we further construct the arbitrage index following Makarov and Schoar (2020)

to capture the cross-market arbitrage potential and then model its nexuses with the

efficiency degree (D) of the five individual markets through a fractionally cointegrated

vector autoregressive (FCVAR) model recently proposed by Johansen and Nielsen (2012).

Rather than the conventional I(1)/I(0) framework, the FCVAR model relaxes the strict

assumption of integer integration and cointegration orders, and allows that both the

orders to be fractional, through which the potential existence of the long-memory feature

in the variable system can be well identified. Therefore, the FCVAR model offers a novel

and robust way to uncover how the arbitrage level can be truly impacted by the degree

of informational efficiency in individual Bitcoin markets in both the short- and long-run
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terms.6

Our empirical results illustrate that the cross-market arbitrage potential is distinc-

tively higher in the first half of our sample period compared to the second half, echoing

our previous findings that the discrepancy in efficiency across markets narrows along with

time. Moreover, in the light of the long-run relationship identified by the FCVAR estima-

tion, we find that the degree of Bitcoin market efficiency in the US and Australia exerts

positive impacts on the cross-market arbitrage potential, indicating that an increase in

efficiency degrees in these markets leads to an increase in the arbitrage opportunities.

On the contrary, the efficiency degree of Bitcoin market in Canada, Europe and UK

demonstrates negative effects on the arbitrage opportunities, i.e. the less efficient in

these markets, the more cross-market arbitrage opportunities can be expected.

We arrange the rest of this paper as follows. Section 2 reviews the extant key litera-

ture with a discussion of our contribution. Section 3 discusses the two main econometric

models used in this study, i.e. the fractional integrated model and the fractional coin-

tegrated vector autoregressive model. Section 4 describes the data employed. Section 5

documents our empirical findings. Section 6 presents robustness checks. Finally, Section

7 concludes the paper.

2. Literature Review

With promising application potentials since its proposal by Nakamoto (2008), the

literature on Bitcoin which has exploded with papers documenting the hedging and di-

versification benefits (Borri, 2019, Corbet et al., 2018a, Urquhart and Zhang, 2018), the

existence of bubbles (Cheah and Fry, 2015, Corbet et al., 2018b), investor attention (Shen

et al., 2019, Urquhart, 2018), the trading potential (Bouri et al., 2019b, Corbet et al.,

2019a, Hudson and Urquhart, 2019, Kajtazi and Moro, 2019, Platanakis and Urquhart,

2020), the volatility dynamics (Bouri et al., 2019a, Katsiampa, 2017, 2018, Katsiampa

et al., 2019, Shen et al., 2020), and the multifractality in Bitcoin markets (Kristjanpoller

and Bouri, 2019, Kristjanpoller et al., 2020, Mensi et al., 2019a, Takaishi and Adachi,

2020).7

6Detailed discussions of FCVAR model can be seen in the methodology section.
7See Corbet et al. (2019b) for a recent review of the empirical literature on cryptocurrencies.
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Urquhart (2016) is amongst the first studies on Bitcoin market efficiency. He employs

five different independence tests and rejects the EMH over the first subsample period

but find evidence of a possible move towards efficiency in the more recent subsample

period. This evolutionary view of the Bitcoin market efficiency is also share by Sensoy

(2019) who find that the Bitcoin market exhibits some degree of weak form efficiency at

intraday level since 2016. Nadarajah and Chu (2017) employ an odd integer power trans-

formation of Bitcoin returns and show that returns are weakly efficient. On the contrary,

Zargar and Kumar (2019) examine the intraday efficiency of Bitcoin and find evidence

of the Bitcoin inefficiency at higher frequency levels. Simiarly, Aslan and Sensoy (2020)

provide evidence of Bitcoin return predictability at the intraday level. Akyildirim et al.

(2020) find cryptocurrency return predictability using at daily and minutely levels using

common machine learning techniques, including the support vector machines, logistic re-

gressions, neural network, and random forests. Moreover, Bouri et al. (2019b) study the

predictability of trading volume to cryptocurrency returns via through a copula-quantile

causality approach. Thus, there is an inconclusive debate on the degree of informational

efficiency of Bitcoin markets, and a consensus has yet been reached so far.

At the same time, the existence of long-memory in financial asset price series has

been widely embraced such as in the stock market, commodity market, and real estate

market (See, e.g., Canarella et al., 2019, Kristoufek and Vosvrda, 2014, Mensi et al.,

2019b). Instead of taking the issue of market efficiency as an ‘all-or-nothing’ question

and assuming that the market can only be either completely efficient or inefficient, this

strand of literature considers the possibility that a market could possess a certain degree

of efficiency (i.e. quasi-efficient), which can be captured by measuring the long-memory

in the price series. (See, e.g., Cuñado et al., 2005, Liow, 2009, Ngene et al., 2015).

Recently, though scant, the existence of long-memory is also found in the Bitcoin price

series, indicating the rejection of the EMH in the Bitcoin market while it still possesses

certain efficiency degree (See, e.g., Cheah et al., 2018, Tiwari et al., 2018).

With regard to estimators of the long memory, although Hurst exponent computed

based on R/S and DFA methods is popular for the measurement of long-memory in the

extant literature (See, e.g. Bariviera, 2017, Takaishi and Adachi, 2020, in the Bitcoin

market), it has been long documented that the effectiveness of both the methods tends

to be prone to be affected by the nature of the data and initial parameter settings (Hauser
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and Reschenhofer, 1995, Kantelhardt et al., 2001, Lo, 1991). Instead, a recently-developed

FELW estimator (Shimotsu, 2010) is known to improve the weaknesses encountered by

the traditional methods and enhance the accuracy of the long-memory estimates against

alternative parametric and semi-parametric ones (See, recent applications Berger et al.,

2009, Dolatabadi et al., 2018, Kumar and Okimoto, 2007).

Furthermore, scholars have been interested in the cross-market arbitrage and market

efficiency. For example, Gromb and Vayanos (2002) propose a model that explains the

relationship between cross-market arbitrage and allocative market efficiency. On the

other hand, Perlin et al. (2014) provide a model showing that the cross-market arbitrage

behaviour can be affected by three factors, one of which is the discrepancy of informational

efficiency across individual markets.

Our paper contributes to the extant literature in a fourfold manner. First, instead

of taking the issue of market informational efficiency as a static problem as conventional

in the literature, we view market efficiency in an evolving manner to shed light on Bit-

coin market efficiency. Second, we employ the recent developed long-memory estimator,

Feasible Exact Local Whittle estimator (Shimotsu, 2010), that mitigates the weaknesses

of the traditional methods, like the Hurst exponent. Third, we investigate the dynamic

evolution of this market efficiency degree over time via a rolling window approach and

add to the literature that argues the market efficiency should not be taken as a static

concept (Rösch et al., 2017, Takaishi and Adachi, 2020). Fourth, we examine the effect of

individual market efficiency degree on cross-market arbitrage potential via a long memory

cointegration framework. To the best of our knowledge, our paper is the first to shed light

upon how segmented Bitcoin market efficiency may contribute to the arbitrage potential

across multiple markets.

3. Methodology

For a given asset market, to uncover the extent of its deviation from an efficient market,

we relax the traditional I(1)/I(0) assumption of the integration order (d) of market price

series by considering the possibility that d can be a fractional value. By doing this,

the degree of market efficiency can be truly quantified, rather than the strict premise of

integer d values, which imply that the market should either satisfy the efficient market

hypothesis (EMH), i.e. an I(1) price series, or completely inefficient, i.e. an I(0) price
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series. Identifying Considering A cointegration analysis is then conducted

This section first follows Hamilton (1994) to conduct a thorough discussion of various

types of ‘memory’ of a given time series by identifying its potentially-existing fractional

integration order, through which the degree of market informational efficiency can be well

interpreted. We then employ a fractionally cointegrated vector autoregressive (FCVAR)

model proposed by Johansen (2008) and Johansen and Nielsen (2012) to uncover both

the short-run error corrections and the long-run relationship(s) among target variables,

while allowing for the existence of the fractional cointegration order by considering the

long-memory in the model system.

3.1. Fractional integration, long memory and market efficiency

(i) Theoretical discussion

By convention, an integrated process (yt) of order d can be expressed as follows given

t = 1, . . . , T .

(1− L)dyt = ψ(L)εt =
∞∑
j=0

ψ(Lj)εt−j (1)

where (1 − L)d is the difference operator of order d; ψ(Lj) is the coefficient of error

term (ε) at time period t− j with
∑∞

j=0 |ψ(Lj)| <∞ to meet the covariance-stationarity

requirement of (1 − L)dyt and ψ(L0) = 1, j = 0, 1, 2, . . . ; error term (ε) is a white noise

process, viz. εt ∼ iid(0, σ2).

Specifically, in a conventional integer case when d = 0, Equation (1) can be trans-

formed as:

yt = ψ(L)εt =
∞∑
j=0

ψ(Lj)εt−j (2)

where yt is defined as a covariance stationary series with zero mean and constant variance,

indicating that the impact of a unit shock to the past error term (εt−j) on the current

value of yt, i.e. the impulse response coefficient of yt, can be either zero such as a white

noise process (viz. yt = εt) or decay geometrically such as a stationary ARMA process

(viz. yt =
∑∞

i=0 ρ
jεt−j). Thus, a market can be defined as the one with no efficiency in

the condition when its price series has a 0 d value featured by short-memory.

When d = 1, yt in Equation (1) can be then defined as a unit root process where

contains one character root in the character function of yt that lies on the unit circle.
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In this case, yt is no longer covariance-stationary and its statistical property can be

intuitively observed through its infinite moving average (MA(∞)) representation:

yt = εt + εt−1 + εt−2 + εt−3 + . . . (3)

where the impulse response coefficient of y (i.e. ψ(Lj) = 1, j = 0, 1, 2, . . . ) constantly

equals to one over time, indicating that past information of the unit root process y can

permanently affect its current value and never dies away. Thus, a series with order d = 1

is known to process permanent memory, which also characters the price series in a market

that satisfies the weak-form EMH, i.e. an efficient market.

However, the conventional discussion is still limited to a strict assumption of an in-

teger integration order, it nevertheless fails to consider the possibility that d can be a

fraction, which depicts long-memory featured shocks implied in such a fractionally inte-

grated series. Thus, we further extend the conventional discussion to the field of fraction.

In the light of Hamilton (1994), when d is a fraction and 0 < d < 1, by multiplying the

inverse of (1 − L)d on both sides of Equation (1), a fractionally integrated series yt can

be then formulated as:

yt = (1− L)−dψ(L)εt =
∞∑
j=0

γjL
jεt−j (4)

where

γj =
(d+ j − 1)(d+ j − 2) · · · (d+ 2)(d+ 1)(d)

j!
, (5)

γj is the impulse-response coefficient of yt at time period t−j, viz. the coefficient of error

term at the time period t− j, and γ0 ≡ 1; γj ∼= (j + 1)d−1 given that d < 1 as a fraction

and j is large. Therefore, the integrated series yt defined in Equation (4) can be further

expressed through the following infinite moving average (MA(∞)) process.

yt = (1− L)−dεt = γ0εt + γ1εt−1 + γ2εt−2 + γ3εt−3 + · · · (6)

In the light of (4), (5), and (6), impacts of a shock to the error term at time t − j

on (yt) are highly-persistent and slowly converged over time (implied long-memory), in

contrast to no or geometrically-decayed impact in a I(0) series (implied short-memory)

and permanently-persistent impact in a I(1) series (implied permanent-memory) as pre-

viously discussed. According to the statistical property of a MA(∞) process, a series can

be stationary only when d < 1/2 instead of d = 0 as conventionally defined.
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Overall, it is evident that the impulse-response factor of a given series can actually

reflect its information transmission pattern over time. The factor in past time period t−j

can represent the extent of how much the information about the series y in time t− j can

be transmitted to its current value (yt), shedding lights on the degree of informational

efficiency of a target market. For a given price series (yt), its statistical properties with

different d values and the associated status of market efficiency are presented in Table 1.

[Table 1 about here.]

Specifically, regarding the price series of the market under consideration, when its

integration order d = 1, the market is efficient, indicating that past (price-related) in-

formation can be entirely transmitted to the current value of the price series featured

by perfect autocorrelation. When d = 0, the market has no efficiency indicating that

past information has no or very short reflection on current dynamics of the price series

featured by no or weak autocorrelation. When 0 < d < 1, although the market is not as

efficient as the case when d = 1 because that the information transmission over time is

not perfect, the transmission is highly persistent and slowly converged over past periods,

indicating a greater degree of market efficiency than the case when d = 0. With regard

to ‘abnormal’ conditions, when d > 1, the price series is known as an ‘explosive’ series,

indicating an inefficient market as there is an increasingly excessive transmission of past

information on the current price value with the increase of time lags. This is inconsis-

tent with the spirit of EMH regarding the true reflection of the past information. When

d < 0, the market is also inefficient due to the incomplete information transmission and

the existence of autocorrelation in the price return series.

In summary, by identifying the fractional integration order of the price series, we

extend the conventional I(1)/I(0) framework and capture the potential ‘long-memory’

pattern of the series, through which various degrees of market efficiency are truly uncov-

ered. While a market is ‘completely’ efficient only when the integration order (d) of its

price series equals to 1, we propose a novel way to evaluate the extent of market efficiency

by measuring the absolute difference between d and 1. The gap between d and 1 is nega-

tively correlated with the degree of market efficiency. That is, a market is more efficient

when d value of its price series is closer to 1, and vice versa. Thus, our strategy can not

only identify whether the market is efficient or not, but also compare the efficiency degree

among multiple target markets.
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(ii) d estimates

Regarding the estimation of d, although conventional methods such as R/S and DFA

estimators are widely employed, the validity of these methods is nevertheless questioned

by existing literature so that the reliability of conclusions drawn by using these estimators

could be seriously weakened. Specifically, it is documented that the Hurst index derived

via the R/S method would give rise to biased and inconsistent d estimates (Lo, 1991) and

its obtained results are largely affected by the sample size and initial parameter settings

(Hauser and Reschenhofer, 1995). DFA method is known to underestimate d when the

memory degree of the target series is unknown (Kantelhardt et al., 2001).

While the semi-parametric Exact Local Whittle (ELW) estimator (Shimotsu et al.,

2005) could overcome the encountered weakness of the conventional methods (Kumar and

Okimoto, 2007), its performance tends to be unstable and largely relies on the stationarity

of the target series (Berger et al., 2009). A serious bias of the ELW estimator would occur

if the target series is non-stationary, especially when its fractional integration order is

greater than 0.75 (Velasco, 1999). As a further improvement, a recently developed semi-

parametric estimator, i.e. Feasible Exact Local Whittle (FELW) estimator (Shimotsu,

2010), is documented to accommodate an unknown mean and time trend and ensure the

estimation accuracy irrespective of the stationarity of the target series (See, e.g. Berger

et al., 2009, Dolatabadi et al., 2018, Kumar and Okimoto, 2007). However, surprisingly

scant application has emerged so far in the field of the Bitcoin market. Hence, we will

employ the FELW estimator to estimate the d value of individual Bitocin price series in

our main empirical discussion; to reassure our main results and make them comparable

with existing literature, the ELW estimator will be also employed as a robustness check.

3.2. Fractionally cointegrated VAR model

How to uncover the actual linkage(s) between target variables in both short- and

long-run terms considering the presence of long-memory in the variables? To answer this

question, we follow Johansen and Nielsen (2012) and employ a fractionally cointegrated

vector autoregressive (FCVAR) model. As an extension of the conventional vector error

correction model (VECM) initially proposed by Johansen (1995), the FCVAR model of-

fers an effective way to extend the I(1)/I(0) framework where most conventional analyses

rest on. Through this, it can well capture the potential long-memory feature by iden-

tifying potential fractional integration and cointegration orders in the variable system,
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while investigating the short-run error corrections and the long-run equilibrium relation(s)

among target variables. The FCVAR model specification is formulated as follows:

∆d(Yt − ρ) = αβ
′
Ld(Yt − ρ) +

p∑
i=1

Γi∆
dLi

d(Yt − ρ) + εt (7)

where ∆d and Ld are fractional difference and lag operators, ∆d = 1− Ld = (1− L)d, d

can be either a fraction or integer value; Yt is a K-dimensional column vector including K

numbers of variables that are integrated with order d and cointegrated to order 0 to ensure

that the obtained long-run relationship(s) are established on a stationary environment

with no memory; the long-run relation(s) among variables in Yt are defined by β
′
Ld(Yt−

ρ) where β is a K × r matrix and describes the specified values of target variables in

each cointegration relationship given that r indicates the rank of in Yt, i.e. numbers of

cointegration relationship; α is also a K × r matrix that identifies the speed of error

correction towards the long-run equilibrium for each target variable in Yt; Γi represents

the short-run dynamics of variables in Yt at time t − i, i = 1, . . . , p; εt is a white noise

process (εt ∼ iid(0,Ω)); ρ is a drift term that shifts the vector Yt by a constant value ρ

to relax the strict assumption regarding zero value of observations before the start of the

finite empirical dataset (Johansen and Nielsen, 2016). Moreover, the FCVAR model is

estimated by using the Maximum Likelihood estimator, which is examined to be normally

distributed and provide unbiased estimation results (Johansen and Nielsen, 2012).

Regarding the endogeneity issue, the FCVAR model can ameliorate the issue regarding

simultaneity and omitted explanatory variables. Specifically, due to the fact that the

FCVAR model is built based on a VAR framework, the potential simultaneity issue, i.e.

reverse causality, can be well captured. Moreover, given that our employed FCVAR model

specification (7) incorporates a constant term (ρ) in the long-run relationship(s), it can

well absorb the omitted explanatory power of the long-run determination of the specific

variable, which is used to identify and normalize the long-run relationship(s) among all

incorporated variables. Thus, through the above mechanisms, the FCVAR model is able

to alleviate the endogeneity problem, enhancing the accuracy of our empirical results.

4. Data

Bitcoins are traded in a number of exchanges in many countries with different cur-

rencies. In most cases, the base currency to which Bitcoin is traded against depends on
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the country of the exchange’s operation. Even in the less common cases where a large

exchange operates across multiple countries, the order books for different base currencies

are normally held separately and investors from different countries can only choose the

local currency as the base currency (Makarov and Schoar, 2020). Therefore, we classify

different Bitcoin markets and thereby capture the trading behaviour of geographically

different investors by the base currency to which Bitcoin is traded against. Specifically,

in the light of Cheah et al. (2018), Gillaizeau et al. (2019), we use the closing Bitcoin price

data from the five developed markets, specifically the US, Europe, UK, Australia, and

Canada, which represent the global Bitcoin market by covering more than 80% trading

volumes of the worldwide Bitcoin transactions (Gillaizeau et al., 2019).

[Table 2 about here.]

We retrieve daily closing prices from Bitcoin Charts (https://bitcoincharts.com/)

over the period of 1st January 2013 to 7th January 2020. For each base currency, we

collect data from the most actively traded exchange that is selected by jointly considering

data availability and trading volume. All the data we have from Bitcoin Charts use UTC

timestamp in the trading record, therefore our closing prices are synchronised. Table 2

reports the details of the exchanges and sample periods employed in our study. In order

to eliminate the foreign exchange risks, we convert all prices into US dollars using daily

FX rates retrieved from Yahoo Finance (UTC time).

[Table 3 about here.]

[Figure 1 about here.]

Intuitively, the moving tendency of the five Bitcoin closing price series are reported

in Figure 1 where we can obverse a co-movement pattern of the market price series under

consideration. The figure also demonstrates visual evidence of the high fluctuation of

the five price series, which is also consistent with the high standard deviations that are

even greater than the mean values of the series as reported in Table 3, while overall they

all depict an upward tendency over time, especially since the mid of 2017. Moreover,

descriptive statistics of the five price series are reported in Table 3, and we observe

that the closing price in Australia is ranked as the highest (4031.958) with the highest

standard deviation (5213.299) while that in the UK is the lowest (2225.768) among the
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five markets. We can clearly see that each price series has a large standard deviation

relative to its mean value, while for each series different locations (percentiles) of its price

distribution depict large differences with the mean value.

5. Empirical analysis

5.1. Degree of Bitcoin market efficiency and its evolutionary dynamics

Our empirical analysis starts with estimating the fractional integration order (‘d ’

values) of each target Bitcoin price series, from which we construct our measure for

the degree of market efficiency. The Feasible Exact Local Whittle estimator (FELW)

(Shimotsu, 2010) is employed for the ‘d ’ estimation, which is conducted in two manners.

Specifically, over the whole data sample, we first estimate the ‘d’ value for each series

by using the FELW estimator with different bandwidths ranging from 0.4 to 0.8. The

results are presented in Table 4. Across different bandwidths employed, our estimates

of the fractional integration order of Bitcoin prices remain generally close to unity over

the full sample period, ranging from 0.841 for AUD (bandwidth = 0.4) to 1.099 for CAD

(bandwidth = 0.6). This result suggests that the five Bitcoin markets in our sample

period is at a high level of informational inefficiency in general.

Next, to study the evolutionary nature of informational efficiency of each target mar-

ket over time, we measure the degree of market efficiency using a self-calculated index D,

which is built through the absolute difference between 1 and the fractional integration

order:

Dt = |1− dt| (8)

where dt is the estimated fractional integration order at t, using the same FELW estimator

on a rolling basis. Following Bariviera (2017), we set the window size as 1-year.8 In the

light of our discussions in Section 3, the index D calculated by the distance between d

values and 1 actually represents the degree of market efficiency in an inverse way, i.e., the

greater the D, the greater the gap (in absolute terms), the more inefficient the market,

the less the market efficiency degree will be. Thus, D can be also regarded as a proxy of

the market inefficiency degree.

8In Section 6 we re-estimate the fractional integration orders using different window sizes as robust-

ness check. Our conclusion qualitatively remains unchanged.
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The results are shown in Figure 2. Panel (a) plots the estimated fractional integration

order (d) where we observe its time-varying behaviour in all markets. Specifically, the

estimated ‘d’ value bounces around 0.6 at the beginning of the sample period to around

0.8 in the later phase. Moreover, it appears that the discrepancy in terms of ‘d’ across

markets also exhibit time-varying patterns. The largest disagreement across the markets

is observed mainly in the first half of our sample period, when the CAD/BTC market

being the most deviating market. However, this discrepancy shrinks dramatically along

with time in the second half of the sample period and is virtually disappeared after July

2017. This vanishing discrepancy in the ‘d’ value across markets implies that the Bitcoin

markets trading with different fiat currencies are developing to a consensus where they

are equally efficient.

Similar pattern can be observed in Panel (b) Figure 2, which depicts the degree of

market efficiency (D) that is defined as the absolute difference between 1 and ‘d’. Over the

full sample period, D values fluctuates between 0 to 0.6, where virtually half of the times

being close to 0. The discrepancy across markets is enlarged over the period from Jan 2016

to July 2017, after which it converges to an agreement. Rösch et al. (2017) find significant

comovement in efficiency across individual stocks. Our results show that different Bitcoin

markets are evolving towards a consensus in which there exists comovement in efficiency

across markets.

[Table 4 about here.]

[Figure 2 about here.]

Urquhart (2016) find evidence that Bitcoin market is inefficient but might be in the

process of evolving towards a higher degree of market efficiency. Takaishi and Adachi

(2020) study the association between Bitcoin market liquidity and market efficiency.

Similar to Urquhart (2016), they find that the Bitcoin market is evolving towards a

higher degree of efficiency and this evolution echos the development of market liquidity.

Bouri et al. (2019a) document structure changes in the dynamics of Bitcoin and find

the lack of mean reversion in some sample periods. Our results are consistent with this

stream of literature in that we find multiple Bitcoin markets exhibit higher degree of

efficiency in the second half of our sample. Moreover, we show that different markets are

developing to a consensus at which all markets are equally efficient.
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5.2. Cross-market arbitrage potential and degree of market efficiency

The EMH lies on foundation that price has fully incorporated public information(see,

e.g., Fama, 1970) whilst inefficiency can originate from inner- and cross- market wide

development (see, e.g., Kühl, 2010). Theoretically, arbitrage opportunities should not be

available for assets cross-listing on multi-markets, given the condition that EMH holds.

Considering fiat currency cannot flow seamlessly across regions, Bitcoin cross-market

wide information fails to be promptly reflected in price fluctuations of individual mar-

kets, which is indeed a crucial portion of information for Bitcoin price fluctuation. This

type of friction prevents Bitcoin markets from forming consensus and thus cross-market

price discrepancy will not fad and is bound to have an intrinsic linkage with failure in

market efficiency. This intuition coincides with evidences from existing financial mar-

kets. For example, Suarez (2005) provokes that cross-market arbitrage opportunities for

American Depository Receipt implies inefficiency. However, to the best of our knowledge,

transmission mechanism directly linking cross-market price deviation and individual mar-

ket efficiency remains unclear and this omission impedes us from drawing a full picture for

Bitcoin price formation. To tackle this gap, in this subsection, we quantify across-market

price deviation via an arbitrage index and further systemically examine its interactive

roles against five developed Bitcoin markets’ efficiency levels.

Analysing high-frequency data from a wealth of exchanges, Makarov and Schoar

(2020) conclude that the cross-exchange correlation of returns on crypto markets are

low at 5-minute level and there exist cross-exchange arbitrage opportunities. Further ex-

aminations in their study show that this opportunity is greater across regions than within

regions. Following the same approach, we first study the arbitrage opportunity across

markets. Table 5 reports the correlation coefficients for daily returns. While there ap-

pears a strong correlation among AUD/BTC, EUR/BTC, and USD/BTC markets, most

pair-wise correlations are fairly low, resulting an average cross-market correlation coeffi-

cient of 0.40. This implies, even at daily frequency, the return correlation is low across

markets clarified by base currency and the arbitrage opportunity reported in Makarov

and Schoar (2020) might exist across these markets.

[Table 5 about here.]

To further examine the arbitrage across the five markets, we construct the Makarov

and Schoar (2020) arbitrage index (AINX) using our daily data. In particular, AINX is
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computed as the ratio of the maximum price and the minimum price across markets on

each day.9 This ratio is never below unity and a greater value implies larger arbitrage

opportunity. Figure 3 plots the arbitrage index over time. As shown by the figure, the

year of 2016 serves as a clear watershed prior to which both the mean and variance of

the arbitrage index are significantly greater than that in the period after 2016. Figure

4 depicts the frequency of each country being the maximum (Panel A) and minimum

(Panel B) prices across markets.

[Figure 3 about here.]

[Figure 4 about here.]

While our research focus lies in how the cross-market arbitrage opportunities can be

determined by the degree of individual market efficiency, their relationship can be bidi-

rectional, giving rise to a potential endogeneity concern of simultaneity. Specifically, the

cross-market arbitrage potential we measured can be closely related with the proportion

of active arbitrageurs in each market and their inter-market migration behaviour. A

market that has more arbitrage activities digests new information faster, thus has higher

degree of market efficiency, than a market that is less actively arbitraged. Moreover,

a sudden change in the arbitrage potentials may cause inter-market migration of arbi-

trageurs which might then lead to changes of market efficiency. In contrary, changes in

the degree of market efficiency can in turn cause the migration behaviour of arbitrageurs

that may generate price discrepancy across markets.10

Thus, our empirical analysis is greatly motivated to employ the FCVAR model to

uncover the impact of individual market efficiency degree on cross-market arbitrage po-

tentials. As explained in Methodology Section, the aforementioned simultaneity issue can

be well ameliorated by the FCVAR model, while it can also alleviate the endogeneity issue

of potential unobserved determinants of the arbitrage opportunities. The FCVAR model

9Due to the lack of intraday foreign exchange data, we use daily last prices instead of intraday prices

as in Makarov and Schoar (2020).
10More generally, such mechanism does not necessarily require physical migration of arbitrageurs. For

example, if the arbitrageurs are active only when the market is relatively inefficient and become inactive

when the market is relatively efficient, then the migration of the behaviour of arbitrage will occur without

the arbitrageurs needing to move across markets.
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builds a long-memory cointegration framework, though which both the long-memory fea-

tured short-run error corrections and long-run relationships of our target variables can

be well estimated.

Prior to estimating the FCVAR model, its model specification should be first de-

termined, involving the lag-order selection and model rank tests (Jones et al., 2014).

Regarding the lag order selection with the result shown in Table 6, while p = 7 appears

to be selected due to the minimum AIC value, the residual is significantly auto-correlated

given the 0 P -value of the Ljung-Box Q test, i.e. PmvQ = 0. Although the FCVAR

estimation built by p = 5 and p = 6 possesses the second- and third-minimized AIC

values, respectively, both of their model residuals tend to be serially correlated.11 Thus,

following a three-pronged strategy, the optimal lag order can be eventually selected as

p = 10 due to its significant lag coefficient (P -value = 0.000), relatively minimized value

of the information criteria (AIC value), and no auto-correlation in the model residual

(P -value of the Ljung–Box Q test is 1.000). Moreover, the model rank test is based on a

series of Log-Likelihood ratio tests with null hypothesis of rank=k, k = 1, . . . , K against

the same alternative hypothesis regarding the full rank, rank=K. The model rank is

chosen as Rank = 1 at 5% significance level with the results shown in Table 7. Thus, the

FCVAR model specification can be determined as the one with 10 lags of the short-run

dynamics and 1 model rank.

Next, we conduct the FCVAR estimation to examine the relationship between the

arbitrage index (ANIX) and the degree of informational efficiency for the five bitcoin

markets (D) in the long-run. The results are presented in Equation (9). The estimated

value of the fractional cointegration order (d̂) is 0.868, demonstrating the existence of

long-memory in the variable system involving the arbitrage index and efficiency degree.

It indicates that while there exists a long-run relationship in the system, the equilibrium

errors induced by occurred shocks to the target variables exhibit slow reversion to zero, i.e.

error corrections towards the equilibrium are slow and thus deviations from equilibrium

11Although when p = 6 the model residual of the overall FCVAR model considering all six target

variables just reject the null hypothesis of autocorrelation at 5% significance level, there still exists

significant autocorrelation in the model residual of the six individual equations in the FCVAR model

system. Results of the autocorrelation test for the residual in each individual equation are available from

the authors upon request.
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are highly persistent over time featured by long-memory. In economic terms, this means

that the effect of a shock to the arbitrage potential and/or the market efficiency degree

does not transmit instantly but rather is highly persistent, which might be caused by the

delay in the arbitrage migration. The P value of the model Ljung-Box Q test is large

and approaching to 1, indicating no auto-correlation in the residual of Equation (9).12

More importantly, the long-run relationship is identified by the arbitrage index and

presented in Equation (10). In the long-run system equilibrium, the degree of market in-

efficiency of the US (USD) and Australian (AUD) markets exert a negative effect on the

arbitrage potential with a coefficient of -3.505 and -0.337, respectively, whereas the inef-

ficiency degree of the Canadian (CAD), European (EUR), and the UK (GBP ) markets

exhibit a positive relationship with a coefficient of 0.091, 2.831, and 0.842, respectively.13

[Table 6 about here.]

[Table 7 about here.]

Estimated FCVAR model (1Y rolling-FELW estimator):

∆d̂





AINX

USD

AUD

CAD

EUR

GBP


−



0.151

0.128

0.045

0.050

0.144

0.191




= Ld̂



−0.176

−0.009

−0.003

−0.001

0.015

0.027


νt +

10∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (9)

d̂ = 0.868
(0.016)

, Qε(12) = 154.881
(1.000)

, LogL = 29992.233

12The estimates of {Γ̂i}10i=1 are suppressed as we are only concerned with the long-run relationship.

Complete estimation results including coefficient estimates of {Γ̂i}10i=1 are available from the authors

upon request.
13Based on the calculation of the index D as previously discussed, USD, AUD, CAD, EUR, and

GBP represent the degree of market efficiency of the five markets in an inverse way. That is, they

respectively behave a negative relationship with the efficiency degree in their markets. Concurrently,

they can be also regarded as proxies of the market inefficiency degree, i.e. the greater the D, the greater

the market inefficiency, the less the market efficiency degree will be.
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The Equilibrium Relationships (long-run):

AINXt = −1.042−3.505×USDt−0.337×AUDt+0.091×CADt+2.831×EURt+0.842×GBPt+νt

(10)

Our obtained long-run cointegrating relationship built by β coefficients shown in Equa-

tion (10) suggests that the degree of Bitcoin market efficiency in the US and Australia

exerts positive impacts on the cross-market arbitrage potential, indicating that an in-

crease in efficiency degrees in these markets leads to an increase in the arbitrage opportu-

nities. The efficiency degree of Bitcoin market in Canada, Europe and UK demonstrates

negative effects on the arbitrage opportunities, i.e. the more inefficient in these markets,

the greater their D values (i.e. CAD, EUR, GBP ), the more cross-market arbitrage

opportunities can be expected.

Taking the arbitrage index as a measure of market segmentation, our empirical results

shed light on the effect of individual market efficiency on the overall market segmentation.

A decrease in efficiency of a market may lead to the emigration of domestic liquidity

trading due to a rising cost of transaction.14 If the US and Australian trading are a

mass of the overall Bitcoin trading, a decrease in their market efficiency might cause

liquidity trading to overflow to other smaller markets, thus increases the degree of market

segmentation. On the contrary, a decrease in the Canadian, European, and UK markets

might cause the movement of liquidity trading towards the large markets like US, therefore

reduces the degree of market segmentation.

Moreover, α coefficients shown in Equation (9) define the error correction speed of each

incorporated variable that pushes the variable system back to the equilibrium defined as

νt = 0. In response to deviations from equilibrium, i.e. a fractionally lagged increase in νt,

a correcting movement in AINX, USD, AUD, CAD, EUR, and GBP is -0.176, -0.009,

-0.003, -0.001, -0.015, and 0.027, respectively. The magnitudes imply that AINX moves

the variable system towards equilibrium quicker than the efficiency degree of individual

markets does. A possible explanation for our empirical findings is that, in the long-

run, the overall market price discovery is dominated by the US and Australian markets

(particularly the US), so that when the market efficiency improves in these two markets,

14Similar to the migration of arbitrageurs, this cross-market movement of liquidity traders need not

be physical. A reduction of liquidity trading in a market with a simultaneous intensification in another

market would be effectively counted as a migration of liquidity trading across the two markets.
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the global price discrepancy narrows. On the contrary, for Bitcoin priced in CAD, EUR

and GBP, their inefficiency levels exhibit a positive bond with arbitrage opportunities.

This suggests that when market efficiency condition in any of these markets worsens,

the rest markets will not follow the pattern and as a result, this kind of anti-herding

behaviour broaden cross-market wide price deviation.

6. Robustness Check

In this section, we revisit our main findings and conduct a series of robustness checks

in two dimensions, i.e. the estimation of market efficiency degree and its relationship

with the arbitrage index, respectively.

6.1. Degree of market efficiency estimation: The change of window size

Our robustness check starts by re-estimating the dynamic ’d’ and degree of market

efficiency using the FELW estimator on a 6-month rolling basis. Figure 5 confirms the

pattern found in our main analysis where 1-year rolling window is employed. In detail, the

overall level of ‘d’ bounces around unity where the largest discrepancy across markets is

observed during the first half of the whole sample period. Moving into the second half of

the sample period, gaps among five markets’ integration orders shrink to an agreement as

observed in the main analysis. Since our measure of market efficiency degree is computed

as the absolute difference between the ‘d’ value and 1, i.e. the index D, the corresponding

pattern of market efficiency degree (D) shown in Panel (b) of Figure 5 resembles the

pattern in the order of integration. To conclude, our results are not sensitive when

changing the window size.

[Figure 5 about here.]

6.2. Degree of market efficiency estimation: The change of d estimator

To further examine the robustness of our main results with regard to estimation of in-

tegration order (d) and corresponding calculation of market efficiency degrees, we employ

two alternative semi-parametric estimators, namely the Exact Local Whittle estimator

(d̂ELW ) and the Feasible Exact Local Whittle estimator with demeaned and detrended

data, i.e. d̂FELWD
. We first estimate the ‘d’ values for the five Bitcoin price series over the

full sample period. As shown in Table 8, the d̂ELW and d̂FELWD
estimates are generally
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consistent with their d̂FELW counterparts in the main analysis, ranging from 0.801 for

AUD (d̂ELW , bandwidth 0.4) and 1.103 for CAD (d̂ELW , bandwidth 0.6). This further

supports our argument that the markets are generally at a high level of information effi-

ciency over the full sample period. However, it is worth noting that none of the markets

are fully efficient with the price series as an I(1) process.

Next, through the ELW and FELWD estimators, we recursively estimate the d values

and accordingly calculate the market efficiency degree over time using both 1-year and

6-month rolling windows, respectively. Corresponding results are plotted in Figures 6 to

9, where similar patterns of the ‘d’ values and degree of efficiency to that in our main

analysis can be observed, further confirming that our results are not sensitive to the

integration order estimator employed.

[Table 8 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

6.3. The Relationship between Arbitrage Index and Market Efficiency Degree: Changing

the Estimator

As another robustness check, we perform again the FCVAR model with the market

efficiency degree estimated through the FELWD estimator using a 1-year rolling window.

Specifically, regarding the lag order selection, we follow the same three pronged strategy

used in the main estimation and select the optimal highest lag order as p = 10 given

the result of lag order selection presented in Table 9.15 Moreover, the results shown in

Table 10 indicate 1 rank in the model. Therefore, the FCVAR model specification can be

determined with 10 lag orders and 1 model rank, and corresponding estimation results

are saved in Equation (11).

15Although the value of the information criteria is minimized when p = 7, we do not select it as its

associated model residuals are significantly auto-correlated. The optimal lag order is eventually selected

as p = 10 based on the same strategy applied in the main estimation.
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Intuitively, the estimated value of the system order is 0.807, further indicating the

existence of long-memory in the variable system involving the efficiency degree of the five

Bitcoin markets and the arbitrage index. The residual of Equation (11) is checked to have

no auto-correlation indicated by the rejection of the null hypothesis of the Ljung-Box Q

test. The obtained one cointegrationship relationship is identified by the arbitrage index

and shown in Equation (12). In the long-run system equilibrium, we find a negative effect

of market inefficiency degree of the US (USD) and Australian (AUD) markets on the

arbitrage potential with a coefficient of -2.520 and -0.320, respectively, whereas the inef-

ficiency degree of the Canadian (CAD), European (EUR), and the UK (GBP ) markets

exhibit a positive relationship with a coefficient of 0.059, 1.852, and 0.851, respectively.

Overall, the results are highly consistent with that of the main estimation, reassuring the

robustness of our main conclusions.

[Table 9 about here.]

Estimated FCVAR model (1Y rolling-FELWD estimator):

∆d̂





AINX

USD

AUD

CAD

EUR

GBP


−



1.141

0.128

0.040

0.043

0.144

0.192




= Ld̂



−0.245

−0.018

−0.011

−0.011

0.013

0.031


νt +

10∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (11)

d̂ = 0.807
(0.025)

, Qε(12) = 144.959
(1.000)

, LogL = 29793.286

The Equilibrium Relationships (long-run):

AINXt = 1.044−2.520×USDt−0.320×AUDt+0.059×CADt+1.852×EURt+0.851×GBPt+νt

(12)

6.4. Inclusion of JPY/BTC transactions

How sensitive are our main findings to the inclusion of the Japanese Yen/Bitcoin

(i.e. JPY/BTC) transactions? It is known that Japan is one of the countries with the

most liquid exchanges where Bitcoin is heavily traded against the local currency (e.g.
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the Japanese Yen) (Makarov and Schoar, 2020).16 In this section, we further investigate

the robustness of our main findings after considering the role of JPY/BTC transactions.

Given that the Bitcoin trading was primarily concentrated on the exchange of MtGox

before it folded due to bankruptcy in early 2014, thus, there was a data break at that

time. Accordingly, we trim the dataset that starts from 1st June 2014 when considering

the Bitcoin market in Japan. Following extant literature (See, e.g., Kliber et al., 2019)

and the strategy employed in our main analysis, the Bitcoin price series in Japan is

constructed by collecting data from the most actively traded exchanges involving Anxbtc

(2014/06/01-2015/06/24) and Bitflyer (2015/06/25-2020/01/07).

[Figure 10 about here.]

[Table 10 about here.]

Estimated FCVAR model (1Y rolling-FELW estimator including Japan):

∆d̂





AINX

USD

AUD

CAD

EUR

GBP

JPY


−



1.150

0.143

0.080

0.191

0.104

0.252

0.103




= Ld̂



−0.363

0.022

0.031

0.004

0.031

0.018

−0.015


νt +

10∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (13)

d̂ = 0.898
(0.012)

, Qε(12) = 191.600
(1.000)

, LogL = 27925.846

The Equilibrium Relationships (long-run):

AINXt = 0.883− 0.063× USDt − 0.030× AUDt + 0.128× CADt + 0.391× EURt

+0.558×GBPt − 0.709× JPYt + νt

(14)

Based on the FELW estimator with a 1-year rolling window setting, the fractional in-

tegration order (d) and the corresponding efficiency degree (D) of individually-segmented

16We thank the referee for pointing this out and suggesting the inclusion of Japan as a robustness

check.
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Bitcoin markets including Japan are presented in Panels (a) and (b) in Figure 10. It is

clear that the moving tendency of both d and D of the five markets (i.e. AUD, CAD,

EUR, GBP , and USD) mimics that of our main findings (shown in Figure2), and the

corresponding pattern in Japan (i.e. JPY ) broadly exhibits a co-movement with that in

other major Bitcoin markets except for Canada. Moreover, we investigate the relation-

ship between the arbitrage index (ANIX) and the efficiency degree of the six individual

Bitcoin markets (D) through the FCVAR estimation. The FCVAR model specification

is determined with 10 short-run terms and 1 model rank according to results of the lag-

order selection and the rank test shown in Tables 11 and 12, respectively. The FCVAR

estimation with 1 identified long-run relationship is reported in Equations (13) and (14).

Overall, the influences of the efficiency degree (D) of the five individual Bitcoin markets

are highly consistent with the counterparts in our main estimation (shown in Equation

(10)). We also find that the impact direction of D of Japanese (JPY ) Bitcoin market is

the same as that of the US (USD) and Canadian (CAD) markets, showing to be negative

on the arbitrage index (ANIX).

7. Conclusion

With an increasing popularity of Bitcoin since Nakamoto (2008), the informational ef-

ficiency of its market has aroused a great interest amongst both regulators and academics.

Focusing on five segmented Bitcoin markets, in this paper, we capture the degree of in-

formational efficiency through the fractional integration order (d) of the price series and

study its dynamic evolution over time. Furthermore, by employing a fractionally coin-

tegrated vector autoregressive (FCVAR) model, we investigate the impact of individual

market efficiency upon overall cross-market arbitrage potential.

Our paper contributes to the existing literature in that we estimate the integration

order (d) of the Bitcoin price series and allow for its value to be fractional, so that we

refuse to take the EMH as a yes or no question and evaluate the dynamic of Bitcoin market

efficiency. Based on this, more importantly, we estimate the extent to which individual

market efficiency affects overall cross-market arbitrage potential, linking informational

efficiency to market segmentation of Bitcoin.

Specifically, the d value of Bitcoin price series is estimated by a robust semi-parametric

estimator, the Feasible Exact Local Whittle estimator (Shimotsu, 2010), and the efficiency

25



degree of each of our five target Bitcoin markets can be then computed based on a self-

proposed index D which is the absolute difference between 1 and d. Over the full sample

period, we observe that the integration orders of the Bitcoin markets are fairly close to

one (D being close to zero), suggesting high degree of efficiency in general. However,

recursively estimating the d value shows that the degree of efficiency of each Bitcoin

market varies over time. While it generally remains highly close to efficient throughout

the sample period, the market efficiency deteriorates significantly over the period of 2016

to 2017, which coincides with the Bitcoin boom. More importantly, we observe that the

gap in the degree of efficiency between markets narrows gradually over time, suggesting

that all segmented markets are evolving to a consensus in terms of informational efficiency.

Then we move a step further to investigate if the cross-market arbitrage potentials is

determined by the efficiency degree of individual markets in the context of Bitcoin. If so,

how to identify the determination in both the short- and long-terms while allowing for

the potential long-memory feature in the system? We answer these questions through a

recently-proposed Fractionally Cointegrated Vector Autoregressive (FCVAR) model (Jo-

hansen and Nielsen, 2012). Our results show that the degree of Bitcoin market efficiency

in the US and Australia impose positive impacts on the cross-market arbitrage potential,

i.e. an increase in efficiency degrees in these markets leads to an increase in the arbitrage

opportunities, whereas the efficiency degree of Bitcoin market in Canada, Europe and

UK demonstrates negative effects on the arbitrage opportunities, i.e. the less efficient in

these markets, the more cross-market arbitrage opportunities can be expected.

Our results are consistent to a series of robustness checks and possess insightful im-

plications that should be of interest to policymakers and market investors. From the

perspective of investors, clear comprehension regarding different impacts of the efficiency

degree of individually-segmented Bitcoin markets on the cross-market arbitrage potential

provides investors with useful information for designing rational investment strategies

and maximizing their profits. Moreover, the Bitcoin market inefficiency manifests the

existence of irrational and speculative investment behaviours, indicating the importance

of pricing the actual value of Bitcoin prudently rather than entering such a risky market

arbitrarily. From the policymakers’ standpoint, as capital controls and the devoid of

regulatory oversight on exchanges of cryptocurrencies would induce market segmentation

(Makarov and Schoar, 2020), potentially leading to cross-border speculative behaviours,
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policymakers should control such speculative arbitrage and ensure financial stability by

increasing openness of the economy and strengthening the supervision on crypto ex-

changes.
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Figures

Figure 1: Movements of Bitcoin Price Series

Note: This figure depicts the moving tendency of the Bitcoin closing price series in the five markets,
viz. US (USD), Europe (EUR), UK (GBP), Australia (AUD), and Canada (CAD).
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Figure 2: 1-Year Rolling-window FELW Estimates of d and Market efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series
and efficiency degree of (D) the five Bitcoin markets estimated by using the 1-year rolling-window
FELW estimator. The index D is obtained by computing the absolute difference between d and 1,
and it represents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD
represent Bitcoin price series in the segmented markets in Australia, Canada, Europe, the UK and the
US, respectively.

Figure 3: Arbitrage Index

Note: This figure depicts the Arbitrage Index that is constructed following Makarov and Schoar (2020).
In particular, the index is computed as the ratio of the maximum price and the minimum price across
markets on each day.
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Figure 4: Frequency of Entering the Arbitrage Index Calculation

Panel A: Frequency of being Maximum Panel B: Frequency of being Minimum

Note: This figure depicts the frequency of each market enters the calculation of the Arbitrage Index,
which is constructed following Makarov and Schoar (2020). Panel A shows the frequency of each country
having the maximum price across markets. Panel B shows the frequency of each country having the
minimum price across markets.
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Figure 5: 6-Month Rolling-window FELW Estimates of d and Efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series
and efficiency degree of (D) the five Bitcoin markets estimated by using the 6-month rolling-window
FELW estimator. The index (D) is obtained by computing the absolute difference between d and 1,
and it represents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD
represent Bitcoin price series in the segmented markets in Australia, Canada, Europe, the UK and the
US, respectively.
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Figure 6: 1-Year Rolling-window ELW Estimates of d and Market Efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series and
efficiency degree of (D) the five Bitcoin markets estimated by using the 1-year rolling-window ELW esti-
mator. The index D is obtained by computing the absolute difference between d and 1, and it represents
the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD represent Bitcoin price
series in the segmented markets in Australia, Canada, Europe, the UK and the US, respectively.
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Figure 7: 6-month Rolling-window ELW Estimates of d and Market Efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series and
efficiency degree of (D) the five Bitcoin markets estimated by using the 6-month rolling-window ELW
estimator. The index D is obtained by computing the absolute difference between d and 1, and it repre-
sents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD represent Bitcoin
price series in the segmented markets in Australia, Canada, Europe, the UK and the US, respectively.

39



Figure 8: 1-Year Rolling-window FELWD Estimates of d and Efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series
and efficiency degree of (D) the five Bitcoin markets estimated by using the 1-year rolling-window
FELWD estimator. The index D is obtained by computing the absolute difference between d and 1,
and it represents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD
represent Bitcoin price series in the segmented markets in Australia, Canada, Europe, the UK and the
US, respectively.
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Figure 9: 6-month Rolling-window FELWD Estimates of d and Efficiency Degree (D)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series
and efficiency degree (D) of the five Bitcoin markets estimated by using the 6-month rolling-window
FELWD estimator. The index D is obtained by computing the absolute difference between d and 1,
and it represents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, and USD
represent Bitcoin price series in the segmented markets in Australia, Canada, Europe, the UK and the
US, respectively.
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Figure 10: 1-Year Rolling-window FELW Estimates of d and Market Efficiency Degree (D)
(Including Japan)

(a) d estimates

(b) Degree of Informational Efficiency (D)

Note: The sub-figures (a) and (b) respectively report dynamics of d of the five Bitcoin price series
and efficiency degree of (D) the five Bitcoin markets estimated by using the 1-year rolling-window ELW
estimator. The index D is obtained by computing the absolute difference between d and 1, and it
represents the market efficiency degree in an inverse way. AUD, CAD, EUR, GBP, USD, and JPY
represent Bitcoin price series in the segmented markets in Australia, Canada, Europe, the UK, the US,
and Japan, respectively.
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Tables

Table 1: Memory properties of a given price series (yt) with different d values

d Value Persistence of shocks Market Efficiency Information transmission The close degree to
an efficient market

d > 1 Expansionary memory, Inefficiency Excessive transmission -
explosive over time

d = 1 Permanent memory Efficiency Complete transmission Efficient market

0.5 <= d < 1 Long memory Inefficiency Partial transmission High degree

0 < d < 0.5 Long memory Inefficiency Partial transmission Lower degree

d = 0 Short memory Inefficiency None Zero degree

d < 0 Long memory Inefficiency Reverse transmission -

d Value Stationarity Mean Variance Return series
d > 1 Non-stationary No mean reversion Infinite Positively autocorrelated

d = 1 Non-stationary No mean reversion Infinite No autocorrelation
, unit root process , white noise

0.5 <= d < 1 Non-stationary Reversion Infinite Negatively autocorrelated

0 < d < 0.5 Stationary Reversion Finite Negatively autocorrelated

d = 0 Stationary Reversion Finite Negatively autocorrelated

d < 0 Stationary Reversion Finite Negatively autocorrelated

Note: This table reports statistical properties of a given price series (Yt) with various integration orders
(d) and its corresponding implications on the market efficiency.

Table 2: Data Source

Currency Exchange Source Sample Period

AUD Mtgox Bitcoincharts 2013/01/01 - 2014/01/03
Btcmarkts Bitcoincharts 2014/01/14 - 2014/05/19
Anxbtc Bitcoincharts 2014/05/20 - 2015/01/10
Btcmarkts Bitcoincharts 2015/01/11 - 2020/01/07

CAD Mtgox Bitcoincharts 2013/01/01 - 2013/03/12
Localbitcoins Bitcoincharts 2013/03/13 - 2014/05/18
Anxbtc Bitcoincharts 2014/05/19 - 2015/01/10
Localbitcoins Bitcoincharts 2015/01/11 - 2016/03/08
Kraken Bitcoincharts 2016/03/09 - 2020/01/07

EUR Mtgox Bitcoincharts 2013/01/01 - 2013/09/11
Kraken Bitcoincharts 2013/09/12 - 2020/01/07

GBP Mtgox Bitcoincharts 2013/01/01 - 2013/03/10
Localbitcoins Bitcoincharts 2013/03/11 - 2016/01/10
Coinfloor Bitcoincharts 2016/01/11 - 2020/01/07

USD Bitfinex
Bitcoincharts

& Bitfinex
2013/01/01 - 2020/01/07

Note: This table reports the base currencies, exchanges, data source, and sample period of the data
employed in this study.
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Table 3: Descriptive Statistics of Bitcoin Closing Price Series

N Mean Standard Deviation Min Max P25 P50 P75
USD 2563 2971.280 3803.005 13.484 20544.250 331.939 676.578 5709.526
EUR 2563 2917.005 3672.968 13.292 19694.404 337.781 677.913 5690.767
GBP 2563 2928.568 3712.275 13.293 18999.604 328.191 663.351 5663.575
AUD 2563 2938.645 3710.532 13.465 18719.725 346.055 677.856 5681.999
CAD 2563 2937.662 3719.482 13.300 19187.000 327.675 663.000 5746.000

Note: This table reports the descriptive statistics of the Bitcoin price series for each of the five markets.
We report number of observations, mean, standard deviation, minimum value, maximum value, and the
25th, 50th, and 75th percentiles.

Table 4: Estimation of Fractional Integration Order (d) of Bitcoin Price Series

m = T 0.4 m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8

AUD 0.841 0.954 1.012 1.069 1.008

(0.104) (0.070) (0.047) (0.032) (0.022)

CAD 0.885 0.993 1.099 1.056 0.955

(0.104) (0.070) (0.047) (0.032) (0.022)

EUR 0.891 0.965 1.053 1.050 1.022

(0.104) (0.070) (0.047) (0.032) (0.022)

GBP 0.898 0.965 1.052 1.056 1.010

(0.104) (0.070) (0.047) (0.032) (0.022)

USD 0.892 0.964 1.014 1.043 1.004

(0.104) (0.070) (0.047) (0.032) (0.022)

Note: This table reports univariate d estimates for the five Bitcoin price series using the FELW es-
timator. AUD, CAD, EUR, GBP, and USD represent the price series in segmented Bitcoin markets
in Australia, Canada, Europe, the UK and the US, respectively. Stand errors of the estimates are in
parentheses, and are calculated as (4m)−1/2, m = TB , where T is the number of observations, T=2470,
and B represents estimation bandwidths ranging from 0.4 to 0.8.

Table 5: Correlation of Daily Returns

AUD CAD EUR GBP USD

AUD 1 0.38 0.89 0.05 0.86
CAD 1 0.40 0.05 0.37
EUR 1 0.03 0.91
GBP 1 0.02
USD 1

Note: This table reports pair-wise correlation coefficients of Bitcoin daily returns amongst the five
markets clarified by the base currencies against which Bitcoin is traded.
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Table 6: Lag-order Selection - FCVAR (1Y rolling-FELW estimator)

p K d̂ LogL LR P -value AIC PmvQ

12 6 0.921 30088.92 62.91 0.004 -59227.84 1.000

11 6 0.838 30057.46 65.12 0.002 -59236.93 1.000

10 6 0.909 30024.90 83.44 0.000 -59243.80 1.000

9 6 0.842 29983.18 76.59 0.000 -59232.36 1.000

8 6 0.773 29944.88 -180.17 1.000 -59227.77 1.000

7 6 0.045 30034.97 258.11 0.000 -59479.94* 0.000

6 6 0.392 29905.91 102.51 0.000 -59293.82 0.150

5 6 0.539 29854.66 96.86 0.000 -59263.31 0.030

4 6 0.677 29806.23 116.03 0.000 -59238.46 0.000

3 6 0.840 29748.21 117.18 0.000 -59194.42 0.000

2 6 0.772 29689.62 152.89 0.000 -59149.24 0.000

1 6 0.691 29613.18 1454.72 0.000 -59068.35 0.000

0 6 0.599 28885.82 0.00 0.000 -57685.63 0.000

Note: This table presents results of the lag-order selection for the FCVAR model system involving
the arbitrage index (AINX) and the efficiency degree (D) of the five individual Bitcoin markets. D is
constructed based on the 1-year rolling FELW estimator. p indicates the number of lags; K indicates the
total number of variables in the system; d̂ is the estimated d value of the system; LogL and LR are values
of log-likelihood and LR test statistic in each lag-order selection, respectively; P -value is the p-value of
the coefficient of the lag order p; AIC reports the value of Akaike information criterion (AIC); PmvQ is
the p-value of the white noise test for the model residual. Number of observations (T) in sample is 2200;
order for the white noise test is 12.

Table 7: Rank Tests - FCVAR (1Y rolling-FELW estimator)

Rank d̂ LogL LRstatistic P -value

0 0.860 29965.401 119.001 0.000

1 0.868 29992.233 65.337 0.089

2 0.891 30006.891 36.021 0.452

3 0.901 30015.800 18.204 0.695

4 0.904 30022.125 5.553 0.919

5 0.908 30024.436 0.931 0.918

6 0.909 30024.902 - -

Note: This table presents rank test results for the FCVAR model system involving the arbitrage index
(AINX) and the efficiency degree (D) of the five individual Bitcoin markets. D is constructed based on

the 1-year rolling FELW estimator. Rank is the number of ranks being tested; d̂ is the estimated d value
of the system; LogL and LR are values of log-likelihood and LR test statistic in each test, respectively;
P -value is the p-value of each test. Number of observations (T) in sample is 2200; order of lags is 10.
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Table 8: Estimation of Fractional Integration Order (d) of Bitcoin Price Series (Robustness
check)

Bandwidth m = T 0.4 m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8

d̂ELW d̂FELWD
d̂ELW d̂FELWD

d̂ELW d̂FELWD
d̂ELW d̂FELWD

d̂ELW d̂FELWD

AUD 0.801 0.820 0.948 0.952 1.013 1.012 1.063 1.069 0.979 1.008

(0.104) (0.104) (0.070) (0.070) (0.047) (0.047) (0.032) (0.032) (0.022) (0.022)

CAD 0.849 0.870 0.989 0.992 1.103 1.100 1.050 1.056 0.932 0.955

(0.104) (0.104) (0.070) (0.070) (0.047) (0.047) (0.032) (0.032) (0.022) (0.022)

EUR 0.855 0.877 0.959 0.963 1.055 1.053 1.045 1.050 0.994 1.022

(0.104) (0.104) (0.070) (0.070) (0.047) (0.047) (0.032) (0.032) (0.022) (0.022)

GBP 0.858 0.884 0.954 0.962 1.051 1.052 1.049 1.056 0.980 1.010

(0.104) (0.104) (0.070) (0.070) (0.047) (0.047) (0.032) (0.032) (0.022) (0.022)

USD 0.855 0.878 0.957 0.962 1.014 1.013 1.037 1.043 0.976 1.004

(0.104) (0.104) (0.070) (0.070) (0.047) (0.047) (0.032) (0.032) (0.022) (0.022)

Note: This table reports univariate d estimates for the five Bitcoin price series using the ELW estimator
and the FELW estimator with demeaned and detrended data (i.e. FELWD). AUD, CAD, EUR, GBP,
and USD represent the price series in segmented Bitcoin markets in Australia, Canada, Europe, the
UK and the US, respectively. Stand errors of the estimates are in parentheses, and are calculated as
(4m)−1/2, m = TB where T is the number of observations, T = 2470, and B represents the value of
estimation bandwidth ranging from 0.4 to 0.8.

Table 9: Lag-order Selection - FCVAR (1Y rolling-FELWD estimator)

p K d̂ LogL LR P -value AIC PmvQ

12 6 0.934 29875.04 53.91 0.028 -58800.09 1.000

11 6 0.867 29848.09 60.78 0.006 -58818.18 1.000

10 6 0.846 29817.70 72.69 0.000 -58829.40 1.000

9 6 0.853 29781.35 58.72 0.010 -58828.71 1.000

8 6 0.746 29751.99 -192.78 1.000 -58841.99 1.000

7 6 0.052 29848.38 279.27 0.000 -59106.77* 0.000

6 6 0.285 29708.75 111.26 0.000 -58899.50 0.010

5 6 0.557 29653.12 106.70 0.000 -58860.24 0.170

4 6 0.570 29599.77 109.97 0.000 -58825.54 0.000

3 6 0.819 29544.79 118.33 0.000 -58787.57 0.000

2 6 0.759 29485.62 140.71 0.000 -58741.24 0.000

1 6 0.687 29415.27 1653.35 0.000 -58672.54 0.000

0 6 0.603 28588.59 0.00 0.000 -57091.18 0.000

Note: This table presents results of the lag-order selection for the FCVAR model system involving
the arbitrage index (AINX) and the efficiency degree (D) of the five individual Bitcoin markets. D
is constructed based on the 1-year rolling FELW estimator with demeaned and detrended data (i.e.

FELWD). p indicates the number of lags; K indicates the total number of variables in the system; d̂ is
the estimated d value of the system; LogL and LR are values of log-likelihood and LR test statistic in
each lag-order selection, respectively; P -value is the p-value of the coefficient of the lag order p; AIC
reports the value of Akaike information criterion (AIC); PmvQ is the p-value of the white noise test for
the model residual. Number of observations (T) in sample is 2200; order for the white noise test is 12.
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Table 10: Rank Tests - FCVAR (1Y rolling-FELWD estimator)

Rank d̂ LogL LRstatistic P -value

0 0.748 29711.60 80.787 0.044

1 0.739 29730.34 43.302 0.449

2 0.744 29739.54 24.910 0.671

3 0.728 29745.81 12.371 0.765

4 0.740 29750.68 2.631 0.965

5 0.748 29751.91 0.162 0.968

6 0.746 29751.99 - -

Note: This table presents rank test results for the FCVAR model system involving the arbitrage index
(AINX) and the efficiency degree (D) of the five individual Bitcoin markets. D is constructed based
on the 1-year rolling FELW estimator with demeaned and detrended data (i.e. FELWD). Rank is the

number of ranks being tested; d̂ is the estimated d value of the system; LogL and LR are values of log-
likelihood and LR test statistic in each test, respectively; P -value is the p-value of each test. Number
of observations (T) in sample is 2200; order of lags is 10.

Table 11: Lag-order Selection - FCVAR (1Y rolling-FELW estimator including Japan)

p K d̂ LogL LR P -value AIC PmvQ

12 7 0.990 28053.36 90.61 0.000 -54816.71 1.000

11 7 0.998 28008.05 82.58 0.002 -54824.10 1.000

10 7 0.919 27966.76 143.84 0.000 -54839.52 1.000

9 7 0.832 27894.84 113.52 0.000 -54793.68 1.000

8 7 0.911 27838.08 -190.10 1.000 -54778.17 1.000

7 7 0.024 27933.13 397.42 0.000 -55066.27* 0.000

6 7 0.784 27734.42 83.29 0.002 -54766.85 0.300

5 7 0.661 27692.78 125.41 0.000 -54781.56 0.000

4 7 0.840 27630.07 117.96 0.000 -54754.15 0.000

3 7 0.799 27571.09 143.37 0.000 -54734.19 0.000

2 7 0.740 27499.41 213.40 0.000 -54688.81 0.000

1 7 0.663 27392.71 1628.89 0.000 -54573.41 0.000

0 7 0.575 26578.26 0.00 0.000 -53042.52 0.000

Note: This table presents results of the lag-order selection for the FCVAR model system involving the
arbitrage index (AINX) and the efficiency degree (D) of the six individual Bitcoin markets including
Japan. D is constructed based on the 1-year rolling FELW estimator (i.e. FELW). p indicates the

number of lags; K indicates the total number of variables in the system; d̂ is the estimated d value of
the system; LogL and LR are values of log-likelihood and LR test statistic in each lag-order selection,
respectively; P -value is the p-value of the coefficient of the lag order p; AIC reports the value of Akaike
information criterion (AIC); PmvQ is the p-value of the white noise test for the model residual. Number
of observations (T) in sample is 2047; order for the white noise test is 12.

Table 12: Rank Tests - FCVAR (1Y rolling-FELW estimator including Japan)

Rank d̂ LogL LRstatistic P -value

0 0.885 27899.312 134.899 0.006

1 0.898 27925.846 81.831 0.272

2 0.902 27939.700 54.124 0.475

3 0.907 27951.619 30.287 0.770

4 0.914 27958.525 16.474 0.817

5 0.920 27964.798 3.928 0.985

6 0.918 27966.411 0.703 0.955

7 0.919 27966.762 - -

Note: This table presents rank test results for the FCVAR model system involving the arbitrage index
(AINX) and the efficiency degree (D) of the six individual Bitcoin markets including Japan. D is
constructed based on the 1-year rolling FELW estimator (i.e. FELW). Rank is the number of ranks

being tested; d̂ is the estimated d value of the system; LogL and LR are values of log-likelihood and LR
test statistic in each test, respectively; P -value is the p-value of each test. Number of observations (T)
in sample is 2047; order of lags is 10.
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