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Abstract. Atlantic hurricane activity varies substantially
from year to year and so does the associated damage. Longer-
term forecasting of hurricane risks is a key element to reduce
damage and societal vulnerabilities by enabling targeted dis-
aster preparedness and risk reduction measures. While the
immediate synoptic drivers of tropical cyclone formation and
intensification are increasingly well understood, precursors
of hurricane activity on longer time horizons are still not well
established. Here we use a causal-network-based algorithm
to identify physically interpretable late-spring precursors of
seasonal Atlantic hurricane activity. Based on these precur-
sors we construct statistical seasonal forecast models with
competitive skill compared to operational forecasts. In par-
ticular, we present a skilful prediction model to forecast July
to October tropical cyclone activity at the beginning of April.
Our approach highlights the potential of applying causal ef-
fect network analysis to identify sources of predictability on
seasonal timescales.

1 Introduction

Tropical cyclones (TCs) are among the most damaging
weather events in many tropical and subtropical regions (Mu-
nich Re, 2020). The compound nature of tropical cyclone
hazards combining heavy winds, extreme precipitation and
coastal flooding contributes to their severity (Ye and Fang,
2018), directly impacting societies. Furthermore, a range of
secondary impacts in the aftermath of cyclones such as dis-

placement, loss of livelihoods or income, and health impacts
are being reported (Camargo and Hsiang, 2014). Applying
risk reduction measures to the direct damage of TCs is chal-
lenging and is expected to become even more so with global
warming and sea level rise (Woodruff et al., 2013). Prepared-
ness for the secondary impacts could, however, be improved
if reliable forecasts of the potential risks of the upcoming
hurricane season are available (Murphy et al., 2001).

Several academic institutes provide seasonal hurricane
forecasts for the Atlantic basin (Klotzbach et al., 2019). Col-
orado State University was one of the first, already issu-
ing seasonal forecasts in 1984 (Gray, 1984a, b). Since then,
a variety of forecasting methods have been applied, rang-
ing from purely statistical forecasts to forecasts based on
numerical global climate model simulations and hybrid ap-
proaches (Klotzbach et al., 2019, 2017). The Barcelona Su-
per Computing Center collects and publishes seasonal fore-
casts from universities, private entities and government agen-
cies each year (https://seasonalhurricanepredictions.bsc.es/
predictions, last access: 1 July 2020).

Dynamical forecasts are based on global circulation mod-
els that simulate the climate system including tropical cy-
clone occurrences (Manganello et al., 2017; Vecchi et al.,
2014; Vitart and Stockdale, 2001). Their skill depends on
their ability to represent TC genesis and development and
their capacity to forecast the large-scale circulation over the
Atlantic main development region (MDR) as well as their
ability to adequately represent the interaction between the
two. With increasing spatial resolution, their representation
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of TCs improves (Roberts et al., 2020). Their ability to pre-
dict the large-scale circulation and low-frequency variability
can, however, remain a limiting factor for seasonal forecasts
(Manganello et al., 2017).

Statistical forecast models, in contrast, are usually based
on favourable climatic conditions in the region of TC forma-
tion and established teleconnections affecting cyclone activ-
ity on the basin scale (Klotzbach et al., 2017). Besides warm
sea surface temperatures (SSTs), both the formation and in-
tensification of TCs critically depend on low vertical wind
shear (VWS) over the tropical Atlantic (Emanuel et al., 2004;
Frank and Ritchie, 2001). Furthermore, dry air intrusion and
anticyclonic wave breaking can hamper TC formation (Han-
kes and Marinaro, 2016). Finally, a lack of easterly African
waves can lead to lower TC activity (Dieng et al., 2017; Patri-
cola et al., 2018).

The included predictors of a statistical forecast model are
often chosen based on correlation analysis and expert judge-
ment. One major challenge in statistical forecasting is yet to
select a set of skilful predictors without running into over-
fitting issues, implying dropping skill when applied to inde-
pendent test data (Hawkins, 2004).

Recently, a novel statistical forecast approach based on
causal effect networks (CENs) was proposed (Kretschmer et
al., 2017). In such a network, causal links between the pre-
dictand and a set of potential predictors are identified by it-
eratively testing for conditionally independent relationships,
thereby removing spurious correlations (Runge et al., 2019).
First applications have shown that statistical forecast models
based on causal precursors can result in skilful forecasts as
they identify relevant predictors without overfitting (Di Ca-
pua et al., 2019; Kretschmer et al., 2017; Lehmann et al.,
2020; Saggioro and Shepherd, 2019).

Here we apply this approach to detect remote spring pre-
dictors of hurricane activity in the Atlantic basin from July to
October. We first demonstrate the applicability of the method
by constructing a forecast for the July–October accumulated
cyclone energy (ACE) based on May precursors using re-
analysis data. The identified precursors are well-documented
drivers of hurricane activity in the Atlantic, indicating the
usefulness of our approach. To increase forecast lead time,
we then apply the same method to construct a forecast based
on March reanalysis and obtain competitive forecast skill
based on these predictors.

2 Methods

2.1 Data

We use tropical cyclone locations and maximum sustained
wind speeds from the official WMO agency from the IB-
TrACS database (Knapp et al., 2010, 2018). Our main anal-
ysis is based on the fifth generation of ECMWF atmo-
spheric reanalyses (ERA5) (Hersbach et al., 2020). We use

the monthly reanalysis data on a regular 1◦ grid for the period
1979–2018. For sensitivity testing, we also use the Japanese
55-year Reanalysis (JRA-55) on a monthly timescale and
provided on a regular 1.25◦ grid (JMA, 2013). As data in the
pre-satellite era are less reliable (Tennant, 2004), we focus
on the period from 1979 to 2018, but we also perform sensi-
tivity tests using the full range of the JRA-55 dataset ranging
from 1958 to 2018.

2.2 Accumulated cyclone energy (ACE)

Following Waple et al. (2002), we calculate accumulated cy-
clone energy (ACE) as an indicator for seasonal tropical cy-
clone activity:

ACE= 10−4
∑

all days
v2

max. (1)

ACE is accumulated for TCs within the Atlantic basin with
maximal sustained wind speeds above 34 kn (17.5 m s−1)
over all days from July to October.

2.3 Causal effect networks (CENs)

Causal effect networks have been introduced to statistically
analyse and visualise causal relationships between different
climatic processes, referred to as “actors”. Specifically, spuri-
ous correlations due to indirect links, common drivers or au-
tocorrelation effects are identified as such and removed from
the network structure (Kretschmer et al., 2016; Runge et al.,
2019). The remaining links can then be interpreted in a more
causal way within the set of considered variables.

Here we use a two-step approach to construct causal ef-
fect networks consisting of a condition selection algorithm
(PC algorithm) and a momentary conditional independence
(MCI) test. This so-called PCMCI algorithm was introduced
by Runge te al. (2019) and a Python implementation is
openly available on http://github.com/jakobrunge/tigramite
(Runge, 2014). The properties of the PCMCI algorithm in-
cluding mathematical proofs and numerical tests are docu-
mented and discussed in Runge et al. (2019).

Note that this algorithm relies on several assumptions,
which in real-world scenarios are likely never fully ful-
filled (Runge, 2018). Specifically, it requires a comprehen-
sive sampling of potentially relevant climate signals as well
as sufficient temporal coverage to ensure full representa-
tion of multi-annual to multi-decadal modes. As we are par-
ticularly restricted by the relatively short reanalysis record,
we cannot exclude potential state dependencies, e.g. on an-
nual timescales, as well as non-stationarities (Caron et al.,
2015; Fink et al., 2010). As this represents a divergence from
the theoretical methodological approach of causal precursor
analysis, we will therefore refer to the results of the CEN
analysis as “robust precursors” acknowledging that we can-
not assure true causality.

Weather Clim. Dynam., 1, 313–324, 2020 https://doi.org/10.5194/wcd-1-313-2020
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2.4 Using CEN as a robust precursor selection tool to
construct a statistical forecast model

We apply a CEN approach to identify robust precursors in
May (and in March) of seasonal hurricane activity of the
same year. Similar to Kretschmer et al. (2017), our methodol-
ogy consists of four steps (see schematic overview in Fig. 1).

1. We first identify regions where favourable conditions
for TC formation and intensification are most rele-
vant. Here we use SSTs and VWS fields as established
favourable conditions but without prescribing spatial
patterns a priori. We then identify the regions in the
tropical Atlantic that are correlated with ACE in our tar-
get region during the hurricane season (July to October).

2. We search for potential precursors of the favourable
conditions identified in step 1. To do this, we calculate
lagged point correlation maps of gridded SST and mean
sea level pressure (MSLP) data and cluster the most sig-
nificantly correlated points into potential precursor re-
gions. We use SSTs and MSLP as they are commonly
used to describe the forcing on the atmosphere and the
current location of pressure systems which in turn gives
insights into the atmospheric circulation in general.

3. We identify robust precursors amongst all potential pre-
cursor regions identified in step 2 by constructing a
causal effect network (CEN) using the so-called PCMCI
algorithm.

4. We construct a statistical forecast model based on the
robust precursors identified in step 3 using linear re-
gression and logistic regression. While for the detec-
tion of potential and robust precursors (steps 2 and 3)
detrended anomalies of climate variables are used, the
final forecast models are constructed with the raw re-
analysis data.

More details including all relevant free parameters of our ap-
proach (such as significance thresholds and clustering param-
eters) are listed and discussed in the Supplement.

2.5 Forecast model evaluation

We evaluate the skill of our model by performing a cross-
validation hindcast: for each hindcasted year, we construct a
new statistical model using all years but the year we aim to
hindcast as well as the 2 preceding years of that year. Specifi-
cally, steps 2–4 are iteratively performed for each hindcasted
year (see Fig. 1). By excluding the two preceding years from
the training set, we assure that autocorrelations of up to
3 years do not leak information from the training data into
the testing data. Note that despite the clear separation be-
tween training and testing data, such cross-validation tests
cannot guarantee reproducibility of the forecast skill in a real
forecasting setting (Li et al., 2020).

Figure 1. Schematic overview of the four steps to build a forecast
model for ACE in July–October (left): (1) the regions of interest for
two favourable conditions of hurricane activity (SST and VWS) are
identified. (2) For each of the favourable conditions of (1) potential
precursors in May are identified by clustering the most significantly
correlated grid cells within SST data. (3) Causal effect networks are
used to select a sub-set of robust precursors. (4) A statistical model
is built based on the identified robust precursors of (3). Steps (2)–
(4) are repeated for the different training sets, leading to a different
forecast model for each hindcasted year.

3 Results

3.1 Favourable conditions for active hurricane seasons

Favourable conditions for active hurricane seasons are
(among others) warm SSTs and low VWS over the west-
ern tropical North Atlantic (Fig. 2). We identify the re-
gions where the association of SSTs and VWS with basin-
wide ACE is strongest by clustering the most strongly cor-
related grid cells (see Supplement for more information).
These regions cover large parts of the main development re-
gion (MDR), and we call them SSTMDR and VWSMDR. The
relationships between these variables and TC formation as
well as TC intensification are well documented (Frank and
Ritchie, 2001).

To identify potential precursors (step 2 in Fig. 1) of
SSTMDR and VWSMDR, we next calculate lagged point
correlation maps using the regional averages of VWSMDR
(SSTMDR) and gridded SST data. VWSMDR in July–October
is strongly correlated with SSTs in May in several locations.
Potential precursor regions are found in the tropical Atlantic
and Pacific, in the northern North Atlantic, and in the north-
eastern Pacific (see Fig. 3a).

We then construct a causal effect network (step 3 in Fig. 1)
with all identified potential precursors. We find that warm
SSTs in the tropical Pacific and cold SSTs in the subtropi-
cal North Atlantic are robust precursors of strong VWSMDR
(Fig. 3b). The signal from the Pacific resembles the Niño3.4
region and thus reflects the El Niño–Southern Oscillation
(ENSO) which is a well-known driver of variations in hur-

https://doi.org/10.5194/wcd-1-313-2020 Weather Clim. Dynam., 1, 313–324, 2020
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Figure 2. Favourable conditions for high ACE in July–October.
(a) Point correlation between SST and basin-wide mean ACE in
July–October. The contour line indicates the identified region in the
Atlantic basin, which consists of a cluster of the 5 % most signifi-
cantly correlated grid cells. Details on the definition of the region
are described in the Supplement. (b) As panel (a) but for VWS.

ricane activity (Gray, 1984a; Kim et al., 2009; Tang and
Neelin, 2004). In combination, the difference between trop-
ical Atlantic SSTs and tropical Pacific SSTs is consistent
with the hypothesis that Atlantic hurricane activity mainly
depends on the temperature of Atlantic SSTs relative to
the other basins (Murakami et al., 2018; Vecchi and Soden,
2007).

The correlation maps vary for the different training sets,
partly leading to different potential precursors of VWSMDR
(Fig. 4a). For instance, some regions are only identified as
potential precursors in some training sets (lighter shading).
Nevertheless, throughout all different training sets, SSTs in
the Atlantic and in the Niño3.4 region are consistently iden-
tified as robust precursors of VWSMDR (Fig. 4c).

A robust precursor for warm SSTMDR in July–October is a
large SST region in the North Atlantic (Fig. 4d). This region
extends to the northeastern Atlantic. The strong link of this
precursor to SSTMDR is a result of the high autocorrelation
of SSTs. Furthermore it is likely that water from north of the
MDR would be advected into it during the following months
(Klotzbach et al., 2019). The identified SST signals north in
the subpolar Atlantic and Arctic oceans may not have a direct
impact on the cyclone activity but could also be the result of
the presence of a common driver of multi-month/annual SST
in the North Atlantic that cannot be resolved by our tempo-
rally limited application of the CEN method for forecasting
purposes. This does not mean that the SST signal in the re-
gion does not have skill as a robust precursor, but only that
no direct “causal” pathway might be at play here.

3.2 Forecast model based on May precursors

We next hindcast each year’s ACE in July–October with a
linear regression model (step 4 in Fig. 1) based on the ab-
solute values of the robust precursors identified in May for
the training set (containing again all years but the hindcasted
year and the 2 preceding years) (see Fig. 5). With a Pear-
son correlation coefficient of ρ = 0.47 (and a Spearman rank
correlation coefficient of ρrank = 0.53), our cross-validated

hindcast seems competitive with operational forecasts (from
CSU, TSR and NOAA) which have ρ < 0.4 (see Fig. 1 in
Klotzbach et al., 2019).

Our model skilfully discriminates between above- and
below-median seasonal activity (Fig. 5b). However, the in-
tensity of most extreme hurricane seasons is underestimated
in our linear forecast model (e.g. years 1995, 2004, 2005 and
2017 in Fig. 5a). Figure 5b shows that despite this lack in
sensitivity of the linear model, it can still deliver valuable
information on the occurrence of above-66th-percentile sea-
sons.

As an addition to the linear model, we next use a logistic
regression classifier to construct probabilistic forecast mod-
els. We focus on predicting the most active (above-66th-
percentile) and least active (below-33rd-percentile) seasons
using the same predictors as for the linear model (Fig. 6b–
c). For each year this model gives a probability of having a
season above the 66th (below 33rd) percentile. As it does not
assume a linear relationship between predictors and predic-
tands, it might be better suited for the prediction of extreme
seasons.

We evaluate the performance of the model using the Brier
skill score (BSS) (Brier, 1950). With a positive BSS, the re-
sult of the forecast model that gives the probability of find-
ing an above-66th-percentile season (Fig. 6c) is slightly su-
perior to a climatological forecast, which would be forecast-
ing above-66th-percentile seasons with a probability of 33 %
in each year. The reliability curve flattens out for high fore-
cast probabilities, indicating that the usefulness of this fore-
cast is however limited. For instance, the false positive rate is
50 % for seasons which are hindcasted to be an above-66th-
percentile season with a probability of 60 %. Yet, seasons that
are very unlikely to become particularly active are hindcasted
with high confidence.

We hypothesise that the deficit to hindcast some of the
most active seasons might be due to missing relevant pre-
dictors. For example, Klotzbach et al. (2018) argued that
the extreme TC activity in 2017 was due to an enhanced
Pacific Walker circulation during near-neutral ENSO condi-
tions. The Pacific Walker circulation and ENSO are strongly
correlated, but in 2017 forecast models using ENSO as a pre-
dictor (rather than the Walker circulation) heavily underesti-
mated the seasonal activity (Klotzbach et al., 2018). Further-
more, it has to be noted that there is some stochastic com-
ponent to TC formation which systematically limits the skill
of our empirical forecast model that is based on favourable
conditions for TC formation.

3.3 Forecasting at longer lead times

So far, the robust precursors we detected with our data-driven
approach are already well documented in the literature, pro-
viding us with confidence in the approach. We next apply
the same methods to construct a forecast model based on re-
analysis data in March, where existing operational forecasts

Weather Clim. Dynam., 1, 313–324, 2020 https://doi.org/10.5194/wcd-1-313-2020
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Figure 3. Precursors of VWSMDR in a training set containing the years 1979–2015: (a) pointwise correlation between SSTs in May and
VWSMDR averaged over July–October. Labels indicate clustered regions that are treated as potential precursors. (b) Robust precursors of
VWSMDR as detected by our method. The colour of the arrows indicates the link strength, and the colour of the nodes indicates the strength
of auto-dependence. The link strength (including auto-dependence of variables) is calculated following Runge et al. (2019) using partial
correlations. This was shown to give a normalised measure of causal strength ranging between −1 and 1. For visualisation purposes only
ingoing links of VWSMDR are shown here; the full network is shown in Fig. S1 in the Supplement.

Figure 4. Potential and robust precursors of VWSMDR (a, c) and SSTMDR (b, d) in May. Number of training sets in which a grid cell is part
of a potential (a–b) and robust (c–d) precursor region. The maximum number is 40 – the number of different training sets considered.

show little skill (Klotzbach et al., 2019, 2017). At the end
of March, it is difficult to forecast the state of ENSO for the
upcoming hurricane season due to the ENSO predictability
barrier (Hendon et al., 2009; Torrence and Webster, 1998).
Indeed, in March, the El Niño region is not identified as a
robust precursor of VWSMDR in July–October (see Fig. S2).

We further search for robust precursors in mean sea level
pressure data (MSLP). To avoid spurious effects at this long-
time lag on atmospheric timescales, we adjust our criteria to
yield large-scale precursors and cluster the 7.5 % most signif-
icantly correlated grid cells (instead of 5 % elsewhere) into
large-scale precursor regions (see Supplement for more de-
tails).

We identify potential precursor regions in both hemi-
spheres (Fig. 7a). As robust precursors, a high-pressure sys-
tem over the southern Indian Ocean and a low-pressure sys-

tem eastward of New Zealand are identified in nearly all
training sets (Fig. 7c).

For SSTMDR, autocorrelation still plays an important role
and, as for the May forecast, a larger area in the North At-
lantic remains a robust precursor (see Fig. 7d).

As expected, the overall skill of a hindcast based on these
March precursors is lower than for the May hindcast but still
considerable with a spearman rank correlation of 0.27 be-
tween the observed and the hindcasted ACE (Fig. 8). Despite
being relatively low, this correlation is promising since this
correlation is near zero in most operational forecast models
(compare Klotzbach et al., 2017, 2019).

The linear model shows skill in hindcasting above median
as well as extremely active seasons (Fig. 8b). For instance, an
above-66th-percentile season can be hindcasted with a true
positive rate of 65 % and a false positive rate of only 27 %.

https://doi.org/10.5194/wcd-1-313-2020 Weather Clim. Dynam., 1, 313–324, 2020
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Figure 5. Hindcast skill based on May reanalysis. (a) ACE yearly aggregated over July–October (black) and based on our linear forecast
model using precursors identified for the month of May (magenta). The shading corresponds to a 66 % confidence interval based on the
standard deviation of the model over the training periods. (b) Receiver operating characteristic (ROC) curve (see Supplement) for different
seasonal activities: above the (long-term) median in blue, above the 33rd percentile in green and above the 66th percentile in purple. The
area under the ROC curve (ROCA) is indicated in the legend with significance levels (∗∗ – alpha= 0.05; ∗ – alpha= 0.1).

Figure 6. Reliability diagrams for a logistic regression model on
May precursors and for three types of seasonal activities: above
median (a), below 33rd percentile (b), above 66th percentile (c).
Dots show the mean hindcasted probability versus the observed fre-
quency of a (seasonal) event. The size of the dots indicates the rel-
ative number of data points that contributed to a bin. A perfectly
reliable forecast would lie on the diagonal (dashed grey line). Dots
within the dark-green area contribute to a forecast skill improve-
ment compared to the climatology while dots within the light-green
area contribute to a forecast skill improvement compared to random
guessing. The Brier skill score (BSS) is indicated in the lower right
corner of each panel.

The hindcasts of the logistic regression model for above-
66th-percentile seasons have skill over a climatological fore-
cast (BSS= 0.11). The reliability diagram (Fig. 9c) shows
a rather flat curve with few data points with high observed
frequencies. This means that when the model predicts high
probabilities for above-66th-percentile seasons a relatively
high number of these events are false positives. For above-
median TC activity the reliability curve is substantially closer

to the diagonal and the skill over a climatological forecast is
higher (BSS= 0.17, Fig. 9a).

Our results suggest that the identified dipole pattern in
MSLP in the southern Indian Ocean and the western south
Pacific enhances VWS in the tropical Atlantic 4–6 months
later (see Fig. 7c for the dipole) but the underlying mecha-
nism is not obvious. We hypothesise that this dipole weak-
ens the trade winds in the western Pacific, thereby favouring
the formation of El Niño events. This would sub-sequentially
lead to strong VWS in the Atlantic (during the main hurri-
cane season).

We test this hypothesis by constructing a causal effect net-
work. As input data we include time series constructed as
the MSLP difference between the southern Indian Ocean and
the western south Pacific (“Delta MSLP”), the strength of the
trade winds in the western Pacific (“Trade winds 850 hPa”)
and SSTs in the Niño 3.4 region (“SST Niño 3.4”) (all re-
gions are displayed in Fig. 10a). The CEN is then calculated
for the months of February to July, which is roughly the pe-
riod for which we want to test the hypothesis.

The detected causal links between the actors are shown in
Fig. 10b. Indeed, weak trade winds in the western Pacific are
suggested to favour the formation of El Niño events in the
next month. Furthermore, a strong pressure gradient towards
the Indian Ocean weakens the trade winds (on a timescale
of 2 months). At the same time, strong trade winds increase
the pressure difference between the Indian Ocean and Pa-
cific. Overall, although a more detailed analysis is needed,
our analysis suggests that the identified March dipole might
indeed be physically linked to the upcoming Atlantic hurri-
cane activity.

The skill of the March forecast drops when detrended ACE
anomalies are predicted using detrended precursor anomalies
(see Fig. S3). One explanation for the reduced skill might
be related to the simultaneous increase in ACE and the in-
crease in Atlantic SSTs over the period 1979–2018, partly
modulated also by natural multi-decadal variability (Alexan-
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Figure 7. Potential and robust precursors of VWSMDR and SSTMDR in March. As Fig. 4 but in March and with MSLP precursors for
VWSMDR.

Figure 8. Hindcast skill based on March reanalysis. As Fig. 5 but for March.

Figure 9. Reliability diagrams for a logistic regression model on
March precursors. As Fig. 6 but for March.

der et al., 2014; Schleussner et al., 2014). As the link be-
tween Atlantic SSTs and ACE is well established (Murakami
et al., 2018), and SSTs are auto-correlated on up to decadal

timescales, such a detrending would be expected to reduce
the skill of our model. Also, the linear trends of March pre-
cursors are small compared to the interannual variability and
are not statistically significant (see Fig. S4). While a longer
time series would be required to fully establish the indepen-
dence of our findings from simultaneous trends in the predic-
tors and predictands, we are confident that our identified pre-
cursors of VWSMDR and SSTMDR do indeed contain physi-
cally meaningful information.

Note that the identified robust precursors of strong
VWSMDR over the southern hemispheric oceans might suffer
from quality deficits of the reanalysis product, as only rela-
tively few observations of SSTs and MSLP are available in
these regions. We therefore perform a number of sensitivity
tests to investigate how robust this signal is and whether it
could be an artefact of the used ERA5 reanalysis data. To do
this, we conduct the same analysis using the JRA-55 reanaly-
sis and obtain similar precursors in May and March (Figs. S5
and S7). Overall these precursors are yet less robust in JRA-
55 and the forecast skill is slightly reduced (Figs. S6 and S8).

The reason for this difference might also lie in the method
applied to identify potential precursors (step 2 in Fig. 1). Ap-

https://doi.org/10.5194/wcd-1-313-2020 Weather Clim. Dynam., 1, 313–324, 2020
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Figure 10. Causal effect network (CEN) to test if the detected robust precursor in March affects ENSO variability. (a) Regions included to
construct the time series that enter the CEN. To describe the robust precursors, we include the MSLP difference between the southern Indian
Ocean (magenta box) and the western South Pacific (cyan box). We further include an index of western Pacific trade winds at 850 hPa (blue
box) and SSTs in the Nino3.4 region (green box). (b) Resulting CEN of the time series calculated over the regions as shown in panel (a). For
the CEN calculation only the months February to July and time lags of 1 to 4 months are considered. The colour of the arrows indicates the
link strengths, with the colour of the nodes indicating the strength of the auto-dependence.

plying the same clustering algorithm with the same parame-
ters to a dataset with a different grid size leads to a minimally
different clustering behaviour and might therefore affect the
whole model building approach. The strong influence of the
clustering step on the identified potential precursors and all
the subsequent steps in the analysis could thus partially ex-
plain the differences between the results obtained with JRA-
55 and ERA5.

Finally, we test whether our model has skill outside of the
period used for the main analysis (1979–2018) by applying
a forecast model trained on 1980–2018 to the early period
of JRA-55 (1958–1978). In the pre-1979 period, our model
captures the main features as a reduced hurricane activity in
the 1970s after higher activity in the 1960s (see Fig. S9). It,
however, systematically overestimates hurricane activity and
the skill is lower than in the cross-validated hindcast of the
period 1979–2018.

The reduced skill in the pre-1979 period could be a result
of non-stationarities in precursors of Atlantic hurricane activ-
ity. For instance, changes in anthropogenic aerosol emissions
lead to a suppression of tropical cyclone activity in the period
1950–1980 (Dunstone et al., 2013). This could explain the
systematic overestimation of hurricane activity in our model
as it does not capture the effect of aerosols.

It has to be noted as well that reanalyses for time peri-
ods before the use of satellites (before 1979) are subject to
considerable uncertainties, especially in the Southern Hemi-
sphere (Tennant, 2004). It therefore remains difficult to in-
vestigate whether the identified relationship between March
precursors and hurricane activity is robust under different cli-
mate states with the available datasets.

In summary, the identified MSLP precursors in March ap-
pear to be less robust than the well-documented May pre-
cursors. However, as far as it can be assessed with the given

reanalysis datasets, sensitivity tests suggest that the identi-
fied March precursors indeed contain useful information con-
tributing to a skilful seasonal forecast of ACE.

4 Discussion

A crucial component of statistical forecasting is the selec-
tion of meaningful predictors. Because too many included
features quickly lead to overfitting, methods are required to
sub-select relevant predictors from a large set of potential
predictors (Hawkins, 2004). Here we showed that causal ef-
fect networks (CENs), a data-driven method based on causal
inference techniques, can be used to identify robust predic-
tors of a variable of interest.

Using CEN, we identified warm SSTs in the Atlantic and
La Niña conditions in May as robust precursors of an active
hurricane season in July–October. These precursors are con-
sistent with the prevailing literature and thus show the useful-
ness of our approach. We performed hindcasts based on these
precursors and showed that the skill of our forecast model
compares well with operational forecast models (Klotzbach
et al., 2019), although the real forecasting skill of our model
can only be evaluated in the coming years.

At longer lead times, the skill of operational forecast mod-
els issued at the beginning of April is limited (Klotzbach
et al., 2019). Here we also identified robust precursors in
March including a region of Atlantic SSTs and two regions
of mean sea level pressure anomalies in the southern Indian
Ocean and east of New Zealand. A model based on these
precursors provides valuable hindcasts of above-median and
above-66th-percentile seasonal activity. We speculate on the
involved mechanism at play and suggest that a strong pres-
sure gradient in that region weakens the trade winds in the
western Pacific, which would favour the formation of El Niño
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events, which in turn are associated with reduced hurricane
activity. We provided some evidence for this hypothesis by
applying a simple CEN to the involved actors, but more re-
search is needed to show the robustness of this link.

In this study we searched for robust precursors of two
well-known favourable conditions for TC formation and in-
tensification, that is, warm SSTs and low VWS in the At-
lantic main development region. Including more variables to
the characterisation of favourable conditions, such as rela-
tive humidity or upper-troposphere temperatures, could fur-
ther increase the skill. It might, however, be challenging to
incorporate these conditions in our current framework which
was constructed using seasonally aggregated data. For rela-
tive humidity in particular, variability on shorter timescales
than SSTs or VWS might be relevant in this context.

Here we constructed causal effect networks for favourable
conditions in the hurricane season and their potential precur-
sors in SSTs or MSLP at a fixed time lag of 2 or 4 months.
Yet, mechanisms on different timescales and lags might also
play a role and might further affect our results (Runge, 2018).
Overall, we cannot guarantee that the identified links are
“truly causal”. The causal effect network approach rather
helps to identify “the least spurious links” and therefore most
robust precursors or most skilful predictors. We stress that
physical knowledge of the underlying mechanisms is essen-
tial to ensure a meaningful interpretation of our data-centric
approach.

A challenge that we did not address here is potential non-
stationarities regarding the detected robust precursors (as dis-
cussed in Fink et al., 2010; Caron et al., 2015). Such non-
stationarities could lead to varying forecast skill. Given the
limited time span for which reliable reanalysis datasets ex-
ist, this issue remains difficult. Applying our approach to cli-
mate simulations for which longer time series are available
is therefore a logical next step.

Our here-proposed technique to construct statistical fore-
casting models is generic and can easily be applied for other
meteorological phenomena. It could for instance be applied
to forecast seasonal hurricane activity in other basins for
which fewer forecasts exist.

From a methodological viewpoint, the most sensitive step
in the approach seems to be the identification of potential
precursors (step 2 in Fig. 1). Depending on the choice of the
free parameters of the clustering algorithm and significance
threshold for correlated grid cells, the detected potential pre-
cursor regions can vary and subsequently affect the causal
network. Improving the robustness of this step or finding al-
ternative ways of defining these potential precursors would
further enhance the applicability of the method. Given the re-
cent advances in novel machine learning techniques, we are
confident that this method can be further improved.

5 Conclusions

Using a causal effect network approach, we identified skil-
ful spring predictors of seasonal Atlantic hurricane activity
from July to October. For shorter lead times of 2 months,
the identified precursor regions represent well-documented
physical drivers. Statistical forecast models based on these
drivers yield considerable prediction skill, demonstrating the
potential of our method. For longer lead times of up to 4
months, our method suggests a pressure dipole between the
southern Indian Ocean and the western South Pacific as a pre-
dictor of hurricane activity in the following season. A predic-
tion model based on these March precursors still shows skill,
but challenges in predicting in particular highly active hurri-
cane seasons remain.

We see different entry points for our findings to be in-
corporated into applied seasonal hurricane forecasts. Be-
sides a direct application of our early April forecast model,
we encourage other statistical forecasting groups to inves-
tigate whether our newly identified predictors can help to
improve their statistical forecast models. Furthermore, the
causal links identified here could form the basis for hybrid
forecasting techniques where a dynamical forecast ensem-
ble is constrained by selecting only members that adequately
reproduce the causal links as demonstrated by Dobrynin et
al. (2018).

Improved seasonal forecasting with long lead times can
support seasonal planning of disaster risk reduction mea-
sures, particularly also related to disaster relief and emer-
gency aid provision. While basin-scale dissipated energy
does not directly provide risk profiles for individual coun-
tries, it allows us to inform decision making on the regional
level, including on financial support needs pooled, for ex-
ample, in the Caribbean Catastrophe Risk Insurance Facil-
ity serving Caribbean islands states (CCRIF, 2020). As such,
improved seasonal forecasting can provide essential informa-
tion to ensure hurricane preparedness in affected countries.

Code and data availability. All Python scripts re-
quired to reproduce the analysis are available under
https://doi.org/10.5281/zenodo.3925816 (Pfleiderer, 2020).
We used the openly available TIGRAMITE tool developed by
Jakob Runge (http://github.com/jakobrunge/tigramite; Runge,
2014). For the analysis we also used the following datasets:
IBTrACS dataset (http://ncdc.noaa.gov/ibtracs; Knapp et al.,
2020), fifth generation of ECMWF atmospheric reanalyses
(http://ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5;
C3S, 2019) and the Japanese 55-year reanalysis (http:
//jra.kishou.go.jp/JRA-55; JMA, 2013).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/wcd-1-313-2020-supplement.
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