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Abstract

Aircraft can report in situ observations of the ambient temperature by using air-

craft meteorological data relay (AMDAR) or these can be derived using mode-

select enhanced tracking data (Mode-S EHS). These observations may be assimi-

lated into numerical weather prediction models to improve the initial conditions

for forecasts. The assimilation process weights the observation according to the

expected uncertainty in its measurement and representation. The goal of this paper

is to compare observation uncertainties diagnosed from data assimilation statistics

with independent estimates. To quantify these independent estimates, we use met-

rological comparisons, made with in-situ research-grade instruments, as well as

previous studies using collocation methods between aircraft (mostly AMDAR

reports) and other observing systems such as radiosondes. In this study we diag-

nose a new estimate of the vertical structure of the uncertainty variances using

observation-minus-background and observation-minus-analysis statistics from a

Met Office limited area three-dimensional variational data assimilation system

(3 km horizontal grid-length, 3-hourly cycle). This approach for uncertainty esti-

mation is simple to compute but has several limitations. Nevertheless, the resulting

diagnosed variances have a vertical structure that is like that provided by the inde-

pendent estimates of uncertainty. This provides confidence in the uncertainty esti-

mation method, and in the diagnosed uncertainty estimates themselves. In the

future our methodology, along with other results, could provide ways to estimate

the uncertainty for the assimilation of aircraft-based temperature observations.
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1 | INTRODUCTION

In data assimilation, observations and prior model forecasts
are combined, taking account of their relative uncertainties,
to provide initial conditions for numerical weather predic-
tion (NWP). Improved specification of observation uncer-
tainties has been shown to improve analysis accuracy and
forecast skill (e.g., Stewart et al., 2008, 2013; Weston
et al., 2014; Bormann et al., 2016; Campbell et al., 2017;
Simonin et al., 2019). However, observation uncertainty is
difficult to measure and can only be estimated by gathering
appropriate statistics. A simple approach for estimating the
observation error covariance, known as the Desroziers
et al. (2005) diagnostic, has become popular due to its ease
of use. This method uses samples of observation-model
departures routinely output from the data assimilation sys-
tem and has been applied to a number of observation types,
such as Doppler radial winds (Waller et al., 2016a, 2019),
satellite radiances, (e.g., Stewart et al., 2014; Waller
et al., 2016b) smoothed aircraft-derived observations (Lange
and Janjic, 2016), and surface observations (Tavolato
and Isaksen, 2015). It is known that this diagnostic
approach relies on unrealistic assumptions, and provides
only an approximation to the observation error covariance
(Desroziers et al., 2005; Ménard, 2016; Waller et al., 2016;
Waller et al., 2017; Bathmann, 2018). However, there have
only been limited studies comparing the uncertainty esti-
mates computed using the Desroziers et al. (2005) diagnos-
tic with independent estimates of the observation error
statistics (e.g., contributions from measurement error, qual-
ity control processing, observation error and error due to
unresolved scales Chun et al., 2015).

Numerous studies have shown that aircraft-based
observations are a valuable source of information for
NWP (e.g., Cardinali et al., 2003; Lorenc and Marriott,
2014; Lange and Janjic, 2016; Petersen, 2016; James and
Benjamin, 2017; Ingleby et al., 2019; Mirza et al., 2019).
Aircraft temperature reports are the processed reports
from the aircraft's sensor and avionics. Temperature
reports may also be derived from processed Mode Select
(Mode-S) reports obtained from suitably configured sec-
ondary surveillance radar. Processed reports are mostly
obtained from aircraft that participate in the Aircraft
Meteorological Data Relay (AMDAR) program (Stickland
and Grooters, 2005; WMO, 2017), or could be obtained
from Mode-S Meteorological Routine Air Reports (MRAR)
(Strajnar, 2012). Derived temperature reports are obtained
from Mode-S enhanced surveillance (EHS) reports of the
aircraft's true airspeed and Mach number (de Haan, 2011;
Stone and Kitchen, 2015; Mirza et al., 2016). Mode-S EHS
reports are much more frequent than either AMDAR or
Mode-S MRAR (de Haan, 2011; Strajnar, 2012; Stone and
Pearce, 2016; Mirza, 2017). However, the derived

temperature reports suffer from large uncertainty, espe-
cially at low altitudes, due to the low precision in the
reported Mach number. This source of uncertainty has been
studied using a metrological approach by Mirza
et al. (2016). De Haan (2011) and Mirza (2017) have shown
that the uncertainty can be reduced by application of
smoothing filters. These smoothed data are used in NWP at
several centres. In the literature Mode-S EHS is used synon-
ymously for unsmoothed and smoothed derived tempera-
tures (de Haan, 2011; de Haan and Stoffelen, 2012; Lange
and Janjic, 2016). However, in this paper, we aim to diag-
nose the error for the unsmoothed derived temperature, here-
after called the Mach temperature, TMACH (Mirza
et al., 2016, 2019). We choose to focus on the analysis of
TMACH as uncertainties in aircraft winds, reported by
AMDAR and derived from Mode-S EHS, have already been
subject to more extensive studies, summarized by Mirza
et al. (2016, section 2).

In this paper, we use the Desroziers et al. (2005) diag-
nostic to compute new estimates of observation error vari-
ances for AMDAR temperature and TMACH reports. Unlike
Lange and Janjic (2016), we compare the diagnosed esti-
mates with two types of independent estimates of observa-
tion error variances computed by (a) collocation with
other observations and (b) metrological analysis. In Sec-
tion 2, we define our terms and outline the methods used
to obtain temperature reports from aircraft; compare
empirical and assumed estimates of observation uncer-
tainties; and we describe briefly the Desroziers et al. (2005)
diagnostic which is widely used to estimate observation
error covariance matrices from observation-model depar-
tures. In Section 3, we describe the experimental methods
using the Met Office limited area NWP model for the
United Kingdom (UKV) to diagnose the observation error
variances. Section 4 shows the newly diagnosed uncer-
tainties in comparison with empirical estimates. We sum-
marize our findings in Section 5 and note that these
results provide new confidence in variances diagnosed
using the Desroziers et al. (2005) technique.

2 | ESTIMATING OBSERVATION
UNCERTAINTY OF TEMPERATURE
REPORTS FROM AIRCRAFT

Numerous studies have computed observation uncer-
tainty estimates for aircraft-based observations (see
review by Mirza et al., 2016); in this section we outline
these methods and their limitations for estimating obser-
vation uncertainty.

To distinguish between various methods used to esti-
mate observation variances we will refer to assumed,
empirical and diagnosed estimates; these are defined
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below in Sections 2.1, 2.2 and 2.3, respectively. The main
sources of error for these methods may be due to one or
more of the following: instrumental error, effects due to
atmospheric boundary layer turbulence; for aircraft at
low altitudes, the combined effects of low airspeed, air-
frame configuration and aircraft manoeuvres (Drüe
et al., 2008); in the case of Mode-S EHS, the precision of
its reports (de Haan, 2011; Mirza et al., 2016); and errors
arising from the NWP system, for example, pre-
processing or quality-control, the observation operator,
and unresolved scales and processes (Janjic et al., 2018).

2.1 | Assumed estimates

Assumed estimates are an idealized observation uncer-
tainty used in the NWP data assimilation system. They
are based on the further analysis of error estimates, using
linear or polynomial regression methods, and/or use
expert judgement to produce a smoothed estimate. These
assumed estimates may also be artificially inflated or
deflated to take account of other sources of error in the
observation and/or NWP system which may be difficult
or too costly to quantify precisely but are assumed to
exist, for example, the measurement of small scale vari-
ability by the observing system which is not resolvable
within in the NWP system. Ideally, these assumed esti-
mates should be reviewed periodically to take account of
developments in the observation and NWP systems,
although this may not always occur in practice. Figure 1
shows the vertical profiles of assumed estimates of observa-
tion uncertainty standard deviation for AMDAR tempera-
ture reports as used for a number of NWP data
assimilation systems: Consortium for Small-Scale Modeling
Kilometre-scale Ensemble Data Assimilation (COSMO-
KENDA) (Schraff et al., 2016, table 1, p. 1457); Met Office
limited-area, high-resolution, convection-permitting NWP

system for the United Kingdom (UKV) (Dalby and
Berney, 1999, table 1, p. 4); European Centre for Medium
Range Weather Forecasting integrated forecast system (IFS)
(ECMWF, 2015, table 2.8, p. 44); Aire Limitée Adaptation
dynamique Développement InterNational (ALADIN)
(Strajnar, 2015); the High Resolution Limited Area Model
(HIRLAM) (Unden et al., 2002, appendix B, p. 135).

2.2 | Empirical estimates

Empirical estimates are from two atmospheric observing
systems that record measurements at a single point, for
example, AMDAR and Radiosonde reports. Ideally, the
two observing systems are in close proximity to each other
in space and time to reduce the effects of mesoscale atmo-
spheric variability. The strengths of this method are that it
is independent of the NWP system and can be used to
identify the range of useful observations for new instru-
mentation. The weaknesses are that it is limited by the
total sample size, weather types and costs to acquire the
data. Furthermore, this method accounts mostly only for
the instrumental error and some residual small-scale
mesoscale variability. For the empirical estimates we use,
it is assumed that mesoscale variability is considered to
have a small effect when the space–time separation
between the observing systems is less than 40 km horizon-
tally, 30 m vertically, and 15 min in time. Similarly for
aircraft-based observations obtained using the method of
flight-following, (e.g., in Stone (2018) the FAAM BAe-146
was used to follow a British Airways commercial aircraft
over the Bristol Channel), the space–time separation along
the same flight track the separation is around 10 km hori-
zontally, 300 m vertically, and 60 s. For in situ data (col-
lected from the flight data recorder for flights in and out of
London Heathrow) provide observations at the same point
in space and time. Likewise, Mirza et al. (2016) used a
metrological method to compare in situ atmospheric mea-
surements, made with research-grade instruments aboard
the FAAM BAe-146, with (emulated) Mode-S EHS reports,
at the same point in space and time. Figure 2 shows
empirical estimates of observation uncertainty standard
deviation for aircraft temperature reports from a range of
studies: AMDAR versus Radiosonde (Schwartz and
Benjamin, 1995; Ding et al., 2015, 2018); AMDAR versus
other nearby AMDAR reporting aircraft (Benjamin
et al., 1999); Mode-S MRAR versus Radiosonde (Strajnar,
2012), Mode-S EHS versus Radiosonde (de Haan and
Stoffelen, 2012).

In broad terms, we summarize these empirical esti-
mates for the temperature observation uncertainty as fol-
lows: for all sources except TMACH, between 2 and 8 km
the uncertainty is approximately between 0.75 and
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1.25 K. It increases below 2 and above 8 km. For all alti-
tudes, the uncertainty for TMACH is approximately double
that of the other sources, and can be characterized by a
near linear decreasing trend with altitude.

Figure 2 also shows the results of the study by Mirza
et al. (2016); here TMACH were derived from emulated
Mode-S EHS reports. Comparing these with in situ mea-
sured values made at the same time, the resulting empiri-
cal estimate shows a near linear decrease in observation
error standard deviation with increasing altitude. Also
shown is the study by Stone (2018), which used a similar
method except using a commercial aircraft. The empirical
estimate from this study also shows a decrease in obser-
vation error standard deviation with increasing altitude,
albeit with slightly larger values and some outliers, espe-
cially at low altitude.

2.3 | Diagnosed estimates

Diagnosed estimates are made by comparing an atmo-
spheric observing system and the output from an NWP
data assimilation system, for example, AMDAR reports
and the UKV NWP system. This method calculates sta-
tistics from samples of observation-minus-background
(e.g., Hollingsworth and Lonnberg, 1986), dob, called
the innovation vector (Talagrand, 1997), and
observation-minus-analysis, doa, called the residual
vector (e.g., Desroziers et al., 2005), which must be
acquired from the data assimilation process of an NWP
system. Here we use the Desroziers et al. (2005)

diagnosis method to compute the statistical average
between dob and doa. This method results in an estimate
of the statistics of the total error, combining the errors
from the observation instruments and the NWP system.

2.3.1 | Desroziers et al.'s diagnosed
estimate

We can define the innovation and residual for each obser-
vation as vectors of differences,

dob = yo−H xbð Þ, ð1Þ

and

doa = yo−H xað Þ, ð2Þ

where yo is the vector of observations, H is the observa-
tion operator that the data assimilation system uses to
transform NWP model values into equivalent “real
world” observations, and xb and xa are the corresponding
vectors of model values before and after all observations
have been assimilated, respectively.

Using linear statistical expectation theory (Walpole
et al., 2011, Ch. 4), and the assumption that the errors in
NWP model values and the observations are mutually
uncorrelated, Desroziers et al. (2005) showed that an esti-
mate of the observation covariance error, Re, can be diag-
nosed from the statistical average, E[], of the product
doa(dob)

T, that is,

FIGURE 2 Vertical profile of

empirical estimates of observation

uncertainty for temperature reported

by aircraft. Symbols: AMDAR:

Squares Schwartz and

Benjamin (1995) Benjamin

et al. (1999) and circles Ding

et al. (2015) Ding et al. (2018),

Mode-S MRAR: Triangles

Strajnar (2012), Mode-S EHS: Black

diamond de Haan (2011), TMACH:

Red diamonds Mirza et al. (2016)

Stone (2018)
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E doa dobð ÞT
h i

≈ Re, ð3Þ

where T is the matrix transpose operator and Re are the
covariances of the observation errors expressed as a
square matrix. The elements along the diagonal of the
square matrix are the observation error variances, σ2ii . We
can compute these diagonal elements using,

σ2ii =
1
N

XN
i=1

doað Þi dobð Þi−
1
N

XN
i=1

doað Þi
 !

1
N

XN
i=1

dobð Þi
 !

,

ð4Þ

where N is the total number of observations and i is the
ith element along the diagonal of Re. To ensure the result
of the diagnostic is unaffected by bias, the mean of the
residual and innovation vectors are subtracted
(Stewart, 2010; Waller et al., 2016b).

The diagnostic in Equation (3) only provides a cor-
rect estimate of the error covariance matrix if the
assumed error statistics for the NWP model values and
observations, used in the data assimilation processing,
exactly represent the true statistics. Furthermore, the
statistical construction of the diagnostic results in a
non-symmetric matrix. Hence, any estimated error
covariance matrix must be made symmetric before it
can be used in an NWP system. There are further limi-
tations of the diagnostic that can affect the estimated
error covariance matrix, for example, the simplifying
assumption of linear observation operators (Terasaki
and Miyoshi, 2014); the use of localisation in data
assimilation (Waller et al. 2017); and, in order to obtain
sufficient sample residuals it is often assumed that
uncertainties are ergodic, isotropic and homogeneous
(Todling, 2015). Because of these (and possibly other)
limitations of the diagnostic, error statistics estimated
using this methodology should be interpreted as indica-
tive, rather than necessarily quantitatively exact. Such
results have nevertheless proved useful to identify the
sources of observation and quality control errors
(e.g., Waller et al., 2016a, 2016b, 2019).

With our definitions of these various methods used
to estimate observation variances, in cases where
empirical estimates are costly to obtain (so are not
widely available nor updated frequently) the alterna-
tive methods of assumed and diagnosed estimates
(which are easier to obtain) may instead be being used
for the data assimilation of observations, for example,
aircraft temperature reports. We suggest, however, that
where empirical estimates are available they provide a
reasonable basis to assess the validity of assumed and
diagnosed estimates.

3 | EXPERIMENTAL METHODS

In this section, we give an overview of our experimental
design to diagnose an estimate of the observation uncer-
tainty for aircraft temperature reports obtained from
AMDAR and Mode-S EHS. In Section 3.1 we outline the
properties of the Met Office UKV NWP system and its
three-dimensional variational data assimilation system
(hereafter 3D-Var). The correction and selection of
AMDAR and Mode-S EHS observations is described in
Sections 3.2 and 3.3, and in Section 3.4, the 3D-Var used
to obtain the innovation and residual vectors for use in
the Desroziers et al. (2005) diagnostic method.

3.1 | UKV NWP system

The UKV NWP model is a limited-area, convection-
permitting model configuration (Lean et al., 2008; Tang
et al., 2013; Clark et al., 2016). At the time of this study
the operational configuration was as follows:

• The NWP forecast model used a horizontal grid length
of 1.5 km, 70 levels from the surface to the
stratosphere.

• Routine observations from a range of surface, upper-
air and satellite systems were assimilated (Ballard
et al., 2016).

• A two-stage quality control was used: (a) removal of
erroneous or invalid reports, (b) prior to assimilation
removal of reports that are not consistent with other
reports of the same type and reports whose probability
of gross error is greater than 0.5 (Ingleby and
Lorenc (1993) describes how this method is
implemented for incremental 3D-VAR).

• Initial conditions were obtained from an incremental 3D-
VAR scheme (Lorenc et al., 2000; Renshaw and
Francis, 2011). This system uses a first guess at appropri-
ate time (FGAT); a 3 km horizontal grid length; a latent
heat nudging scheme (Jones and Macpherson, 1997); and
boundary conditions obtained from the Global version of
the Met Office Unified Model (Davies et al., 2005).

• An adaptive grid (Piccolo and Cullen, 2011) in the ver-
tical was used, to resolve better boundary-layer fea-
tures such as temperature inversions.

• The model ran eight times per day, forecasting up to
36 hr ahead.

The configuration of the UKV used for our experi-
ment was the pre-operational parallel suite version
37 (UKV-PS37). For further details about the UKV model
configuration and its 3D-Var scheme see Milan
et al. (2019, section 3).

MIRZA ET AL. 5 of 11



3.2 | Observation bias correction for
aircraft temperature

The UKV routine pre-processing includes bias correction
for AMDAR temperature reports for specific reporting air-
craft (Ballish and Kumar, 2008). However, TMACH reports
are not bias-corrected since we found that the mean
observation-minus-background was close to zero for the
assimilated reports (Mirza, 2017, figure 7.10). Higher order
corrections, such as those discussed by Zhu et al. (2015),
could have been considered but were not available within
the UKV data assimilation system used for this study.

3.3 | Observation thinning and selection

Previous studies have shown that the practical use of
Mode-S EHS observations require thinning, removing
duplicate or redundant observations, prior to their data
assimilation (de Haan and Stoffelen, 2012; Lange and
Janjic, 2016). Therefore, short-run trials were conducted
to estimate the amount of data-thinning required. Our
metric was simply the number of iterations required for
the data assimilation to reach an acceptable level of con-
vergence prior to the NWP forecasting step. In our experi-
ments we used two methods: temporal thinning and
spatial thinning (Mirza, 2017). For temporal thinning,
the time-window for accepting observations is T ± Δt
minutes, where T is the data assimilation time, for exam-
ple, 0000, 0300, 0600 UTC, and Δt is the time window for
accepting observations. The default time window for
accepting observations is Δt = 90 min. The temporal
thinning could be applied separately to the different types
of aircraft-based observations. For our experiment, after
trial and error, the time window for accepting TMACH

reports was set to Δt = 30 min. The time window for
AMDAR was left at its default value, Δt = 90 min.

The spatial thinning grid-box dimensions were: 40 hPa
vertical depth and the horizontal dimensions at the surface
being 3.0 km in longitude and 3.0 km in latitude. The ver-
tical depth of 40 hPa corresponds approximately to the
vertical separation between aircraft flight levels (1,000 ft or
330 m) near the surface under International Standard
Atmosphere conditions (ICAO, 1993). The time difference
between reports within the grid box was 5 min. Spatial
thinning is applied to all available aircraft-based observa-
tions. If there was more than one aircraft-based observa-
tion type available within a grid box then the TMACH

observation was preferentially selected, and after that the
observation which is closest to the centre of a grid box was
selected. The motivation for this choice arose because for
the purposes of this study, our primary goal was to evalu-
ate the uncertainty of the TMACH data.

By these means the number of TMACH reports was
reduced to around 10% of those available, but this is still
around 20 times more than the available AMDAR. This
reduction is comparable to previous studies which used
Mode-S EHS reports (de Haan and Stoffelen, 2012;
Strajnar et al., 2015; Lange and Janjic, 2016).

3.4 | Innovation and residuals from
the UKV

For the UKV-PS37 data assimilation system, the assumed
background error covariance matrices were the same as
the existing operational suite (Ballard et al., 2016,
Figure 4). We used the UKV's assumed observation error
variances for both AMDAR and TMACH (see Figure 1).
We assumed that these were the same because we aimed
to obtain a configuration of the UKV-PS37 data assimila-
tion system that would be similar to the operational suite.
We also assumed that instrument errors for each
reporting aircraft are uncorrelated with each other.
Although this assumption may not be valid if there are
aircraft-type specific biases (Drüe et al., 2008) it is a rea-
sonable first approximation. Furthermore, most opera-
tional data assimilation systems assume that spatial
observations errors are uncorrelated. The data assimilation
system used, unless thinned, all the available TMACH

reports derived from Mode-S EHS received at Met Office
Mode-S EHS receiver sited at Thurnham (Stone and
Pearce, 2016). All AMDAR reports received over the UKV
domain were used. The reports used were collected
between 0300 2 January to 0600 January 8, 2015 UTC, and
were retrieved from the Met Office observations archive.

The UKV-PS37 was configured to initialize its run
from the operational analysis obtained 3 hr earlier at
0000 UTC. This was to allow the NWP model a short
spin-up time before starting to assimilate TMACH reports.
Moreover, the start time of the trial was chosen to allow
for the gradual increase in the number of available
TMACH reports. This is because there is minimal air traffic
operating within UK airspace between 2300 and 0500
UTC, other than aircraft transiting UK airspace at high
altitude (≈ 10 km).

At the end of each data assimilation cycle the dob and
doa for all observation types were stored for subsequent
processing using the Desroziers et al. (2005) diagnostic
method described in section 2.3.1.

4 | RESULTS

We noted in Section 1 that the accurate representation of
the observation uncertainty is important for the data
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assimilation process. In this section we compare the verti-
cal profiles of the Desroziers et al. (2005) diagnosed esti-
mates of observation error variances for AMDAR
temperature and TMACH from the UKV data assimilation
processing, shown in Figures 3 and 4, respectively, with
the empirical estimates shown in Figure 2 and the
assumed estimates shown in Figure 1. As noted in Sec-
tion 3.2, the diagnosed estimates of observation bias for
AMDAR temperature and TMACH were near zero so, for
clarity, these are not shown.

Figure 3 shows the vertical profiles for the assumed
and diagnosed estimates of observation error variances for
AMDAR temperature for the UKV. Firstly we see that the
UKV diagnosed profile is in good agreement with the
assumed profile between altitudes 2 and 10 km. The small
differences are probably due to the relatively short

sampling period used (5 days). The increase in uncertainty
above 10 km is probably due to the small sample of reports
at these altitudes since there are fewer AMDAR reporting
aircraft. The decrease in the observation uncertainty below
2 km is probably due to the time of year: the sampling
period included periods of calm conditions resulting in
temperature inversions so there would be little or no
low-level turbulence. For comparison, Figure 3 also
shows the assumed and diagnosed estimates for
COSMO-KENDA (Lange and Janjic, 2016), for which
similar conclusions may be drawn. Where the UKV and
COSMO-KENDA differ may be due to their differences
in their data assimilation processing, NWP model con-
figurations and time of year (2–8 January 2015 and 7–12
May 2014, respectively). Nonetheless, these results serve
to demonstrate how the Desroziers et al. (2005) diagno-
sis method can be used to check the consistency of
observation uncertainty estimates for a particular data
assimilation framework.

Figure 4 shows the vertical profiles for the assumed
and diagnosed estimates of observation uncertainty for
TMACH for the UKV. It is clear that the diagnosed esti-
mate is at least two times larger than the assumed esti-
mate, which is used for AMDAR temperature reports.
Furthermore, between the altitudes 2 and 10 km the
diagnosed estimate shows a decreasing trend with
increasing altitude. The increase in uncertainty above
10 km, again, may be due to fewer reporting aircraft.
However, the increase in uncertainty below 2 km is most
likely due to a combination of aircraft manoeuvres, flap
configuration (Drüe et al., 2008) and reduced precision of
the reported Mach number (Mirza et al., 2016). The shape
of the observation uncertainty profile is unlikely to be
affected by the assumed background error standard

FIGURE 4 Estimated UKV ( )

observation error for TMACH reports:

Assumed and diagnosed. For

comparison also shown are, (a) from

Figure 2, the empirical results for

aircraft vs research aircraft ( )

and (b) corresponding results for

COSMO-KENDA ( ) smoothed

Mode-S EHS reports (Lange and

Janjic, 2016)
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deviation since this does not vary greatly over the profile,
being between 0.4 and 0.6 K (Ballard et al., 2016, Figure 4).
For comparison, Figure 4 also shows empirical estimates of
the observation uncertainty from two different metrological
studies. The UKV diagnosed estimate shows good correspon-
dence with these metrological studies. We conclude therefore
that the Desroziers et al. (2005) diagnosis method indicates
that the assumed estimate of observation error variance for
TMACH used by the UKV is inconsistent with its diagnosed
estimate. This result is only indicative, we suggest a longer
study is needed to validate the result.

Figure 4 also shows the assumed and diagnosed esti-
mates of observation error variance of Mode-S EHS tem-
peratures for COSMO-KENDA (Lange and Janjic, 2016).
Here the Desroziers et al. (2005) diagnosed estimate is
consistent with the assumed estimate. Both these esti-
mates are also in close agreement with the UKV assumed
estimate for AMDAR temperature reports. A key differ-
ence between UKV and the COSMO-KENDA diagnosed
estimates of observation error variance is likely to be due
to the difference in the data used: the TMACH reports for
the UKV used unsmoothed Mode-S EHS reports
whereas COSMO-KENDA used reports that had been
smoothed using a low-pass filter based on linear regres-
sion (de Haan, 2011; Mirza et al., 2019); other key differ-
ences of COSMO-KENDA are its horizontal grid length
of 8 km, 30 vertical levels and a 40-member ensemble-
based Kalman filter to sample the NWP model back-
ground error covariance (see Lange and Janjic, 2016,
Section 3).

We conclude from these results that the close agree-
ment with the metrological studies gives confidence in
the quantitative values of the diagnosed standard devia-
tions in this study.

5 | SUMMARY

In this paper we used the Desroziers et al. (2005) diagnosis
method to compute new diagnosed estimates of the verti-
cal structure of the uncertainty variances for AMDAR and
TMACH temperatures, using the observation-minus-
background and observation-minus-analysis values output
from the Met Office UKV 3D-VAR. We compared the con-
sistency of these diagnosed estimates with those obtained
from previous studies.

We did this firstly by comparing assumed estimates
with corresponding empirical estimates of observation
uncertainty for AMDAR temperature reports. We then
used the Desroziers et al. (2005) diagnosis method to
obtain a diagnosed estimate of the AMDAR temperature
observation uncertainty for the UKV. We showed that the
assumed and diagnosed estimates are consistent with each

other. Secondly, we applied the Desroziers et al. (2005)
diagnosis method to TMACH reports, derived from Mode-S
EHS, to obtain a new diagnosed estimate of their observa-
tion uncertainty for the UKV. We showed that, in this
case, the assumed and diagnosed estimates were inconsis-
tent, the newly diagnosed estimate being two times larger
than the assumed estimate. Moreover, we showed that the
newly diagnosed estimate is consistent with corresponding
empirical estimates.

We noted in our introduction that there are very few
studies that have compared Desroziers et al. (2005)-type
observation uncertainty estimates with independent esti-
mates of the observation uncertainty. We have shown
that the Desroziers et al. (2005) diagnosis method is a
valuable tool for checking the consistency of the assumed
observation uncertainties and for estimating the observa-
tion standard deviation for use in an NWP system. Mirza
et al. (2019) showed that the variance of Mach tempera-
tures is reduced when a smoothing filter is used, so that a
reduction in the COSMO-KENDA values (Lange and
Janjic, 2016) relative to those in the UKV is appropriate,
given the different treatments of the data. However, as
has been shown, the magnitudes of the assumed errors
may be incorrect. Our analysis has been based on a short
case study. Hence, if TMACH reports are to be assimilated
in the UKV NWP system then the corresponding
assumed estimate of their observation uncertainty should
be investigated further.
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