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Abstract 

 

This PhD project aims to develop a novel polymer-drug conjugate (PDC) via free radical 

polymerisation for extended release and decreased permeation of p-menthane 3,8-diol (PMD) when 

applied topically onto the skin. The rational behind this was the volatile nature of PMD (evaporates 

quickly) and reports of the side effects associated with the topical absorption of the PMD. For this 

purpose, firstly hyaluronic acid (HA) was chosen as a polymer to conjugate PMD but despite 

exploring various synthetic strategies, and changing reaction parameters including the molecular 

weight, drug, reaction time etc, a conjugate could not be produced. After these initial attempts, an 

alternative route was selected for the PDC synthesis based on synthesis of polymerisable PMD 

conjugate and its subsequent co- and homopolymerisation. PMD was conjugated with acryloyl 

chloride via an ester bond to form acryloyl-PMD (APMD), which was subsequently copolymerised 

with acrylic acid (AA) to form a series of copolymers poly(AA-co-APMD). The copolymers were 

characterised by 1H NMR and FT-IR for their structural elucidation, which was then followed by 

molecular weight characterisation, thermal analysis by TGA and DSC, reactivity ratio studies, 

turbidimetric analysis and drug loading. The properties of these copolymers were affected by the 

molar ratios of AA and APMD, where the AA incorporation into the final copolymer was 3´ higher 

than the APMD. In order to assess the amount of drug (PMD) released from the copolymer, an in 

vitro experiment was performed by using porcine liver esterases (PLEs) to cleave the ester bond 

from the substrate (copolymer). It was found that ~45% of the drug was released over five days. To 

investigate the reason for the comparatively modest drug release, two experiments were performed 

to investigate the effect of copolymer molecular weight and enzyme activity on PMD release. It 

was found that molecular weight did impact on drug release whilst addition of fresh enzymes 

showed that ester bond cleavage was not limited by enzyme activity in our study. Penetration and 

permeation of the copolymer and free drug (PMD) through excised full thickness porcine ear skin 

was investigated. The Franz diffusion cell studies showed no permeation of the copolymer as 

compared to the PMD. Moreover, tape stripping revealed that almost ~90% of the copolymer was 

found on the outer surface of the skin as compared to PMD which was found in all the layers of the 

skin. A new model using planaria fluorescence assay was developed as a novel method to pre-screen 

potential irritants such as our copolymer or PMD.  The model was developed using a range of 

known skin irritants to include non-, mild-, moderate- and strong-irritants. The results showed that 

this model was able to successfully differentiate strong irritants from the non-irritants, whilst the 

other irritant classes also showed good correlation between the fluorescence intensity (FI) of the 
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planaria after irritant and then fluorescent dye exposure and the known literature primary irritation 

index (PII). This test demonstrated that that the copolymer is unlikely to be a significant irritant 

when applied topically. Overall, this project has demonstrated the feasibility of the copolymer 

approach as strategy to develop extended-release insect repellents whilst reducing transdermal 

permeation of the small molecular weight active ingredient and hence minimising any adverse 

systemic effects. 
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1.1 Introduction 

The skin is the largest and one of the most physiologically intricate organs in the human body, 

accounting for 15-16% of the total body mass and has a surface area of 1.7-2.5 m
2
. It is 

responsible for creating a barrier between the host and the external environment as well as the 

maintenance of homeostasis by permitting communication between the endo- and exogenous 

environments (Alberti et al., 2001; N'Da, 2014; Williams, 2003). 

The concept of polymer-drug conjugates (PDCs) began in 1950s, but it was in 1975 when 

Helmut Ringsdorf validated this approach as a mean of realizing drug targeting (Ringsdorf, 

2007). Since then, research in PDCs orientated around their application in cancer to achieve 

delivery of chemotherapeutic drugs to tumor tissues (Kopeček, 2013), with passive 

accumulation occurring by the enhanced permeability and retention effect (EPR) (Natfji et al., 

2017). Later, the application of this approach of conjugating drugs to polymers as carriers was 

extended to develop therapeutic systems for diseases other than cancers including infections, 

inflammation, cardiovascular disease, nervous system disorders, digestive system ailments, 

endocrine disease, eye infections, bone and wound-related problems (Pang et al., 2014). 

At present polymers are widely used in topical formulations, and serve as a vehicle for the skin 

formulations (Park et al., 2005). Selection of polymers depend upon the formulation type, 

ranging from polyethylene and polyacrylates in transdermal patches to thickening or gelling 

agents like cellulose in semisolid systems (Prausnitz and Langer, 2008). The most common 

polymers applied to skin are cellulose derivatives, chitosan, polyacrylates, hyaluronic acid, 

polyvinyl alcohol, polyvinyl-pyrrolidone and silicones. These polymers have varied functions 

in diverse applications from  wound dressings, to anti-nucleants in super-saturated systems and 

lubricants (Valenta and Auner, 2004).  

 

This chapter focuses on the application of PDCs for the skin rather than other routes, with a 

focus on the rationales and the key considerations that have underpinned their design (Table 

1, Table 2), with information summarised according to the therapeutic area. We finish the 

chapter with brief introduction about insect repellents with especial focus on p-menthane 3,8 

diol (PMD). 

 



 2 

1.2. Skin as a Potential Site for Drug Delivery 

The skin provides an approachable and convenient site for the administration of drugs and can 

be used for both topical and systemic drug delivery (Prow et al., 2011). Drugs are provided to 

various body parts by applying traditional hypodermic needles and metal lancets e.g., 

intramuscular and subcutaneous injections, which produce discomfort and can transmit various 

biohazardous pathogens like Hepatitis-C, HIV and now COVID-19 causing SARS-nCOV-2.  

The skin, on the other hand, offers potential for non- or minimally invasive drug delivery due 

to its large surface area and the trans-dermal route avoids the first-pass impact of the liver. 

Likewise, constant blood pharmacons (biologically active substances other than drugs) and 

drug concentrations can be achieved by the transdermal route, thus reducing variations of the 

drug concentration in the blood, reducing related harm and inefficacy. Additionally, ingesting 

difficulties and drug absorption complications in the gastrointestinal region can be bypassed. 

Due to many immune cells like macrophages, the skin presents potential for delivering different 

vaccines (van der Maaden et al., 2015).  However, the skin, and in particular the stratum 

corneum, presents a formidable barrier to passive absorption of most drugs.  

 

The skin comprises of three layers, the epidermis, dermis and hypodermis (Figure 1.1). The 

outermost layer of the skin is the epidermis which is approximately 180μm thick but is up to 

0.8mm on the hand palms and feet soles (Alkilani et al., 2015). Epidermis, depending upon the 

location is divided into 4-5 layers, from deep to superficial these layers are the stratum basale, 

stratum spinosum, stratum granulosum and stratum corneum, whilst the epidermis of the palms 

and feet consist of a fifth layer called stratum lucidum (Duracher et al., 2009). All these layers 

except the stratum basale consist of specialised cells called keratinocytes made up of a protein 

called keratin (van der Maaden et al., 2015). The stratum basale is the deepest layer of the 

epidermis which connects the epidermis with basal lamina, this is then followed by stratum 

spinosum which got its name due to the spiny appearance of the cells. This layer of the 

epidermis consists of specialised macrophages called Langerhans cells (Honari and Maibach, 

2014). Next layer is the stratum granulosum which got its name from the grainy appearance of 

the cells. Due to the death of the cells of this layer, it gives rise to another layer called stratum 

lucidum, which is a smooth layer of the cell located in between the stratum corneum and 

stratum granulosum. This is then followed by the uppermost layer of the epidermis called 

stratum corneum (SC) which helps to prevent the penetration of the microbes and keep the skin 
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hydrated. The SC is dead, anucleate and so the underlying epidermal layers are sometimes 

referred to as the viable epidermis to distinguish this from the overlying barrier layer (Delgado-

Charro, 2013; Hadgraft and Valenta, 2000; Piérard et al., 2003). 

 

Epidermal layers are site for various diseases (and hence a potential drug delivery site) like 

psoriasis (a disease of stratum basale), atopic dermatitis (associated with depletion of SC lipids) 

(Sahle et al., 2015) and different bacterial and fungal infections (Edlich et al., 2005; Mueller et 

al., 2002). Most of these epidermal diseases, e.g. psoriasis, rosacea, allergic reactions due to 

food, eczema result in the disruption of the SC (Alkilani et al., 2015) and thus should be a point 

of consideration whilst designing the drug delivery system for these diseases. 

 

Underneath the epidermis is the dermis which is typically ~2000μm thick (Figure 1.1).  The 

dermis contains blood vessels,  hair follicles, nerves, nociceptors (pain-sensors), connective 

tissues (collagen and elastin), lymph vessels, sebaceous and sweat glands (Abdo et al., 2020; 

Barcaui et al., 2015; Kolarsick et al., 2006; van der Maaden et al., 2015). Approximately 2.5 

million sweat glands regulate body’s temperature by producing sweat.  The sebaceous glands 

are mostly located on the forehead, scalp and face, and are moderately prominent on the upper 

trunk and secrete sebum which regulate pH and keep the skin moist (Benson, 2012; Rossi et 

al., 2009). Hair follicles are found almost all over the skin with varying densities except on the 

hands, feet and lips. Dermis is a disease site for the diseases like cellulitis, acne vulgaris 

(Boulanger, 2007), fibromatosis (Lebwohl et al., 1990), benign fibrous histiocytoma and 

dermal changes (premature wrinkling) in aging. Moreover, the hair follicles in the dermis offer 

a potential route for non-invasive transdermal drug delivery (Patzelt and Lademann, 2013). 

 

Below the dermis is hypodermis which connects the skin to underlying fibrous tissues of the 

bones and the muscles. The border between the hypodermis and the dermis is difficult to 

distinguish. By some, it is not considered strictly as a part of the skin. Hypodermis is a site for 

various skin infections (Paul, 2020).   
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A 

 

B 

Figure 1.1. Illustration representing A) Possible drug delivery routes into and through 

the skin, image adapted from (Williams, 2003) B) Microanatomical configuration of 

Human skin  
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One other important characteristics of human skin is the presence of various enzymes such as 

alcohol dehydrogenase, aldehyde dehydrogenase, Cytochrome P-450 and carboxyl esterases. 

These enzymes act as a first line of defence against foreign substances by transforming and 

thus helping in excretion or elimination of these harmful substances. Moreover, these enzymes 

has been utilised in the drug delivery and various studies have exploited these enzymes as a 

mean for extended as well as the controlled drug release ( Lau et al., 2012; Mizukami et al., 

2017; Pyo and Maibach, 2019). Due to considerable number of cells, the skin retains a 

biotransformation activity equal to approximately one-third of the liver, therefore, the skin is 

an important organ with an elevated enzyme activity and is suitable for designing delivery of 

dermally controlled medications (Alkilani et al., 2015). 

1.3.Polymer-Drug Conjugates 

1.3.1. An Overview 

Since the ground-breaking efforts of Hermann Staudinger (Staudinger, 1920), polymer science 

has substantial impacted on humanity in numerous areas, both positively and negatively with 

over 400 million tons of plastics manufactured yearly world-wide since 2015. Due to rapid 

advances in synthetic instruments and knowledge of biomolecular composition and 

performance, polymer bioconjugates are seen not only in biomedical applications, but can also 

provide inventive concepts in other materials sciences. Different chemistries for site-specific 

conjugation, distinct methodologies to standardize the size, topology, distribution, and role of 

the polymers, alongside adjustable exploitation of bioconjugate structural design were 

introduced. Recent  innovations in polymer bioconjugates focus on nucleic acids, proteins, 

lipids, carbohydrates and even living cells (Chen et al., 2009; Webber et al., 2016).  

 

Since Ringsdorfs early work (Ringsdorf, 1975), extensive research has been reported using 

polymer drug conjugates as drug delivery systems (DDS) for various purposes, starting from 

cancer therapy and later on extending to the treatment of inflammatory, infectious and 

cardiovascular diseases (Larson and Ghandehari, 2012). The polymer is often used as an “inert” 

carrier for covalently bound drug molecules, though in some cases the polymer itself may also 

have some functionality in drug targeting. The benefits of  drug conjugation to polymeric 

transporters, for instance polyethylene glycol (PEG), include improved drug solubilization, 

decreased immunogenicity, controlled drug release, drug targeting, extended circulation, and 

enhanced safety (Ekladious et al., 2019). 
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Polymer-drug conjugates (Figure 1.2) can be regarded as polymer-based prodrugs and are often 

used to improve aqueous solubilization of various drugs, and consequently enhance bio-

accessibility. Polymer-drug conjugate drug delivery system commonly contains a 

biocompatible water-soluble polymer backbone to which a hydrophobic drug moiety is linked 

directly or via a biological responsive linker (“spacer”) (Kim et al., 2012). The spacer is 

typically a ‘bio-reactive’ chemical bond, implicating that it undergoes dissociation in a 

biological setting. These bio-conditions can be in the form of chemical, i.e., change in pH or 

the presence of enzymes such as esterases, lipases or proteases. The selection of the spacer is 

thus dependent on the desired site of action and the physiological conditions of the part of the 

body where delivery of PDC is intended (Seifu and Nath, 2019). 

 

  

Figure 1.2. Schematic description of PDCs. Figure adapted from (Natfji et al.,2017) 

 

On the basis of architecture, there are four common types of PDCs namely linear polymers, 

dendrimers, polymeric micelles and polymeric nanoparticles (Figure 1.3). Examples of linear 

PDCs include polyethylene glycol e.g., N-(2-hydroxypropyl) methacrylamide (HPMA) 

copolymers used in various lysosomally-cleavable PDCs e.g., peptide-polymersomes 
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modernized with anti-EGFR antibody for systemic cancer therapy. Dendrimers are branched 

polymers having star like structures which provides multiple sites for drug conjugation onto 

their surfaces, hence increasing the chances of biological interactions. The most widely used 

dendrimers are poly-amidoamine (PAMAM), polypropylene imine in brain diseases, poly-aryl 

ether dendrimer, and biodegradable poly-lysine dendron in ocular drug delivery. Another form 

of the PDCs are polymeric micelles; these are amphiphilic macromolecules, that in aqueous 

medium form micelles. Examples includes polysorbates and sodium dodecyl sulphate, used as 

a permeation enhancer in transdermal drug delivery. Similarly, polymeric nanoparticles are 

soft colloidal structures in the range 10-1000 nm. They can be synthesised from various 

degradable and non-degradable polymers; examples include but are not limited to hyaluronic 

acid (HA) for targeting cell surface receptor CD44 and chitosan used to entrap nucleic acids 

(Feng and Tong, 2016; Yu et al., 2013) 
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Figure 1.3. Different types of PDCs 

1.3.2. Mechanism of Action of Polymer-drug Conjugates 

Polymers present exceptional and multipurpose opportunities for  drug delivery, and can be 

“bio-tailored” for therapies such as medical appliances, implants, and application of polymer-

drug conjugates, whilst synthetic polymers have been used to aid delivery of therapeutic small 

molecule drugs  the full benefits of polymer-based drug delivery has not yet been realised 

(Joralemon et al., 2004). Presently, effective uptake of polymeric systems by different isolated 

cancer cell lines persists as a major challenge, predominantly because many of the 

biocompatible polymers are highly hydrophilic with a neutral surface charge, and hence with 

low affinity to plasma membranes.   To mitigate this challenge, ligand alteration and stimuli 

reaction site-specific moieties have been shown to and increase intracellular uptake of the 
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copolymer-drug conjugates, shown by utilizing HPMA-copolymer anticancer drug 

conjugates (Pang et al., 2016).  

 

Recent investigations have led to dynamic release systems, which contain sustained release and 

site-specific targeted drug delivery. Pharmaceutical nanobiotechnology seeks to combine both 

the diagnosis and therapy of diseases using varied drug delivery vehicles e.g.,  liposomes, 

polymeric nanoparticles, niosomes, and curative polymers as “smart,” biocompatible systems 

(Mogoşanu et al., 2016). 

 

For therapeutic impact, a drug must interact with or bind to its target. The bulk (60%) of drug 

targets are proteins stationed at the plasma membranes of various cells. In addition to plasma 

membrane intracellular proteins, ribosomes or DNA are other targets for delivering drugs. An 

ideal PDC should release the drug only at the target location. In the case where an active drug 

target is extracellular, then delivery is relatively easy. Where the drug target is in cytosol 

(intracellular) and the polymer delivery system can easily enter, then drug will be released 

intracellularly. However, if the conjugate does not have the ideal properties to enter a cell where 

the target site may reside, then drug release may be extracellular, but the drug will then need 

to enter the cell and diffuse to its target site.   Fortunately, due to different biochemistry of the 

environment outside (extracellular) and inside of the cells (cytosol), designing and creation of 

linkage between the drug molecule and  polymer that break down under particular conditions, 

control of the drug release site is possible (Borke et al., 2018) 
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Figure 1.4. Illustration showing PDCs drug delivery mechanism to a cancer stem cell 

 

Dependent on the pathophysiology of the target site, the design of PDCs and the mechanism 

of drug release can be tailored as summarised in Table 1.1. 

 

Table 1.1. Rationale for Polymer-Drug Conjugate Design 

Rationale Mechanism of Action Examples 

Controlled and Sustained 
Drug Delivery 

 pH-dependent release HPMA-copolymer Anticancer drug 
conjugates (Pang et al., 2016) 

Release and Enhanced 
Drug Targeting 

 Enzyme-dependent release Tragacanthin-tyramine conjugate 

(Lett et al., 2019) 

  Receptor-mediated      
activation. 

HA-Growth hormone conjugate (Yang 
et al., 2012) 

  Tissue affinity PEG-Adenovirus conjugate 

(Kim et al., 2011) 

  Targeting by increase of 
vasculature 

HPMA-Doxorubicin (Etrych et al., 
2008) 
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Increased water solubility Linking to a water-soluble 
polymer 

8-Aminoquinoline-HPMA conjugate 
(Nan et al., 2001) 

Enhanced stability and 
prolonged half-life (t1/2)  

Reduced renal filtration                PEG-vancomycin conjugates 
(Greenwald et al., 2003) 

  Reduced enzymatic 
degradation 

Sodium-carboxymethylcellulose–
Bowman–Birk conjugate (Marschütz 
and Bernkop-Schnürch, 2000) 

Combination therapy   Polymer and drug have 
therapeutic effects. 

Polyacetal-curcumin conjugate 
(Requejo-Aguilar et al., 2017) 

  Loading two drugs 
simultaneously.  

PGA-paclitaxel+ carboplatinum 
conjugate (Vicent and Duncan, 2006) 

Localised 
effect                               

 Prevention of Blood- Brain 
Barrier penetration 

PEG-haloperidol conjugate (Natfji et 
al., 2020) 

 

1.3.3. Advantages of Polymer-Drug Conjugates 

PDCs offer numerous advantages over traditionally used micro and macromolecule 

formulations including improved solubility and stability in aqueous medium, precise (or rather 

more precise) delivery and an improved pharmacokinetic profile (Zhu et al., 2014). The 

principle difference between other polymeric systems and polymer-drug conjugates is that in 

the later, one or more drug molecules can be linked to a single polymer chain through a linker, 

a spacer or a drug may be directly attached whereas the other polymeric carrier  systems only 

physically encapsulate the drug (Maeda et al., 2001; Pan et al., 2014; Pang et al., 2016). PDCs 

thus possess, and can have tailored, suitable physico-chemical properties (Figure 1.4) to: 

 (1) Increase in water solubility of poorly water-soluble drugs, i.e., by attaching the drug 

to a linear polymer like PEG, which also helps in the rapid excretion of the drug from 

the body.  

(2) Protect the drug from deactivation or degradation e.g., PEG-protein conjugates.  

(3) Improve in the pharmacokinetic profile of the drug, such as prolonging its 

circulation before elimination  

(4) Decrease an immune response to a drug.  
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(5) Allow site-specific targeting of the drugs such as with the EPR effect for tumours.  

(6) Enhance therapeutic outcomes by either attaching two drugs on the same polymer 

chain or where both polymer and the drug have synergistic activity.  

(7) PDCs due to their unique nature are more resistant to the efflux mechanism 

employed by the multidrug resistance bacteria (Pang et al., 2013). 

 

 

1.3.4. Synthesis and Characterisation of Polymer-Drug Conjugates 

 

For the synthesis of PDCs, various methods are used, among which there are two most widely 

used routes; 1) conjugation of the polymer with the drug, 2) polymerisation of the monomer 

drug conjugate to form homo or copolymer, 3) Polymerizable drug. For conjugation of the 

polymer with the drug, different methods are used, the most common is the coupling method. 

This method involves the use of activating agents like N-hydroxysuccinimide esters (NHS), or 

carbodiimides (Hamley, 2014). Another method used for the conjugation of drugs with the 

polymers is the click coupling reaction (a reaction involving high grafting efficiencies) where 

low to medium size (molecular weight) polymers are conjugated with the drugs. Major 

disadvantage of this method includes relatively lower drug loading (Zolotarskaya et al., 2015). 

Similarly, an alternate route for the synthesis of PDCs is the polymerisation of the monomer 

drug conjugate with itself (homopolymer) or with another monomer (copolymer). For this 

purpose, various methods are used, namely, free radical polymerisation, ring-opening 

polymerisation, reversible addition-fragmentation chain transfer polymerisation (RAFT) 

reaction etc. The selection of these method depends upon the requirement, i.e. molecular weight 

and polydispersity index (PDI) etc. Amount of drug loaded can be controlled by the molar ratio 

of the feed mixture whilst the drug release can be controlled by the selection of a rational linker 

in between the drug and the monomer. Disadvantages of this method include uncontrollable 

and inconsistent side conjugation with the polymer backbone whilst the advantages include 

better drug loading than the conjugation of the drug to the polymer backbone (Hasirci et al., 

2017; Nicolas, 2016). Similarly, third method to synthesise a PDC is the use of a polymerizable 

drug, for example 10-hydroxycamptothecin. The use of this strategy includes advantages like 
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better drug loading, whilst disadvantages include; not many drugs fit for such category, 

moreover, as most of these drugs are polymerised through the polycondensation route, so this 

chemistry does not yield high molecular weight polymers. In addition, introduction of 

responsive functional groups is not easy and requires complex chemistry (Feng and Tong, 

2016).  In order to investigate the structure and properties of the PDCs various techniques are 

used, few of them are NMR, FT-IR, UV, TEM, GPC and thermal analysis (Chang et al., 2012). 

 

Figure 1.5. Synthetic strategies for the synthesis of PDCs. Illustration adapted from (Feng 

and Tong, 2016) 

 

1.4. Applications of Polymer-Drug Conjugates for Skin Drug Delivery 

Traditionally PDCs have been used in chemotherapy to optimise the drug delivery profile and 

reduce the adverse drug reactions (ADRs) by exploiting the EPR effect. Till now, there is only 

one commercial example of PDCs which is MovantikRx (a PEG-Naloxol conjugate) used to 

treat opioid induced constipation and is given orally. Beside this, PDCs have also been used 

for other indications including cardiovascular diseases, nervous system diseases and endocrine 

system diseases etc mostly delivered via intravenous route.  Here, we focus on topical 
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application of PDCs.  This may initially appear somewhat counterintuitive as skin is a well-

established effective barrier to drug delivery, and only relatively small molecular weight 

(typically <500 Da) and lipophilic molecules can be delivered to or through the skin to 

therapeutic levels.  However, this is advantageous where the drug to be conjugated should 

remain at the skin surface and not permeate, perhaps where surface action or release at the skin 

surface is desired (as with insect repellents described below), or for use where the skin barrier 

is compromised in conditions such as psoriasis or for wound healing.      

1.4.1. Polymer-Drug Conjugates in Wound Healing  

Wound healing is a complicated, biochemical, molecular and cellular activity including 

inflammation, propagation, and movement of different cell types, resulting in tissue rebuilding 

and transformation as shown in Figure 1.6. This activity is accelerated or hampered by matrix 

production, collagen accumulation, neovascularization, re-epithelialization and formation and 

differentiation of various cells and the interplay with growth factors and cytokines. The 

prominent growth factors which are important modulators of wound healing include fibroblast 

growth factor (FGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), 

transforming growth factor (TGF), epidermal growth factor (EGF) and vascular endothelial 

growth factor (VEGF). The ultimate result of this cellular-molecular cross talk results in tissue 

repair that affect chemotaxis and promote mitosis of inactive cells which then lead to 

angiogenesis (Barrientos et al., 2008; Singer and Clark, 1999).  
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Figure 1.6. Illustration representing the wound healing process a) Beginning of 

homeostasis by the release of erythrocytes and platelets to form a clot, b) Activation of 

platelets by thrombin resulting in the release of growth factors, i.e. EGF, PDGF to attract 

neutrophils and macrophages, c) Fostered by the proangiogenic factors like FGF, there 

is formation of the new blood vessels and capillaries, d) Re-epithelization phase 

characterised by the gradual appearance of the newly formed collagen. 

Wound healing is a highly synchronised process and depends on signalling pathways within 

the cell. Substantial progress has been made in the identification of these signalling molecules 

and the underlying mechanism in both the healthy and diseased states. As a result, there has 

been a significant interest in using these signalling pathways for better therapeutic outcomes, 
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i.e., healing or facilitating the healing process that may otherwise not occur naturally. An ideal 

drug delivery system (DDS) for wound healing would have the following characteristics:  

(1) It should maintain its therapeutic activity throughout the wound bed,  

(2) It must prevent rapid dilution in the wound and associated systemic uptake,  

(3) It would facilitate the release of the drug within the wound at relevant therapeutic 

rate and duration, and  

(4) It would increase the water solubility and stability of the drug (Rădulescu et al., 

2016).  

One approach to achieve the above is the use of PDCs. 

 

Acidic fibroblast growth factor (aFGF), a protein that activates division in the cells of 

mesodermal and neuroectodermal origin, exhibits biological activity in wound healing by 

stimulating the proliferation of fibroblasts and promoting angiogenesis, resulting in wound 

healing. However, use of aFGF is limited due to its instability and short half-life. To address 

these problems Huang and the coworkers reported conjugation of PEG with recombinant 

human acid fibroblast growth factor (rhaFGF) by the site specific PEGylation of rhaFGF with 

mPEG-butyraldehyde (20KDa). The obtained product was purified by using Sephadex-G 25-

gel filtration. In vivo immunogenecity was significantly decreased whilst the in vivo half life 

was significantly elongated, due to which wound healing was much quicker when BALB/c 

mice were treated with PEGylated rhaFGF as compared with the treatment alone with rhaFGF 

(Huang et al., 2011). It was concluded that this was due to the better thermal activity at 

physiological temperature and an improvement in half-life as seen by other researchers 

(Papanas and Maltezos, 2007). 
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Figure 1.7. Illustration showing the synthesis and the advantages of the PEGylated 

rhFGF 

 

In another study Choi et al. (2012) reported the successful conjugation of low-molecular weight 

protamine (LMWP) with recombinant epidermal growth factor (rEGF) to form a rLMWP-EGF 

conjugate. Conjugation was achieved by linking a highly positive charged protamine molecule 

to the n-terminal of EGF and was used to treat diabetic and burn wounds. In both cases, in vitro 

results showed well-preserved cell proliferation activity of the conjugate. Moreover, after the 

application of this conjugate onto the skin of BALB/c mice, the in vivo results showed that as 

compared to controls, i.e. EGF alone, the physical mixture of EGF and LMWP and the 

conjugate itself. The results (Figure 1.9) showed that the conjugate permeability into the mice 

skin was 11 times higher than the free protamine and was responsible for the quicker wound 

closure. These experiments suggest that topically applied conjugate of protamine with EGF 

(rLMWP-EGF) has the potential to be used in diabetic wounds as shown in Figure 1.9 b and c. 
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a)                                                                     b&c) 

Fig 1.8. In vitro permeation through the artificial skin constructs. (a) Time-course of 

cumulative concentrations of epidermal growth factor (EGF) and EGF covalently 

conjugated with low-molecular-weight protamine (LMWP), transactivating 

transcription activator (TAT), and oligo-arginine (R7). Effect of epidermal growth factor 

(rEGF) or low-molecular-weight protamine (LMWP) conjugated EGF (rLMWP-EGF) 

on wound area reduction in the full thickness model. (b) Percentages of wound area were 

measured for 10 days. (c) Lower panels provide typical wound images. The data are 

plotted as mean ± standard deviation (n = 4). *p < 0.05 vs. EGF. **p < 0.05 vs. TAT-EGF 

(Choi et al., 2012). 

 

In an alternative wound repair model, Requejo-Aguila et al. (2017) applied PDCs for spinal 

cord injury (SCI); curcumin, a natural anti-inflammatory, was conjugated to polyacetal (PA) 

in order to increase its water solubility and stability and provide controlled release of the 

drug.  In vitro studies showed pH-dependent release of the drug, i.e., curcumin with increasing 

release at acidic pH.  In vivo studies using Sprague Dawley rats revealed that a single 

administration of the conjugate produced a significant increase in motor activity due to the 

various factors among which top of the list is the elongation of the axon due to the inhibition 

of Rho kinase enzyme. Other factors included a decreased volume of cavitation, decreased 

astrogliosis (glial scar formation) and increased number of neurons fibres after the injury as 

compared to controls or PA as shown in Figure 1.10. Notably, the conjugate treatment offered 

a neuroprotective effect supplemented by reduced levels of apoptosis and inflammation. The 
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combined therapy of PA-curcumin and ependymal progenitor (epSCi) improved functional 

recovery from chronic spinal injury, with a notable reduction in scar area. 

Figure 1.9. Illustration showing the synthesis PA-Curcumin conjugate, and the 

mechanism by which the PDC heals the spinal wound 

Hatanaka et al. (2019) assessed biocompatible polymeric nanosheets for topical and 

transdermal drug delivery by using two-dimensional nanostructures. Their sheets properties 

included high transparency, elasticity, and glueyness. Betamethasone valerate (BV) was used 

as a model drug conjugated to poly (L-lactic acid) or poly (lactic-co-glycolic) acid.  Films were 

constructed by a spin-coating-assisted layer-by-layer technique utilizing a water-soluble 

sacrificial tissue/membrane. These fabricated formulations had higher incorporation and 

release of BV as compared to a commercial ointment and controlled-release membranes 

enabled application to any area of skin for an extended period. The auditors reported that this 

bio-friendly polymeric nanosheet preparation offers a novel and encouraging topical and 

transdermal drug delivery system for pharmaceutical or cosmetic uses including the usage as a 

dressing for the wounds. 
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1.4.2. Topical Conjugates for Local Anaesthetics 

 

Pain management, whether acute or chronic, is a substantial clinical challenge requiring both 

pharmacological and behavioural (e.g. cognitive behavioural therapy) interventions. Local 

anaesthetics disrupt neural transmission by preventing the influx of sodium ions via ionophores 

inside neuronal tissues and are commonly applied to manage post-surgical pain and for acute 

and chronic pain therapy. A range of methodologies are presently applied to extend the duration 

of local anaesthetics, but long term sustained neuronal obstruction (e.g. for >24 hrs) remains 

elusive.  Whilst local anaesthetics have been extensively used in clinical practice,  due to their 

toxicity and short half-lives their benefits are limited and hence are the target of multiple 

research groups attempts to develop innovative  drug delivery systems such as microparticles, 

liposomes, niosomes and nanoparticles (Becker and Reed, 2012). 

 

Hyaluronic acid (HA) is a non-immunogenic polysaccharide naturally found in valves of heart, 

vitreous humour of the eyes, synovial fluid and extracellular matrix. Due to its 

biodegradability, bio-similarity and viscoelastic traits, HA has been extensively used in 

numerous therapeutic products (Abduljabbar and Basendwh, 2016).  One of the important 

drugs used as anaesthetic is bupivacaine (BUP), but its usage has got limitations due to its short 

duration of action. As discussed in Table 1.1, one of the major advantages of the PDCs is the 

increased half-life of the drug.  Thus, by keeping this into consideration Gianolio et al. (2005) 

conjugated BUP to the HA derivative, Hylan B particles; in vitro  BUP drug release was 

extended to ~100 hours  from HA-BUP particles, substantially higher than that of free BUP 

showing approximately 5 hours (Figure 1.10). This translated to extended in vivo efficacy 

where HA-BUP demonstrated a twenty-fold lengthier block time in weakening motor nerve 

functions, as compared to free BUP.  



 21 

 
Figure 1.10. Figure showing the cumulative release of BUV from the PDC over the period 

of time (Gianolio et al., 2005) 

 

Polylactic acid (PLA) polymerized from lactic acid is a multipurpose material, primarily 

utilized for biodegradable goods such as plastic bags and containers. PLA was conjugated to 

bupivacaine (BUP) and was used as a delivery system to lengthen percutaneous response of 

superficial neurons. Another anesthetic lidocaine (LID) was coated onto poly-L-lactide-

polylactic acid (PLLA) microneedle arrays. Dip-coating permitted LID to only cover the needle 

tips and substantially decreased painkiller loss, so this drug delivery system prolonged the 

duration of anesthesia (Baek et al., 2017). 

 

Among the recombinant proteins, polypeptides are engineered genetically from various cell 

types. Covalent bonding of the peptide and drug via a cleavable linker produces peptide-drug 

conjugates which have been evaluated as drug delivery system. Among these systems, 

transcriptional trans-activator peptide (TAT), is a well-established peptide. Wang et al. (2013) 

produced a liposomal formulation using lidocaine loaded TAT-peptide-conjugates for 

transdermal delivery of the lidocaine. The formulation was tested for its stability and 

encapsulation efficacy, showing better stability and encapsulation efficacy (80.05 ± 2.64%) as 

compared to the conventional liposomal formulation (CLs). In vivo experiments using BALB/c 
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mouse skin penetration of the fluorescent dye calcein (also called as fluorexon) encapsulated 

in liposomes and TAT-conjugated liposomes delivery vehicles showed that the conjugated 

formulation had improved skin permeation, i.e. 4.17 and 1.75 times higher than the LID 

solution and LID-CLs (shown in Figure 1.11) as well as the stability in the mouse model. This 

better permeability profile can be attributed to the TAT, as it is a well-known cell-penetrating 

peptide that can increase the skin delivery of drugs. 

 

Figure 1.11. Figure showing the permeation profile of the Lidocaine from the PDC (Wang 

et al., 2013) 

 

Leu-enkephalin (LENK) is an endogenous opioid peptide neurotransmitter with an amino acid 

sequence of Tyr-Gly-Gly-Phe-Leu.  It is naturally occurring in the brains of several organisms, 

including humans and has been identified as a promising painkiller. It is considered as a strong 

anaesthetic attributed to its strong affinity towards the δ -opoid receptors, however, its 

utilization is restricted due to its instability in the plasma and transport across the BBB. In order 

to address these problems, Feng et al. (2019) conjugated LENK with squalene assembling the 

conjugate to form nanoparticles. In vivo studies using rats with carrageenan-stimulated paw 
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oedema resulting in hyperalgesia (extreme sensitivity to pain) to mimic human pain evaluated 

the therapeutic activity of the formulation. The anti-hyperalgesic impact of LENK-SQ 

nanoparticles was twice as long as that of morphine. Fluorescent images showed the 

biodistribution of the formulation in the rat model paw oedema where, in contrast to LENK 

alone, the majority of the conjugate was observed at the site of application, i.e., is an inflamed 

paw, with relatively little  accumulation within the rat’s brain so overcoming the problems 

linked with the use of the peptide (LENK) only. 

 

 

Figure 1.12. Antihyperalgesic effects of acute treatment with morphine (A and B), 

LENK-SQ-Diox NPs (C and D), LENK-SQ-Dig NPs (E and F), and LENK-SQ-Am NPs 

(G and H) in λ-carrageenan–induced inflammatory pain injected rats. Administration of 

morphine, LENK-SQ NPs, Nal, Nal-M, LENK, blank SQ NPs, or dextrose solution 

(vehicle) was performed (arrows, 0 on abscissa) 3 hours after λ-carrageenan injection into 

the right hind paw. Morphine (A), LENK-SQ-Diox NPs (C), LENK-SQ-Dig NPs (E), and 

LENK-SQ-Am NPs (G) induced an increase in PWL (in seconds, means ± SEM of 
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independent determinations in five to nine animals per group) in the Hargreaves test. 

*P < 0.05, **P < 0.01, ***P < 0.001, compared to dextrose solution or LENK 

solution; ###P < 0.001, compared to morphine; $P < 0.05, $$P < 0.01, $$$P < 0.001, 

compared to LENK-SQ NPs. Two-way analysis of variance (ANOVA) with repeated 

measures, Bonferroni post-test. Nal or Nal-M was administered 15 min before morphine 

or LENK-SQ NP injection. Basal on abscissa: Control (naïve) rats (before λ-carrageenan 

injection). (B, D, F, and H) Bars are the means ± SEM of AUCs (seconds × minutes) of 

the cumulative durations derived from the time course changes (A, C, E, and G) in PWL 

after the various treatments. *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA, 

Tukey post-test, compared to dextrose (vehicle) or LENK solution; $P < 0.05, $$P < 

0.01, $$$P < 0.001, compared to LENK-SQ NPs (Feng et al., 2019). 

 

 

Figure 1.13. (A) Biodistribution of fluorescent LENK-SQ-Am NPs in mice with inflamed 

right hind paw. (B) Biodistribution of fluorescent LENK-SQ-Am NPs in mice with non-

inflamed hind paw (saline injected only into the right hind paw). (C) Biodistribution of 

free dye in mice with inflamed right paw. (D) Zoom of group A at 2 hours. (E) Zoom of 

group B at 2 hours. (F) Quantitative analysis of the paws with the same region of interest 

(ROI). R, right hind paw; L, left hind paw (Feng et al., 2019). 
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1.4.3. Polymer-Drug Conjugates for the Treatment of Psoriasis 

Psoriasis (Greek psōriasis, from psōra ‘itch’and psōrian ‘have an itch’) is an inflammatory 

chronic illness facilitated by the immune system with a primarily cutaneous contribution. 

Psoriasis is a lifelong autoimmune disease exemplified by patches of abnormal skin. Affected 

sites are normally red, purple on certain individuals with darker skin, itchy, dry, and encrusted. 

Psoriasis coverage varies from discrete patches to full body coverage. Clinical phenotypes of 

psoriasis are described by the appearances of the disease, patient age at disease commencement, 

degree of coverage and morphology (Raychaudhuri et al., 2014). Plaque psoriasis is the most 

common form of psoriasis which has encrusted (scaly) skin, erythematous plaques, and 

inflammatory cell infiltration (Nestle et al., 2009). It also affects nails, skin and joints, is a 

persistent, agonizing, disfiguring and immobilizing noncommunicable disease (NCD) for 

which there is no appropriate remedy. It adversely effects the quality of living, most common 

among 49-69 years old with a registered prevalence rate of 0.09%  to 11.4% in the world, 

making it a significant health concern (Rendon and Schäkel, 2019; WHO, 2016). 

  

Common first line therapy for psoriasis uses corticosteroids but as the condition resolves and 

the stratum corneum barrier reforms, then decreasing amounts of the drug are delivered at the 

target site. Retention of corticosteroids  within the epidermis can manage skin inflammation, 

erythema and scaling linked with psoriasis, whilst preventing potential side effects associated 

with oral delivery. Dolz-Pérez et al. (2020) used both in vitro and ex vivo assays to show that 

a poly-L-glutamic acid (PGA)-fluocinolone acetonide (FLUO) conjugate (PGA-FLUO) 

suppressed pro-inflammatory cytokine (TNF-α, IL-1β, IL-6, IL-10) released by the leukocytes, 

suggesting this system for the treatment of psoriasis. Furthermore, PGA-FLUO was shown as 

a reservoir within the epidermis by employing ex vivo human skin permeation studies with 

confocal microscopy; negligible conjugate was seen in the dermis, suggesting a reduced 

likelihood of FLUO entering the systemic blood circulation. PGA-FLUO applied within a 

hyaluronic acid (HA)-poly-L-glutamate cross polymer (HA-CP) vehicle successfully 

decreased psoriasis-linked phenotypes in an in vivo mouse model of human psoriasis with 

minimum pro-inflammatory cytokines in body tissue and blood serum. Together, the results 

show that the conjugate combined with a HA-CP penetration enhancer could be an effective 

topical therapy for psoriasis. 
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Figure 1.14. A) Illustration showing the synthesis and the permeation of the PDC, B) 

Histological analysis of mouse tissues after five days of anti-psoriatic treatment in an 

IMQ-induced skin inflammation model. The images demonstrate a marked reduction of 

the epidermal thickening in the group treated with PGA-FLUO compared to free FLUO. 

One representative picture is shown for each treatment regimen (Dolz-Pérez et al., 2020) 

 

Topical anti-inflammatory medications with inadequate percutaneous penetration is a major 

reason restricting their use in psoriatic skin. Although curcumin has demonstrated effectiveness 

in the treatment of psoriasis, its permeation through the stratum corneum remains  a main 
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obstacle to transdermal delivery. Mao et al. (2017) used skin-permeating nanoparticles to 

enable delivery of curcumin to the lower skin layers. Polymeric nanoparticles were synthesized 

from an innovative amphiphilic polymer called RRR-α-tocopheryl succinate-grafted-ε-poly 

lysine conjugates with a diameter of 25.45 nm and a positive Zeta potential of 19.65 mV. The 

particles were evaluated in mouse skin in vivo, (it should be noted that mouse skin is a relatively 

poor and fragile model of human skin). Curcumin was effectively encapsulated in the 

polymeric nanoparticles with an encapsulating efficiency of 78.45%. To prolongation retention 

of the curcumin-nanoparticles (CUR-NPs) in skin, silk fibroin was applied as a hydrogel-based 

matrix which, in vitro, demonstrated slower release of curcumin than the plain CUR-gel, with 

no alteration in the skin penetration ability of CUR-NPs. In vivo experiments on psoriatic mice 

showed that the CUR-NPs-gel displayed a better therapeutic outcome than CUR-NPs alone as 

the former enhanced skin permeation resulting in successful anti-keratinization activity. 

Interestingly, CUR-NPs-gel also prevented the appearance of pro-inflammatory and 

inflammatory cytokines particularly TNF-α, NF-κB, IL-10 and IL-6 to a greater extent than the 

CUR-NP’s alone. 
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Figure 1.15. Permeation of nanoparticles in mice skin at 24 h and 48 h. Original 

magnification: 20×. (A) Mice skins on the back were exposed to the IMQ suspension for 

8 days (IMQ exposure alters keratinocyte proliferation and differentiation), (B) PASI 

scoring of psoriatic skin after treatment with various formulations: (a) Erythema, (b) 

thickness and (c) scaling of the back skins. The score is presented (Mean ± SD, n = 12) 

(Mao et al., 2017). 

 

Antibodies such as TNF-α–Ab are potent therapeutics for the treatment of psoriasis. Three 

immuno-biological drugs are used to target tumour necrosis factor (TNF-α), with etanercept, 

adalimumab and infliximab authorized to treat mild-to-serious cutaneous psoriasis. These 

biologics are delivered by intravenous infusion or subcutaneous injection but are expensive 

with potential for side effects. The key challenge for topical  delivery of TNF-α–Ab is their 

poor  penetration into and permeation through the stratum corneum (Carrasquillo et al., 2020). 

Korkmaz et al. (2016) used the approach of combining TNF-α–Ab conjugated to hyaluronic 

acid (HA) with tip loaded dissolvable microneedle arrays (TL-dMNAs) for local application, 

i.e. into the skin. The results showed that: (1) TL-dMNAs can be effectively moulded to 

incorporate anti-TNF-α-Ab-HA at the tip of the microneedles whilst maintaining the required 

biological activity for antibody ligand binding; (2) Anti-TNF-α-Ab-HA can be efficiently 

distributed into human skin using TL-dMNAs; and (3) polymer conjugation successfully 

prevented antibody diffusion from the delivery locus. Taken together, these outcomes 
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encourage the development of microneedle array–based delivery system of varying polymer-

antibody conjugates for the treatment of psoriasis. 

 

Figure 1.16. Illustration showing the use of microneedles coated with the conjugated 

polymer in the skin 

 

Tretinoin, also called as all-trans retinoic acid (ATRA), a metabolite of vitamin A is used to 

treat acute promyelocytic leukaemia and skin disorders such as psoriasis. ATRA is used in the 

form of creams or emulsions, delivering the drug as a single bolus which is immediately taken 

up by the skin and contributes to the side effects such as skin irritation and hair loss. To address 

these problems Castleberry et al. (2017) synthesised a polymer-drug conjugate by conjugating 

ATRA with a hydrophilic polymer, namely polyvinyl alcohol (PVA), through an ester bond. 

This resulted in the formation of amphiphilic nanoparticles which were water soluble. In vitro 

drug release studies using pig skin showed that the ATRA from the conjugate was within the 

skin for up to 10 days, thus providing a sustained drug release (as compared to single bolus). 

Moreover, in vivo results showed that the conjugate formulation reduced inflammation at the 

site of inflammation as compared to the free drug and ensured retention of the drug at the site 

of application at detectable concentrations for up to 6 days. 
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Figure 1.17. Figure showing the synthesis and the release profile of ATRA from the PDC 

(Castleberry et al., 2017) 

 

Mycophenolic acid (MPA) is a potent anti-proliferative and immunosuppressant agent with 

anti-psoriatic action and is usually applied as a component of triple therapy involving a 

calcineurin inhibitor (ciclosporin) and prednisolone. Use of MPA for therapeutic purposes is 

restricted due to its poor oral bioavailability, and low aqueous solubility (Kelly and Butch, 

2012). Supasena et al. (2020) reported conjugation of poloxamer 407 (P407) and MPA via an 

ester linkage resulting in a P407-MPA conjugate and was studied for micellization, particle 

size, size distribution, and antipsoriatic activity. 1H-NMR implied that polymeric micelles 

formed from the P407-MPA conjugate showing its polyethylene oxide chain to the aqueous 
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environment while restricting the conjugated MPA within the inner core. Surprisingly, the 

conjugate had over 12-fold lower critical micelle concentration (CMC) compared to the 

polymer alone, i.e.  P407. The conjugate showed an enzyme-dependent sustained-release and 

improved antiproliferation activity in an in vitro psoriasis model, i.e. tumour necrosis factor-α-

induced HaCaT cells. 

 

PDCs have also been evaluated for combination therapy. Mielanczyk et al. (2020) conjugated 

two hydrophobic anti-psoriatic agents, namely methotrexate (MTX) and acitretin (AC), with 

N,N-dimethylaminoethyl methacrylate (DMAEMA) repeating units in the polymethacrylic 

chains. These positively charged (+5 to +10 mV) nano- and microparticles were assessed for 

cytotoxicity in vitro using MTT and Annexin-V apoptosis assays on NHDF, Me45, HaCaT and 

BEAS-2B cell lines. The conjugates showed a novel cytostatic effect in Me45 cells and a pro-

apoptotic effect in HaCaT cells. Epithelial BEAS-2B cells were the most sensitive to the 

polymer conjugates and gave responses via initiation of necrosis. Moreover, using an animal 

skin in vitro assay showed reduced side effects from these conjugates. Similarly, 

histopathological tests confirmed absence of irritation of the animal skin following dosing with 

these conjugates. 

 

1.4.4. Polymer-Drug Conjugates for Treating Skin Infections 

The increasing worldwide prevalence of bacterial infections, principally in persistent wounds, 

is an urgent priority and one in which novel treatments could be highly impactful. To this end, 

Shepherd et al. (2011) established a method where hyperbranched poly-(NIPAM) polymers 

were conjugated with the antibiotics Polymyxin-B and Vancomycin and were tested against 

bacteria in solution culture. Interestingly, attachment of bacteria to the polymers was reported 

which triggered conformational modification including disintegration of the polymer backbone 

and the establishment of polymer/bacteria complexes which upon removal also removed the 

attached bacteria and hence significantly reducing the bacterial load in the culture. The novel 

polymer was also evaluated using a “human burn” tissue engineered skin model infected with 

Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus; 

significant decreases in the bacterial load was detected following use of the hyperbranched 

polymer in the form of polymer gel solution or hydrogel membrane. 
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Figure 1.18. Illustration showing the use of a hydrogel membrane (made up of 

Poly(NIPAM)-Amb conjugate) onto the infected wound 

 

Poly(N-isopropylacrylamide) (PNIPAM) is an extensively used temperature-reactive polymer 

produced originally in 1950s and is currently manufactured from industrially produced N-

isopropylacrylamide. Swift et al. (2019) showed that highly branched poly-(N-

isopropylacrylamide) (HB-PNIPAM), with a chain having solvato-chromic (different colours 

due to a solute when that solute is dissolved in dissimilar solvents) dye Nile red (or Nile blue 
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oxazone), might offer a fluorescence indicator when end groups attach to a bacterium and 

consequently chain sections isolate. In this drug-polymer conjugate, vancomycin was attached 

to HB-PNIPAM chain ends or as suspended groups on linear polymers individually having 

Nile red or Nile blue oxazone. Analysis of both the fluorescence and calorimetric results 

revealed that branched polymers responded to attachment of both the peptide target (D-Ala-D-

Aa) and bacteria in a divergent trend. Results of fluorescence spectroscopy indicated that only 

the outer domain segments of branched polymers reacted to binding of Gram positive bacteria 

Staphylococcus aureus with only a slight reaction when linear analogous polymer or branched 

polymer with Nile red or Nile blue oxazone in the innermost core was exposed to 

Staphylococcus aureus cultured in vitro in chocolate blood agar. 

 

Chromobacterium violaceum a Gram-negative bacterium normally found in water and soil, 

infrequently produces severe pyogenic or septicemic infections in human skin, generally seen 

as skin abscesses. Chromobacterium violaceum is mainly recognized as a violacein (bis-indole 

pigment with anti-bacterial and anti-viral properties) producer and as a reporter for quorum 

sensing molecules discovery. Quorum sensing (QS) is intercellular messaging facilitating 

individual bacteria to modify their activities in response to the resident Gram-positive and 

Gram-negative bacterial inhabitants’ density via molecules described as autoinducers (Batista 

et al., 2020). QS also plays a role in regulation of gene expression of a bacterial population in 

response to chemicals (nutrients and toxins) in an environment. Bacterial quorum detection has 

been associated with several pathogenic bacterial processes, for instance biofilm creation, 

rendering this as an important focus for generating materials with a novel antibiotic action. 

Shepherd et al. (2019) synthesized pol-(N-isopropyl acrylamide) that was covalently connected 

to numerous chain ends to homoserine lactone as a crucial messenger molecule participating 

in quorum sensing and was shown to have anti-QS activity in a Chromobacterium violaceum 

assay.  

 

Turos et al. (2007) successfully conjugated penicillin with polyacrylate, which was then 

formulated into nanoparticles with anti-bacterial activity. These nanoparticles were prepared 

by free radical polymerization in which penicillin-acrylate monomer was dissolved in a 7:3 

(w/w) mixture of butyl acrylate and styrene in the presence of sodium dodecyl sulphate 

(surfactant) and potassium persulphate (radical initiator). In vitro activity was tested against 

methicillin-resistant Staphylococcus aureus (MRSA) and showed encouraging results with no 

cytotoxicity towards human dermal fibroblast (HDF) cell line. Furthermore, the conjugate 
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demonstrated hydrolytic cleavage by bacterial penicillinases, thus expanding the drug's action 

with regard to drug resistant strains such as MRSA. Similarly, these conjugated polymeric 

particles also showed positive results in vivo against a murine model, again with decreased 

cytotoxicity. When applied topically to a dermal abrasion model in vivo, this emulsion 

enhanced wound healing by an average of 3 to 5 days. Thus, this study suggests that 

polyacrylate nanoparticle-containing emulsions may be a promising therapy for treating skin 

infections. 

 

Jeong et al. (2008) synthesized a polymer-drug formulation using Poly(lactic-co-glycolic)-acid 

containing ciprofloxacin particle sizes of 100–300 nm. These drug carriers were evaluated for 

in vitro and in vivo antibacterial activity against an eczema infecting strain of E. coli. As 

ciprofloxacin was released from this polymer-drug nano-system over a period of 14 days, the 

system provided a lower but sustained antibacterial action than free drug. However, in 

vivo antibacterial action was greater than the free drug.  Interestingly, the in vitro experiments 

were conducted for 24-hour time period only, while in the in vivo experiment, BALB/c mice 

were sacrificed after 72 hours demonstrating that studies of sustained release antibiotic 

formulations should use in vitro studies over a lengthy period.  Such a study was also 

undertaken by Toti et al. (2011) for PLGA polymers linked to rifampicin and azithromycin and 

who showed significant antibacterial activity against reproductive tract and groin skin 

epithelial cells infecting Chlamydia trachomatis.   

 

In immunocompromised patients, fungal infections are a significant cause of morbidity and 

death. Presently, three main classes of medicines (azoles, echinocandins and polyenes) are used 

as antifungal agents with distinct mechanisms of action. However, these medications can 

generate adverse reactions due to their minimal specificity, drug–drug interactions and limited 

range of activity. Some of these constraints could be overcome by modifying the properties of 

current drugs through physical and chemical alterations, for example the alteration of the 

polyene antibiotic amphotericin B (AmB), by making a micellar suspension in deoxycholic 

acid (Fungizone®), AmB colloidal dispersion (Amphocil™), non-covalent AmB lipid 

complexes (ABLC™) and most commonly liposomal AmB (AmBisome®) which are now used 

against cutaneous leishmaniasis. Each of these formulations modify and slow the release of 

AmB, reducing plasma levels and consequently reducing its nephrotoxicity. Polymer–drug 
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conjugates of antifungal medications enhance the aqueous solubility of water-unsolvable 

medications, extend shelf life and crucially can reduce the toxicity of these drugs and facilitate 

drug  release at the target sites (Franquet et al., 2004; Low and Rotstein, 2011) 

 

Gurudevan  et al. (2018) conjugated AmB to bovine serum albumin (BSA) via amide bonding 

to provide 6 to 8 weight % drug load. Characterization of the resultant polymer-drug conjugate 

was performed using SDS-PAGE, UV–visible, FTIR and CD spectroscopy. Interestingly the 

resulting conjugate was water-soluble, non-toxic to HEK-293 T cells up to 500 μg/mL i.e., 

~30 μg AmB and demonstrated <5% haemolysis at 200 μg/mL (equivalent to ~12 μg AmB) 

against human RBCc in vitro. At 37 °C this conjugate provided steady release of up to 20% 

AmB from the conjugate in vitro, whereas three times this amount was released in human blood 

plasma over 72 hours. This conjugate gave anti-fungal activity against Candida albicans, C. 

parapsilosis and C. neoformans  showing minimum inhibitory concentration (MIC) of 0.7 to 

1.1 μg/mL of AmB, similar values to  AmBisome® MIC’s of 0.78-1.5 μg/mL. In this study the 

model protein BSA was used as an effective carrier  and implies that human serum 

albumin (HSA) could act as an effective  carrier in future PDCs design. 

 

1.4.5. Polymer- drug Conjugates for Delivering Drugs to Hair Follicles 

Polymer technology has developed rapidly over recent decades and has resulted in the 

expansion of polymer-drug conjugates with a broad array of designs and chemical properties. 

Traditional non-degradable polymeric drug delivery carriers such as N-2-hydroxypropyl 

methacrylamide (HPMA) and poly-ethylene glycol (PEG) copolymers have been widely used 

in formulations and clinical settings but a trend towards biodegradable, stimuli-responsive, and 

targeted drug delivery systems is also seen with recent drug-polymer conjugates (Larson and 

Ghandehari, 2012).  

 

Hair loss also known as androgenetic alopecia (AGA) is a persistent problem seen in both 

males and females. AGA is most common phenomenon reported in 50% of middle-aged men 

and almost 95% of the men between 80-90 years. Hair loss can lead to lowering of self-

confidence, and can contribute to poor mental health including depression (Ellis et al., 2002) 
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The hair follicles and pilo-sebaceous unit provides a site where micro-, submicron-, and nano-

sized material can enter and accumulate (Figure 1.19). The diameter of the hair follicle 

openings varies between 175±75μm in terminal hair follicles while it is 85±36μm in vellus hair 

follicles.  The interaction surface of hair follicle infundibulum (cup or siphon in which a hair 

follicle develops) is estimated to be roughly 0.69 cm2 for empty and 0.069 cm2 for full follicles 

(Vogt et al., 2007: Rancan et al., 2014) so the infundibulum offers not only a potential reservoir 

site but also a significant surface area where contact between collected material and skin might 

arise. If drug-polymer conjugates accumulate in the hair follicle canal and releases their drug 

then this can produce not only local acting effects but also a high drug concentration to drive 

delivery through the tissue and into the systemic circulation (Toll et al., 2004; Shah et al., 

2012).  

 

Figure 1.19. Photomicrograph of human terminal hair follicle. (A) Light micrograph of a 

longitudinal segment presenting the hair follicle hair shaft and infundibulum. The 

infundibulum is full of cell fragments and sebum. Enclosures (b–d) are areas of the hair 

follicle that were examined by using transmission electron microscope (B, C and D 

respectively) (Rancan et al., 2014). 
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Aljuffali et al. (2015) synthesized polymer lipid nanocarriers, termed “squarticles” conjugated 

with anti-platelet-derived growth factor (PDGF)-receptor β antibody to ascertain whether 

targeted minoxidil (MXD) (used for the male-pattern hair loss and an antihypertensive 

vasodilator) distributed to the hair follicles and papilla cells (DPCs). As the matrix of the 

squarticles, squalene and hexadecyl palmitate (HP, also called as cetyl palmitate) were 

employed. The resulting PDGF-squarticles had a mean diameter of 196 nm and zeta potential 

of − 47 mV. Encapsulation in the nanoparticle increased MXD swine skin accumulation from 

0.12 to 0.25 μg/mg. The conjugation of antibody to the nanoparticles enhanced MXD hair 

follicular uptake by 3-fold as compared to that of the control solution in a BALB/c mouse in 

vivo model. Both upright and parallel sections of the porcine skin displayed a wide-ranging 

distribution of nanoparticles in the hair follicles, epidermis, and lower skin layers. This 

effective targeting of PDGF-squarticles to hair follicles might be beneficial better efficacy of 

minoxidil for  alopecia or male pattern baldness. 

Recently, Nagai et al. (2019) prepared polymer-drug formulations with minoxidil  as 

nanoparticles (1% N-MXD) using p-hydroxyalkylbenzoates, methylcellulose and mannitol 

with a bead mill technique. N-MXD (90–300 nm) were applied to examine their impact on hair 

development using a common inbred mouse strain C57BL/6 (frequently termed "C57-

black 6"). Interestingly, minoxidil content in the hair bulbs was greater for N-MXD polymers 

than observed for commercially marketed MXD formulation which translated into greater drug 

efficiency. Notably, the levels of Insulin-like Growth Factor-1 (IGF-1) and vascular endothelial 

growth factor (VEGF) levels associated with hair growth were also more when N-MXD was 

delivered as compared to the commercial control.  

1.4.6. Polymer-drug Conjugates for the Treatment of Cutaneous Leishmaniasis 

Much of the focus has been on the use of PDCs for the treatment of visceral leishmaniasis 

(VL), and there are only very few studies reporting the use of PDCs for CL. One of such study 

has been reported by Silva-Carvalho et al. (2020), where he developed water-soluble Dextrin-

Amphotericin-B (Dex-AmB) nanoparticulate-drug complexes with better therapeutic 

effectiveness and reduced toxicity. These nanocomplexes (214-347 nm) were synthesized by 

dissolving dextrin and Am-B in alkaline borate buffer, followed by dialysis, freeze-drying (FD) 

or nano spray-drying (SD). These nanocomplexes produced by relatively very simple technique 

were very effective against cutaneous leishmaniasis causing Leishmania amazonensis and L. 

infantum parasites respectively in axenic culture (IC50 of 0.056 and 0.096μM for L. 
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amazonensis and 0.030 and 0.044μM for L. infantum, respectively). Interestingly, these 

polymer-drug nanocomplexes had significantly reduce cytotoxicity compared to Am-B alone 

when tested against macrophages using MTT assay. Thus dextran-amphotericin-B polymer-

drug conjugates could be synthesized, so they can be delivered through mannose receptors into 

Leishmania infected macrophages.  

Over the last two decades, the application of PDCs to diseases other than cancer has increased, 

including for topical delivery though this remains a relatively under researched area. As 

macromolecular constructs, passive diffusion through the intact stratum corneum barrier is not 

feasible and hence the focus is on targeting to the follicles or use in conditions where the skin 

barrier is damaged such as psoriasis or wound healing. Thus, opportunities exist for similar 

barrier dysfunctioning conditions such as atopic dermatitis, scabies or cutaneous leishmaniasis 

explained in Table 1.2 (Smith, 2007). 
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Table 1.2. Summary of the potential therapeutic targets for the application of PDCs to 

the skin 

Challenge                       Barrier to overcome      Target                        Possible polymeric 

                                                                                                                            carrier/s  

 

Scabies                               NA                             Lower SC                         HA,Polypeptides 

Cutaneous leishmaniasis    NA                                 Macrophages                               Polysaccharides,e.g.                    

                                                                                                                                                                                                                                                                                                                                                                                                        

                                                                                                               arabinoglycan, chitosan  

Insect repellent                  NA                           Insects                     Film forming polymers  

                                                                                                           without being topically 

                                                                                                            absorbed e.g., PAA            

Fungal or bacterial            SC                           Target cells                      HA, polypeptide 

 infections                                                                     

Eczema                              NA                           To inhibit the               Any non-irritant polymer              

                                                             inflammatory mediators,         e.g. HA, chitosan, PAA. 

                                                                     e.g. TNF α, IL-1 etc             

                      

Winter Xerosis                  SC               To overcome skin dryness      Polymers that can penetrate                                                                 

                                                                                                        the skin whilst hydrating  

                                                                                                    it as well, e.g. low molecular- 

                                                                                                            -weight HA 

Acne                               SC              To reach hair follicles        Lyso phosphatidylcholine,         

                                                                                                    cyclodextrin and gel forming  

                                                                                                          polymers like PAA 

 

 

1.5. Insect Repellents 

Various infectious and parasitic diseases, i.e. malaria, leishmaniasis, dengue fever etc are 

transferred to humans by the bite of insects and hence are called as insect-borne diseases, 



 40 

causing thousands of mortalities every year. To prevent that, insect repellents are frequently 

used. Insect repellent is a substance that is usually applied to the skin to protect against the 

biting insects like mosquitos, ticks, chiggers etc (Fradin and Day, 2002). 

Common insect repellents are broadly classified into two categories, i.e. natural insect 

repellents and synthetic insect repellents. Some of the commonly used insect repellents are 

DEET (N, N-diethyl-m-toluamide), p-menthane-3,8-diol (PMD), picaridin, nepetalactone, 

neem oil, permethrin. These are briefly discussed in the following. 

 

DEET is a synthetic compound that is considered to be the most effective and commonly used 

in the world. It is a yellowish oil that can be applied onto the skin. Upon topical application, it 

has been reported that it can permeate through the skin into the bloodstream. In one of the study 

serum samples of the people using the DEET (lotion containing 25% of the DEET) on their 

skin as an insect repellent was taken in such a way that it was observed the serum had 1.82 to 

18.84 ng/g of the DEET during the first 8 hours of the skin application (Chen-Hussey et al., 

2014). 

 

Similarly, picaridin is another synthetic repellent which was first made in the 1980s. Picaridin 

has been commonly used in different parts of the world but has only been available in the 

United States since 2005. When applied to the skin of rats, 60% of it was absorbed through the 

skin. In clinical trials it was found that less than 6% of the picaridin applied to the skin was 

absorbed. Picaridin may be broken into various metabolites (Van Roey et al., 2014). 

 

 Similarly, another commonly used insect repellent is nepetalactone, first isolated from the 

plant catnip (Nepeta cataria). It is a bicyclic monoterpenoid, i.e. it is a ten-carbon compound. 

It is a very potent insect repellent and is having ten times higher activity than that of the 

commonly used insect repellent DEET (Birkett et al., 2011). 

 

Permethrin is a broad-spectrum insecticide that has been used for a variety of purposes like 

agricultural and commercial/residential applications. It is also used to control termites, 

ectoparasites on the animals, and head lice or scabies in humans. It is also used for treating the 
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soldier's uniforms in the United States, thus helping to reduce outbreaks of insect-borne 

diseases (Young and Evans, 1998) 

 

Among natural insect repellents, neem oil is a widely used insect repellent an alternative to 

DEET, and it has been tested for repellence against a range of arthropods that are of medical 

importance. It can provide up to 7.2 hours mean protection time against a dengue vector and 

irritating biting mosquitoes (Jilani and Saxena, 1990). 

 

1.5.1. p-menthane-3,8-diol (PMD) 

PMD is a naturally occurring compound that usually exists in two isomeric forms, i.e. cis and 

trans.  In 2005, the centre for disease control (CDC) endorsed the use of topical repellent 

products containing para-menthane-3,8-diol (PMD) naturally obtained from a plant called the 

Eucalyptus citriodora (Lee et al., 2018). Chemically PMD is a monoterpene and can be 

obtained from both sources, i.e. synthetically and naturally. Naturally, it can be obtained from 

the distillation of the leaves of Eucalyptus citriodora (Carroll and Loye, 2006). On the other 

hand, it can be synthesised in the lab by the cyclisation of citronellal with excellent yield and 

purity (Yuasa et al., 2000).  Similarly, in order to see the permeation of PMD into the skin, a 

study was performed in such a way that the pigskin was taken to which PMD lotion was 

applied. After 24 hours they saw that around 3.5% of PMD was able to penetrate the dermis of 

the skin, whilst the remaining dose was found to be evaporated off from the skin (Reifenrath 

et al., 2009). 

 
A)                                                          B) 

 
Figure 1.20. Structure of PMD A) trans isomeric form, B) cis isomeric form 
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1.5.2. Polymeric Carriers for Insect Repellents 

For an effective insect repellent formulation, it is important that the concentration of the active 

compound should remain same over a sufficiently long time period. However, the efficacy of 

an insect repellent can be rendered by various reasons like, volatility and the permeation of the 

compound (Barradas et al., 2016). In order to tackle those, polymeric formulations have been 

developed. Various studies have reported the use of polymeric carriers for the insect repellents. 

Most of these studies have reported polymeric micro or nano capsules to encapsulate the insect 

repellents, e.g. DEET, PMD, citronella oil, picaridin and others (Katz et al., 2008; Salafsky et 

al., 1999). It has been shown that as a result of encapsulation physicochemical properties of the 

repellent like vapour pressure and partition coefficient can be modified. The polymers used for 

the preparation of these micro or nano capsules include chitosan, collagen and gelatine, it is 

because of forming covalent or ionic interactions with the encapsulating drugs beside their 

good safety profile. Similarly other polymers used for this purpose were carboxy methyl 

cellulose and cyclodextrins (Jing et al., 2014; Solomon et al., 2012).  

1.6. Aim and Objectives of the Thesis 

The aim of this project was to explore and develop a PDC for extended release and decreased 

permeation of an insect repellent, i.e., p-menthane 3,8 diol. 

The objectives of this project were: 

a) Synthesis of a PDC having a hydrolysable ester bond 

b) To characterise the PDC for its structure and properties by 1H-NMR, IR spectroscopy, 

thermal analysis (TGA and DSC), molecular weight, drug loading and effect of pH on 

the aqueous solubility of the PDC 

c) In vitro hydrolysis study by using porcine liver esterases (PLEs) 

d) To evaluate the skin penetration and permeation of the free drug as well as the PDC 

e) To test the irritation potential of the synthesised PDC. 
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Figure 1.21. Illustration showing the linkage of main objectives with the thesis chapters 
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2.1. Materials 

Material Supplier 

Hyaluronic acid (sodium salt) (MW 1.6 MDa, Batch# 

070815-E1) 
Contipro., Czech Republic 

Citronellal (Lot# 10202671) Fischer Scientific., UK 

n-Heptane (Lot# 1697988)  Acros Organics., UK 

(Benzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate (PyBOP) (Lot# A0374488) 
Acros Organics., UK 

N,N Diisopropyletylamine (DIPEA)(Lot# STBF9469V) Sigma-Aldrich Co., UK 

Dimethylsulfoxide (DMSO) (Lot# 1670195) Fischer Scientific., UK 

Sodium Chloride (Lot# 1557449) Fischer Scientific., UK 

Sodium carbonate anhydrous (CAS# 497-19-18) Fischer Scientific., UK 

Hydrochloric acid (CAS# 7647-01-0) Fischer Scientific., UK 

Dowex ion exchange resin (CAS# 217492, mesh size 50-

100) 
Sigma-Aldrich Co., UK 

4, Dimethylamino pyridine (CAS#1122-58-3) Acros Organics., UK 

Polyacrylic acid (18,00 Da) (LOT#SLBS6469) Sigma Aldrich Co.,UK 

Polyacrylic acid (1.25 MDa) (LOT#MKBT3043V,CAS# 

89-83-8) 
Sigma-Aldrich Co., UK 

Thionyl chloride (LOT#A0372214, CAS#7719-09-7) Acros Organics., UK 

N,N-Dicyclohexylcarbodiimide (LOT#A0385375) Acros Organics., UK 

Thymol (LOT#A0382019) Fischer Scientific., UK 

Triisobutylamine (CAS# 1116-40-1) Sigma-Aldrich Co., Uk 

Polyethyleneglycol dimethylether (dmPEG) (CAS# 

24991-55-7) 
Sigma-Aldrich Co., UK 
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Porcine liver esterases (CAS#39346-81-1) Sigma-Aldrich Co., UK 

Agarose low gelling temperature (LOT#SLBW7267) Sigma-Aldrich Co., UK 

Pur-A-lyzer Mega 1000 Dialysis kit (LOT# g01/17443) Sigma-Aldrich Co., UK 

p-Menthane 3,8 diol (CAS#42822-86-6, 

LOT#BS18U05312, BV18ZJ01182)  
BOC sciences, USA 

Acryloyl chloride (LOT# STBG5526V, STBF9634V) Sigma-Aldrich Co., UK 

Acrylic acid (CAS# 79-10-7) Sigma-Aldrich Co., UK 

2,2-Azobis(2-methyl-propionitrile) (LOT# STBC6554V) Sigma-Aldrich Co., UK 

Triethylamine (CAS# 121-44-8) Sigma-Aldrich Co., UK 

Porcine liver esterases (CAS# 9018-16-1) Sigma-Aldrich Co., UK 

Triisobutylphosphate (CAS# 126-71-6) Acros Organics, Uk 

Glycerol (CAS# 56-81-5) Sigma-Aldrich Co., Uk 

Polyethylene glycol-400 (PEG-400) (CAS# 25322-68-3) Sigma-Aldrich Co., UK 

Tween-20 (CAS# 9005-64-5) Sigma-Aldrich Co., UK 

Toulene (CAS# 108-88-3) Sigma-Aldrich Co., UK 

Ethyl acetate (CAS# 141-78-6) Fischer scientific Co., UK 

Parafluoroaniline (CAS# 371-40-4) Sigma-Aldrich Co., UK 

Benzalkonium chloride (CAS# 63449-41-2) Sigma-Aldrich Co., UK 

Dipropylene glycol (CAS# 25265-71-8) Sigma-Aldrich Co., UK 

Terpinyl acetate (CAS# 80-26-2) Sigma-Aldrich Co., UK 

Linalyl acetate (CAS# 499-75-2) Fischer scientific Co., UK 

Carvacrol (CAS# 115-95-7) Sigma-Aldrich Co., UK 
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Silica gel (CAS# 112926-00-8) Sigma-Aldrich Co., Uk 

 

 

2.2 Methods 

2.2.1 Chromatographic methods 

2.2.1.1 TLC 

Thin-layer chromatography (TLC) is a procedure applied in organic chemistry to separate 

compounds in a mixture based on variations in their polarity. In this work, the stationary phase 

was a thin layer of polar silica gel and various mobile phases were employed, typically organic 

solvents. Studies used Merck TLC Silica gel 60 F254 aluminum backed plates (Sigma-

Aldrich). Initially, a line was drawn on the bottom of the TLC plate and mixtures were then 

spotted at this origin using thin capillaries before the bottom of the plate was submerged in an 

organic solvent, i.e. hexane:ethylacetate (4:1); the solvent travelled up the plate by capillary 

action, carrying and separating solutes by their lipophilicity and molecular weights. The TLC 

plates were then visualised using p-anisaldehyde (as an indicator). The p-anisaldehyde stain 

was prepared by mixing 5 mL of concentrated sulfuric acid into 135 mL of absolute ethanol 

and then adding 1.5 mL of glacial acetic acid dropwise in a round bottom flask placed over ice. 

Finally, 3.7 mL of p-anisaldehyde (also known as 4-methoxybenzaldehyde, analytical grade, 

Sigma-Aldrich) was added, and the solution was stirred to ensure homogeneity. The solution 

was refrigerated at 4-7 °C and was wrapped in an aluminum foil until use. 

  

 

2.2.1.2 Column Chromatography 

 

Column chromatography was carried out using silica gel. The column was prepared by taking 

a cylindrical glass column and plugging in with a small piece of cotton and then packing the 

column by a wet packing method; for every 1g of test material, the equivalent of 70g of fresh 

silica gel (60 mesh size) was used. Silica was added to a beaker and sufficient hexane was 

added to produce a slurry. The slurry was then poured into the column. After packing of the 
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column, the material was dissolved in ethyl acetate and was then put into the column with a 

final ratio of hexane:ethylacetate of 4:1. Fractions were collected in the tubes (15 mL) and were 

then analysed by TLC for the purpose of identification. At the end, the solvent system was 

evaporated by using rotary drier.  

 

2.2.2 Infrared Spectroscopy 

Infrared (IR) spectroscopy is widely used to verify chemical structures and to aid identification 

of compounds. IR is a region of electromagnetic radiation ranging between 400 cm-1 and 4000 

cm-1. The principle on which IR spectroscopy is based on is that the molecules that tend to 

absorb (by the bonds) electromagnetic radiation result in the transition between molecular 

vibrational or rational energy levels. The wavelength of the radiation absorbed is the 

characteristic of the bond (including environment) absorbing it. Thus, based upon the nature of 

these bonds (in the molecules) and their surrounding environment different wavelengths are 

absorbed and then emitted by different parts of molecules (Bates, 1976; Gillie et al., 2000). 

The intensity by which a molecule (bond) absorbs radiation depends upon its dipole moment, 

i.e. the order of intensity of absorption will be OH>NH>CH. Similarly, there are different 

factors responsible to predict that where (wavenumber) these peaks can be seen. These include 

bond strength (stiffness of the bond), as a general rule greater the stiffness of the bond higher 

will be the wavenumber. Similarly, other factor is the mass effect, as mass on bond increases 

the wavenumber decreases (McDonald, 1986; Wellner, 2013). 

 

Figure 2.1. Exemplar IR spectra of Nylon (FTIR-Graph- www.microanalysis.com.au) 
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Infrared spectra were recorded using the ATR (attenuated total reflectance) technique on a 

Perkin Elmer (Spectrum 100) FT-IR spectrometer (Perkin Elmer Ltd., UK) from 4000 to 400 

cm−1 with 16 scans averaged and collected at 4 cm−1 resolution. The absorption was obtained 

in wavenumbers [cm-1]. The symbols ν and δ denote stretching and bending molecular modes 

respectively and peak intensities are categorized as s, strong; m, medium and w, weak, while 

br denotes broad peaks.   

2.2.3 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a highly sensitive and precise analytical 

technique for structural elucidation and material purity. It exploits the principle that when 

radiation in the radiofrequency region is used to excite atoms usually protons or carbon-13 

atoms in such a way that their spin switches from being aligned with to being aligned against 

an applied magnetic field, thus giving a typical NMR spectrum. The spinning of the nuclei of 

certain atoms give them the properties of magnetic vector. Examples of such nuclei are 1H, 13C, 
15N, 19F,29Si and 31P. Now when these nuclei are placed in a magnetic field they will try to align 

with the applied field. The greater the field strength the greater the energy difference (Watson 

and Pgce, 2020) 

There are two types of NMR’s, proton NMR and 13C NMR. Proton NMR is the most commonly 

used form of NMR as it’s a sensitive technique and can yield large amount of structural 

information. NMR spectra is represented in the form of chemical shifts. A chemical shift 

assigned to a proton is determined in relation to the proton of the tetramethyl silane. Here the 

chemical shift assigned to a compound is represented in the form of ppm. Value of 1ppm in 

Hertz (Hz) depends upon the strength of the applied magnetic field. For example, at a field 

strength of 100mHz a shift of 1ppm=100 Hz (Watson and Pgce, 2020). 

In our experiments, we used Bruker DPX 400 (400 MHz) spectrometer to record 1H-NMR 

spectra in either deuterated chloroform (CDCl3) or deuterated dimethyl sulfoxide (DMSO-d6). 
13C- NMR spectra were recorded either in deuterated chloroform (CDCl3) or in deuterated 

dimethyl sulfoxide (DMSO-d6). Chemical shifts (δ) are given in parts per million (ppm) using 

the subsequent abbreviations for splitting patterns: s, singlet; d, doublet; t, triplet; app. t, 

apparent triplet; dd, doublet of doublets; dt, doublet of triplets; q, quartet; m, multiplet.  
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2.2.4 Mass Spectroscopy 

Mass spectrometry works on the principle of detecting the molecular weight of a molecule in 

such a way that it works by generating charged molecules or molecular fragments either in high 

vacuum or immediately before the sample enters the high vacuum. The most common source 

of generating these charged molecules is the electrospray ionisation (ESI). Upon the generation 

of these charged or fragmented molecules they are then detected by a detector (Glish and 

Vachet, 2003). 

Mass spectrometry data were recorded on a Thermo Fisher LTQ Orbitrap XL instrument using 

ESI. Where possible, high-resolution mass spectroscopy (HR-MS) data are provided for the 

molecular ion or appropriate adduct, fragmentation patterns are also provided. 

2.2.5 Melting Point 

Melting points were determined using an Electrothermal Digital Melting Point apparatus (A-

9000, Electrothermal Ltd, UK) with samples held in a capillary tube. 

2.2.6 Thermogravimetric Analysis (TGA) 

TGA is a thermal analysis technique in which the change of mass loss is measured concerning 

changing temperature. TGA uses a temperature ramp, shows weight loss that can provide 

information related to certain physical (evaporation) and chemical (decomposition or oxidative 

degradation) phenomena. The results from a thermogravimetric run may be presented by 

weight versus temperature (or time) curve, referred to as the thermogravimetric curve or rate 

of loss of weight versus temperature curve, referred to as the differential thermogravimetric 

curve. Depending upon the nature of the material (to be analysed) a thermogravimetric curve 

may undergo solvent evaporation followed by the decomposition or degradation (nature of 

which depends upon the type of the material) (Carrier et al., 2011). 

TGA experiments were conducted with a Q50 thermogravimetric analyser (TA Instruments, 

UK). The TGA’s temperature calibration was established with reference samples of nickel, 

zinc and iron. The weight calibration was established with certified Troemner 100 mg standard 

weight. TGA was conducted in an inert nitrogen atmosphere with a flow rate of 30 mL min-1. 

All temperature transitions were assessed at a constant temperature ramp of 5oC min-1. Samples 

weighing between 2-9 mg were placed in aluminium pans. The samples were subjected to these 



 62 

conditions and heated at 5oC min-1 from 35oC to 590oC (depending upon the material, e.g. for 

PMD the maximum temperature was 100oC), and then cooled from 590oC to 35oC. Then the 

data were analysed by using the universal analysis thermal software. 

2.2.7 Differential Scanning Calorimetry (DSC) 

DSC is primarily method used for determining the energetics of the phase transitions within a 

macromolecule. It works on the principle of measuring the heat capacity of thermally induced 

events as a function of temperature. Though there are multiple applications of DSC ranging 

from determining the melting point, purity and the temperature of crystallisation but in 

polymers its mostly used to determine the glass transition temperature (Tg) (Chiu and Prenner, 

2011). 

DSC analysis of the samples used a DSC Q1000 (TA, Instrument, UK). The instrument was 

calibrated with indium (156.6oC). Experiments were carried out in an inert nitrogen atmosphere 

with a flow rate of 50 ml min-1. Samples were subjected to different heating rates ranging from 

10-50oC min-1. Samples weighing between 3-9 mg were sealed (having a small hole to prevent 

the explosion of the volatile compounds). The samples were generally subjected to two cycles 

of heating and cooling: (i) samples were held at 35oC for 5 minutes, (ii) ramped from 35oC to 

200oC, (iii) held at 200oC for 5 minutes, (iv) gradually cooled down from 200oC (at the rate of 

10-50oC min-1) to 35oC. Thermograms were analysed for melting events and for glass transition 

temperatures (Tg). 

2.2.8 Elemental Analysis 

CHN elemental analyses were obtained from MEDAC LTD, analytical and consultancy 

services. An elemental analyser (FLASH EA 1112 series, Thermo-Finnigan, Italy) was used 

for C (carbon) elemental analysis. For the analysis, combustion and reduction tubes 

(PerkinElmer) were used. The combustion reaction was run at 975oC in the presence of pure 

helium and oxygen as a carrier gas. For the determination of the carbon content, carbon in our 

samples was converted to carbon dioxide (CO2) through combustion reaction followed by its 

quantification. 
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2.2.9 Liquid Chromatography-mass spectroscopy (LC-MS) 

LC-MS analysis used an LC system coupled to an Apex-Q FTICR mass spectrometer (Bruker 

Daltonics) with a phenyl column (0.25 mm thickness). Spectra were obtained by electron 

ionization at 70 eV. 2μL of the sample was injected. Compounds (PMD and acryloyl-PMD 

(APMD) were quantified by using the external standards of the same compound, i.e. PMD and 

APMD at different concentrations. Five to six concentrations of the compounds were prepared 

from a stock solution of 1mg/mL (r2=0.98). 

2.2.10 Culturing Dugesia lugubris (Planarian) in the Laboratory 

Dugesia lugubris (Schmidt, 1861) a planarian species is a useful organism in various 

laboratories for studying neurological development to toxicology. Planarians are freshwater 

flatworms which are inexpensive and simple to grow and maintain in the laboratory. Dugesia 

lugubris (catalogue LZC-030) was purchased from Blades Biological Limited (Cowden, 

Edenbridge, Kent TN8 7DX, UK). 

 

2.2.10.1 Materials for the Culture 

Materials used to culture and maintain planaria included glass beakers, large Petri dishes 

(26 cm × 15 cm × 8 cm), sterile plastic transfer pipettes, paper wipes, waste storage containers 

containing acetone:ethanol (1:1 v/v) (to store the dead or used planaria), chicken meat to feed 

the planaria, disposable gloves, ice, blender/food grinder, steel strainers and scalpels. 

 

2.2.10.2 Culture Expansion 

 

Planaria (Dugesia lugubris) (Figure 2.2) were retained in artificial pond water (APW) made by 

adding 0.5 g of instant ocean salt in 1000 mL of Milli-Q water (having 18.2 MΩ/cm resistivity) 

at ambient temperature. They were fed with uncooked chicken meat that was finely chopped 

at a quantity sufficient for nourishing planaria once a week. The APW was changed every 48 

hours. The planaria were kept in a large beaker at a density of 50-100 worms with 3–15 mm 

body length in 2500 mL of prepared APW. It was important to ensure that the container had 

no residual chemical waste as planaria are extremely sensitive to chemical contamination. 
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Figure 2.2. Swimming Dugesia lugubris in APW. Scale bar is 2mm 

 

Planaria were cultured in a dark room (to avoid algal growth in pond water and the natural light 

reluctance (negative phototaxis) of planaria) at room temperature. The culture was regularly 

examined to monitor the condition of the planaria. For culture development and expansion, 

planaria were fed once per week. Any mucus or residues accumulated inside surface of the 

beakers were wiped off by using a paper towel, especially in the regions where the worms were 

located. In cases where the culture generated a foul smell, colour changes or water degradation 

(worms twisting, wriggling and spinning in a corkscrew-like fashion was an indicator of culture 

contamination) it was immediately replaced with fresh APW in a new clean beaker. 
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3.1. Introduction 

p-Menthane-3,8-diol (PMD) was synthesised in order to develop a polymer-drug conjugate. 

The rationale for the synthesis of conjugate was; primarily to develop a system for prolonged 

drug release as compared to the conventional use of free PMD. The hypothesis was that the 

drug (PMD) would conjugate with the polymer through an ester bond. Then, under the action 

of naturally occurring esterase enzymes on the skin, the drug would be released over an 

extended period. Numerous studies have reported the use of enzymes to cleave the ester bond, 

followed by the release of the drug (e.g.,Natfji et al., 2017). Secondly this approach would 

minimize drug uptake into and absorption through the skin and hence reduce systemic PMD 

uptake. The hypothesis for this was that the molecular weight of the polymer would prevent 

(or certainly minimise) absorption since in general, molecules with relatively low molecular 

weights (<500 Da), and that are lipophilic tend to permeate through skin as evidenced by drugs 

such as oestradiol, nicotine and fentanyl which are successfully administered from patches (Bos 

and Meinardi, 2000). Various studies raise specific concerns over the systemic absorption of 

insect repellents such as N,N-Diethyl-meta-Toluamide (DEET) and consequent side effects, 

especially regarding their use in pregnant women and the neonates (Tavares et al., 2018). 

 

PMD, also ascribed as 1-(2-Hydroxy-4-methylcyclohexyl)-1-methylethanol and P-Menthane-

3,8-diol, is a biochemical pesticide derived in small amounts from the essential oil of an 

Australian plant Corymbia citriodora (Eucalyptus citriodora) leaves. This active ingredient is 

used to make products that are applied to human skin and clothing to repel insects, such as 

mosquitoes and sandflies (Pandey et al., 2009). It is used in two types of consumer insecticide 

products: a spray and a lotion. It is a monoterpenoid alcohol with a formula of 

(CH3)2CHC6H10CH3. It is a colourless liquid with a fragrant fennel-like odour. It occurs 

naturally, especially in exudates of Eucalyptus fruits. The molecular weight of the PMD is 

172.27 g/mol, whilst its water solubility is poor having a logP value of 1.88 showing its high 

lipophilicity.  The compound is generally encountered as a mixture of two cis and trans isomers, 

which have similar properties (Maia and Moore, 2011). 

Polymer-drug conjugates have been extensively researched for more than 40 years (Elvira et 

al., 2005).  There are various means to link the polymer with the drug covalently; the work 

presented here is focused on polymer-drug ester conjugates. Various examples have been 

reported in the literature for the successful conjugation of the polymers with the drugs through 
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esters bond (Larson and Ghandehari, 2012), using different chemical strategies (Avendaño and 

Menéndez, 2008; Halpern et al., 2014). Some of these are coupling through N,N-

dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 

making polymer or drug/ammino acid a better leaving group (Jung and Theato, 2013). 

 

This chapter will focus on the synthesis of PMD followed by the chemical challenges involved 

in the synthesis (preliminary attempts), which lead to the final approach resulting in successful 

conjugation and characterization (described in chapter 4). Though PMD is commercially 

available, however, for this project the materials were synthesised in house to ensure purity 

and minimise batch-to-batch variability. 

 

3.2. Materials 

Hyaluronic acid (sodium salt) (MW 1.6MDa) was obtained from Contipro, Dolní Dobrouč, 

Czech Republic (Contipro obtains hyaluronic acid from cell walls of Streptococcus 

zooepidemicus bacterial culture), citronellal, dimethylsulfoxide (DMSO), sodium chloride, 

sodium carbonate anhydrous, Hcl and thymol were obtained from Fischer Scientific Co., UK. 

n-Heptane, (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP) 

4-dimethylamino pyridine, thionyl chloride and N,N-dicyclohexylcarbodiimide were obtained 

from Acros Organics., UK. N,N diisopropyletylamine (DIPEA), dowex ion exchange resin 

(mesh size 50-100), poly (acrylic acid) (1,800 Da and 1.2 MDa), polyethyleneglycol 

dimethylether (dmPEG), tertrabutylamine (TBA) were obtained from Sigma-Aldrich Co., UK. 
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3.3. Methods 

3.3.1. Synthesis of PMD 

PMD was synthesized by the method described by Yuasa et al. (2000). Briefly, 116g of 

sulphuric acid aqueous solution 0.25% (w/w) was first heated at 55°C with stirring. Then to 

this 100g of citronellal (the starting material) was added slowly and was stirred at the same 

temperature for the next 11 hours. Then 1.4 g of sodium hydroxide aqueous 25% (w/w) solution 

was added to it. After this, 120 mL of n-heptane was added in such a way that two layers, i.e., 

an organic and an aqueous layer, were created. The reaction was monitored by TLC analysis 

using formaldehyde solution (4:1 v/v, hexane: ethyl acetate, used as mobile phase). The organic 

layer was collected and distilled to remove any water. The organic solution was then cooled to 

-50°C with continuous stirring for 20 h. After 20 h time period, transparent crystalline material 

was filtered. The yield was 38%.  

3.3.1.1. Choice of Polymer for the Selection of Conjugation 

The selection of the polymer was based upon two main criteria, one was that polymer should 

be non-immunogenic and should not have any adverse reactions such as irritation on skin and 

the other was presence of suitable group, i.e., COOH to form an ester bond. The first polymer 

selected based on these criteria was hyaluronic acid (HA). HA is a natural polymer that acts as 

a skin emollient and is used in various dermatological products (Huang and Huang, 2018). HA 

is a naturally occurring glycosaminoglycan found all through the connective tissues. It is a 

nonimmunogenic and biodegradable polymer (Alaniz et al., 2002). Various research papers 

have reported successful conjugation of HA with drugs (Chen et al., 2014), including 

paclitaxel, Oncofid-S, biphosphonates, doxorubicin and cisplatin (Arpicco et al., 2014). Based 

on these reasons, it provided us with a base for the selection of hyaluronic acid as a first choice 

for the conjugation. 

Another critical parameter for the selection of the polymer was to prevent absorption of the 

drug through the skin. Since in general, molecules that have relatively low molecular weight 

(< 500 Da) and that are lipophilic tend to permeate through the skin. Thus, based on this we 

selected the polymers with high molecular weight to prevent topical absorption, hence initially, 

we choose the HA with high molecular weight (Essendoubi et al., 2016). Additionally, HA is 

humectant, and retains water molecules onto the exterior of skin to maintain it pleasant and 

hydrated state. 
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3.3.2. Preliminary Attempts for the Conjugation  

3.3.2.1. Synthesis Using the Method of Sahoo et al. (2008) 

Several attempts were made to conjugate HA with PMD. The first method used was the one 

reported by Sahoo et al. (2008) with some modifications. Briefly, Dowex ion exchange resin 

(12.5g) was washed three times with 250 mL of water and then treated with 25 mL of TBA and 

left to react at room temperature for 1 hour. The resin was then filtered and collected. Then 1g 

of hyaluronic acid was dissolved in 100 mL of distilled water to which 10g of the Dowex-TBA 

resin was added, and the reaction was allowed to proceed at room temperature for 18 hours. 

The reaction mixture was filtered through a 0.45 μm sterile filter, the supernatant collected and 

freeze-dried for three days to yield HA-TBA mixture (Figure 3.1-a). Almost 500 mg of this 

mixture was dissolved in 60 mL of anhydrous DMSO, to this HA-TBA mixture, 0.5 mL of 

DIPEA and 0.9g of PyBop were added and left stirring at room temperature for 1 h. Finally, 

1g of PMD was added, and the mixture was left stirring for another 24 h at room temperature.  

 

3.3.3.2.  Synthesis Using Fischer Esterification Reaction 

The Fischer esterification theory and use of this theory on some polymers/compounds have 

been reported previously (Kantlehner, 1991; Wassei et al., 2011). Based upon this theory the 

first step was to convert the supplied HA into free HA which was then followed by the 

conversion of the hyaluronic acid to a hyaluronic acid chloride and then reacting it with PMD 

(Figure 3.1). For this, the following protocol was used. Firstly, sodium hyaluronate was 

dissolved in water to make a solution (1% w/v). To this, 1.0 mL of an acid (HCl, 4M) was 

added to generate a pH of 2.0. Then this solution was enclosed in a dialysis membrane 

(Medicell International Ltd., UK) having a molecular cut off value of 12-14,000 Da. The 

medium (distilled water) was changed periodically until the pH stabilized at 5.0. After this, it 

was subjected to freeze-drying for 3 days to obtain free hyaluronic acid. After the production 

of free hyaluronic acid, it was then refluxed with thionyl chloride at 75°C for 3 h, after which 

thionyl chloride was evaporated, and the obtained material was subjected to NMR. 
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a) Conversion of HA to acid chloride form making it a better leaving group 

 

Figure 3.1. Steps used in Fischer Esterification Reaction for the generation of HA.  

 

3.3.3.3.  Synthesis Using the Method of Lee et al. (2008) 

In this technique, the authors successfully reported conjugation of HA with paclitaxel (PX) 

through an ester bond by using dicyclohexylcarbodiimide (DCC) an activating agent for the 

carboxylic groups of HA (Lee et al., 2008). Briefly, for a desalting process, 1.0 g of HA (1.6 

MDa) was dissolved in 100mL of deionized water, dialyzed (MWCO: 10-12k Da) for 24 h, 

and lyophilized. A blended mixture of desalted HA and dmPEG was added in 25mL of 

deionized water. The solution was well-stirred and lyophilized to obtain a dry HA/dmPEG 

complex powder. A total of 300mg of lyophilized HA/dmPEG complex was added in 5mL of 

anhydrous DMSO under an inert environment (using argon) with vigorous stirring at 80°C for 

2 h. To this then DCC and DMAP were added and the solution was stirred for 1.0 h to activate 

carboxylic groups of HA. To the above solution, a solution of PMD (prepared by dissolving 

100 g of PMD in 5mL of anhydrous DMSO) was slowly added using a syringe under an inert 

environment. The mixture was then stirred for 2 days at 40°C. The resultant solution was 

dialyzed against DMSO for one day and deionized water for three days using a dialysis 

membrane (MWCO: 10-12 kDa) to remove unreacted PMD and dmPEG.  
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3.3.4. Changing the Approach: From High Molecular Weight to Low Molecular Weight 

The main aim of this study was to convert the high molecular weight HA into low molecular 

weight in an attempt to increase the reactivity of the polymer. For this purpose, the method 

reported by Tømmeraas and Melander, (2008) was applied (Tømmeraas and Melander, 2008). 

Briefly, 1g of HA was dissolved overnight at room temperature in 100 mL of deionized water. 

The solution was prewarmed to 60°C before adding 1.0 M HCl under vigorous stirring for 1 

minute to give an acid concentration of 0.10 M. The total HA concentration was adjusted to 10 

mg/mL. The mixture was left without agitation at 60°C (in an oil-filled thermostatic water bath) 

for a total of 52 h. Samples (5 mL each) were withdrawn over 52 h time. Each sample was 

immediately cooled on an ice-bath and neutralized with equimolar amounts of NaOH (1.0 M 

solution) before freezing and lyophilization. 

3.3.4.1. Use of Poly(Acrylic Acid) as a Polymer 

Due to the failure of the above methods, as an alternative approach, HA was replaced by 

another polymer, namely poly(acrylic acid) (PAA). PAA is a hydrophilic polymer, 

commercially available with an excellent safety profile (Ritthidej, 2011). PAA is used in topical 

formulations, i.e., Lubrizol’s Carbopol® applied in pharmaceutical industry as rheology 

convertors, suspension solidifiers, mucoadhesive facilitators, pill binders, extended release 

polymers, and bio-accessibility garnisher.  PAA has suitable groups, i.e., COOH to form an 

ester bond between the polymer and the PMD (Ritthidej, 2011). For the reasons mentioned 

above, a high molecular weight PAA was selected. 

 

3.3.5. Synthesis Using the Method of Shin et al. (2014) 

In this technique, the authors productively reported the conjugation of hyaluronic acid with 

methotrexate through an ester bond by using dicyclohexylcarbodiimide (DCC) as an activating 

agent for the carboxylic groups of hyaluronic acid. The basic principle of this method was first 

the activation of the carboxylic group (by making it a better leaving group) and then reaction 

with an alcohol to form a polymer-drug conjugate. The reaction was performed according to 

the basic scheme as outlined in the article (Shin et al., 2014). In brief, 100 mg of PAA (1.2 

MDa; 0.083 micromoles) was dissolved in 33.33 mL of formamide to give a concentration of 

3 mg/mL. Then, the solution was further diluted with 25 mL of dimethyl sulfoxide (DMSO) 

and allowed to stir at room temperature. To this DCC (15 mg) and DMAP (9 mg) were added 
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and stirred for a further 30 mins to activate the carboxyl group of PAA. Then to this an excess 

amount of the alcohol (10mg of PMD, to increase the chances of esterification) was added and 

the resulting solution was mixed under vigorous stirring at room temperature for 24 h, in the 

dark (by wrapping an aluminium foil around the flask). After that, the product was centrifuged 

at 3000 rpm for 5 min to remove any unreacted dicyclohexylurea residue, followed by 

purification using a dialysis membrane (MW cut-off = 12,000 ~14,000) against deionized water 

for two days, and lyophilization. 

 

3.3.6.  Synthesis Using the Procedure of Madgey et al. (2012) 

The authors successfully reported conjugation of poly(acrylic acid) with salicylic acid. In this 

method, first of all, poly(acrylic acid) (both high molecular weight and low molecular weight 

were used) was converted into poly(acryloyl chloride) by using thionyl chloride (to provide a 

better leaving group) before attempting conjugation with PMD. Briefly, about 1.4 mole of 

thionyl chloride was added dropwise to 1.0 mole of polyacrylic acid in a round-bottom flask. 

The reaction mixture was stirred for 1 h at 60°C and left to cool at room temperature. The 

unreacted thionyl chloride was collected by filtration. The obtained product (PAA reacted with 

thionyl chloride) was washed with anhydrous methylene chloride and dried overnight in a 

vacuum at 40°C. A solution of 0.25 mole of PMD and 0.75 moles of triethylamine in 300 mL 

acetonitrile was added dropwise to 0.3 moles of poly(acryloyl chloride) pre-soaked in 100 mL 

acetonitrile for 6 h. After complete addition, the reaction mixture was stirred further for 6 hours 

at 25°C. The product was filtered off and washed with methanol, 1M HCl and distilled water 

one after another to remove the formed triethylamine hydrochloride and finally with diethyl 

ether. The obtained product was dried overnight under vacuum at 40°C. 

 

3.3.7. Change of the Drug 

It is well known that secondary and tertiary alcohols (PMD) are sterically more hindered hence 

tend to be less reactive than primary alcohols (Watile et al., 2019). So, to increase the reactivity 

of the compound towards the polymer a primary alcohol with somewhat structural similarities 

with PMD as well as some insect repellent properties was selected, specifically thymol (Pandey 

et al., 2009; Sharma and Anand, 1997). Both of the above approaches in 3.3.6 and 3.3.7 were 
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repeated with thymol (of converting the polymer into an acyl halide and then reacting with 

alcohol and DCC coupling) and PAA but in neither case products could be produced. 

 

3.4. Results and Discussions 

3.4.1. Transformation of Citronellal to PMD 

The preparation of para-menthane-3,8-diol isomers from (+)-citronellal uses an acidic medium, 

as shown in Figure 3.2. The acidic medium acts as a catalyst for the cyclization of (+)-

citronellal into para-menthane-3,8 diol (primary step in the synthesis of the said compound). 

Here HCl acted as an acidic medium in order to carry out the desired reaction. 

 

Figure 3.2. Schematic presentation of acid-catalysed cyclisation of (+)-citronellal into 

para-menthane-3,8-diol. 

 

In this study, we evaluated different parameters as reported by Yuasa. et al. (2000) namely the 

acid concentration, the temperature of the medium and the reaction time. All these parameters 

were optimized and contributed to improving the conversion of citronellal to generate the 

highest yield of PMD during the reaction. The parameter with the highest yield was selected 

for the synthesis of PMD. The results are displayed in the Table 3.1. 
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Table 3.1. The effect of Various Parameters Upon the Final Conversion of (+)-Citronellal 

into PMD. 

Run Acid 

concentration 

(%) 

Temperature 

(°C) 

Time (hours) Conversion of 

(+)- citronellal 

into PMD (mol 

%) 

1 0.25% 50°C 24 44.8 

2 0.5% 55°C 20 42.3 

3 1% 60°C 16 43.1 

4 1.5% 65°C 12 44.6 

5 2% 70°C 8 43.5 

6 2.5% 75°C 4 41.9 

 

 

Table 3.1 shows clearly the change in the conversion of (+)-citronellal as a function of different 

parameters. The period for the conversion changed significantly by varying the acid 

concentration (acidity). It was necessary to stir it in a 50°C bath for 15 h, which is conceivable 

for a mass production perspective. The synthesis was reproducible (with a mean value of yield 

= 44 ± 5.2 %, n=6). Conversion of citronellal was calculated as: 

Conversion (%) = citronellalt=0 - citronellalt=t /mol citronellalt=0 

 Reaction progress was monitored by using thin layer chromatography (TLC) analysis, which 

provided two clear spots (citronellal and PMD) using 20% ethyl acetate in an 80% hexane v/v 

solvent system. Purification was done on a silica gel column (230 − 240 mesh) using the same 

eluent system as above. NMR analysis was done to identify the final product (Figure 3.4). It is 

clear from 1H-NMR spectra of PMD, giving characteristics peaks for CH3 and for the secondary 

and tertiary OH groups (Figure 3.4-A and 3.4-B) signifies the IR spectra for PMD.  
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From the TLC chromatogram indicated in Figure 3.3, it can be observed that over the period 

of time the side products are diminishing, and the final product (PMD) is obtained. The TLC 

chromatogram clearly indicate the starting materials, intermediate product and the final product 

that is PMD.  

 

 

 

Figure 3.3. TLC chromatogram showing the gradual conversion of the citronellal into 

PMD as reaction proceeds  
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A) 

 

B) 

 

 

Figure 3.4. 1H-NMR spectrum of (A) PMD, having characteristics peaks for CH3 and for 

the secondary and tertiary OH groups (B) IR spectrum of PMD.  
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3.4.2. Preliminary Attempts to Synthesise a Polymer-Drug Conjugate Following 

Sahoo et al.  (2008) 

The preparation of polymer-drug ester conjugates was not as straightforward as expected. 

Although the majority of reported polymer-drug conjugates (with HA or PAA) are largely 

prepared through amide bonds, a limited number of ester drug conjugates have also been 

reported. The published synthetic methods failed to produce desired polymer-drug ester 

conjugate. 

The first method used for the conjugation between HA and PMD was described by Sahoo et 

al. (2008). PyBop is a phosphonium salt derivative. There have been reports suggesting the use 

of PyBop (a coupling agent) for the conjugation reaction between the carboxyl group and the 

amine group of peptides. The principle involved in this reaction is the activation of the carboxyl 

group by the PyBop coupling agent (Al-Warhi et al., 2012). Thus, based upon this, in this 

experiment, we used PyBop as a coupling agent between the COOH group of HA and OH 

group of the PMD. The first step in this reaction was the exchange of hyaluronan sodium salt 

to tert-butyl ammonium salt (TBA) in order to increase its solubility in DMSO. For the 

attachment of TBA with HA, first Dowex ion exchange resin was used (which facilitated the 

exchange of sodium ions from the HA with TBA) (Cerroni et al., 2015). The last step in this 

reaction was the addition of diisopropylethylamine (DIPEA) which acts as a base and is an 

essential ingredient in PyBop based synthesis (Singh and Argade, 2012). 

There could be various reasons for the failure of the above-used method. The first can be the 

problems associated with human handling; for this, the reaction was repeated several times 

with as much care as possible regarding the handling of the experiment. The second reason can 

be the HA unable to react with the TBA but as seen from the Figure 3.5-D there are peaks 

related to TBA hence indicating that both of these reacted. Other two possible parameters that 

could have affected the said reaction would be the duration and the temperature of the reaction 

allowing the mixing of PMD with the rest of the reaction medium, i.e., the temperature we used 

was ambient temperature while the duration of the reaction for which it was allowed to react 

was 24 h. In order to rule out the temperature the reaction was carried out at 30°C and the 

reaction time was increased to 48 h, but still, after those modifications, the desired results were 

not obtained. 
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A) 

 

B)  
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C) 

 

D)  

 

Figure 3.5. 1H-NMR spectra collected from attempts to conjugate PMD with HA 

following the method of Sahoo et al., 2008.  (A), spectrum of HA starting materials 

showing characteristic peaks for H of glucosamine and CH3 of N-acetylcysteine. (B), 

spectrum of TBA showing characteristic peak for NH2. (C), spectrum of PMD showing 

characteristic peaks for the secondary and tertiary OH groups.  (D), spectrum of the final 

product indicating absence of PMD.  
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For the above outcomes, the most likely reason for this unsuccessful reaction may be a 

decreased affinity of the PyBop towards the hydroxyl groups of alcohol (PMD), though as 

indicated above, there are few examples of the successful conjugation. However, most of them 

account for the formation of the amide bond (between the carboxy and the amine groups) rather 

than the ester bond (Al-Warhi et al., 2012). Similarly, another possibility can be the formation 

of the side products during the chemical reaction that may hinder the conjugation of the said 

polymer and drug (Valeur and Bradley, 2009). 

3.4.3. Synthesis Using Fischer Esterification Reactions 

Another method that has been reported for the conjugation via an ester bond is to react an acyl 

halide with alcohol. In this method first, the carboxylic acid is reacted with a better leaving 

group, i.e., chloride, etc. which is then reacted with alcohol in the presence of a base to form 

an ester (Ouellette and Rawn, 2014). Here, firstly we needed to attach a better leaving group, 

i.e., chloride with the polymer. For this purpose, here, we have used thionyl chloride, which is 

a standard reagent used for the introduction of the chloride group (a leaving group) as shown 

previously by Petten et al. (2015). 

There are several potential reasons for the failure of this reaction. The first could be the inability 

of the hyaluronic acid sodium salt to convert into free hyaluronic acid. Moreover, as it has been 

reported that the above certain temperatures there is a significant degradation/denaturation of 

HA (Mondek et al., 2015) which in our case was indicated by the change of colour of the HA 

solution (possibly indicating the degradation of HA). Consequently, instead of refluxing the 

reaction mixture at 65°C it was reacted at 50°C for 4 h. After changing the temperature, though 

there were no signs of the degradation of the polymer at the same time, there was also no 

conjugation between the HA (polymer) and the PMD (drug) as indicated in Figure 3.6-C. Thus, 

it can be concluded that although this decrease of the temperature was important to prevent the 

degradation of the polymer, it appears likely that this temperature was insufficient to cause the 

reaction between the HA and the PMD and hence can be the key factor in the unsuccessfulness 

of the said reaction. 
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A) 

 

 

B) 
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C)

 

Fig 3.6. 1H-NMR spectra collected from attempts to conjugate PMD with HA following 

the Fischer esterification method.  (A), spectrum of HA starting materials showing 

characteristic peaks for H of glucosamine and CH3 of N-acetylcysteine. (B), spectrum of 

PMD showing characteristic peaks for the secondary and tertiary OH groups.  (C), 

spectrum of the final product indicating absence of PMD. 

Synthesis Using the Method of Lee et al. (2008) 

An alternative method to conjugate a polymer with the drug is by using DCC coupling. This 

method is based upon the activation of the carboxyl group (COOH) and then the subsequent 

conjugation with the drug. The first step for this reaction was converting the sodium 

hyaluronate into a free acid form. After that, in order to dissolve the free acid form of HA in 

DMSO, it was conjugated to polyethene glycol (dimethyl ether), for this reaction, DMAP 

added, which is required at 5 mol % for the efficient formation of esters ("Stiglich-esterification 

@ www.organic-chemistry.org," n.d.). From the results presented in Figure 3.8, it can be seen 

that the conjugation did not occur. 

Again, there are several potential reasons for the unsuccessful reaction; the first one can be the 

unsuccessful reaction of dmPEG and the free HA. This was unlikely since the HA was able to 

dissolve in DMSO, as the solubility of free HA is very low in DMSO. Another possibility can 

be the unavailability of the dry conditions in the reaction as this reaction is very moisture 
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sensitive. Whilst the reaction uses dry conditions it is feasible that moisture could have entered 

the said reaction. Another reason for the failure of the reaction could be the not all of the 

carboxy groups of the HA were activated which may be due to the use of the very high 

molecular weight of HA; the high molecular weight could have hindered the access to all of 

the carboxy groups within the polymer which coupled with the sterically hindered hydroxy 

groups of the PMD may would have resulted in the unsuccessful outcome.  

 

A) 
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B) 

 

C) 

 

Figure 3.7. 1H-NMR spectra collected from attempts to conjugate PMD with HA 

following Lee et al. (2008) (A), spectrum of HA starting materials showing characteristic 

peaks for H of glucosamine and CH3 of N-acetylcysteine. (B), spectrum of PMD showing 

characteristic peaks for the secondary and tertiary OH groups.  (C), spectrum of the final 

product indicating absence of PMD. 
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3.4.4. Changing the Approach: From High Molecular Weight to Low Molecular Weight 

Initially, the HA that was used had a molecular weight of 1.6 MDa. As it has been reported that 

by decreasing the molecular weight, the reactivity of the polymer can be increased (Bernal et 

al., 2003), so to break the long chains of the polymer harsh conditions in the form of high 

temperature (60°C) and acidic environment (1M HCl) were provided. Upon following the 

indicated procedure (Bernal et al., 2003), the obtained solutions were subjected to gel 

permeation chromatography (GPC) in order to evaluate molecular weights. Results showed 

that various fractions of different molecular weights were found. To separate these fractions, 

they were passed through the dialysis membranes of various molecular weight cut-offs from 

3000-12000 Daltons. After that, low molecular weight HA was reacted with that of PMD by 

using the DCC coupling method as described above, but it failed in the desired conjugation. 

Possible reasons for the failure may be the; 

a) Degradation of the polymer during the procedure to form low molecular weight 

HA. 

b) Inability of the HA to react with PMD.  

The first potential reason was unlikely because there were no signs of the degradation of HA 

in the NMR spectra of the sample as the spectra was in accordance with the data of Tømmeraas 

and Melander (2008). Similarly, other reasons can be the inability of HA to react with the PMD, 

which may be due to the inability of the DCC to activate the carboxylic groups of the polymer; 

the most probable reason of the failure of the said reaction. 
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A) 

 

B) 

 

Figure 3.8. 1H-NMR spectra collected from attempts to conjugate PMD with HA 

following the change of approach, using high to low molecular weight HA.  A), spectrum 

of low molecular weight HA showing characteristic peaks for H of glucosamine and CH3 

of N-acetylcysteine. B), spectrum of the final product indicating absence of PMD. 
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3.4.5. Synthesis Using Procedure of Shin et al. (2014) 

Given the lack of reactivity or conjugation with either high or low molecular weight HA, using 

varied synthetic routes, it appears that it is the polymeric carrier that was problematic.  

Consequently, attempts switched from HA to PAA, a polymer with excellent safety profile and 

has been used in topical formulations with the required chemical structure (possessing 

carboxylic groups) (Calixto et al., 2015). The technique opted here for the conjugation was as 

accomplished by Shin et al.  (2014). 

The main principle of this conjugation was based upon the formation of the ester bond by the 

DCC coupling method. However, this reaction also failed to produce the desired results. From 

experimental parameters possible reasons for this failure may be: 

a)  The amount of drug added 

b) Reduced appropriate dark conditions to the solvent (formamide) 

c) The temperature of the reaction 

d) Unavailability of dry conditions 

In order to ensure that the reaction did not fail because of the drug (PMD) availability, an excess 

amount of the drug was added. Similarly, it was ensured that during the reaction the round-

bottomed flask (in which the reaction was taking place) was adequately covered with the 

aluminum foil. On the other hand, though in this case we did not further increased the 

temperature, but the possibility of the desired conjugation by increasing the temperature cannot 

be high, as previously described where HA did not give the desired results. Nevertheless, 

though this factor cannot be ruled out as there is possibility of the successful conjugation by 

increasing the temperature. Perhaps the most likely explanation was that there was some 

moisture ingress during the reaction since the solvent (DMSO) is highly hygroscopic. 
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A) 

 

 

B) 
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C) 

 

Figure 3.9. 1H-NMR spectra collected from attempts to conjugate PMD with PAA 

following the method of Shin et al. 2008 (A), spectrum of PAA showing characteristic 

peak for COOH. (B), spectrum of PMD showing characteristic peaks for the secondary 

and tertiary OH groups.  (C), spectrum of the final product indicating absence of PMD. 

3.4.6. Synthesis Using the Method of Madgey et al. (2012) 

Madgey et al. (2012) reported conjugation of PAA with salicylic acid through an ester bond by 

converting first PAA into poly(acryloyl chloride) and then subsequently reacting it with 

salicylic acid to form the said conjugate. Here, for the conversion of PAA into poly(acryloyl 

chloride), thionyl chloride was used, which after the required processing as outlined in the 

method was reacted with PMD. Though this method in the first attempt did produce good 

results but upon replicating the method was not reproducible. Possible reasons for the failure 

can be the inability of poly(acrylic acid) to be converted into poly(acryloyl chloride). The most 

probable reason for this failure can be as this method involved few steps after the reaction of 

PAA with thionyl chloride and during those steps most likely it was quite difficult to protect 

the converted polymer from the environmental moisture, hence, making it nearly impossible 

(even if the PAA was converted) to remain in poly(acryloyl chloride) form (Figure 3.10). 
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A) 

 

B)  
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C) 

 

Figure 3.10. 1H-NMR spectra for (A), PAA showing characteristic peak for COOH (B), 

PAA after treatment with thionyl chloride, showing reaction of COOH group of 

polyacrylic acid (C) PAA+PMD, having no signs of conjugation occurring 

3.4.7. Change of the Drug 

After these initial unsuccessful attempts, one of the proposed reasons for the failure of these 

reactions was the drug (PMD) has secondary and tertiary hydroxy groups making it difficult 

for them to react with the polymer. Based upon this, in order to see what will be the effect of 

the replacing PMD with a compound with the primary hydroxy group, we chose thymol. The 

reasons for choosing this compound was that it has a maximum resemblance to the PMD (in 

the structure) and also belongs to the same class of the compounds as that of PMD, i.e., both 

are terpenoids, and also it has got some insect repellent properties (Pandey et al., 2009).  

 

After selecting the new drug, i.e., thymol, we employed the most commonly used methods in 

the literature for the formation of an ester bond, i.e., conversion into an acyl halide. For this 

purpose, we followed previously described methods. The first in this list was by first converting 

poly(acrylic acid) into poly(acryloyl chloride) and then the reaction with thymol to form the 
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conjugate. In the first step, poly(acrylic acid) was successfully converted to poly(acryloyl 

chloride) which was indicated by the loss of the hydrogen for the carboxy group of poly(acrylic 

acid) which further indicated the presence of the Cl (Figure 3.11 C) after that conjugation was 

tried with the thymol. In this case, there was the appearance of one peak that was related to the 

drug, but the results were not reproducible (though being tried thrice under the same 

conditions). Moreover, the peak was for the OH group of thymol that in case of successful 

conjugation should have not been there (Figure 3.11 C). 

In the second step as described before based on activation of the carboxylic group (by making 

it a better leaving group) and then reacting it with an alcohol to form a polymer-drug conjugate, 

DCC coupling method was employed which again failed to produce the desired results. 

(A) 
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(B) 

 

(C) 

 

 

Figure 3.11. 1H-NMR spectra for (A), PAA spectrum of PAA showing characteristic peak 

for COOH (B), Thymol, having a characteristic peak for primary OH group at 9.2 ppm 

(C) PAA+thymol showing no signs of conjugation 
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3.5. Conclusion 

Due to the high molecular weight polymer initially used and the low reactivity of the PMD 

(because of secondary alcohol) the esterification of PMD was not that straightforward. The 

reported methods and our modifications to those procedures failed to yield the desired results. 

Despite changing the polymer, polymer molecular weight, solvents and the drug itself, the 

desired polymer-drug conjugate could not be synthesised.  This led to the change of approach, 

i.e., from polymer-drug conjugate to the monomer drug conjugate and then subsequent 

polymerisation of the said monomer drug conjugate to form a polymer with the incorporated 

drug (PMD). 
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Chapter 4. Synthesis and Characterisation of the 

Copolymer poly(AA-co-APMD) 
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4.1. Introduction 

Paramenthane-3,8-diol (PMD) is a biochemical pesticide derived from eucalyptus plants. This 

active ingredient is used to make products that are applied to human skin and clothing to repel 

insects, such as mosquitoes (Pandey et al., 2009). There have been concerns over the use of 

insect repellents, notably in pregnant women as well as the infants; although there isn’t 

sufficient data available on the use of PMD in these groups, nevertheless it is advised not to 

use it (for example “insect-repellent-usage @ www.infantrisk.com,” n.d.). 

 

Polymer-drug conjugates (PDCs) have been used as a tool for drug delivery and their usage is 

increasing because of enhanced drug solubility, targeted delivery of the drug and a decreased 

adverse effect profile (Malathi et al., 2020). There are various polymers that are commonly 

applied to the skin both in topical medicines and cosmetics, e.g. chitosan, hyaluronic acid, 

polyacrylates etc (Valenta and Auner, 2004). Selection of a polymer for topical drug delivery 

is based upon numerous parameters but the prime requirement  is good safety profile, i.e. 

minimal irritation (Sugibayashi and Morimoto, 1994). 

 

Polymers can be in the form of homo- or copolymers. Copolymers are systems in which 

macromolecules are obtained by the polymerisation of two different types of monomers 

(Hagiopol, 2016). Copolymers provide many advantages as compared to homopolymers, 

notably that copolymers have hybrid properties arising due to the individual monomers; these 

properties can then be tailored to meet the specific uses (Shukla, 2020).  For example, poly 

(lactide-co-glycolide) uses  poly(glycolide) which has a low glass transition temperature (Tg), 

and when combined with poly(lactide) (having higher Tg) the resulting copolymer has a stable 

Tg (Francois et al., 2015; Klein and Wojcik, 2001). Alongside the unique therapeutic properties 

(active targeting, enhanced stability etc) that copolymers may possess, copolymerisation also 

gives rise to tailored rheological and mechanical properties, i.e. flow, viscosity, softening point 

etc (Li et al., 2015). 

 

Acrylic acid copolymers have been traditionally used for various purposes like ophthalmic drug 

delivery (Ma et al., 2008) whilst their application in topical and transdermal drug delivery is 

also well established (Don et al., 2008). As copolymers exhibit various physico-chemical 
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properties, it is important to characterise them fully (Contreras-López et al., 2013), commonly 

for thermal stability, Tg, molecular weight, composition of the polymer and  reactivity ratio of 

the monomers (Srivastava and Kumar, 2013). Depending upon the usage, various specific tests 

can be performed, e.g. for hydrogels, copolymers are tested for their swelling properties 

(Shahzamani et al., 2020). 

 

Here, a novel poly(acrylic-co-acryloylPMD) ester copolymer has been synthesised and 

characterised by 1H NMR and IR spectroscopy. The copolymer thermal stability was assessed 

by thermogravimetric analysis (TGA), Tg by differential scanning calorimetry (DSC), 

molecular weight by gel permeation chromatography (GPC), reactivity ratio by liquid-

chromatography mass-spectroscopy (LCMS), and drug loading by elemental and titration 

assay. Moreover, turbidimetric analysis was also performed to see the effect of pH on aqueous 

solubility of the copolymer. 

 

4.2. Materials 

PMD (p-Menthane-3,8-diol) was used as received (BOC, USA) (from this chapter onwards the 

PMD used was purchased commercially). Acrylic acid (AA) in liquid form (99%, Fisher 

Scientific, UK) was passed through the aluminium oxide column to remove the inhibitor prior 

to be used in copolymerization. Azobisisobutyronitrile (AIBN) was used as initiator and was 

recrystallized twice in methanol (Sigma-Aldrich, UK). Sodium hydroxide (Fisher Scientific, 

UK), acryloyl chloride and anhydrous triethylamine (Sigma-Aldrich, UK) were used as 

received. Poly(acrylic acid) (Mw=5000 Da) was purchased from Polysciences, Germany. All 

the solvents used were obtained from the Fisher Scientific, UK and were used as such without 

purification. TLC plates were obtained from Merck, Germany. 

 

4.3. Methods 

 4.3.1. Synthesis of Monomer Drug Conjugate (APMD) 

3.54 g of PMD was dissolved in 4 mL of anhydrous THF and stirred for 10-15 minutes until a 

clear solution was obtained. Then to this 3.44 mL of anhydrous triethylamine was added to de-

protonate the PMD and was allowed to further stir for 5 minutes. Then, to this solution mixture, 
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1.8 mL of acryloyl chloride was added dropwise. As this is a highly exothermic reaction, the 

round bottom flask was placed over ice. Then this mixture was allowed to stir at room 

temperature for 4 h. After that, the solvent was evaporated under vacuum followed by silica 

column chromatography using mixtures of ethyl acetate and hexane (1:4) and the product 

determined by thin layer chromatography (TLC). The final product was a viscous oil (2.1 g). 

Yield (53%). The yield was calculated as: (Amount of pure product recovered/Amount of 

chemical used) *100)   

1H NMR, (DMSO, 400 MHz): δ 6.40 ppm (1H, d), 6.25 ppm (1H, q),5.90-6 ppm (1H, d), 5.30 

ppm (1H, s), 4.20 ppm (1H, s), 0.90 ppm (6H, s), 0.80 ppm (3H, d). IR data 3221 cm-1= OH of 

PMD, 2840-2970 cm-1= C-H stretch, 1719 cm-1 = Ester linkage, 1017-1048 cm-1 =C-H 

bending. m/z = 242.19 Da which corresponds to C13H22O3Na. 

 

4.3.2. Synthesis of poly(AA-co-APMD) Copolymer 

The poly(AA-co-APMD) copolymer was synthesised via free radical polymerisation (with 

varying molar ratios). All the magnetic stirrers and glassware used in the experiment were dried 

at 110 °C for 6-8 h prior to the experiment. Briefly, (depending upon the molar ratio of the 

monomers used) in a typical reaction (7:3 APMD:AA)  APMD (300 mg), acrylic acid (285 

mg) and azobis(isobutylronitrile)(AIBN) (0.005 mol/L) were added into a flask together with 

ethanol (5 mL) as a solvent. After degassing the solution with nitrogen for 20 mins, the mixture 

was stirred under the inert environment at 65 °C for 16 h. Then, the flask was cooled to quench 

the reaction and the product obtained was dialysed using a regenerated cellulose membrane 

(suitable for ethanol, Sigma Aldrich, UK, MWCO 2000 Da) against ethanol for 2 days with 6 

times change of the solvent to remove unreacted monomers and oligomers. The final product 

poly(AA-co-APMD) was obtained by using a rotary vacuum for 20-30 mins at 50 °C. The yield 

of copolymer after the purification was 18-50% for different molar ratios except 1:9 

(AA:APMD), where the yield was extremely low (2%), and attempts to obtain a homopolymer 

of APMD failed. Yield of the poly(AA-co-APMD) was calculated by: 

% yield= Amount of copolymer made/Amount of monomers used*100 
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4.3.3. Turbidimetric Measurements  

The turbidity of polymer solutions at different molar ratios, i.e. 9:1 and 3:7 (AA:APMD) was 

investigated at 1 mg/mL with a Shimadzu UV/VIS-2401 PC spectrophotometer (Japan) at 400 

nm. For this experiment, poly(acrylic acid) (PAA) was used as a control. The experiment was 

performed at room temperature. The pH of the solutions was changed by adding 0.1 N sodium 

hydroxide (NaOH) and determined using a digital pH-meter (JenWay, UK). All the 

experiments were performed in triplicate. 

4.3.4. Molecular Weight and Molecular Weight Distribution of the Polymers 

Molecular weight of the copolymers and its distribution was determined using a gel permeation 

chromatography (GPC) instrument equipped with an Agilent 1100 series RI detector, 

quaternary pump and Waters Ultra hydrogel columns with pore sizes of 250, 500 and 1 000 A, 

respectively. The mobile phase consisted of THF with a flow rate of 0.75 mL /min. The eluent 

was DMF containing Bu4NBr (0.1% w/v). In this experiment copolymers of varying ratios of 

acrylic acid (AA) and acryloyl PMD (APMD) were used ranging from 1:9, 3:7, 5:5, 7:3, 9:1 

(AA:APMD). PAA was used as a control.  

 

4.3.5. Reactivity Ratio Experiment 

4.3.5.1. Method Development 

The first step in the reactivity ratio experiment was to develop a method for the analysis of both 

AA and APMD. For this purpose, LCMS was used. Briefly, for the purpose of constructing a 

calibration curve for both AA and APMD, a stock solution of 1000 µg/mL (1mg/mL) was 

prepared by dissolving 14.2 mg of AA and 17.8 mg of APMD in 14.2 and 17.8 mL ethanol 

respectively. This was then serially diluted to make 200, 100, 50, 25, 10, 5 and 1 µg/mL 

dilutions (by using following formula): 

Concentration (start) x Volume (start) = Concentration (final) x Volume(final) 

(abbreviated as C1V1 = C2V2 ) 
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 4.3.5.2. Reactivity Ratio Experiment 

Monomer mixtures of AA and APMD were dissolved in ethanol. Five monomer mixtures were 

investigated with the AIBN concentration was kept constant in all cases (0.005 mol/L). The 

polymerization, carried out at 60 °C, was allowed to proceed to low conversions (below 10%). 

For this purpose, reactions were stopped before 2 h. The obtained product was subjected to 

liquid chromatography mass-spectroscopy (LCMS) for analysis. The analysis was performed 

for both AA and APMD 

 

4.3.6. Drug Loading 

Two methods were used for the calculation of drug loading, i.e. titration method and elemental 

analysis. 

 

4.3.6.1. Titration Method 

In this method, firstly PAA (5,000 Da, Polysciences, Germany) was used and 5 different 

solutions of PAA in water:ethanol (7:3 v/v) were prepared (1,2,3,4 and 5 mg/mL).  All solutions 

were flushed with nitrogen to remove any dissolved carbon dioxide (as during the reaction it 

may form carbonic acid which may give false results). Then, 3mL of PAA solution from each 

of the stock (1, 2, 3, 4 and 5 mg/mL) was taken and to this 3 drops of phenolphthalein indicator 

was added. Then 0.1M NaOH solution was added dropwise until a faint pink colour appeared 

(at this point the reaction was stopped) and the volume of NaOH used was recorded. Similar 

data obtained from the copolymer system (volume of 0.1M NaOH used) was correlated with 

the data obtained from the PAA. For example, in the case of 5 mg/mL of copolymer solution, 

the volume of 0.1M NaOH used was 3mL and the % of PAA was calculated as: 

Volume of NaOH used in PAA-volume of NaoH used in copolymer/ Volume of NaoH 

used in PAA*100 (Soto et al., 2014) 

4.3.6.2. Elemental Analysis 

An elemental analyser (FLASH EA 1112 series, Thermo-Finnigan, Italy) was used for C 

(carbon) elemental analysis. Samples were prepared by the method as described earlier at four 
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different molar ratios, i.e. 3:7, 5:5, 7:3 and 1:9 (AA:APMD). After the product was obtained, 

it was dried overnight in a vacuum oven (Thermo Fischer, UK) at 40 °C to ensure complete 

removal of the moisture. A total of 2-3 mg samples was sealed in HPLC vials (Thermo Fischer, 

UK) and were subjected to analysis. For the analysis, combustion and reduction tubes 

(PerkinElmer) were used. The combustion reaction was run at 975 °C in the presence of pure 

helium and oxygen as carrier gas. 

 

4.3.7. Thermal Analysis 

Thermal analysis was performed by using two techniques, i.e. thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). 

 

4.3.7.1. TGA 

TGA was carried on copolymer poly(AA-co-APMD) samples of different molar ratios with  

PAA and PMD used as controls, as described in chapter 2. In this experiment we used non-

Hermetic pans. 

 

4.3.7.2. DSC Study 

In order to determine the glass transition temperature (Tg) of the copolymers (of varying molar 

ratios) and the PAA (as a control). Procedure described in chapter 2 was followed. Here we 

used Hermetic pans. Moreover, this experiment was carried out by the technician. 

 

4.4. Results and Discussion 

4.4.1. Synthesis of Monomer Drug Conjugate (APMD) 

After the initial failed attempts to synthesise a polymer-drug conjugate, an alternative route of 

conjugating PMD with a monomer (that can be polymerised) was explored, i.e. producing an 

acryloyl-PMD monomer (APMD) and then subsequently polymerising this conjugate alone 

(homopolymer) or with another monomer (in our case acrylic acid) to form a copolymer. This 

synthesis route for copolymers has been reported previously in various studies (Chytil et al., 
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2010; Liu et al., 2015) and is considered to be a good alternative if the conventional polymer-

drug conjugation approach is unsuccessful. There are various advantages of this method, 

notably in drug loading as in this method the percentage of drug loading is typically higher 

than for conventional PDCs whilst the drawbacks include that the approach often involves more 

synthetic steps and depending upon the monomer used, water solubility may be decreased, e.g. 

if the methacrylic acid monomers are used there are reports of a decrease in the water solubility 

of the obtained product (Bozorg et al., 2020). 

Here we chose acryloyl chloride as a precursor for the conjugation due to two reasons; the first 

was that the chloride group provides a platform for the formation of an ester bond between the 

PMD and the acryloyl chloride. The other was the acrylic acid itself, as it is the precursor of 

the poly(acrylic acid)-based polymers, which are commonly used in topical drug delivery and 

have an excellent safety profile (Ritthidej, 2011). 

A typical nucleophilic reaction synthesised the monomer drug conjugate (acryloyl-PMD). This 

involves a nucleophilic attack by alcohol, i.e. OH, followed by the removal of the leaving 

group, i.e. Cl. Triethylamine (TEA) was used as a base to convert the HCl (formed during the 

reaction) into a salt (triethylamine hydrochloride, a by-product). The chemical structure of the 

APMD was verified by 1H NMR, shown in Figure 4.1. By comparing the NMR spectra of the 

PMD alone and acryloyl chloride alone, we identified two main parameters for the verification 

of successful conjugation. First was the loss of one (δ 3.38 or 4.42 ppm) of the OH groups from 

PMD (due to the formation of an ester bond between the PMD and the acryloyl chloride) and 

the other was the appearance of the peaks indicating the presence of  CH2 and CH groups of 

the acryloyl chloride at around δ6 ppm. From the 1H NMR spectra of the APMD (Figure 4.1) 

it can be seen that both of these criteria were fulfilled such that the peak indicating the presence 

of one of the OH group in PMD, was lost. Moreover, new peaks were found in the region of 

δ6 ppm, indicating the presence of acryloyl moiety and, hence indicating a successful reaction. 

Further confirmation was from mass spectroscopy that showed the presence of a strong peak 

corresponding to a mass of 242 Da, which is in agreement with the molecular formula 

C13H22O3Na. Thus, from these, we can conclude that the synthesis of APMD was successfully 

achieved.  
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Figure 4.1 1H-NMR spectra of (A) Acryloyl chloride, having characteristics peaks for CH2 

and CH groups at around δ6 ppm. (B) PMD, having characteristics peaks for CH3 and 
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for the secondary and tertiary OH groups. (C) Acryloyl PMD, showing successful 

conjugation indicated by the appearance of characteristic peaks for acryloyl chloride. (D) 

Comparative spectra of acryloyl chloride, PMD and APMD. 

 

 

4.4.2. Synthesis of Poly(AA-co-APMD) 

In this study, a novel hydrolysable (by esterases) copolymer poly(AA-co-APMD) was 

synthesised through free radical polymerisation. Briefly, the copolymer was synthesised by 

free radical polymerisation of two monomers, i.e. acrylic acid (AA) and acryloyl PMD 

(APMD) using AIBN as a free radical initiator. The 1H NMR confirmed chemical structure of 

the copolymer. Verification of the polymerisation was affirmed (Figure 4.2) by the loss of the 

peaks corresponding to the double bonds of the acryloyl moiety of APMD, as these double 

bonds are the point of attack by the initiator (AIBN) during free radical polymerisation (Mota-

Morales et al., 2018). 

Along with this, another indicator was the broadening of NMR peaks, as 1H NMR peaks of the 

copolymer are usually broader (due to the repetitive units) and a common phenomenon 

observed with the macromolecules (Paulsen et al., 2017). Moreover, GPC analysis showed a 

peak with a polydispersity index (PI) of 2.9. The Mw of the copolymer was 6,200 Da. In order 

to prove the presence of the ester bond, C NMR and infra-red (IR) spectroscopy were used. In 

C NMR, we expected to have a peak between 170-190 ppm (indicating the presence of carbonyl 

carbon). In Figure 4.2, the C NMR spectra showed a faint peak at 175 ppm that could be related 

to the carbonyl carbon.  Moreover, the IR spectra showed the presence of the ester bond in both 

APMD and the poly(AA-co-APMD). 
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Figure 4.2 1H-NMR spectra of (A) Poly(AA-co-APMD) showing peaks for COOH group 

of the AA, OH, CH and CH2 groups of APMD. (B) 13C-NMR spectra of Poly(AA-co-

APMD) showing a faint peak for carbonyl carbon. (C) Comparative spectra of PAA and 

Poly(AA-co-APMD) showing the presence of extra peaks in the copolymer corresponding 

to APMD. (D) IR spectra (overlapped), showing PMD with characteristic peaks for OH 
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(3217 cm-1), CH stretching (2840-2970 cm-1 region), APMD showing a prominent peak at 

1716 cm-1 indicating formation of ester bond and the copolymer, poly(AA-co-APMD). 

 

4.4.3. Copolymer Composition 

 

The first step to calculate reactivity ratios is to know the composition of the copolymer. For 

this purpose, it is essential to have an analytical method that can detect the monomer(s) 

concentration. In our case, we had two monomers, i.e. acrylic acid (AA) and acryloylPMD 

(APMD). The most commonly used method for the detection of a monomer during a 

polymerisation reaction is 1HNMR, but due to the overlapping peaks from the acrylic groups, 

it was not possible to use this method. Further, due to the absence of a chromophore, we could 

not use the HPLC or UV spectroscopy. Therefore, we used LCMS to detect the monomers 

during the polymerisation. Here, we were only able to detect APMD and could not detect the 

acrylic acid (most probably due to the volatile nature of the monomer).  

The first step in the validation of a method (LCMS) is to assess whether it can quantitatively 

detect a compound or not and how accurate the detection is. For this purpose, a calibration 

curve was constructed, shown below. 

 

 

Figure 4.3 Calibration curve for the APMD by using LCMS (n=3) 
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Figure 4.4 Composition of the copolymers as the function of the feed mixtures (APMD).  

Black line indicates the partition between the lower and upper halves of the graph. 

 

4.4.4. Calculation of Reactivity Ratio 

During the synthesis of a copolymer, usually, one monomer is more reactive than the other 

monomer or (rarely) both the monomers may have same reactivity towards each other. Thus, 

in order to know the reactivity of one monomer towards another, the reactivity ratio is 

calculated. A reactivity ratio can be defined as the difference between the ratio of the monomers 

in the copolymer system to the ratio of feed mixture (Ebnesajjad, 2003). 

In order to calculate the reactivity ratio various parameters, need to be calculated, including 

monomer feed ratio composition, monomer copolymer composition and conversion of the 

monomer. The mole fractions (in mol%) of APMD in the feed as well as the copolymers (at 
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five different molar ratios) were calculated by using LCMS. The data is presented in Table 4.2. 

Reactivity ratios of APMD and AA were determined by the application of conventional 

linearization methods such as the Finemann–Ross (FR) and Kelen–Tüdós (KT) methods.  The 

Finemann–Ross (FR) method is one of the commonly used method for determining reactivity 

ratios, where G and H  (numerical values obtained through the initial feed and final copolymer 

composition of that monomer, in our case APMD) have a linear relationship with each other 

according to the following equation:  

G= rAPMDH-rAA  (Erbil et al., 2009). 

The FR plot obtained by linear regression analysis for APMD/AA copolymers is in Figure 4.5. 

For obtaining the FR plot certain parameters needs to be calculated which are summarised in 

Table 4.1. 

 

Table 4.1. Compositional FR Parameters for Poly(AA-co-APMD) Copolymer System 

F                                      f                                f2/F (H)                        f(1-F/f) (G) 

0.11                                0.063                              0.036                                0.5 

0.42                                0.176                              0.073.                              0.24 

1                                     0.449                              0.201                                 0 

2.33                                1.38                                0.81                                -0.78 

9                                     8.09                                7.27                                -7.19 

  

Where F=%APMD in monomer mixture/total %APMD, i.e. 1/9=0.11, 3/7=0.42 

And f= %APMD in copolymer mixture/total %APMD, i.e. 0.6/0.94=0.063, 0.15/0.85=0.176 

 

 



 117 

 

Figure 4.5. FR method for determining monomer reactivity ratios in the copolymerisation 

of APMD and AA by using LCMS data (for APMD). 

Kelen and Tüdós (KT) applied these two parameters, i.e. G and H in the linearized 

copolymerization equation, along with new parameters such as α, η and ζ. The intercepts 

at ζ = 0 and ζ = 1 of the η versus ζ plots yield – rAPMD/α and rAA, respectively (Erbil et al., 

2009). 

 

Table 4.2. Compositional KT Parameters for Poly(AA-co-APMD) Copolymer System 

F                          f                      f2/F (H)           f(1-F/f)(G)         η                     Ξ 

0.11                   0.063                  0.036                 0.5                 0.89                  0.06 

0.42                   0.176                  0.073                 0.24               0.40                  0.12 

1                        0.449                  0.201                   0.                      0                  0.27 

2.33                   1.38                    0.81                  -0.78              -0.58                 0.60 

9                        8.09                    7.27                  -7.19              -0.92                 0.93 

 

Where α = 0.52 

η= G/(α+H) and ξ= H(α+H) 

y = 1.0319x + 0.2855
R² = 0.9971
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Figure 4.6 KT method for determining monomer reactivity ratios in the copolymerisation 

of APMD and AA by using LCMS data (for APMD). 

Table 4.3. Comparison of reactivity ratios by various methods for AA/APMD copolymers 

 r1 (AA) r2 (APMD) 

FR method 1.03 0.28 

KT method 1.9 0.71 

 

Various studies have reported that as a monomer becomes bulkier the reactivity of it decreases, 

for example when acrylic acid was copolymerised with methyl methacrylate the reactivity ratio 

of the acrylic acid was found to be 1.5 and for the methyl methacrylate it was 0.48  (Ekpenyong, 

1985).  

From the values summarised in Table 4.3 (for the reactivity ratios of both monomers, i.e. AA 

and APMD) it can be seen that reactivity ratio values are different by the two methods, i.e. FR 

and KT method. As discussed earlier in FR method a plot of G as ordinate and H as abscissa is 

plotted resulting in a straight line whose slope is r1 and intercept is r2. The slope of the line of 

best fit is influenced greatly by the points which are closer to the origin, hence giving a non-

uniform weightage to the points and thus errors in the results are produced. The validity is only 
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qualitative and the estimates of r1 and r2 can change with each experiment by analysing the 

data in different ways. Moreover, the high and low experimental composition data are 

unequally weighed, which produces large effects on the calculated values of r1 and r2. To 

overcome these issues KT introduced refinement of linearization by adding an arbitrary 

constant ‘’ α’’ into FR equation, which helps the data to spread more evenly over the entire 

composition range ultimately giving equal weightage to all the data. Thus, we suggest that the 

inclusion of the ‘’ α’’ accounts for different values.  

However, in both calculations it is clear that AA is more reactive than APMD, and interestingly 

by 1.03/0.28 = 3.7 times by FR method and 1.9/0.71 = 2.7 times by KT method so in both cases 

showing AA about 3 x more reactive than APMD. Thus, it is expected that copolymers will 

contain greater levels of AA than APMD than anticipated, simply from their feed composition.  

So, loading of PMD on the copolymer will be lower than anticipated, as discussed in section 

4.4.9. 

 

4.4.5. Turbidimetric Study: 

In the present work, we studied the turbidity of poly(AA-co-APMD) copolymers with varying 

monomer ratios. The main aim of this was to study the effects of adding APMD (non-ionic) 

monomers into the copolymer system on the aqueous solubility at different pH’s by observing 

changes in opacity. Here PAA was used as a control. For such copolymer systems, a term called 

critical pH of complexation pH(crit) is used below which  the solution becomes turbid which 

is an indication of the phase separation in the system due to the formation of insoluble 

complexes (Khutoryanskiy et al., 2004). Hydrogen bonded interpolymer complexes (IPC) are 

formed between the proton donor (weak polyacids like PAA) and proton acceptor (non-ionic 

polybases like polyethylene glycol) polymers in the aqueous solution. An important limitation 

of such polymer systems is that they are usually soluble only within a narrow pH window. 

Normally, at pH values higher than 4-5, interpolymer complexation via hydrogen bonding is 

not possible due to the increase of ionised sites (carboxylate groups) in the polyacids chain, 

whilst on the other hand, at pH values lower than 3-3.5, the hydrogen bonded IPC precipitates 

(forming a turbid solution) because the fraction of the carboxylate anions in the polyacid chains 

(responsible for the solubility of the complex) decreases significantly (Khutoryanskiy and 

Staikos, 2009; Mun et al., 2003). From the results (Figure 4.7) it can be seen that the copolymer, 

i.e. poly(AA-co-APMD) mixture turns very turbid at lower pH, whilst it remains clear at higher 
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pH, this behaviour can be best explained by the formation of the hydrogen bonded IPC in 

between the AA and the APMD chains. Moreover, the PAA solution (control) remains 

practically transparent throughout the pH region. This behaviour can be attributed to the 

negative charge of the PAA (due to AA units), implying that either no interpolymer 

complexation is formed due to the negatively charged AA units or the IPCs formed are more 

hydrophilic and soluble in water.   

  

 

Figure 4.7. Effect of pH on the turbidity of the solution of PAA and the copolymers with 

varying molar ratios (of AA:APMD) 

 

4.4.6. Molecular Weight Characterisation 

 GPC analysis results demonstrated that poly(AA-co-APMD) copolymer with a relatively high 

molecular weight distribution (Mw/Mn >3.5) was obtained. Table 4.4 shows the molecular 

weight, PDI and molar percentage of monomers in the feed. Based on the results, it can be seen 

that increasing incorporation of AA units into the copolymer system resulted in higher 

molecular weights. This confirms the earlier findings that (from the reactivity ratio data) that 

AA is more reactive than APMD since higher reactivity’s of monomers produce high molecular 

weight polymers (Abbasi et al., 2020). A further factor affecting polymer molecular weight is 

the kinetic chain length which is (in the case of free radical polymerisation) the approximate 

number of monomers that are consumed by each radical; the greater the kinetic chain length, 

the larger will be the molecular weight. The kinetic chain length depends upon the initiation 

and termination rate of the polymerisation reaction (Principles of Polymerization,4th Edition @ 

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

A
bs

or
pt

io
n 

va
lu

e 
(a

.u
.)

pH

PAA

3:7 (AA:APMD)

7:3 (AA:APMD)



 121 

www.wiley.com), and bulky cyclic groups tend to terminate polymerisation (Tüdo and Földes-

Berezsnich, 1989) resulting in the decrease kinetic chain length and ultimately decrease 

molecular weight.  Given the large discrepancies in molecular weight with addition of 

increasing amounts of APMD, it is likely that both the reactivity ratio (approximately three-

fold higher for AA) and the kinetic chain length affects the molecular weight of the resulting 

copolymers. The PDI (Mw/Mn) is relatively high (quite common for free radical 

polymerisation) and could be controlled by the terminating the polymerisation reaction at low 

conversion rates (Krivorotova et al., 2015). 

 

Table 4.4. Molecular Weight Data for Copolymer Poly(AA-co-APMD) System 

Molar feed ratio                        Mw                                   Mw/Mn 

(AA:APMD)                                        
 
1:9                                              1800                                     2.1 

3:7                                              6200                                     2.9 

5:5                                              11500                                   3.1 

7:3                                             29200                                    3.3 

9:1                                             53100                                    3.4 

PAA (10:0)                               252000                                  3.45 

 

 

 

4.4.7. Thermal Study 

4.4.7.1.Thermogravimetric Analysis (TGA) 

TGA investigated thermal stability of the copolymer poly(AA-co-PMD) at different molar 

ratios and PAA along with the PMD (both as controls). The primary purpose of this experiment 

was to explore the stability of the poly(AA-co-APMD) copolymer and monitor thermal events. 

From Figure 4.8, it can be seen that the control, i.e. PMD, the weight loss starts at 40 °C and 

the material is essentially lost at 60°C, which is according to the literature. Moreover, this loss 
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in weight is attributed to high vapour pressure rather than the degradation of the material itself 

(Drapeau et al., 2011). Purpose of making it into a copolymer was to slow and extend the 

release, as the Figure 4.8 shows that it is rapidly lost when applied as a single compound to the 

skin. PAA is a widely used and suitably stable polymer showing minimal weight loss up to 

~150 °C, with perhaps the slight decrease due to loss of surface adsorbed water. Beyond this it 

starts to degrade. From the Figure 4.8, it can be seen that there two significant stages of the 

degradation in PAA; one at 190 °C and the other at 336 °C, whilst there is an initial weight loss 

below 100 °C which can be attributed to the loss of moisture. The first stage of the degradation 

(in PAA) till 336 °C accounts for most of the weight loss (70%), whilst the second stage after 

336 °C accounts for remaining of the overall weight loss, i.e. almost 91% at 590 °C. The data 

obtained for PAA is in correspondence with the literature. However, there are few deviations 

which can be attributed to the impurities within the polymer sample (McNeill and Sadeghi, 

1990). Complexing PMD in the copolymers clearly stabilises the weight loss. With 

3AA:7APMD, some weight loss (approx. 3.2%) at 40 degrees is seen but is likely the adsorbed 

moisture or the PMD from the relative smaller APMD chains (oligomers) within the 

copolymer. Weight loss at about 250 °C, can be attributed to decarboxylation (release of CO2) 

process. Similarly, above 350 °C the weight loss can be due to the chain scission, as at high 

temperature, the release of fragments within the acrylic acid sequence is possible (Maurer et 

al., 1987). 

 

Figure 4.8. Thermal gravimetric analysis of the materials 
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4.7.2. DSC Analysis 

DSC analysis was performed on PAA alone followed by the copolymer poly(AA-co-APMD) 

at different molar ratios to determine the glass transition temperature (Tg) - the temperature 

below which a polymer’s physical properties change to those of a glassy state (Ebnesajjad, 

2016). DSC determined the Tg of the copolymers (at two molar ratios) under a nitrogen 

atmosphere (at 40 °C /min). For synthesised PAA, the Tg value was around 101°C which is in 

agreement with the literature (Wong et al., 2007), whilst the copolymers poly(AA-co-APMD) 

showed Tg’s varying from 48-59 °C for different molar ratios. It was found that increasing the 

amount of APMD in the copolymers results in decreased Tg, i.e. for 7:3 (AA: APMD), the Tg 

onset was at 51.9 °C, whilst for 3:7 (AA: APMD) it was 48.2 °C. Two main parameters can 

affect the Tg, firstly the strength of the bond between the molecules, and secondly the stiffness 

of the polymer chain (Hobson, 2001). The results, showing PAA has a higher Tg than the 

copolymers, can be best explained by the higher polarity of  PAA due to which there is increase 

dipole interaction between the molecules hence it has rigid chains, whilst the addition of the 

APMD monomer decreases the polarity and the dipole interactions leading to decreased 

intermolecular interactions which ultimately makes the structure less rigid. 
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Figure 4.9. DSC thermograms of poly(AA-co-APMD) at two different monomer ratios 

and PAA  
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use this method. Therefore, in order to determine the amount of drug-loaded in the copolymer 

system, other methods were explored; two methods were used namely the titration method (for 

determining free carboxylic groups) hence indirectly showing the amount of PMD present 

while the second technique used was the elemental analysis in which the percent carbon content 

data was obtained to determine the PMD concentration. 
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           4.4.8.1.  Titration Study 

Different types of the complexometric titration methods have been used to quantify 

certain functional groups, including carboxylic groups (Fras et al., 2004). Most titration 

methods use spectrophotometric analysis and commonly employ solvents in which our 

copolymer was insoluble or use conditions that might result in the breakage of the ester 

bond in the copolymer (van Houwelingen et al., 1980). Therefore, a conventional 

method was used by titrating the copolymer against an excess amount of base (NaOH) 

in the presence of a pH indicator (phenolphthalein). The prime concern during this 

process was to ensure that the ester bond of the copolymer do not hydrolyse. For this 

purpose, the whole reaction was performed over ice in order to prevent the hydrolysis 

of the ester bond in the copolymer as the hydrolysis of an ester is slower at a lower 

temperature than the neutralisation reaction. 

 The titration calibration curve for the PAA control showed an excellent correlation 

(r2=0.99) between the concentration of the PAA and the volume of the NaOH (0.1 M) 

used for neutralisation, thus indicating the suitability of this method for quantification 

of the free carboxylic groups. Moreover, previous studies have also reported the 

titration of PAA by the same method (Bensacia and Moulay, 2012) thus giving 

confidence in the approach. 

 

Figure 4.10. Calibration curve for PAA by using titration method. Data are 

represented as mean ± standard deviation (n=3).   
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From this calibration curve, the volume of 0.1M NaOH used to neutralise the copolymer 

systems was used to assess the PAA content. For example, for 0.8. μmol of copolymer (3:7, 

AA:APMD) solution was neutralised by 8.9 mL of 0.1M NaOH. From this the percentage of 

free carboxylic groups were calculated by using the following formula: 

Volume(NaOH used in PAA)-Volume (NaOH used in copolymer)/ Volume (NaoH used in PAA)*100. 

From the above equation the amount of free carboxylic groups (AA,) was 89.8% and so the 

assumption is that the remainder of the material (10.2%) was APMD  

Table 4.5. Drug loading calculation at various molar ratios of the monomers by the 

titration method 

Monomer ratio       Volume of 0.1M NaOH             %AA content       %APMD content 

3:7 (AA:APMD)               8.9 mL                           89.8                             10.2 

5:5 (AA:APMD)               9.25 mL                         92.5                             7.5 

7:3 (AA:APMD)               9.62 mL                         96.2                             3.8 

 

4.4.8.2.Elemental Analysis 

Elemental analysis is a technique that provides information on the composition of any chemical 

entity at an elemental level, i.e. C, N, H etc. This technique is commonly employed to determine 

the composition of polymers (Hu et al., 2019). Here, the amount of PMD (drug) within the 

copolymer was determined through elemental analysis. The drug percentage was calculated by 

using carbon (%) via the carbon (content) analysis. The rationale for using carbon content was 

that both APMD and AA have carbon atoms in their structures. For calculating the amount of 

drug-loaded, first it was necessary to determine the percentage of carbon in PMD alone and 

PAA alone. It is understood that by changing the molar ratio of the copolymer will have 

different carbon content (%C) in the final product. The drug content was calculated through 

the following equation. 

Weight (%) Drug= %C(copolymer)-%C(PAA) / %C(PMD)-%C(PAA)*100 (Hu et al., 2019). 
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For the copolymer 3:7 (AA:APMD), the total weight(%) of the APMD was calculated to be 

9.7%, in close agreement with the titrimetric value of 10.2%. 

Table 4.6. Drug loading calculation at various molar ratios of the monomers by the 

elemental analysis method 

Monomer ratio                       %AA content                       %APMD content 

3:7 (AA:APMD)                       91.3                                          9.7 

5:5 (AA:APMD)                       92.9                                          7.1 

7:3 (AA:APMD)                       96.8                                          3.2 

 

 

4.4.9.   Correlation of Drug Loading with Reactivity Ratio 

The composition of a copolymer is usually different from the composition of the monomer 

feed from which copolymer is synthesised because different monomers have different 

reactivities to undergo copolymerisation (Ayranci et al., 2016). Here it can be seen that 

initially, APMD concentration in the mixture feed during the 3:7 (AA:APMD) synthesis 

was 70% whilst acrylic acid was 30%. However, after the synthesis of the copolymer, the 

percentage of incorporated acrylic acid is 85-88% (obtained from titration and elemental 

analysis), far higher than the initial composition, i.e. 30%. This indicates that APMD is far 

less reactive than the AA. This observation is in agreement with the data obtained from the 

reactivity ratio experiment. It can be due to the bulky nature of the APMD as there have 

been reports that when the structure is bulky, it can lead to decrease in reactivity ratio 

because bulky groups promote termination of the reaction hence inhibiting polymerisation 

of that particular monomer (Elias, 1977). 
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4.5. Conclusion 

        Free radical polymerisation of AA and APMD resulted in the formation of poly(AA-co-

APMD) ester copolymer with low to medium molecular weight (depending upon the 

monomer ratios).The reactivity ratio study revealed that the AA is much reactive than the 

APMD, probably due to the presence of bulky cyclohexane ring in the APMD. The 

properties of the copolymer were dependent upon the monomer ratios in the feed mixtures. 

Higher content of APMD in the monomer mixture results in the formation of a turbid 

solution in water. Thermal analysis revealed the thermal stability of the copolymer as 

compared to the free drug (PMD) whilst the DSC study revealed a decrease in the Tg by 

the addition of APMD into the mixture feed, most probably due to the decrease in the 

rigidity of the polymer chain. Drug loading was calculated by two methods; titration 

method and elemental analysis. Both were showing comparable results. These results were 

in accordance with the reactivity ratio studies. 
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Chapter 5. In vitro Hydrolysis and Skin Penetration 

and Permeation Study of the Copolymer poly(AA-
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5.1. Introduction 

Insect repellents are widely applied to prevent bites and associated rash that are caused by 

insect bites. They are also commonly used as a protective measure against insect-borne 

diseases. Current insect repellent formulations have various shortcomings, thus requiring 

strategies to improve their performance (Maia and Moore, 2011; Rodriguez et al., 2015).  

 

Polymers are widely used in pharmaceutical dosage form including covalently attaching the 

drug with the polymer backbone (D'Souza and Topp, 2004). Therapeutically, PDCs have been 

used for various purposes that include cancer (Greco and Vicent, 2008) and for other diseases. 

One (of various) reason for attaching the drug to a polymeric backbone is to enable long-lasting 

drug delivery (Zhu et al., 2014); for this purpose, they are conjugated via various degradable 

linkages (Dong et al., 2019; Lau et al., 2013). There are several mechanisms for the release of 

the drug from degradable linkages, including pH mediated drug release, enzymatic drug release 

and temperature-mediated drug release etc (de la Rica et al., 2012; Deng et al., 2009). Among 

enzymatic drug release, various enzyme sensitive linkages have been synthesised, one of which 

is the ester linkage that can be hydrolysed by the addition of esterases (Zhang et al., 2017). 

Human skin contains naturally occurring esterases, which can hydrolyse the ester compounds 

(Findlay, 1955). Pigs have multiple forms of carboxylesterases, with the highest levels being 

in the liver. These enzymes are readily available as porcine liver esterases (PLEs)  whereas 

human skin esterases have limited and expensive commercial availability and so PLEs are 

widely used in enzymatic drug release studies (Zhou et al., 2019). 

 

As discussed earlier in chapter 3, various studies raise specific concerns over the systemic 

absorption of insect repellents such as diethyltoluamide (DEET) and subsequent side effects, 

especially regarding their use in pregnant women and the neonates (Tavares et al., 2018).  

Therefore, it is important to minimise the systemic absorption of the repellent, for which we 

have employed the conjugation of the drug to the polymer backbone. To achieve this objective, 

a Franz diffusion cell approach was used to assess the penetration and permeation of the active 

ingredients (Wiechers, 2005) using pig ear skin which is a common skin model to study topical 

penetration and permeation of compounds (Abd et al., 2016). This chapter examines the 

hydrolysis of the copolymer poly(AA-co-APMD) with the addition of porcine liver esterases 

followed by studies into the penetration and permeation of the copolymer and PMD alone into 
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the pig ear skin. In order to monitor penetration and permeation, in vitro experimental 

conditions mimicked in vivo use as closely as possible 

 

5.2. Materials 

 p-menthane-3,8-diol (PMD) was purchased from BOC Sciences (USA), D-Squame tapes were 

obtained from Clinical & Derm, USA. Parafilm ® (Bemis Flexible Packaging (AMCOR), 

USA), porcine liver esterases (PLEs), acryloyl chloride and ammonium acetate were acquired 

from Sigma-Aldrich (Merck, UK), acetonitrile (ACN), ethanol and all other solvents used were 

of LCMS grade and were procured from Fischer Scientific, UK. 

5.3. Methods 

5.3.1. Method Development for the Analysis of PMD 

Certification of an analytic technique used throughout the drug development and drug 

production is required to prove that the procedures are appropriate for their proposed objective. 

Consequently, for the analysis of PMD, liquid chromatography-mass spectroscopy (LC-MS) 

was used. The sensitivity of the method was tested by determining the limit of detection (LOD) 

and limit of quantification (LOQ) for PMD. For accomplishing this objective, the following 

method was used: 

 

Device calibration is a critical stage in most measurement processes. It is a set of procedures 

that determine the correlation between the yield of the measurement system (e.g., the reaction 

of an apparatus) and the recognized values of the calibration requirements (e.g., the quantity of 

analyte present). The first step in the analysis of PMD was to construct a calibration curve. In 

order to prepare a sample for the calibration curve, a stock solution of 1000 µg/mL (1mg/mL) 

was prepared by dissolving 10 mg of PMD in 10 mL of acetonitrile.   This was then serially 

diluted to make 200, 100, 50, 25, 10, 5 and 1 µg/mL dilutions (by using the following): 

Concentration (start) x Volume (start) = Concentration (final) x Volume(final) 

(abbreviated as C1V1 = C2V2 ) 
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with solutions prepared in water: acetonitrile ratio of 4:6 v/v. The main reason for using water: 

acetonitrile (4:6 v/v) was to have equivalence with the final solution (with or without enzymes) 

after adding acetonitrile to quench the aqueous enzyme hydrolysis solution. 

 

5.3.2. In vitro Hydrolysis of the Copolymer by Using Porcine Liver Esterases (PLEs) 

For these experiments, 5mg/mL of copolymer containing 3:7 (AA:APMD) was dissolved in 

water: acetonitrile mixture (9:1 v/v) and the pH was adjusted to 7 by ammonium acetate buffer 

(10 mM of the buffer was prepared by dissolving 77 mg of ammonium acetate in 100 mL of 

LCMS grade water). Then, 35 mg of PLEs (1 unit of enzyme per µM of the copolymer) was 

added and the solution was stirred at 32±1°C (to mimic the skin temperature). Experimental 

samples (0.75 mL) were systematically withdrawn and quenched with equivolume of 

acetonitrile (0.75 mL). They were then subjected to centrifugation (Sanyo MSE Micro Centaur 

MSB010.CX2.5) at 13000 rpm for 12 minutes; the supernatant was collected and was analysed 

by LCMS. In this study, the control used was of the same copolymer but without PLEs. All 

experiments were performed in triplicate, and representative data are shown. The concentration 

for the unknown samples was calculated as: 

Concentration (µg/mL) of unknown= Peak area*Dilution factor. 

Dilution factor was calculated as Df= Vf/Vi where Df stands for dilution factor, Vf for final 

volume and Vi for initial (original) volume. 

 

5.3.3. In vitro Hydrolysis of Monomer Drug Conjugate (APMD) by Using PLEs 

Initially, 1.2 mg/mL of monomer drug conjugate (APMD) was dissolved in acetonitrile (ACN) 

followed by the dropwise addition of water with continuous stirring until a clear solution was 

obtained with a final proportion of water: acetonitrile of 9:1 (v/v). The pH of the solution was 

adjusted to 7 by adding ammonium acetate buffer (10 mM of the buffer was prepared by 

dissolving 77 mg of ammonium acetate in 100 mL of LCMS grade water). Then to this, 54.3 

mg of PLEs (1 unit of enzyme per micromole of APMD) were added, and the solution was 

stirred at 32 ± 1°C (corresponding to the skin temperature). Experimental samples (0.75 mL 

each) were regularly taken and quenched with an equivolume of ACN (0.75 mL) and were then 

subjected to centrifugation at 13000 rpm for 12 minutes, after which the supernatant was 
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collected and was subjected to analysis by LCMS. In this study, the control used was of APMD 

without PLEs. All experiments were completed in triplicate, and representative numbers are 

displayed. The concentration for the unknown samples was assessed by using the following 

calculation: 

Concentration (µg/mL) of unknown= Peak area*Dilution factor 

Dilution factor was calculated as Df= Vf/Vi where, Df stands for dilution factor, Vf for final 

volume and Vi for initial (original) volume. 

 

5.3.4. In vitro Hydrolysis by Adding Continuous Supply of PLEs 

In order to assess long term release of PMD from the copolymer, a continuous (replenished) 

supply of the enzyme was provided. Briefly, the same procedure as reported earlier (5.3.2) was 

followed but with a minor modification, i.e., after every 24 h, a fresh aliquot of the enzyme 

was added (at the above concentration). In this study, the control used was copolymer without 

PLEs. The experiment was performed in triplicate. The concentration of the liberated PMD 

was calculated as: 

Concentration (µg/mL) of unknown= Peak area*Dilution factor 

Dilution factor was calculated as: Df= Vf/Vi   where, Df stands for dilution factor, Vf for final 

volume and Vi for initial (original) volume. 

 

5.3.5. Evaluation of the PMD Release Profile 

Evaluation of the PMD release profile was done by using  

Zero-order kinetics F=K0 t where F is the fraction of drug release at time t and K0 is the zero-

order release constant. 

First-order kinetics Ln (1−F) = −K1t where K1 is the first order release constant. 

 Higuchi model F=−K2t1/2 where K2 is the Higuchi constant. 

Korsmeyer-Peppas Model MtM∞=K3tn where MtM∞ is the fraction of drug release at 

time t, K3 is the release rate constant, and n is the release exponent. The different release 

mechanisms were characterized using the calculated n value. When n < 0.5, the diffusion 
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mechanism is quasi-Fickian, n = 0.5 is Fickian diffusion, 0.45 < n < 1 refers to non-Fickian 

diffusion, n = 1 is case-II transport, and n > 1 refers to super case-II transport (Wong and 

Dodou, 2017). 

 

5.3.6. In vitro Skin Penetration and Permeation Study 

5.3.6.1. Preparation of Skin Membranes 

Although human skin is the most relevant membrane for percutaneous drug absorption, due to 

its limited availability for experimental use, a wide range of animal models has been 

investigated as a replacement. Porcine skin was found to be a good alternative for human skin 

in several in vitro studies (Lau et al., 2010; Rizi et al., 2011). Pig ears obtained from a local 

slaughterhouse (within 6 h of animal sacrifice) were kept at -20°C before membrane 

preparation (frozen skin was used within two months). The ears were defrosted before 

preparation and cleaned under cold running tap water. Hair was trimmed with a trimmer 

(Panasonic, Japan). Full-thickness skin containing dermis and epidermis was harvested from 

the underlying cartilage by using a scalpel (Swann-Morton, UK). 

5.3.6.2. Skin Permeation Study 

The permeation of PMD and the copolymer were compared to determine the amount of each 

that may potentially be taken up by the systemic circulation.  For this, firstly the integrity of 

the skin was checked by physical inspection of the skin. The skin was then mounted on six 

glass Franz-type diffusion cells, with nominal diffusion area of 3.14 cm2 and the receptor 

volume of 15 mL. Thickness of the skin was 70μm. Skin samples were positioned between the 

donor and receptor chambers of the cell, with the dermis in contact with the receptor medium. 

Finite doses (15mg/5 mL, 3mg/mL) of each PMD and the copolymer prepared in water: ethanol 

(8:2 v/v) were applied to the donor chamber. For the preparation of solutions, the volume of 

ethanol was kept at 20% (v/v) to prevent the increase in permeation by the ethanol itself as per 

Williams and Barry (2004). The Franz-cells were placed in an incubator set at 32±1°C. The 

permeation studies were performed under occlusion with Parafilm to ensure hydration and 

equilibration of the stratum corneum. Samples (1 mL) were taken periodically from the 

receptor compartment at 0.25, 0.5, 1, 1.5, 3, 6, 12, 24,48 and 72 h and were replaced with 
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equivolume of the water: ethanol (8:2 v/v) receptor medium. For each PMD and copolymer, 

six replicates were used. 

5.3.6.3. Skin Penetration Study 

At the end of the permeation study, i.e., 72 h, a skin penetration study was performed. For this, 

a tape stripping method was used to collect the test compound from the skin in such a way that 

twenty tape strips were used. The first two tape strips were assumed to account for the solution 

remaining on the skin surface of each donor chamber, tape strips 3-10 accounted for the upper 

stratum corneum, while from 11-20 accounted for the lower stratum corneum. The strips of 

adhesive tapes were cautiously attached to the marked skin location to prevent wrinkles, with 

continuous weight application. For the extraction process, the tape strips were immersed in 

ethanol and were subjected to sonication for 15 minutes at room temperature. Any remaining 

skin particulates were removed via filtration using 0.45μm filter (ThermoFischer, UK) and the 

extraction liquid was subjected to analysis by gel permeation chromatography (GPC). For 

GPC, we used THF as a solvent with an injection volume of 100 μL and a flow rate of 1mL/min. 

Here, PMD was used as control and was analysed through LCMS. 

5.3.6.4. Data Analysis for Skin Permeation and Penetration Study 

Permeation was evaluated by plotting the cumulative amount (!") of the PMD or copolymer 

permeated per unit surface area of the membrane against the collection time for each diffusion 

cell.  For this study, a steady state flux (#$$) was calculated by linear regression using Microsoft 

Excel software within the first two hours. 

5.3.6.5. Statistical analysis 

Statistical analysis was carried out using MS Excel 2016 Data Analysis Add-In programme. 

Significant differences and comparisons of the means were made using ANOVA (single 

factor).  

 

 

 



 142 

 

5.4. Results and Discussion 

5.4.1. Analysis of PMD 

5.4.1.1. Method Development for the Analysis of PMD 

One of the major concerns for this study was to develop an accurate and sensitive method to 

detect PMD. Commonly used methods for the detection of a drug are HPLC and UV. Here, 

these methods were not suitable as PMD does not have a chromophore to be detected and a 

synthetic approach to attach a chromophore risks loss of this volatile analyte. Thus, a mass 

spectroscopy related technique was sought. Previously gas chromatography-mass spectroscopy 

(GCMS) has been used as an analytical method to analyse PMD (Tian et al., 2005), but we 

were unable to accurately quantify low levels of PMD through this method. Thus, liquid 

chromatography-mass spectroscopy (LC-MS) was used to analyse and quantify PMD. The first 

step (to develop a method for the detection and quantification of PMD) was to optimise 

conditions/setting (selection of column as well as the other parameters such as the amount of 

acid to be used). Initially, we used a C-4 column with 1% formic acid, but this gave excessive 

tailing. Likewise, a cyano column (CN columns with cyanopropyl groups) with 1% formic acid 

also resulted in excessive tailing as well as poor peak separation. The chromatogram for this is 

shown in Figure 5.1.  

 

Subsequently, a phenyl column with 2% formic acid gave better peak separation (Figure 5.2) 

and no significant tailing was found in the peaks as compared to the preliminary attempts; the 

shape of the peak is important because if the baseline of the peak or overall shape of the peak 

is distorted, the calibration curve can be compromised since the software calculates the 

concentration by overall area of the peak. The best possible explanation for the success of 2% 

formic acid and phenyl column can be that the formic acid ‘’buffers’’ the eluent system well 

away from the pka of the analyte leaving the analyte in the ion suppressed form. Moreover, 

phenyl column has got affinity towards the OH groups thus leading to a good retention and 

better separation of the peak (Ge and Sem, 2012).  
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A 

 

B 

Figure 5.1. Preliminary attempts for the method development to analyse PMD, showing 

chromatogram A (using C-4 column) & B (using cyano column). 

 

Figure 5.2. Chromatogram showing two separate peaks for PMD corresponding to 155 

and 137 Da using the phenyl column with 2% formic acid 
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The chromatogram obtained showed two peaks that accounted for PMD, one with molecular 

mass of 155 Da at the retention time of 3.11 mins and the other with molecular mass of 137 Da 

at 3.25 mins. The one with the molecular mass of 155 Da indicated removal of one OH group 

from the PMD and other with the molecular mass of 137 Da indicated removal of two OH 

groups from the PMD plus a negative charge due to the loss of an electron. Data can be analysed 

by considering either of these two peaks (depending upon the calibration curve). The selection 

of the peak (corresponding to a particular molecular mass) was done on the basis of best 

regression value obtained. In our case, the peak corresponding to 155 Da gave best results and 

hence was used for the analysis. Moreover, this phenomenon (removal of OH groups from the 

PMD)  can be possibly explained by the fact that in mass spectroscopy due to the electron 

impact ionisation conditions homolytic cleavage of the hetero atoms like oxygen, nitrogen and 

sulphur is very common and often leads to the loss of the largest possible radical, in this case 

a hydroxyl (OH) group (Conda-Sheridan et al., 2014). 

 

 

Figure 5.3. Calibration curve for different concentrations of PMD using the peak at 155 

Da, due to the loss of one -OH group. Data are represented as mean ± standard deviation 

(n = 3). 
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5.4.1.2. Limit of Detection (LOD) and Limit of Quantification (LOQ) for the Analysis of 

PMD 

LOD and LOQ provides a measure of sensitivity and precision of an analytical method. Several 

methodologies can be used to calculate the LOD and LOQ. One of such method is to estimate 

LOD and LOQ from the signal to noise ratio (S/N) of the lowest calibrator. This method was 

not selected owing to the variability in its reproducibility (as S/N ratio varies during different 

experiments). Values were thus determined by testing various concentrations and to 

experimentally see that what LOD and LOQ an instrument can detect, and how reproducible 

the data is (Conda-Sheridan et al., 2014). So, based on this experiment we found the limit of 

detection (LOD) for PMD at 1μg /mL, while limit of quantification (LOQ) for PMD was 5μg 

/mL. 

5.4.1.3. Inter-day and Intraday Precision 

Inter and intraday precision is an important parameter used to determine the accuracy and 

exactness of the method. In this case, inter and intraday assay accuracies were expressed as the 

percent difference between the measured concentration and the nominal concentration. The 

percentage accuracy of the method was expressed by the following formula: 

% Accuracy = (Measured concentration)/(Nominal concentration)x100  (Bhadra et al., 2011).  

 

The intra-day assay used replicate (n=3) determinations for each concentration of a sample 

during each analytical run while inter-day assay was carried out by using replicate (n=3) 

determination of each concentration made on three separate days. 

 

By using the above formula, it was found that percentage accuracy for the intraday results were 

91% (Table 5.1) while for the inter day results it was found to be 94.3% (Table 5.2). ICH 

guidelines require an analytical method to have a linearity (R2) of >0.999 (here was found to 

be 0.9986) with an accuracy of 100 +/- 2% and intra- and inter-day precision of ≤2% as residual 

standard deviation. Whilst the assay developed only partially met these criteria, given the 

challenging nature of the analyte and that this was used for a developmental rather than a 

commercial project, the method was suitable for use without further extensive refinements.    
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Table 5.1. Intraday Assay for the Determination of Accuracy (n=3) 

Nominal 

concentration 

(μg /mL)                   

Measured 

Concentration 

(μg /mL) 

 1                 2   3 

      

      Mean 

   (μg /mL)             SD 

5.0 2.9 2.8 3.5 3.06 0.37 

10.0 9.6 8.1 7.9 8.5 0.92 

25.0 25.0 25.0 25.0 25.0 0 

50.0 50.0 48.7 49.0 49.2 0.68 

100.0 100.0 98.0 99.0 99.0 1.0 

200.0 200.0 198.0 199.0 199.0 1.0 

 

 

Table 5.2. Inter-day Assay for the Determination of Accuracy (n=3) 

Nominal 

concentration 

(μg /mL) 

Measured concentration 

(μg /mL) 

 

   Mean 

(μg /mL)             SD 

              1          2                     3 

5.0 3.06 5.8 1.4 3.4 2.1 

10.0 8.53 11.6 8.6 9.5 1.7 

25.0 25.0 22.6 26.6 24.7 2.0 

50.0 49.23 47.4 55.3 50.6 4.1 

100.0 99.0 101.5 113.6 104.7 7.8 

200.0 199.0 196.8 191.3 195.7 3.9 
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5.4.2. In vitro Hydrolysis Study of the Copolymer 

Conjugation of the acryloyl chloride with PMD to form acryloyl-PMD (APMD) was through 

an ester bond in such a way that the APMD was subsequently copolymerised with acrylic acid 

(AA) to form the final copolymer. Hydrolysis of the ester bond was investigated by incubating 

with PLEs to confirm that the copolymer was indeed a substrate for the enzyme. Thus, the 

copolymer and PLEs were incubated at 32±1°C (to mimic the skin temperature) with the 

control copolymer incubated without PLEs (and to evaluate the stability of the ester bond). The 

results were plotted from the data obtained by using the following equation 

Concentration (μg/mL) of unknown= Peak area*Dilution factor 

Dilution factor was calculated as shown previously: 

Df= Vf /Vi 

Df= 1.5/0.75 = 2 

From the equation of the calibration curve (for 155 Da) shown below, we were able to calculate 

the unknown concentration. 

x= (y- 3E+06)/1E+06 

where x= Concentration and y=Area 

By putting the value of area (y) for unknown samples (collected at different time intervals) into 

the above equation and then multiplying the obtained results with the dilution factor, i.e. 2, the 

following results were obtained which were plotted as a cumulative concentration (μg /mL) vs 

time (Figure 5.4). 
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Figure 5.4. Release profile of PMD from the co-polymer with or without PLEs. Data are 

represented as mean ± standard deviation (n = 3). 

In this experiment 5mg/mL of the polymer containing approximately 0.4 mg of PMD was used 

(calculated from titration study and elemental analysis). From the Figure 5.4 it can clearly be 

observed that as compared to control (without enzyme) there has been a significant hydrolytic 

release of the drug indicating that the copolymer is a substrate for PLEs. Moreover, it can also 

be seen that during the initial 6 h there is rapid release of the drug (showing that the enzymes 

are still binding to the substrates) followed by a slower sustained release (shown by the plateau 

in the graph) although this remains above that when no enzymes are present. The initial release 

phase liberated 85 μg /mL of the PMD, almost which was almost 50% of the total amount of 

drug released over 5 days (176 μg /mL).  Total release at the end of the experiment accounted 

for around 45% of the total drug load. There can be several explanations for this relatively low 

amount of drug release.  Drug release from the polymeric backbone is governed by multiple 

factors, i.e., molecular weight, hydration of a polymeric prodrug, steric hindrance and 

distribution of the drug along the polymeric chain (D’Souza and Topp, 2004). It has been 

reported by Tallury et al. (2008) that drug release rates decrease with increasing molecular 

weight, due to chain entanglements which increase with increasing molecular weight and 

impede the diffusion of drug molecules (or the enzymes) through polymer matrix leading to a 

decrease in drug release. Likewise hydration of the polymeric prodrug also plays an important 
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role in drug release in such a way that greater the extent of hydration then greater will be the 

drug release; as a general rule, the greater the hydrophilicity of a polymer then the greater will 

be the hydration and vice versa (Pitt and Shah, 1996). Another reason for this relatively low 

drug release can be steric hindrance; which basically indicates the ability of an 

enzyme/compound to access the centre of a target compound (Larsen, 1989; Seeman et al., 

1984). Moreover, distribution of the drug along the polymeric chain also plays an important 

role such that PDCs having pendant drugs distributed uniformly along the backbone release 

faster than those that have them in clustered blocks (Shah et al., 1990).   Interestingly, with the 

control experiment and no enzymes then there is also an initial burst release over the first 6 

hours with approximately 10 µg of the PMD released (approximately 2.5% of the loaded drug) 

followed by a slow but sustained minor release of a further 7 µg over the following 114 hours 

(approximately 0.015% release per hour over this period). Again, the burst release is 

approximately half that of the total release and could be attributed to rapid release of accessible 

“surface exposed” PMD after which the ester linked repellent is stable for extended periods.   

From the above, two different hypotheses were tested to assess the relatively low PMD release; 

(a) measuring release from a lower molecular weight (monomer-drug conjugate, i.e. APMD) 

to determine if steric constraints or chain entanglement was the prime reason and (b) by 

periodically adding more enzymes to the co-polymer after every 24 h to determine if the 

enzyme was inactive after a period of time  (Wang et al., 2002). 

 

5.4.3. In vitro Hydrolysis of Monomer-drug Conjugate (APMD) by Using PLEs 

To determine the effects of molecular weight in our system and the role of chain entanglement 

or steric constraints on drug release, the monomer drug conjugate (APMD) having a molecular 

weight of 224 Da was used (1.2 mg/mL) in a hydrolysis study. 
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Figure 5.5. Release of the drug over 5 days from the monomer-drug conjugate (APMD) 

by using PLEs. Data are represented as mean ± standard deviation (n = 3). 

Figure 5.4 confirms that molecular weight plays an important role in the release of the PMD 

from the copolymer.  Over five days, almost 90% of the drug was released and it is clear that 

the initial burst phase extends to 24 hours by which time nearly 80% of the release has occurred. 

There are several reasons for molecular weight to affect drug release, the most likely of which 

is chain entanglements, which hamper the diffusion of drug molecules and enzymes through 

the polymer matrix leading to a decrease in drug release (Tallury et al., 2008).  The above 

results strongly suggest that restricted access of the enzyme to the ester bond in the copolymer 

resulted in the relatively low drug release seen in Figure 5.4.  

 

5.4.4. In vitro Hydrolysis of the Copolymer by Adding Additional PLEs 

One of the other possible reasons for the relatively low drug release from the copolymer could 

have been exhaustion of the enzymes decreasing drug release. In order to test this hypothesis, 

we choose to constantly add additional enzymes to the system to assess the impact on drug 

release. For this purpose, fresh enzymes were added after every 24 h over the five days period. 

From Figure 5.6, and in comparison, to the original study (Figure 5.4), it is clear that the release 

of PMD has not been significantly improved by the addition of further fresh enzyme. In the 

initial study, following 5 days treatment with PLE’s 178 µg of PMD was released whereas 

when fresh enzyme was added daily, 180 µg of PMD was released.  Thus, lack of, or loss of, 
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enzymatic activity was not a factor in the modest release profiles. Consequently, the most 

probable reason for the observed release profile is that all conjugated PMD molecules are not 

readily accessible for the enzymes to hydrolyse as there are reports suggesting that the 

orientation of the polymer chain plays an important role in the accessibility of the enzymes to 

hydrolyse the bond and release the drug (Kawai et al., 2019). 

 

 

Figure 5.6. Release of the drug over 5 days time from the copolymer by adding PLEs. 

Data are represented as mean ± standard deviation (n = 3). 

 

5.4.5. Study of Kinetics and Mechanism of Drug Release 

In order to distinguish which type of mechanism is followed by the release of drug from the  

polymer matrix, the kinetics of drug release study can be assessed (Fu and Kao, 2010). To 

study the kinetics of the drug release, initial 2 h drug release data from the initial enzyme 

experiment (Figure 5.4) was used. The release constants were calculated from the slope of 

appropriate plots, and the correlation coefficient (R2) by linear regression analysis using 

Microsoft Excel 2016. The representative drug release kinetics plots were plotted for zero 

order, first order, Higuchi and Korsmeyer-Peppas kinetics for our synthesised copolymer. The 
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correlation coefficient was selected as a criterion to evaluate the appropriate kinetic model and 

the corresponding release kinetic data for the synthesized copolymer. The value of R2 closest 

to 1 (0.98 for zero order, 0.83 for first order, 0.91 for Korsmeyer-Peppas model and 1.0 for 

Higuchi model) indicated the best fit of drug release data. Though the zero-order model gave 

a very high best fit correlation, it can be clearly seen from Figure 5.10 that the best linearity (r2 

= 1.0) was detected in Higuchi’s equation plot signifying the release of drug from polymer 

follows the square root of time.  

Different factors controlling the release of drug include the material matrix (composition, 

structure, swelling and degradation), release medium (pH, enzymes) and nature of the drug 

(solubility, stability and interaction with matrix) (Costa and Sousa Lobo, 2001). According to 

the Higuchi model, and inherent assumptions, it was concluded that the polymer upon contact 

with the water does not swell (indicating dissolution of the matrix is negligible) suggesting the 

release of drug from an insoluble matrix by a time-dependent diffusion process based on Fick’s 

law.  

The data of initial 60% drug release was incorporated to Korsmeyer-Peppas model to determine 

the mechanism of drug release from the Poly (AA-co- APMD) copolymer. In this model “n” 

is the release exponent, indicative of the mechanism of drug release. The values of “n” 

(calculated from the slope of the graph) for the polymer was found to be 0.655 indicating non-

Fickian or anomalous diffusion mechanism. 

 

 

Figure 5.7. Zero order release plot derived from a PLEs hydrolysis experiment with 

copolymer as substrate (n=3) 
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Figure 5.8. First order release plot derived from a PLEs hydrolysis experiment with 

copolymer as substrate (n=3) 
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Figure 5.9. Higuchi’s release plot derived from a PLEs hydrolysis experiment with 

copolymer as substrate (n=3) 

 

 

Figure 5.10. Korsmeyer-Peppas release plot derived from a PLEs hydrolysis experiment 

with copolymer as substrate (n=3) 

 

Table 5.3.  The r2 and k values for the copolymer by applying different drug release 

models (k was obtained through the slope of the individual graph). 

 

Drug Release Model r2 value k value (h-1) 

Zero order 0.97 0.4426 

First order 0.82 0.0078 

Higuchi’s model 1.00 1.00 

Korsmeyer-Peppas model  

 

0.91 n=0.655 
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5.4.6. In vitro Skin Penetration and Permeation Study 

5.4.6.1.  Method Development 

Before performing any study, one of the prerequisites is to identify an analytical technique for 

the laboratory analysis of the compound of interest. Therefore, the main challenge here was to 

develop an appropriate technique for the analysis of the copolymer. As described above, due 

to the lack of a chromophore in our compound, we were unable to use methods such as HPLC 

and UV, hence the alternative was to use mass spectroscopy-based techniques. For this 

purpose, LC-MS was evaluated but unfortunately this did not give any definitive peaks. The 

most probable reason for this is the cut off molecular weight limit for this instrument was 5,000 

Da, whereas the copolymer is 6,000 Da. An alternative approach that is commonly used in the 

analysis of polymers is matrix assisted laser desorption/ionization-time of flight (MALDI-

TOF) (Schwarzinger et al., 2012).  Again, this was tested here, to analyse and quantify our 

copolymer but regrettably this also did not give any reliable result. The most probable reason 

for this might be the presence of bulkier groups (PMD) in our copolymer and it is known that 

polymers with bulkier groups are difficult to be analysed by MALDI-TOF (Montaudo et al., 

2006). Another method evaluated was a calorimetric method based upon the previous results 

(described in previous chapter) but this method wasn’t sufficiently sensitive to detect 

concentration changes at the micrograms level. 

 

5.4.6.1.1.  Use of Gel Permeation Chromatography (GPC) 

After the initial attempts to develop an analytical method for the detection and quantification 

of the polymer, gel permeation chromatography (GPC) was selected as there are reports for 

this method to not only to identify polymers but also to quantify them (Chen et al., 2003). 

Based upon this technique, a calibration curve (Figure 5.11) was prepared but unfortunately 

this method (GPC) also provided unreliable results due to a lack of sensitivity. 
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              A) 

 

 

B)  

 

Figure 5.11. A) GPC traces for the analysis of the copolymers. B) Calibration curve for 

the evaluation of the copolymers by using GPC. 
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Figure 5.12. Various methods opted for the detection of the copolymer 

5.4.6.1.2.  Design of Experiments for Skin Penetration and Permeation  

The design of this experiment sought to determine both the penetration and retention in the 

skin as well as permeation through the tissue for both the copolymer and PMD alone.   For this 

purpose, two different sets of experiments (n=6), one for PMD and one for the copolymer were 

performed.  
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A)                                                                                      B) 

 

Figure 5.13.   Exemplar images representing the experimental set up of A) Permeation 

study; (B) Penetration study. 

5.4.6.1.3. Solubility and Stability in Receptor Phases  

Maintenance of sink conditions during the permeation study is crucial to maintain the maximal 

concentration gradient across the membrane throughout the experiment. The selection of an 

appropriate receptor solution was thus essential. As a rule, in order to maintain sink conditions 

throughout the experiment, the concentration of the penetrant in the receptor phase must not 

exceed 10% of its saturated solubility, and the receptor solution should not affect the membrane 

integrity (Williams and Barry, 2004).  

5.4.6.1.4. Solubility and Stability of PMD and Copolymer in Water-Ethanol Mixture  

Both copolymer and PMD were virtually insoluble in water. There are different means to 

improve the solubility of the test compounds, one of which is the addition of an organic solvent 

and so ethanol was added with a final ratio of 8:2 (v/v) for water:ethanol.  The volume of 

ethanol was kept at 20% (v/v) in order to prevent ethanol itself from increasing the permeation 

according to Williams and Barry (2004) . 
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5.4.6.1.5. Solubility in Extraction Solvent  

To extract compounds from skin samples and from tape strips, an extraction solvent is required 

to allow the test compounds to partition from the skin/strips into the solvent. For this purpose, 

the test compound should be stable within the solvent during the whole process (Weerheim and 

Ponec, 2001). Due to the stability and solubility of both the copolymer and PMD, ethanol was 

selected as the extraction solvent.  

5.4.6.2.  Permeation Study 

A permeation study was carried out to investigate whether the copolymer could permeate the 

skin or not, in comparison with PMD alone. Due to the limited availability of fresh skin, frozen 

porcine ear skin (frozen for less than 2 months) was used in this study.  

When applied alone to the skin, the permeation for PMD followed the typical profile for a finite 

dose application (Figure 5.13-a), with rapid initial permeation over the first 6 hours before the 

donor depletion. Over the first 6 hours, 246 μg /mL permeated accounting for 8% of the applied 

dose (3mg/mL) which is low; there might be two reasons for this low amount of the drug 

(PMD) permeating, first, can be the volatile nature of PMD (Lee et al., 2018) and the second 

reason can be the penetration of the drug into the skin (more than the permeation). Although 

PMD is volatile in nature and there is high probability of the evaporation of the drug but as we 

performed the experiments in an occluded environment (Franz cell), therefore, the probability 

of the analyte escaping out was low and hence this reason was ruled out. On the other hand, 

the possibility of the presence of the drug within the skin layers was confirmed from the results 

of the penetration study (Figure 5.15) indicating the presence of bulk of the PMD and thus 

indicating near steady state permeation throughout the stratum corneum after 72 h exposure. 

On the other hand, in case of the copolymer, the concentration of the copolymer in the reservoir 

medium was below the limit of detection (Fig 5.14-b) which was expected due to higher 

molecular weight which is expected to hinder or indeed prevent permeation.  

It was interesting to see that when the copolymer was dosed, PMD was also found to be below 

the LOD. Although we expected that there should be some PMD in the receptor phase (released 

as a result of the hydrolysis of the ester bond of the copolymer, though the concentration should 

be significantly less as compared to the same amount of PMD applied alone, i.e., without being 
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conjugated to the polymer), this could be the result of the use of frozen skin in which the freeze-

and-thaw process might have damaged the activity of the skin enzymes and other proteins, as 

explained by Kolarsick et al. (2006); others have shown frozen porcine ear skin to be 

metabolically active. However, there may not be enough enzymes to rapidly hydrolyse the 

copolymer for the parent compounds to be detected above LOD in this experiment (Jacobi et 

al., 2007). 

A)  

B)  

Figure 5.14.   Permeation data for A) PMD and B) Exemplar retention peak showing 

absence of the copolymer. Data is expressed as mean ± SD (n=6). 
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In short, the results show that PMD alone is able to permeate through porcine skin but that the 

amount of PMD (from the copolymer) and the copolymer itself permeating into the receptor 

phase was below the LOD. This could be advantageous as one of the aims of synthesising this 

system was to minimise side effects by minimising permeation through the skin and localising 

the copolymer to the outer skin layers. To investigate the distribution of the drug across the 

skin, a depth profile study was then carried out following the skin permeation study.  

5.4.6.3 Skin Penetration Study 

In this experiment, both PMD (as a control) and copolymer retention within the skin after the 

72 h permeation study was assessed by removing the skin from the Franz cell and placing in a 

Petri dish. In order to determine the penetration of the drug (PMD) and the copolymer within 

the skin, a tape stripping technique was used. There are several factors e.g. tape stripping force, 

skin hydration and position of the tape, which can influence the quantity of stratum corneum 

(SC) that is removed by each tape-strip leading to high variation in the results. Thus, the tape 

stripping study is a technique to estimate the distribution of compounds in different layers of 

the SC and can be used comparatively.  

From the results shown in Figure 5.15, it can be seen that in the case of the copolymer, tape 1-

2 represents the surface adsorbed materials containing the highest amount of copolymer.  3-10 

represents the outer stratum corneum of the skin with some copolymer detected.  Tape strips 

11-20 arise from the lower stratum corneum, and Figure 5.14 shows that no copolymer was 

detected in these lower layers.  These results reinforce the permeation data showing that no 

copolymer could pass through the intact skin.  Although quantitation is inexact due to assay 

difficulties, from figure 5.13, 93% of the total copolymer was detected in the surface adsorbed 

(strips 1-2) layer with only 7% in the outer stratum corneum (and likely towards the surface of 

the outer stratum corneum). 

During the copolymer study, PMD release was also expected; due to the activity of naturally 

occurring esterases it was assumed that there would be hydrolysis of the ester bond and some 

of the PMD may penetrate the skin.  However, analysis of the samples (extracted through the 

tape strips by ethanol, evaporated and then reconstituted by adding water: acetonitrile (4:6) (for 

the detection by LCMS) showed no evidence for the presence of PMD.  This may be the result 

of the use of frozen skin in which the freeze-and-thaw processes might have a damaging effect 

on the skin enzymes and other proteins. 
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The control use of PMD alone showed that PMD was distributed throughout the different skin 

layers.  Of the total PMD detected, 37% was in the superficial adsorbed sample (strips 1-2), 

33% in strips 3-10 and 30% in strips 11-20.  Near uniform distribution of PMD in the upper 

and lower stratum corneum implies that the PMD had, in fact, reached near steady state 

permeation throughout the stratum corneum after 72 h exposure. 

 

Figure 5.15.  Skin penetration data for PMD (control) and copolymer in frozen-thawed 

porcine skin. Data is expressed as mean ± SD (n=6). 

 

5.5. Conclusion 

The results from the porcine liver esterases (PLEs) incubation suggest that the ester bond in 

copolymer is susceptible to hydrolysis by PLEs, so this can be a model for cutaneous esterases, 

under the conditions employed in the present experiments. The amount of the parent compound 

(PMD) liberated from the control experiments was approximately 45% of the loading, and thus 

it can be concluded that the hydrolysis of the copolymer was predominantly enzymatic with 

minor hydrolysis in water of the exposed PMD groups. The amount of the drug released from 

the copolymer was below expectations, therefore, in order to investigate the effect of various 
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parameters, i.e., exhaustion of the enzymes and different molecular weights different 

experiments were performed, indicating that molecular weight does have an effect whilst 

adding of new/additional enzymes didn’t have any effect on amount of PMD released. 

Permeation of insect repellents into the systemic circulation is associated with side effects, 

thus, to assess the permeation and penetration profile of our copolymer and PMD alone 

(control), skin permeation and penetration experiments were undertaken. It was found that as 

compared to PMD, copolymer only penetrated the upper epidermal layer and did not permeate 

the skin (pig ear), indicating that this approach (polymer-drug conjugation) can be used to avoid 

permeation of the parent compound into the general circulation and hence the side effects 

associated with it can be overcome. 
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Chapter 6. Planarian Toxicity Fluorescent Assay: A 

Rapid and Cheap Pre-screening Tool for Potential 

Skin Irritants  

 

 

 

 

 

 

 

 

 

 



 170 

This chapter has been published as: 

Syed Ibrahim Shah, Adrian C.Williams, Wing Man Lau, Vitaliy V.Khutoryanskiy.2020. 

Planarian toxicity fluorescent assay: A rapid and cheap pre-screening tool for potential 

skin irritants 

6.1. Introduction 

The design of formulations that contact human tissues requires toxicological testing and, in 

particular, topically applied formulations require skin irritation testing. Numerous methods 

have been used to evaluate the irritation potential of chemicals towards human tissues such as 

eyes, skin, nose or vagina. The classical Draize test used rabbits to assess the ocular and skin 

irritation of cosmetics and personal care products (Draize et al., 1944). Due to ethical as well 

as scientific concerns  (Callens et al., 2001; Sharpe, 1985), alternative tests have been sought. 

For skin irritation testing, in vitro methods are available including the commercially available 

Episkin, Epiderm and Zenskin cell culture models (Ahn et al., 2010; Graham et al., 2018) 

although such tissue equivalents do not entirely recapitulate the in vivo tissue – for example 

lacking blood or lymph circulation or providing an incomplete tissue physiology. Numerous 

guidance documents exist for skin irritation testing, for example from the European Centre for 

the Validation of Alternative Methods (ECVAM) or the Organisation for Economic 

cooperation (OECD).  Typically, the guidance specifies the skin equivalent to be used and its 

integrity testing, the numbers of replicates, duration of study etc., which requires specialist and 

relatively expensive laboratory services. Contrarily, planaria are readily available at a low cost 

and are easily cultured and maintained in a laboratory in artificial pond water (Gentile et al., 

2011a) and thus may offer a low cost in vivo alternative model to rapidly screen potential skin 

irritants prior to undertaking extensive regulatory studies. 

 

Alternative in vivo tests have been previously sought, typically employing lower order models. 

For example, Adriaens and Remon. (1999) reported a slug mucosa irritation test (SMIT) to 

characterise toxicological and irritation properties of various pharmaceutical materials and 

formulations for ocular, nasal and vaginal drug delivery, as well as some consumer products 

(Callens et al., 2001; Dhondt et al., 2005; Lenior et al. 2011, Lenior et al. 2013).  The SMIT 

has also been adapted by others; for example, Forbes et al. (2011) tested silicone elastomer gels 

for vaginal drug delivery and in a series of studies; we have previously used a SMIT to evaluate 

the irritation potential of ocular formulations (Khutoryanskaya et al., 2014; Al Khateb et al, 
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2016), mucoadhesive polymers for nasal drug delivery (Porfiryeva, 2019) and mucoadhesive 

nanoparticles for intravesical drug delivery (Kaldybekov et al., 2019). Other invertebrate in 

vivo models used in toxicological testing include Brachionus calyciflorus rotifers for screening 

the toxicity of various penetration enhancers on ciliated epithelium (Adriaens et al., 1997) and 

Caenorhabditis elegans nematodes (Hunt, 2017). As with our present study, these models were 

proposed as a pre-screening tool prior to a time-consuming and relatively costly regulatory 

study. 

 

Planaria are a freshwater-living flatworms commonly used as a model in developmental and 

regeneration research (Gentile et al., 2011b). As advanced invertebrates with a primitive brain 

having features similar to the vertebrate nervous system, planaria are used in  

neuropharmacology to predict the neurotoxicity of test substances (Hagstrom et al., 2016). 

They have a well-developed enzymatic system and so have been used to study 

organophosphorus pesticide toxicity (Hagstrom et al., 2018),  the cytotoxic, genotoxic and 

mutagenic effects of metals (Pra et al., 2005) and for environmental toxicological studies (Li, 

2008; Wu and Li, 2018). Importantly for the current work, planaria have a simple but well-

characterised epidermal membrane (made of ciliated cells) that acts as the first point of contact 

between the worm and a foreign substance (Azimzadeh and Basquin, 2016). 

 

The Globally Harmonised System (GHS) aims to consolidate global differences by classifying 

hazardous materials according to their health, environmental and physical hazards (Winder et 

al., 2005). For skin irritants, the GHS system draws on human experience, structure-activity 

models or the Primary Irritation Index (PII) caused by a chemical, derived from in vivo studies 

following OECD guidelines. The PII test applies 0.5mL or 0.5g of test substance to intact 

animal skin for up to 4 hours. For each animal, the dermal response scores (sum of the scores 

for erythema formation and oedema formation) at 24, 48, and 72 hours post exposure are 

recorded to generate a mean irritation score per time point (Bagley et al., 1996; Marzuki et al., 

2019). PII scores < 1.5 are considered as non-irritant, PII ≥ 1.5 < 2.3 corresponds to mild 

irritants, PII ≥ 2.3 < 4.0 show moderate irritants whereas PII values ≥4 are seen with strong 

irritants. 

 



 172 

The purpose of this study was to develop a rapid and cheap pre-screening tool to reduce the 

use of complex cell culture, organ and animal models. Here, we have used Dugesia lugubris 

as a model to predict human skin irritation of test substances by measuring the uptake of a 

fluorescent marker (sodium fluorescein) into the flatworms following exposure to various 

irritants; our hypothesis is that increasingly toxic substances will disrupt the barrier function of 

the planarian epidermis hence leading to greater accumulation of sodium fluorescein inside the 

worm. 

6.2.  Materials and Methods 

6.2.1. Chemicals and Reagents 

Benzalkonium chloride (BKC), glycerol, parafluoro aniline (PFA), polyethylene glycol-400 

(PEG-400), carvacrol, isopropyl alcohol, decanol, tri-isobutyl phosphate, terpinyl acetate, 

sodium fluorescein and agarose were purchased from Sigma-Aldrich (UK). Benzyl alcohol, 

citronellal, linalyl acetate, 1-bromohexane and methyl palmitate were purchased from Fischer 

Scientific, UK. Instant ocean salt was from Aquarium Systems (UK).  

Table 6.1. Test articles with CAS number, GHS classification and in order of PII values 

Test article CAS number GHS classification PII* 

Polyethylene glycol-400 (PEG-

400) 

 25322-68-3 Not classified (Non-Irritant) 0.0 

Dipropylene glycol  25265-71-8 Not classified (Non-Irritant) 0.33 

Isopropyl alcohol  67-63-0 Not classified (Non-Irritant) 0.78 

Benzyl alcohol  100-51-6 Category 3 (Mild Irritant) 1.56 

Terpinyl acetate  80-26-2 Category 3 (Mild Irritant) 2.0 

Tri-isobutyl phosphate  126-71-6 Category 3 (Mild Irritant) 2.0 

Decanol  112-30-1 Category 2 (Moderate irritant) 3.33 

Parafluoro aniline (PFA)  371-40-4 Category 2 (Moderate irritant) 3.5 

Linalyl acetate  499-75-2 Category 2 (Moderate irritant) 3.67 

Citronellal  106-23-0 Category 1B (Strong irritant) 4.0 
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1-Bromohexane  111-25-1 Category H315 (Strong irritant) 4.0 

Carvacrol  115-95-7 Category 1B (Strong irritant) 4.2 

Methyl palmitate  112-39-0 Category H315 (Strong irritant) 4.56 

Benzalkonium chloride (BKC)  63449-41-2 Category 1B (Strong irritant)  6.54 

*PII < 1.5 = Non irritant, PII ≥ 1.5 < 2.3 = mild irritants, PII ≥ 2.3 < 4.0 = moderate irritants, PII ≥4 as strong irritants. 

 

6.2.2. Test Organisms 

Planaria (Dugesia lugubris) were purchased from Blades Biological Ltd (Kent, UK). The 

animals were maintained in artificial pond water (APW) (0.5 g of instant ocean salt in 1 L of 

Milli-Q water), prepared by the method of Cebrià and Newmark (2005) at room temperature. 

Animals were fed raw chicken (cut into small pieces), at a quantity sufficient to feed the 

planaria once a week. The pond water was changed every 48 hours. 

 

6.2.3. Mobility Assay 

Planarian mobility was assessed using the method previously described by Mei-Hui-Li (2012). 

Five concentrations of each test substance were prepared (0.1, 0.05, 0.025, 0.01 and 0.005 % 

w/v) by dissolving the test substance in APW. Where the irritants were not directly soluble, 

these compounds were first dissolved in dimethylsulphoxide (DMSO) before adding to APW 

followed by vigorous stirring until a clear solution was obtained. For these, the final volume of 

DMSO was maintained at 1% (v/v) to avoid irritation from the solvent itself (Pagán et al., 

2009). An individual planarian was placed into a glass Petri dish containing 15 mL of the test 

solution or into APW or APW with 1% (v/v) DMSO as a control. The petri dish was placed 

over 1 cm grid graph paper and a video recorder was used from above. After 5 minutes’ 

equilibration, planarian mobility was recorded as the number of times they crossed a grid line 

over the next 5 minutes. For each solution, mobility was assessed for 3 planaria and data are 

represented as the mean ± SD. 
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6.2.4. Acute Toxicity Assay 

The toxicity of the test substances to planarian was assessed by the method previously 

described by Mei-Hui-Li (2012) with some modifications. Five concentrations of each test 

substance were prepared (0.1, 0.05, 0.025, 0.01 and 0.005 % w/v). For each concentration, five 

animals were added to a Petri dish containing 25 mL of the test solution and each study was 

conducted in triplicate.  Acute toxicity was assessed over 96 hours with planaria inspected 

every 24 hours; those without detectable movement were assumed dead and removed from the 

test solution.  Again, APW or APW with 1% (v/v) DMSO was used as a control. 

 

6.2.5. Fluorescence Intensity (FI) Test 

The protocol was informed by the mobility and toxicity studies and so test substances at 0.1% 

(w/v) were employed with planaria exposure of 1 min followed by washing with APW for a 

further 1 min. The planaria were then placed in a 0.1% (w/v) solution of sodium fluorescein in 

APW for 1 min. Finally, the planaria were washed with APW (15 mL) for 1 min to remove 

excess sodium fluorescein adsorbed to the outer worm surface. The test animal was then 

immobilised by embedding it in 2% agarose solution following the protocol of Shen et al. 

(2018) with minor modifications. In brief, a planarian was transferred onto a microscopic slide 

(VWR, UK), after which few drops of agarose solution were carefully added to cover the whole 

animal. The slide was immediately placed on ice leading to gelling of the agarose solution, 

immobilising the test animal. Fluorescence images of individual planaria were collected with 

a Leica MZ10F stereomicroscope (Leica Microsystems, UK) with Leica DFC3000G digital 

camera, 1.6´ magnification with 160 ms exposure time (gain 2.6´), Gamma = 0.7 and 

wavelength=519 nm (excitation wavelength). The negative controls were planaria treated only 

with sodium fluorescein in APW for water-soluble test compounds and sodium fluorescein in 

1% DMSO solution (v/v) in APW for the poorly water-soluble test compounds. To quantify 

sodium fluorescein inside a planarian, the fluorescence of the whole animal was measured 

using ImageJ (version 1.8.0_112) software and the value obtained normalised by dividing by 

the area (cm2) of the individual planarian. All experiments were conducted in triplicate. 

 

 

 



 175 

6.2.6. Statistical Analysis 

Statistical significance for the fluorescence intensity test was determined using one-way 

analysis of variance (ANOVA), followed by Bonferroni correction using Graphpad Prism 

software (version 7.0). To correlate the experimental fluorescence intensity values with 

literature data for skin irritants, a Pearson correlation test was performed.  

6.3. Results and Discussion 

6.3.1. Mobility Assay 

A planarian mobility assay has been previously used to assess neurotoxicity of several 

substances (Hagstrom et al., 2015) and hence we extrapolated the approach as a tool to assess 

skin irritants. For this purpose, a range of compounds was selected, spanning known non-, 

mild-, moderate- and strong-irritants along with control groups in APW alone (for water 

soluble compounds) or APW with 1% (v/v) DMSO (for poorly water-soluble compounds).  

 

Locomotion was plotted as a function of the concentration of irritant (Figure 6.1). Planaria 

movement was invariant with increasing concentrations of the non-irritant PEG-400.  

Conversely, exposure to the strong irritant carvacrol stopped planaria mobility entirely and at 

the lowest tested concentration (0.005% w/v).  The response to the mild irritant benzyl alcohol 

indicated some dose-response behaviour, but the locomotion inhibition was more pronounced 

and at lower concentrations for the other test materials. Indeed, the profiles for benzalkonium 

chloride (strong irritant) and linalyl acetate (moderate irritant) were indistinguishable over the 

selected concentration range, and the profiles for tri-isobutyl phosphate (mild) and parafluoro 

aniline (moderate) were contradictory. Given these confounding results, the mobility test 

appears unreliable for determining irritation from different classes of irritant and so was not 

developed further.  However, given the sensitivity of planarian mobility to these agents, this 

approach could potentially identify chemicals that are non-irritant.  
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Figure 6.1. Effect of test compound concentrations on planaria locomotion. Cumulative 

movement = Number of times a planarian crossed the 1cm gridline during the 5-minute 

study. Data are represented as mean ± standard deviation (n = 3).  The dashed/dotted 

lines are for the guidance of the eye only. 

 

6.3.2. Acute Toxicity Assay 

Acute toxicity was assessed every 24 hours for up to 96 hours of exposure to non-irritants 

(dipropylene glycol and PEG-400), a mild irritant (tri-isobutyl phosphate), a moderate irritant 

(linalyl acetate) and a strong irritant (carvacrol). Again, APW alone was used as a control for 

test compounds soluble in water while APW with 1% (v/v) DMSO was used as a control for 

those poorly soluble in water and the data was normalised against these; for both controls, all 

planaria survived the test.  As with the mobility assay, the planaria showed no adverse effects 

on exposure to the non-irritants (dipropylene glycol and PEG-400) whereas exposure to the 

strong irritant carvacrol was lethal at the lowest dose (0.005% w/v). However, the data for the 

mild (tri-isobutyl phosphate) and moderate (linalyl acetate) irritants were confounding with 

planaria not surviving low dose exposure to the mild irritant but were more robust on exposure 

to higher concentrations of the moderate irritant. It was notable that the effects of exposure to 

the irritants did not change beyond the first 24-hour exposure period. 
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The above results illustrate a generic issue of seeking a lower order animal model to screen 

irritants for human use. Clearly the planarian membrane is extremely simple and fragile 

compared to, for example, human skin with its robust outer stratum corneum barrier. Whilst 

tri-isobutyl phosphate is a mild irritant on human skin, as an organophosphorus compound it is 

used in herbicides and fungicides and is listed by the European Chemicals Agency (ECHA) as 

“acutely harmful to aquatic organisms” (Eto, 1997; Hendriks et al., 1994). Indeed, an LC50 

(96h) of 18-22 mg/L is reported for fish and an EC50 (48h) of 24 mg/L for aquatic invertebrates 

(as are planaria), equivalent to 0.0024% w/v and in a similar range to the results shown here in 

Figure 6.2.  Linalyl acetate is a naturally occurring phytochemical and a principle component 

of lavender essential oil (Batool et al., 2020). Toxicity data towards marine invertebrates is 

limited as the compound is volatile (though our experiments were conducted under occlusion) 

and there is potential for hydrolysis of the ester to liberate some linalool. Notwithstanding these 

issues, an EC50 of 59 mg/L has been reported towards aquatic invertebrates (Daphnia) (Silver 

Registration Dossier ECHA @ www.echa.europa.eu) indicating that linalyl acetate would be 

expected to be less harmful to our test animal than tri-isobutyl phosphate, in accordance with 

the trend in Figure 6.2.      

  

Figure 6.2. Acute toxicity study showing the effects of selected irritants on planaria 

survival. Data are represented as mean ± standard deviation (n = 15).  
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As with the mobility assay, the planaria acute toxicity assay was unsuitable to predict human 

skin irritation of our test compounds, other than to potentially identify chemicals that are non-

irritant.   

 

6.3.3. Fluorescence Study 

The above results clearly demonstrate that both concentration and exposure time to irritants 

impact the viability of planaria (Hagstrom et al., 2015). Thus, a method was required that is 

simple, rapid and discriminating and hence short-term exposure (1 min) to low concentrations 

(0.1% w/v) of irritant followed by 1 min exposure to sodium fluorescein was selected.  It is 

known that sodium fluorescein can penetrate damaged tissue and has been used to assess the 

extent of injury to human vaginal and eye tissues (Ayehunie et al., 2011; Morrison et al., 2017). 

Here, we assume that irritation to planaria causes damage to its outer membrane and that such 

damage will allow sodium fluorescein to enter the animal, with concentrations related to 

severity of damage from the irritant. To normalise the results, total fluorescence is expressed 

as per cm2 of the planaria surface area.  The protocol used to evaluate penetration of fluorescein 

into planaria is schematically shown in Figure 6.3 and Figure 6.4 shows exemplar fluorescent 

images.  
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Figure 6.3. Illustrative diagram depicting the planaria fluorescence assay: (a) planarian 

in a solution of test substance (0.1 % w/v) for 1 min; (b) planarian washed in fresh APW 

for 1 min; (c) planarian in a solution of sodium fluorescein (0.1 % w/v) for 1 min; (d) 

planarian washed in fresh APW for 1 min to remove surface absorbed dye; (e) planarian 

placed on microscopy slide and covered with agarose sol; (f) slide placed on ice for 5-10 

mins to allow agarose to solidify; (g) fluorescence assessed microscopically. Scale bar is 

1mm (the scale bar represents the magnification of the microscope rather than the size of 

the object) 
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Fourteen test substances were evaluated, five strong irritants and three from each class of  

moderate-, mild- or non-irritants, alongside controls of 1 minute exposure to APW with or 

without DMSO, and an untreated planarium to determine autofluorescence. Autofluorescence 

was negligible and fluorescence uptake into the control planaria was minimal following short 

term exposure to the dye; uptake of 4 a.u./cm2 from APW with DMSO indicates no substantive 

damage to the outer membrane. Following exposure to the non-irritants, fluorescence was not 

signficantly different to that of the control animals, with greatest intensity seen for PEG-400 

exposure at 5.0 ± 2.3 a.u./cm2.  Data for the mild-irritants was also not signficiantly different 

Figure. 6.4. Exemplar fluorescent images of  auto fluorescence (a), negative control without and with 

DMSO in sodium fluorescein solution (b and c) and after planaria being exposed to PEG-400 (d), 

dipropylene glycol (e), isopropyl alcohol (f), terpinyl acetate (g), tri-isobutyl phosphate (h), benzyl 

alcohol (i), linalyl acetate (j), decanol (k), para-fluoroaniline (l), citronellal (m), carvacrol (showing 

disintegration of lower part of the planaria body) (n), benzalkonium chloride (also showing evidence 

for catastrophic membrane damage) (o), 1-bromohexane (p), and methyl palmitate (q). Scale bar is 

1mm (the scale bar represents the magnification of the microscope rather than the size of the object) 
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to that of the controls, with benzyl alcohol causing fluorescence of 4.6 ± 3.9 a.u./cm2 which 

rose to 10.0 ± 5.8 a.u./cm2 with tri-isobutyl phosphate. The increasing trend in fluorescence 

intensity continiued with the moderate irritants, ranging from decanol (9.5 ± 3.2 a.u./cm2) to 

linalyl acetate (20.0 ± 3.0 a.u./cm2).  It is notable that in our acute toxicity assay (Figure 6.2), 

linalyl acetate appeared less harmful to the planaira than expected from its GHS classification 

or PII value (Table 1) but in the fluorescence assay is shown to be a moderate irritant close to 

the borderline with the strong irritant classification. As a strong irritant, citronellal (18.0 ± 6.2 

a.u./cm2) gave similar fluorescence to linalyl acetate, whilst methyl palmitate and bromohexane 

showed similar F.I’s, (24.8 ± 4.1 a.u./cm2 and 22.6 ± 6 a.u./cm2 respectively). Both  

benzalkonium chloride (53.0 ± 11.2 a.u./cm2) and carvacrol (48.0 ± 12.5 a.u./cm2) caused 

catastrophic damage to the membrane resulting in significantly higher fluorescence intensities 

than all other tests. The result show that all the strong irritants gave significantly greater 

fluorescence intensities (P at least <0.05) than the non irritants and controls.    

 

Figure 6.5. Fluorescence intensity (per cm2) of individual planaria exposed to different 

test substances. Data are expressed as mean ± standard deviation (n = 3). Statistically 

significant differences are given as: **** represents p<0.0001, *** p=0.0005, while ** and 

* p<0.05 and ns = not significant.  

 

 



 182 

6.3.3 Correlation Between Human Primary Irritation Index (PII) and Planaria 

Fluorescence Intensity (FI)  

Despite the dissimilar membrane structures, we sought to correlate the membrane damage 

caused to planaria by the irritants with literature data that has been used in predictions of human 

skin irritation. The Primary Irritation Index (PII) is from a patch test on albino rabbit skin and 

is a composite score of the number and severity of erythema / oedema to a test substance 

(Chakrabarti et al., 2018). The literature data available for PII was correlated with our 

fluorescence results, as shown in Figure 6.6. Test substances whose PII values were available 

in the literature (n=12) were plotted against our experimental fluorescence intensities (per cm2); 

due to catastrophic membrane damage (Figure 6.4), fluorescence values following treatment 

with BKC and carvacrol do not represent uptake of dye through a membrane and so were 

excluded.  Clearly our fluorescence intensities within the planaria increase with increasing 

values of the primary irritation index. The Pearson’s correlation (r) value (0.87) shows a 

statistically significant (p<0.005) positive correlation. This correlation suggests that this assay 

can serve as a rapid pre-screening tool to identify the likely category or irritation potential of 

compounds towards human skin. Though further study is merited using a broader library of 

compounds, the speed and simplicity of the assay provides an attractive alternative to tests 

using higher order vertebrates.   

 

Figure 6.6. Correlation between the Primary Irritation Index of compounds (PII) and the 

Fluorescence Intensity (FI) values obtained in this study. Pearson’s correlation value r = 

0.87 (p<0.005) 
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6.4. Conclusion 

Our studies demonstrate planaria mobility or acute toxicity testing poorly discriminate between 

categories of skin irritants but may demonstrate materials that are either non-irritating or act as 

very strong skin irritants.  The planarian fluorescence assay is more discriminating with a direct 

correlation between fluorescence uptake into worms following short term exposure to irritants 

and literature reported irritation defined by their primary irritation index values. The 

fluorescence assay offers a rapid in vivo screening tool employing a model that is readily 

available and easy to maintain and which could act as a pre-screening method to inform 

subsequent sophisticated and costly assessments of skin irritants. Potentially this assay could 

be further extended to test irritation properties of various chemicals towards ocular, nasal and 

vaginal mucosa.  
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Chapter 7. Toxicity Evaluation of the poly(AA-co-

APMD) by Planarian Fluorescence Assay 
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7.1 Introduction 

Any formulation that is used topically requires testing for its irritation potential (Madan and 

Levitt, 2014). For this purpose, numerous methods had been used for irritation screening, 

ranging from in vivo methods such as the Draize test to in vitro methods using cell cultures 

such as Episkin or Epiderm. There have also been various attempts by researchers to develop 

lower animal models to replace the higher order in vivo models (Parasuraman, 2011). The 

planaria fluorescence assay (described in chapter 6) is one such model to predict the skin 

irritation potential of a compound  

p-menthane 3,8 diol (PMD) is a terpenoid and a naturally occurring insect repellent that is 

applied topically to repel insects (Drapeau et al., 2011). Polyacrylic acid (PAA) is an ionic 

polymer and is commonly employed in skin formulations, especially in hydrogels (Devine et 

al., 2006). Similarly, acrylic acid copolymers are widely used for drug delivery purpose (Ma et 

al., 2008). When testing the irritation potential of a compound towards the skin, acute toxicity 

testing is usually performed and essentially determines the effect of a single dose of a 

compound on a specific animal species. Studies have reported that PMD is safe to be applied 

on the skin at lower doses while at higher doses it did cause skin irritation whilst low molecular 

weight polyacrylic acid is described as a skin irritant (EPA safety document for PMD; 

polyacrylic safety www.polysciences.com). 

Planaria are a freshwater-living worms commonly used as a model in developmental and 

regeneration research (Gentile et al., 2011a). Planaria, are advanced invertebrates with some 

similarities in nervous system to the vertebrates. They are frequently used in 

neuropharmacology to predict the neurotoxicity of test substances (Hagstrom et al., 2016). 

Based upon their well-developed enzymatic system, they are also used to study 

organophosphorus pesticide toxicity (Hagstrom et al., 2018). They have also been used to study 

the cytotoxic, genotoxic and mutagenic effects of metals (Pra et al., 2005) as well as 

environmental toxicological studies (Li, 2008; Wu and Li, 2018). Moreover, planaria have a 

simple but well-characterised epidermal membrane (made of ciliated cells) that act as the first 

point of contact between the worm and a foreign substance (Azimzadeh and Basquin, 2016). 

In this work, we investigated the irritation potential of the copolymer poly (AA-co-APMD) 

compared with PAA and PMD alone, by using the planaria fluorescence assay. 
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7.2 Materials  

PMD was purchased from BOC sciences, USA. Benzalkonium chloride (BKC), sodium 

fluorescein and agarose were purchased from the Sigma-Aldrich, UK. PAA (Mw=5000 Da) 

was purchased from Polysciences, Germany and sodium hydroxide was from Fischer 

Scientific, UK. Instant ocean salt was from Aquarium Systems (UK).  

7.3 Test Organisms 

Planaria (Dugesia lugubris) were purchased from Blades Biological Ltd (Kent, UK). The 

animals were maintained in artificial pond water (APW) (0.5 g of instant ocean salt in 1L of 

Milli-Q water), prepared by the method of Cebrià and Newmark (2005) at room temperature. 

Animals were fed raw chicken (cut into small pieces), quantity sufficient for feeding planaria 

once a week. The pond water was changed every 48 h.  

7.4 Methods 

The protocol used was as described in chapter 6. Briefly a planarian was exposed to 0.1% (w/v) 

of the test substance for 1 min, followed by a washing with APW for a further 1 min. The 

planaria were then placed in a 0.1% (w/v) solution of sodium fluorescein in APW for 1 min. 

Finally, the planaria were washed with APW (15 mL) for 1 min to remove excess sodium 

fluorescein adsorbed to the outer worm surface. The test animal was then immobilised by 

embedding it in 2% agarose solution following the protocol of Shen et al. (2018) with minor 

modifications. In brief, a planarian was transferred onto a microscopic slide (VWR, UK), after 

which few drops of agarose solution were carefully added to cover the whole animal. The slide 

was immediately placed on ice leading to gelling of the agarose solution and immobilisation 

of the test animal. Fluorescence images of individual planaria were collected with a Leica 

MZ10F stereomicroscope (Leica Microsystems, UK) with Leica DFC3000G digital camera, 

1.6´ magnification with 160 ms exposure time (gain 2.6´), Gamma = 0.7 and wavelength=519 

nm (excitation wavelength). The negative controls were planaria treated only with sodium 

fluorescein in APW for water- soluble test compounds and sodium fluorescein in 1% DMSO 

solution (v/v) in APW for the poorly water-soluble test compounds. To quantify sodium 

fluorescein inside a planarian, the fluorescence of the whole animal was measured using 

ImageJ (version 1.8.0_112) software and the value obtained normalised by dividing by the area 

(cm2) of the individual planarian. All experiments were conducted in triplicate.  
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7.5 pH Study 

In this study the pH of the medium (APW) was either increased or decreased by adding either 

0.1 M HCl or NaOH. Briefly, APW was prepared by mixing 0.5g of instant ocean salt in 1L of 

Milli-Q water. The pH of the solution was measured by pH-meter (Thermo-Fischer, UK). To 

this 0.1M HCl or NaOH solution was added, and at each point, the pH of the solution was 

measured. 

7.6 Statistical Analysis 

Statistical significance for the fluorescence intensity test was determined using one-way 

analysis of variance (ANOVA), followed by Tukey’s test using Graphpad Prism software 

(version 7.0).  

7.7 Results and Discussions 

7.7.1 Fluorescence Study 

In this study, three test compounds were used namely PAA, PMD and the synthesised 

copolymer poly (AA-co-APMD). Benzalkonium chloride (BKC) was used as positive irritant 

control while APW with and without DMSO (1% v/v) was used as the negative control for 

water-insoluble and water-soluble compounds, respectively. The aim of this study was to 

evaluate the irritation potential of PMD alone, PAA alone and the irritation potential of the 

synthesised copolymer. 

As with the study described in chapter 6, the fluorescence intensity of planaria exposed to 

artificial pond water before immersion in the fluorescent dye was minimal and 

indistinguishable from background fluorescence showing that the planarian membranes were 

intact. In either negative control (APW with or without DMSO) the FI values of 2.6 and 2.5 

a.u. respectively were not significantly different showing that the addition of DMSO did not 

affect the worms membrane, which indeed is in accordance with chapter 6. With the positive 

control, BKC, FI was 52.6, again in good agreement with the earlier study and, together with 

the negative control data, shows that the assay is reproducible.     

A study conducted by US-EPA (the United States Environmental Protection Agency) for the 

registration of PMD as an insect repellent shows that PMD is quite safe to be used on the skin, 
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as it caused only slight erythema on rabbit skin when a concentrated solution was applied (EPA 

safety document for PMD); based upon this study it was expected that the fluorescence 

intensity (FI) of the planaria following exposure to PMD would be comparable to that of other 

non-irritants. The results indeed showed that the FI of planaria exposed to 0.1% (w/v) PMD 

was similar to that following exposure to PEG-400 (5 a.u.). However, as shown in the planarian 

assay development work, irritation is often related to concentration and the mild erythema 

caused in the rabbit assay is likely attributed to a greater concentration of PMD being applied. 

Similarly, according to the literature, low molecular weight PAA is a skin irritant while high 

molecular weight cross-linked PAA, such as Carbopol, has an excellent safety profile 

(polyacrylic safety www.polysciences.com). PAA (low molecular weight, i.e. 5000 Da), was 

found to be an irritant for the planaria, with FI of 14.6 comparable to para fluoro aniline (12.6 

a.u.), a moderate irritant. In the copolymer, i.e. poly(AA-co-APMD), the FI value fell to 7.5, 

indicating a   good safety profile and comparable to mild irritants in chapter 6 such as terpinyl 

acetate (8.1 a.u.). 

 

Figure 7.1. Exemplar fluorescent images of APW with fluorescein in DMSO (e), and after 

planaria being exposed to PAA (a), PMD (b), copolymer (c) and BKC (d). 
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Figure 7.2. Fluorescence intensity (per cm2) of individual planaria exposed to different 

test substances. Data are expressed as mean ± standard deviation (n = 3).  

 

7.7.2 pH Study 

To explore further the cause of irritation by PAA in planaria, the influence of pH on the worms’ 

membrane was investigated. A series of solutions of artificial pond water were adjusted to pH: 

2.8, 3.2, 3.6, 4.2, 4.9, 5.5, 6.3, 7.3, 8.2, 9.1 and 10.2. The planaria were exposed to the differing 

solutions for 1 min and then washed and exposed to the fluorescence for a further 1 min as 

above.  The results showed that below pH 4.2 and above 8.2 there was a significant 

accumulation of sodium fluorescein within the planaria (hence indicating the toxicity). PAA 

has free carboxylic acid groups, and the presence of these cause a decrease in pH such that the 

pH of the PAA solution is 4.1. at which value there is significant damage seen to the planarian 

membrane.  This result is in good agreement with the literature where extreme pH changes 

have been shown to lead to stagnation in the growth of flatworms colonies (de Oliveira et al., 

2018) 
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Figure 7.3. Fluorescence intensity (per cm2) of individual planaria exposed to different 

pH. Data are expressed as mean ± standard deviation (n = 3).  

 

7.8 Conclusion 

 

This study has shown that, in our planarian assay, PMD is a non-irritant whereas the polymer 

PAA is a moderate irritant, in agreement with the existing literature.  When prepared as a co-

polymer, the poly (AA-co-APMD) is a mild irritant.  This finding was expected and can be 

partially attributed to the pH changes seen when the worms are incubated with the free polymer 

which causes the solution pH to drop to a level where the worm membrane becomes damaged.  

On co-polymerisation, the free carboxylic acid content falls and hence the pH of the solution 

rises to nearer neutrality where membrane damage is minimal.  Though for sure, this (pH) may 

not be the only reason for the decrease in the irritation potential of the copolymer and there 

must be other factors responsible for that.  
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8.1 General Conclusion 

Insect borne diseases are a significant cause of mortality around the world (Zeller et al., 2013). 

Infections like malaria, dengue fever and leishmaniasis are transmitted to humans by the bite 

of an insect. In order to prevent this, insect repellents are frequently used (Fradin and Day, 

2002). Various types of insect repellents are used for this purpose ranging from synthetic to 

natural insect repellents. Commonly used are DEET (N, N-diethyl-m-toluamide), p-menthane-

3,8-diol (PMD), picaridin, nepetalactone, neem oil and permethrin (Chen-Hussey et al., 2014). 

PMD is a naturally occurring insect repellent but can also be synthesised in the laboratory 

(Carroll and Loye, 2006; Yuasa et al., 2000). However, use of PMD has some drawbacks 

including rapid evaporation and potential absorption of the repellent into the systemic 

circulation raising concerns over its use in pregnant women and infants. Thus, there is a need 

for a strategy to overcome these problems. 

  

This PhD project focused on the development of a polymer-drug conjugate. The rationale for 

the synthesis of the conjugate was primarily to develop a system for prolonged drug release as 

compared to the conventional use of free PMD by exploiting the naturally occurring esterases 

enzymes on the skin, and secondly to minimise drug uptake into and absorption through the 

skin and hence reduce systemic PMD uptake as the molecular weight of the polymer would 

prevent (or certainly minimise) absorption. The first chapter provided an overview of skin as a 

potential site for drug delivery, described polymer-drug conjugates   and their advantages 

followed by a comprehensive discussion on the use of polymer-drug conjugates for drug 

delivery to diseased skin, e.g. eczema, wound healing, skin infections and cutaneous 

leishmaniasis. Most of these studies were promising in terms of efficacy and safety along with 

other parameters like the stability of the formulation and the drug loading. In some studies, 

issues that prevented the clinical translation of the conjugates were identified, which include 

difficulties with scaling up their synthesis followed by the disparity in the in vitro and in vivo 

results. 

 

The second chapter provided an overview of the general methods and materials that were used 

during this project. The third chapter described preliminary attempts to synthesise a polymer-

drug conjugate using high and low molecular weight hyaluronic and polyacrylic acid (PAA). 

Hyaluronic acid was chosen because of its excellent safety profile, the moisturising effect that 
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it has and the presence of suitable functional groups for the conjugation. Similarly, PAA was 

selected because of its good safety profile and the presence of suitable functional groups.  

Several methods followed by modifications in these methods were attempted to conjugate the 

polymers with PMD but failed to yield the desired results. Despite changing the polymer, 

polymer molecular weight, solvents and the drug itself, the desired polymer-drug conjugate 

could not be synthesised. The most probable reason for the unsuccessful reaction was steric 

hindrance of PMD and access to the reactive sites in the polymer themselves (as polymers are 

large molecules). This led to a change of approach, i.e. to develop a monomer drug conjugate 

and then subsequent polymerisation to form a polymer with the incorporated drug (PMD). 

 

The fourth chapter focused on the synthesis and characterisation of the polymer-drug conjugate 

using free radical polymerisation of AA and APMD which resulted in the formation of 

poly(AA-co-APMD) ester copolymer with low to medium molecular weight (depending upon 

the monomer ratios). The synthesis was then followed by characterisation to determine the 

properties of the copolymer, e.g. glass transition temperature (Tg), reactivity ratio of the 

monomers, molecular weight and drug loading on the copolymers. The reactivity ratio study 

revealed that the AA is much reactive than the APMD, probably due to the presence of bulky 

cyclohexane ring in the APMD. The properties of the copolymer were dependent upon the 

monomer ratios in the feed mixtures and consequently the content of APMD in the polymer. 

Higher content of APMD results in the formation of a turbid solution in water. Thermal analysis 

revealed greater thermal stability of the PMD in the copolymer as compared to the free drug 

(PMD) whilst the DSC study revealed a decrease in the Tg by the addition of APMD into 

polyacrylic acid, most probably due to the decrease in the rigidity of the polymer chain. Drug 

loading was calculated by two methods; a titration method and elemental analysis both gave 

comparable results which were in agreement with the reactivity ratio studies. 

 

The fifth chapter tested the hypothesis that esterases will hydrolyse the ester bond in the 

copolymer and thus will release the PMD over an extended period, and that the molecular 

weight of the copolymer will decrease the penetration and permeation of the PMD through the 

skin. For this purpose, porcine liver esterases (PLEs) were used to hydrolyse the ester bond in 

the copolymer. The results showed that the ester bond in the copolymer is susceptible to 

hydrolysis by PLEs. The amount of the parent compound (PMD) liberated from the control 
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experiments was approximately 45% of the loading. Thus, it was concluded that the hydrolysis 

of the copolymer was mostly if not purely enzymatic and no chemical hydrolysis and 

decomposition was involved, also evidence by the lack of PMD release in the absence of the 

enzyme. The amount of the drug released from the copolymer was below expectations the basis 

for which was investigated to test whether exhaustion of the enzymes or steric effects affected 

PMD release; molecular weight was shown to influence release whereas adding of 

new/additional enzymes did not have any effect on the amount of PMD released indicating that 

the enzymes had not been saturated. To assess the permeation and penetration profile of our 

copolymer and PMD alone (control), skin permeation and penetration experiments were 

undertaken by using Franz diffusion cell. The biggest challenge in this study was to develop a 

method to quantify the copolymer. For this purpose, the gel permeation chromatography (GPC) 

was used. It was found that, compared to PMD, copolymer only penetrated the upper epidermal 

layer and did not permeate the skin (pig ear), indicating that polymer-drug conjugation can be 

used to avoid or minimise permeation of the parent compound into the systemic circulation. 

Hence, potential side effects associated with PMD application can be avoided. 

 

The design of formulations that contact human tissues requires toxicological testing and, in 

particular, topically applied formulations require skin irritation testing. The classical test used 

to assess skin irritation of the compounds is the Draize test (Draize et al., 1944). Over time, 

due to ethical as well as scientific reasons, alternative methods have been sought using lower 

animal models (Callens et al., 2001). Chapter six reports a novel method to quickly screen out 

potential strong irritants by using planaria as a model, based upon the hypothesis that the 

greater the irritation potential of a compound then the greater will be the fluoresence 

accumulation inside the flatworm following short term exposure to irritants. Using reported 

irritation defined by their primary irritation index values, twelve test substances were 

evaluated, three each from strong-, moderate-, mild- or non-irritants, alongside controls of 1 

minute exposure to Artifical Pond Water with or without DMSO, and an untreated planarium 

to determine autofluorescnece. Autofluorescence was negligible and fluorescence uptake into 

the control planaria was minimal following short term exposure to the dye; uptake of 4 a.u./cm2 

from APW with DMSO indicates no substantive damage to the outer membrane. Following 

exposure to the non-irritants, fluorescence was not signficantly different to that of the control 

animals, with greatest intensity seen for PEG-400 exposure at 5 ± 2.3 a.u./cm2.  Data for the 

mild-irritants was also not signficiantly different to that of the controls, with benzyl alcohol 
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causing fluorescence of 4.6 ± 3.9 a.u./cm2 which rose to 10 ± 5.8 a.u./cm2 with tri-isobutyl 

phosphate.  The increasing trend in fluorescence intensity continued with the moderate irritants,  

ranging from decanol (9.5 ± 3.2a.u./cm2) to linalyl acetate (20 ± 3 a.u./cm2).  As a strong 

irritant, citronellal (18 ± 6.2 a.u./cm2) gave similar fluorescence to linalyl acetate but both  

benzalkonium chloride (53 ± 11.2 a.u./cm2) and carvacrol (48 ± 12.5 a.u./cm2) caused 

catastrophic damage to the membrane resulting in significantly higher fluorescence intensities 

than all other tests. It was concluded that the fluorescence assay offers a rapid in vivo screening 

tool employing a model that is readily available and easy to maintain and which could act as a 

pre-screening method to inform subsequent sophisticated and costly assessments of skin 

irritants. Potentially this assay could be further extended to test irritation potential of various 

chemicals towards ocular, nasal and vaginal mucosa.  

 

The last chapter of this thesis reported the evaluation of the toxicity of the copolymer poly(AA-

co-APMD), polyacrylic acid and PMD by using the planaria fluorescence assay. The study 

showed that the conjugation of the PMD into the copolymer significantly reduces the irritation 

of the PAA (alone). Moreover, this is as expected from the skin permeation data and most of 

the copolymer resided at the top layer of the skin, and thus we expect it to exhibit low irritation 

potential in vivo. In order to know the possible mechanism/cause of the irritation of the 

compounds towards planaria, the effect of pH and logP was studied, revealing that extremes of 

pH disrupted the planarian membrane while the logP values (available from the data) of 

different compounds does not have a significant relationship with its increasing or decreasing 

values.  

 

Overall, the aims of the project have been achieved through successful synthesis and 

characterisation of the copolymer despite the initial challenges faced. Moreover, it was proven 

that the PMD can be released from the copolymers by the eastreases and upon the application 

of the conjugated polymeric system significantly reduced the permeation of PMD through 

human skin. We were also able to develop a new model to predict the irritation potential of 

strong irritants towards the skin and based upon that model we successfully evaluated the 

irritation potential of our copolymer. 
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8.2. Future Work 

This section is broadly divided into two sub sections. First discusses the future work related to 

this particular study while the second considers broader future uses of polymer-drug conjugates 

as a drug delivery platform for skin diseases. 

8.2.1 Future Work Concerning this Project 

The study could not cover all the aspects that should be considered when translating a 

formulation further towards its regulatory approval and clinical application. 

  

      8.2.1.1. Optimising the Conjugate 

        Despite multiple attempts and modifications to the method or molecular weight or even 

to the drug carrier, it was not possible to produce an HA-PMD conjugate. However, this 

carrier (HA) has been successfully conjugated in literature reports (Chen et al., 2014; 

Huang and Huang,2018). HA is attractive as it is safe, widely used and is known to be a 

moisturising agent in cosmetic preparation. Studies also show it can penetrate the outer 

layers of the stratum corneum (but not through the tissue) (Essendoubi et al., 2016) and 

hence it may help to retain the conjugate on the skin surface for extended periods. It would 

be of value to further explore the reasons for the non-reactivity and seek alternative 

approaches for an HA-PMD system. 

 

       8.2.1.2. Drug Loading 

       Whilst drug loading is satisfactory in the pilot work, it remains at ~10% of the copolymer. 

having it higher for extended drug release may be beneficial. This could be either by 

changing the monomer, i.e. choosing methacrylic acid instead of acrylic acid or may be 

methacrylic anhydride etc 

 

       8.2.1.3. Synergistic Effect 

       Another area that could be possibly explored is the potential combination of repellents like 

DEET or blend with DEET or may be vanillin for multiple actions of repellency, for 

example it might help us to cover a broader range of coverage (protection from insect 
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bites) as compared to the PMD alone, as there are reports that inclusion of 5% vanillin 

increases the protection time up to 4.5 hours when used in conjunction with citronella oil 

(Songkro et al., 2012). 

 

        8.2.1.4. Formulation 

        Formulation of the conjugate is an essential step for the ultimate usage (in humans). Whilst 

the formulation involves challenges, the biggest of which is to prevent the hydrolysis of 

the ester bond during its long-term storage in the presence of excipients. Thus, requiring 

strict testing before being formulated. The formulation can be in the form of a topical 

spray or maybe a hydrogel. 

 

       8.2.1.5. In vivo Testing 

        Similarly, another study that could have been done is the in vivo study. However, this 

study was planned out (6g of copolymer batch was prepared) but could not have been 

done due to unforeseen circumstances. For this purpose, we suggest arm-in-cage study 

which is a standard method to evaluate the efficacy of any insect repellent formulation, 

involving the use of either human volunteers or the animals (rabbits), where a formulation 

is applied (typically on arms in humans) followed by the calculation of the number of 

mosquito bites usually up to 24 hours. In the end, the obtained data is compared with the 

control (Logan et al., 2010). 

 

8.2.2 Future Potential of Polymer-Drug Conjugates for Skin Drug Delivery 

Over the last two decades, the application of PDCs to diseases other than cancer has increased, 

including for topical delivery though this remains a relatively under researched area. As 

macromolecular constructs, passive diffusion through the intact stratum corneum barrier is not 

feasible and hence the focus is on targeting to the follicles or use in conditions where the skin 

barrier is damaged such as psoriasis or wound healing. Thus, opportunities exist for similar 

barrier dysfunctioning conditions such as atopic dermatitis, scabies or cutaneous leishmaniasis 

(Smith, 2007). 
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One opportunity is in treating cutaneous leishmaniasis (CL). There are two major problems 

associated with the use of current drug regimen for the treatment of CL; (1) they are 

administered in the form of cutaneous injections which are painful and (2) they have elevated 

toxicity and carry substantial side effects restricting their use (Croft et al., 2006). The features 

important for consideration to develop a PDC for CL are that as the outer protective barrier of 

the skin, i.e., SC is damaged so delivery should be feasible.  Secondly, the target site where the 

parasitized macrophages are located is accessible but requires site-specific delivery as is 

feasible with conjugates which can ideally be taken up by the Leishmania infected 

macrophages and release the drug within phagolysosomes. It has been reported that the 

macrophages infected with the Leishmania parasite require more glucose as energy source for 

their survival (Hassani and Olivier, 2013; Liu and Uzonna, 2012), therefore polymeric 

polysaccharides such as neoglycoproteins, xanthan and HA could be suitable polymers as these 

polysaccharides can be taken up by the receptor mediated endocytosis using mannose receptors 

on the macrophages. Moreover, Leishmania infected macrophages are rich in a protease 

enzyme called cathepsin, thus requiring a linker that is susceptible to proteases so can release 

the drug of choice within the parasite-phorous vacuole of macrophage. 

 

Scabies caused by Sarcoptes scabiei is another common skin infestation affecting more than 

200 million people worldwide, characterised by intense itching and discomfort for which there 

are various drawbacks associated with treatments.  For example, there are reports of 

neurotoxicity associated with the systemic absorption of topically administered lindane, whilst 

some literature shows the development of resistance against ivermectin in humans (Khalil et 

al., 2017). The main aspects that should be considered when designing a PDC system for 

topical therapy of scabies is to deliver the drug at the site of infestation, i.e. the lower SC of the 

skin (Morgan et al., 2013). The possible solution can be conjugating permethrin, ivermectin or 

lindane with polypeptides or hyaluronic acid (HA) that are proven to enhance the permeation 

of the drug through SC but at the same time preventing the systemic absorption as compared 

to the drug applied alone topically (Witting et al., 2015). 

 

During the last two decades the occurrence of the skin fungal infections has been increasing 

and are increasingly difficult to treat with a growing population of patients with co-morbidity. 

For fungal therapies, conventional formulations are widely used, irrespective of where the 
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fungal pathogen is residing within the skin, i.e., whether in the SC or deeper skin layers.  The 

treatment of deeply seated fungal infections such as invasive aspergillosis and candidiasis is 

problematic. Moreover, the application of ineffective formulations can provoke adverse effects 

including allergic reactions (Kumar et al., 2014). To avoid some of the above difficulties, one 

approach could be to use PDCs with an anti-fungal drug conjugated to a polypeptide or a low 

molecular weight HA, so that it can penetrate into the skin thus releasing the drug at the site of 

the infection.  This may result in avoidance of the side effects associated with the allergic 

reactions on skin. 

 

8.4. Significance of the Key Findings 

To the best of our knowledge, till this date, there is no published work relating to the use of 

PDCs on the intact skin to decrease the permeation of a compound. Thus, this work for the first 

time reports the use of PDC as a drug delivery system to decrease the permeation as well as 

extend the release of the drug, i.e. PMD. The findings in this thesis provides a mean to extend 

this technology, i.e. PDCs to other volatile compounds like perfumes, which can be beneficial 

not only to extend their efficacy (smell) but also to avoid any side effects associated with the 

permeation of volatile compounds as well as it can also be used to avoid any skin irritation that 

normally is associated with abrupt release of the drug once a formulation is applied onto the 

skin. 

 

Figure 8.1. Key findings of this thesis 
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