

Responsible development of autonomous robotics in agriculture

Article

Accepted Version

Rose, D., Lyon, J., de Boon, A., Hanheide, M. and Pearson, S. (2021) Responsible development of autonomous robotics in agriculture. Nature Food, 2 (5). pp. 306-309. ISSN 2662-1355 doi: 10.1038/s43016-021-00287-9 Available at https://centaur.reading.ac.uk/97325/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1038/s43016-021-00287-9

Publisher: Nature

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 Responsible development of autonomous robotics in agriculture

2 David Christian Rose¹, Jessica Lyon¹, Auvikki de Boon¹, Marc Hanheide², Simon Pearson²

3

4 [Standfirst]

5 Despite the promise of autonomous robots to contribute to agricultural sustainability, a number of 6 social, legal, and ethical issues threaten adoption. To understand these challenges, we discuss how 7 responsible innovation principles can be embedded into the user-centred design of autonomous 8 robots and identify areas for further empirical research.

9 [Main]

Adding to the list of environmental challenges facing agriculture, COVID-19 and the demographics of age, migration and urbanisation poses a serious threat to the sustainability of farm businesses and food security¹. In particular, farm businesses across the world are struggling to fill vacancies and provide safe working conditions for labourers.

Autonomous robots could help address these immediate challenges². Whilst their physical 14 15 manifestation comprises hardware, such as a vehicle combined with manipulators, their autonomy 16 is derived from sophisticated algorithms routed in artificial intelligence. These algorithms fuse 17 sensor data to enable control and real-time decision support. Autonomous robots perform tasks 18 with a high degree of autonomy and may work collaboratively alongside human workers (so-called 19 co-bots) or on their own³. Apart from isolated examples of these technologies being demonstrated 20 on-farm, autonomous platforms with robotic mobility which fuse multiple technologies across a 21 single fleet (e.g. crop forecasting, planting, harvesting, packing) are not yet fully implementable, 22 and substantial barriers need to be overcome before they will be. However, there is already 23 adoption of static robotic milking technologies in the dairy sector, and in-field deployment of 24 tractor mounted robotic manipulators to remove weeds and protect crops from pests and diseases², 25 for example.

26 We know, however, that the history of innovation in agriculture is littered with examples of failure 27 or slow adoption, and the legal, ethical, and social concerns associated with autonomous agriculture are controversial^{4,5}. Potential challenges, opportunities and consequences of 28 29 autonomous agriculture, illustrated in Figure 1, are interlinked and depend on how technologies 30 are designed and implemented. Many of these aspects have been discussed in the burgeoning literature on the social and ethical impacts of digitalisation in agriculture^{6,7.} For autonomous 31 32 robotics in farming, where empirical research remains limited, potential issues have largely been 33 identified by extrapolating views gathered from empirical research on smart farming technologies 34 in general, or from the use of autonomous robots in other workplaces. Here we identify examples 35 of where responsible innovation principles are being implemented and indicate where more needs 36 to be done.

37 Figure 1

38 **Responsible innovation in agriculture and beyond**

The most widely used framework for responsible innovation was proposed by Stilgoe and colleagues⁸ and involves four key components: *anticipating* the impacts of innovation; reflecting on one's work and adapt accordingly (*reflexivity*); *including* a wide range of stakeholders in the design process; and *responding* to stakeholders' concerns, ideas and knowledge by constructing appropriate institutional structures.

Guidance on responsible innovation – provided by funders such as Engineering and Physical Sciences Research Council⁹, InnovateUK¹⁰, and the European Commission – encourages companies to be cognisant of their responsibility and committed to RRI principles, by exploring the challenges that could arise from innovation and acting on their findings in a transparent, inclusive, and timely manner. Despite frequent calls for companies to conduct a transparent and iterative process of responsible innovation, there is a lack of either a commitment to, or reporting of, the steps taken in technology development in the agriculture industry.

51 In the following sections we discuss how the four key components mentioned above can be 52 operationalised to guide technology development in agriculture¹¹, outlining key research needs to 53 better understand how to operationalise the idea. Examples referenced in this paper and the 54 guidance from Stilgoe *et al.*⁸ and Eastwood *et al.*¹¹ provide a good overview of techniques that can
55 be used to apply responsible innovation principles.

56 Anticipation

57 With the objective of minimising negative, unintended outcomes⁸, 'anticipation' involves 58 identifying, predicting, and exploring the potential short- and long-term consequences of future 59 innovation across society and is therefore essential for the responsible development of autonomous 60 robots.

61 There has been little empirical anticipatory work for autonomous robots in farming that has included a variety of stakeholders in the process, though a recent paper by Legun and Burch¹² 62 63 begins to describe a process of co-design in the context of robotic apple orchards in New Zealand. 64 Empirical studies have otherwise been limited to the narrow use of foresight exercises in the form of technology use and acceptance surveys and farmer¹³ or public opinion surveys¹⁴ using online 65 questionnaires and short interviews. Foresight is also used to elucidate future benefits and 66 67 challenges associated with a technology in combination with other methods, such as the Delphi technique (which relies on anonymous rounds of voting)¹⁵. Other anticipatory processes include 68 'horizon scanning' (scanning data sources to detect early developments¹⁶) and 'socio-literary 69 techniques' (using science fiction as a tool to encourage dialogue about technology futures¹⁷, 70 possibly through 'Ag-Tech movie nights'¹⁸). A typical methodology in robotics and human-robotic 71 interaction are "Wizard of Oz" studies¹⁹, where autonomy is "fake"; robots are usually remote-72 73 controlled, anticipating the abilities they may have once fully implemented. Another useful technique often employed are video studies²⁰, where participants are presented with recordings of 74 75 robot behaviour and assess it from a third person perspective.

One further method to consider is backcasting, which involves building an (ideal) future scenario, and working backwards to identify the steps needed to get to that scenario. This is done in anticipatory governance approaches, for example. A key area for future research will be to use different anticipatory methods with diverse stakeholders specifically on the subject of autonomous robots in agriculture. Those included in the process of anticipation should be those directly affected by the adoption of robotics, including farmers, farm workers, and consumers of food produced in that way. Including such a wide range of stakeholders will create a number of practical challenges related to power inequality (farm managers v farm workers) and language barriers (migrant farm
workers) and these will need to be managed sensitively by trained facilitators.

85 **Reflexivity**

86 Reflexivity entails 'holding a mirror up to one's own activities, commitments and assumptions, 87 being aware of the limits of knowledge and being mindful that a particular framing of an issue may 88 not be universally held'⁸. Constant analysis and critique of one's work among peers is an embedded 89 practice of rigorous science. However, scientists and engineers typically carry out reflexivity and 80 other responsible innovation practices 'behind closed doors', in the lab, and do not recognise these 91 processes as 'reflexivity' in responsible innovation terms²¹. Opening these conversations up to the 92 public and acknowledging and listening to other actors can improve the quality of reflexivity.

93 Reflexivity in the realm of autonomous robots in agriculture has mostly come from the user-94 centred design (UCD) process. Work to date in this space has recognised that robotic systems interacting with humans need to undergo an iterative development approach²², bringing together 95 96 subjective user experience with actual system logs. After including stakeholders and seeking their information requirements and preferences for autonomous robots through surveys²³, workshops²⁴, 97 and field experiments^{25,26,27}, designers have altered prototypes and design paths to ensure that the 98 99 robots work for the user. Yet, this is narrow reflexivity; it involves developers tweaking design based on user feedback, rather than conducting a fundamental analysis of the assumptions and 100 101 values underlying the proposed solution or questioning if agricultural robotics is really the path we 102 want to take as society. We rarely carry out a deeper form of reflexivity, possibly missing 103 alternative solutions.

104 The development of and engagement with best practice guidelines, codes of conduct and 105 international standards is another form of reflexivity that can guide industry to conduct innovation 106 in a responsible manner, although it is not always clear whether they continue to serve the purpose 107 of reflexivity once adopted. In Australia, a code of practice for 'Agricultural Mobile Field 108 Machinery with Autonomous Functions' is currently under development to help guide safe 109 working procedures in the field; this code of practice is intended to hold some legal weight. 110 International standards for the use of autonomous robots such as ISO 10218 provide norms for 111 worker safety when collaborating with robots in a structured, industrial environment. In ISO

112 10218, safety aspects such as tactile and pressure sensors, safe maximum speed, proximity sensors, 113 human detection cameras, and emergency stop are described to ensure the safety of human-robot 114 collaboration. Other relevant international standards include: ISO 18497 (design principles for 115 safety with highly automated agricultural machines – operations of robots in-field are not covered) 116 ; ISO 17757 (for use of autonomous machinery in mining); and ISO/SAE DIS 21434, currently 117 under development (for cybersecurity in road vehicles). The agricultural industry can glean 118 insights from these standards, however there is a necessity to further develop agriculture specific 119 standards and codes of practice that account for human-robot collaboration in flexible, 120 unstructured environments such as in the field. Understanding how this might be done effectively, 121 bringing together relevant stakeholders, is an important future area for research.

122 Inclusion

123 Concepts of 'inclusion' are frequently limited to the 'consideration' of how stakeholders may be impacted or react to innovation by a limited group of experts²⁸. Genuine inclusion should involve 124 125 the participation of a full range of stakeholders through processes. If we do not pursue methods 126 for the substantive inclusion of a full range of actors, not just the 'usual suspects', and do not give 127 due attention to power inequalities between stakeholders throughout the participatory process, then 128 we risk reinforcing unequal participation under the guise of inclusivity. It may appear that 129 increased participation from the start is time-consuming and resource-intensive, but user-centred 130 design can prevent problems further down the line.

131 Within the development of autonomous robots in agriculture, inclusion has mostly taken the form 132 of consultation and sometimes collaboration, involving feedback from farmers and farm workers on the technical side of robot development. Simulation experiments^{29,30} and field-based 133 workshops²³ have allowed farmers and farm workers to test the usability of a technology. 134 135 Researchers have used task scenarios, observations, and participant feedback to feed into prototype 136 development. The social sciences have developed a number of participatory methods that allow 137 substantive inclusion, such as citizen juries and deliberative workshops, and a greater selection of 138 these should be brought to bear for inclusion surrounding autonomous agriculture³¹.

Stakeholders identified in the PAS 440 Responsible Innovation framework developed for
 InnovateUK¹⁰ include co-developers; markets, customers, end-users; regulators and standards

141 bodies; NGOs representing civil society stakeholders and individual citizens likely to be affected. 142 Beyond the 'usual suspects', it is important to engage with 'harder to reach' stakeholders. Schillo and Robinson²⁸ discuss the importance of engaging with historically marginalized groups. In the 143 144 case of autonomous agriculture, this could involve small farmers (who may be pushed out of the 145 industry by larger farmers with more capacity to adopt and adapt), organic farmers (whose farming strategy may be more difficult to align with autonomous robots focussed on precision 146 fertilisation³²), as well as farm workers (who could lose jobs as they are replaced by robots). Blok³³ 147 148 argues that stakeholder inclusion and participation can typically become reductive as it focuses on 149 the cognitive approach to understanding the perspectives of stakeholders in a self-serving 150 'immunization strategy', where the goal is to convince others, prevent criticism and portray the 151 company as having good intentions. We should ultimately ensure that we are undertaking 152 substantive, rather than tokenistic inclusion.

The involvement of stakeholders should not be restricted to the exploration of consequences in terms of economic opportunity or technology acceptance, but include wider implications and society's 'grand challenges'. To date there are limited examples of this work; Pfeiffer *et al.*¹⁴ explored public's opinions of digital farming technology through surveys and spontaneous associations; Kester *et al.*¹³ surveyed farmer's views of the future of automation on topics such as perceived value, applications and expectations; and Baxter *et al.*²⁶ asked fruit pickers questions regarding the impact of autonomous robots on their job security.

160 **Responsiveness**

161 Identifying potential consequences, reflecting on underlying assumptions, values, and problem-162 solving processes, and including stakeholders in the innovation process can only lead to 163 responsible innovation if newly gained insights are enacted upon. Actors should be reactive to new 164 knowledge and ensure development is iterative. This could be in the form of adapting R&D 165 projects or early design prototypes based on information feedback from stakeholders. Other actions 166 that result from new information could include adjusting business models, altering control or 167 access to software, amending workers contracts and working conditions³, or refraining from 168 developing a certain robot altogether if it is not desired by society.

169 Responsiveness is also important within institutional structures, which should respond promptly 170 to new information, in policy, law, and regulatory environment. Regulation can restrict innovation 171 (e.g. GM crops in Europe), efficiency, and competitive advantage, however legal structures will 172 be important to ensure protection for users of autonomous robots and for clarifying the liability 173 framework. Hence, regulation can act as both a barrier to and an enabler of adoption. Basu et al.⁵ 174 describe the current legal frameworks, regulations and standards that are relevant to the 175 development of autonomous robots in agriculture, as well as the gaps in areas such as data 176 protection law, ethics of robot autonomy and artificial intelligence. Similarly to how the European 177 Union embedded 'Privacy by Design' into its General Data Protection Regulation, others are 178 calling for 'Equality by Design' in artificial intelligence (AI) regulation to safeguard against bias 179 and discrimination that may inadvertently be engrained in technology and machine learning³⁴. 180 There are examples of "technological redlining" as well as technological limitations of 181 measurement such as unequal object detection or lower quality heart rate measurement for those 182 with darker skin³⁴. A lack of transparency with algorithms, machine learning and AI – the "black 183 box" problem - can lead to bias and discrimination issues within machine learning to become further entrenched and replicated. Regulatory oversight of "Equality by Design"³⁴ is key to ensure 184 185 that programmers address any bias and discrimination that may be produced in algorithms, 186 ultimately ensuring that technology treats users fairly.

187 Conclusion

188 Addressing the social, legal, and ethical implications of autonomous robots is arguably a greater 189 challenge than the development of the technology itself. More research is needed to ensure that 190 anticipation, reflexivity, and inclusion efforts are turned into responsive action on the ground. As 191 highlighted in this paper, most empirical work for the development of autonomous agriculture has 192 been focused on the technical aspects of robot operation with some level of inclusion and 193 reflexivity to ensure improvement of technical performance. Little published work has gone 194 beyond this to use methods that allow for substantive inclusion and deeper reflexivity on the 195 subject. Yet, if society decides that autonomous robotics for farming is the way to go, then 196 practising responsible innovation in their development is vitally important to prevent future 197 controversy, implementation delays, and negative consequences. Ultimately, the success or failure

- 198 of autonomous robots in agriculture will not rest on the limits of our technical enterprise, but on
- 199 our ability to include society and maturity to listen, learn, and respond.

201 Acknowledgements

This paper is was developed from the Robot Highways project funded by InnovateUK as part of the ISCF TFP Science and Technology into Practice: Demonstration call (Grant number 51367).

- 204

205 Author information

206 Affiliations

- ¹School of Agriculture, Policy and Development, University of Reading, Earley, Reading, RG6
- 208 6EU, UK
- ²Lincoln Institute for Agri-Food Technology, University of Lincoln, Riseholme Campus, Lincoln,
- 210 LN2 2LG, UK

211 Corresponding author

- 212 David Christian Rose | <u>d.c.rose@reading.ac.uk</u>
- 213 Ethics declaration
- 214 **Competing interests**
- 215 The authors declare no competing interests.

- 217 Figure 1: Overview of challenges, opportunities, and potential consequences of autonomous
- 218 **agriculture.** The signs +, and +- indicate positive, negative and uncertain consequences,
- 219 respectively. Positive consequences denote opportunities to be harnessed, whereas negative
- 220 consequences denote challenges to be overcome concerning the operationalization, adoption
- and/or deployment of innovations (see Sparrow and Howard⁴ and Basu et al.⁵ for more detail).

222 **References**

226

227

228

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

- OM, UN Migration. COVID-19: Policies and Impact on Seasonal Agricultural Workers. <u>https://eea.iom.int/publications/covid-19-policies-and-impact-seasonal-agricultural-workers</u>. (2020)
 Duckett, T., Pearson, S., Blackmore, S., Grieve, B. Agricultural Robotics: The Future of Robotic
 - Duckett, T., Pearson, S., Blackmore, S., Grieve, B. Agricultural Robotics: The Future of Robotic Agriculture. <u>https://arxiv.org/pdf/1806.06762.pdf</u> (2018).
 - 3. Marinoudi, V, Sørensen, C. G., Pearson, S., Bochtis, D. Robotics and labour in agriculture: A context consideration. *Biosystems Engineering* **184**, 111-121 (2019).
- 4. Sparrow, R. and Howard, M. Robots in agriculture: prospects, impacts, ethics and policy. *Precision Agriculture*. <u>https://doi.org/10.1007/s11119-020-09757-9</u> (2020).
 5. Basu, S., Omotubora, A., Beeson, M., Fox, C. Legal framework for small autonomous agricultural response of the statement of the statement
 - 5. Basu, S., Omotubora, A., Beeson, M., Fox, C. Legal framework for small autonomous agricultural robots. *AI & Society* **35**, 113-134 (2020).
 - Klerkx, L., Jakku, E., Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS – Wageningen Journal of Life Sciences, 90-91, 100315 (2019)
 - 7. Barrett, C. B., Benton, T. G., Cooper, K. A., Fanzo, J., Gandhi, R. *et al.* Bundling innovations to transform agri-food systems. *Nature Sustainability*, **3**, 974-976 (2020)
 - 8. Stilgoe, J., Owen R,. Macnaghten, P. Developing a framework for responsible innovation. *Research Policy*, **42**(9), 1568-1580
 - 9. Engineering and Physical Sciences Research Council. Framework for Responsible Innovation. <u>https://epsrc.ukri.org/index.cfm/research/framework/</u> (2020).
 - 10. The British Standards Institution. PAS 440:2020 Responsible Innovation Guide. <u>https://pages.bsigroup.com/l/35972/2020-03-</u> <u>17/2cgcnc1?utm_source=pardot&utm_medium=email&utm_campaign=SM-STAN-LAU-PAS-PAS440-</u> <u>2003</u> (2020)
 - 11. Eastwood, C., Klerkx, L., Ayre, M., Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. *Journal of Agricultural and Environmental Ethics* **32**, 741-768 (2017).
 - 12. Legun, K. Burch, K. Robot-ready: How apple producers are assembling in anticipation of new AI robotics. *Journal of Rural Studies*, **82**, 380-390 (2021).
 - Kester, C., Griepentrog, H. W., Hörner, R., Tuncer, Z. A survey of future farm automation a descriptive analysis of survey responses. In: Stafford J.V. (eds). Wageningen Academic Publishers, Wageningen (2013).
 - 14. Pfeiffer, J., Gabriel, A., Gandorfer, M. Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany. *Agriculture and Human Values* **38**, 107-128 (2020).
 - 15. Brier, D., Eastwood, C. R., Dela Rue, B. T., Viehland, D. W. Foresighting for Responsible innovation Using a Delphi Approach: A Case Study of Virtual Fencing Innovation in Cattle Farming. *Journal of Agricultural and Environmental Ethics* **33**, 549-549. (2020).
 - Hamilton, G., Swann, L., Pandey, V., Moyle, C-L, Opie, J., Dawson, A. Horizon Scanning: Opportunities for New Technologies and Industries. <u>https://www.agrifutures.com.au/wp-content/uploads/2019/07/19-028.pdf</u> (2019).
 - 17. Miller, C. A. Bennett, I. Thinking longer term about technology: Is there value in science fiction-inspired approaches to constructing futures?. *Science and Public Policy* **35**(8), 597-606 (2008).
 - DiSalvo, C., Lodato, T., Fries, L., Schechter, B. Barnwell, T. The Collective Articulation of Issues as Design Practice. *CoDesign* 7(3–4), 185–197 (2011).
 - 19. Riek, L. D. Wizard of Oz studies in HRI: a systematic review and new reporting guidelines. *Journal of Human-Robot Interaction* **1**(1), 119-136 (2012).
 - 20. Walters, M. L., Lohse, M., Hanheide, M., Wrede, B., Syrdal, D. S. *et al.* Evaluating the Robot Personality and Verbal Behaviour of Domestic Robots Using Video-Based Studies. *Advanced Robotics* **25**(18), 2233-2254 (2011).
 - 21. Glerup, C., Davies, S.R., Horst, M. 'Nothing really responsible goes on here': scientists' experience and practice of responsibility. *Journal of Responsible Innovation* **4**, 319-336 (2017).
 - 22. Weiss, A., Bernhaupt, R., Tscheligi, M. The USUS evaluation framework for user-centered HRI. In Dautenhahn, K., and Saunders, J. (eds) John Benjamins Publishing Company, Amsterdam (2011).
- 275
 23. Edet, U., Hawley, E., Mann, D. D. Remote supervision of autonomous agricultural sprayers: The farmer's perspective. *Canadian Biosystems Engineering* 60, 2.19-2.31 (2018).

- 24. Relf-Eckstein, J. E., Ballantyne, A. T., Phillips. P. W.B. Farming Reimagined: A case study of autonomous farm equipment and creating an innovation opportunity space for broadacre smart farming. *NJAS Wageningen Journal of Life Sciences* **90-91** 100307 (2019).
 - 25. Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M. *et al.* Design and development of a semi-autonomous agricultural vineyard sprayer: Human–robot interaction aspects. *Journal of Field Robotics* **34**(8), 1407-1426 (2017).
 - 26. Baxter, P., Cielniak. G., Hanheide, M., From, P. Safe Human-Robot Interaction in Agriculture. *HRI '18. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. 59-60 (2018).*
 - 27. Paniflov, I., and Mann, D. D. The importance of real-Time visual information for the remote supervision of an autonomous agricultural machine. *Canadian Biosystems Engineering* **60**, 2.11-2.18 (2018).
 - 28. Schillo, R. S. and Robinson, R. M. Technology Innovation Management Review 7(7), 34-46 (2017).
 - 29. Meusel, C, Kieu, D., Gilbert, S., Luecke, G., Gilmore, B., Kelly, N., Hunt, T.. Evaluating operator harvest technology within a high-fidelity combine simulator. *Computer and Electronics in Agriculture* **148**, 309-321 (2018).
 - 30. Huuskonen, J. and Oksanen, T. Augmented Reality for Supervising Multirobot System in Agricultural Field Operation. *IFAC-PapersOnLine* **52**(30), 367-372 (2019).
 - 31. BEIS Research paper. The use of public engagement for technological innovation: literature review and case studies. <u>https://www.gov.uk/government/publications/the-use-of-public-engagement-for-</u>technological-innovation-literature-review-and-case-studies
 - 32. Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. *NJAS – Wageningen Journal of Life Sciences* **90-91** 100294 (2019).
 - 33. Blok, V. From participation to interruption: Toward an ethics of stakeholder engagement, Participation and Responsible Innovation Partnership in Corporate Social Responsibility. In von Schomberg, R., and Hankins, J. (Eds.) Edward Elgar Publishing. Cheltenham (2019).
 - 34. Amani, B. AI and 'Equality by Design'. In Martin-Bariteau, F. and Scassa, T. (eds.), *Artificial Intelligence and the Law in Canada*, LexisNexis Canada, Toronto (2021).