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Key Points:9

• Equilibrium warming per CO2 doubling increases with CO2 level for 13 of 14 cli-10

mate models.11

• Positive feedback temperature dependence explains most of the sensitivity increase.12

• Nonlinear feedbacks increase the long-term risk of extreme warming under high13

CO2 emissions.14
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Abstract15

Equilibrium climate sensitivity - the equilibrium warming per CO2 doubling - increases16

with CO2 concentration for thirteen of fourteen coupled general circulation models for17

0.5 to 8 times the preindustrial concentration. In particular, the abrupt4xCO2 equilib-18

rium warming is more than twice the 2xCO2 warming. We identify three potential causes:19

nonlogarithmic forcing, feedback CO2 dependence, and feedback temperature dependence.20

Feedback temperature dependence explains at least half of the sensitivity increase, while21

feedback CO2 dependence explains a smaller share, and nonlogarithmic forcing decreases22

sensitivity in as many models as it increases it. Feedback temperature dependence is pos-23

itive for ten out of fourteen models, primarily due to the longwave clear-sky feedback,24

while cloud feedbacks drive particularly large sensitivity increases. Feedback tempera-25

ture dependence increases the risk of extreme or runaway warming, and is estimated to26

cause six models to warm at least an additional 3K under 8xCO2.27

Plain Language Summary28

Increasing CO2 reduces the rate at which energy leaves Earth, causing a net en-29

ergy gain at its surface. The resulting warming increases the rate that energy leaves the30

planet. The planet stops warming once it regains balance. Studies usually assume that31

doubling atmospheric CO2 always produces the same eventual global temperature rise32

(called the “equilibrium climate sensitivity”), whatever the starting CO2 level. We show,33

on the contrary, that in nearly all the computer climate models we have examined, the34

extra warming for each doubling goes up as the CO2 level increases. In most models, the35

warmer the climate becomes, the more it has to warm in order to balance a further CO236

doubling, because warming becomes less effective at rebalancing the flow of energy. This37

effect increases projections of warming, especially for scenarios of greatest CO2 increase.38

1 Introduction39

The equilibrium climate sensitivity (∆T2x) is the equilibrium global-mean surface40

warming per CO2 doubling (Hansen et al., 1985; Stocker et al., 2013). ∆T2x is often as-41

sumed to be constant (Stocker et al., 2013), allowing the equilibrium warming from dif-42

ferent CO2 increases to be characterized by a single metric, and for time series with var-43

ious CO2 changes to be used to estimate ∆T2x. A constant ∆T2x rests on two assump-44

tions: each CO2 doubling induces the same radiative forcing, and each unit of forcing45

induces the same equilibrium warming (i.e., that the net radiative feedback is constant).46

However, for low or high enough CO2 concentrations, the net radiative feedback becomes47

positive, causing runaway glaciation (Hoffman et al., 1998) or a runaway greenhouse (Komabayasi,48

1967; Ingersoll, 1969) respectively. Given these limits, will ∆T2x remain constant across49

the range of CO2 levels expected under future emissions scenarios?50

Paleoclimatologists have investigated this question (Heydt et al., 2016; Farnsworth51

et al., 2019). Studies of the early Cenozoic find an increase in climate sensitivity with52

CO2 concentration (Caballero & Huber, 2013; Anagnostou et al., 2016; Shaffer et al., 2016;53

Farnsworth et al., 2019; Zhu et al., 2019; Anagnostou et al., 2020), while studies of the54

Pleistocene disagree about whether sensitivity increases (three of four models in Cru-55

cifix, 2006; Yoshimori et al., 2009; Friedrich et al., 2016; Köhler et al., 2017; Snyder, 2019),56

stays the same (Mart́ınez-Bot́ı et al., 2015), or decreases (one of four models in Cruci-57

fix, 2006) with CO2. However, different continental configurations may affect how sen-58

sitivity changes with CO2 (Caballero & Huber, 2013; Wolf et al., 2018; Farnsworth et59

al., 2019).60

While most studies of general circulation models under modern conditions have found61

that sensitivity increases with CO2 (Hansen et al., 2005; Bitz et al., 2012; Block & Mau-62

ritsen, 2013; Caballero & Huber, 2013; Jonko et al., 2013; Meraner et al., 2013; Gregory63
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et al., 2015; Rieger et al., 2017; Duan et al., 2019; Rohrschneider et al., 2019), some have64

found that it decreases (Stouffer & Manabe, 2003; Kutzbach et al., 2013) or remains roughly65

constant (Colman & McAvaney, 2009). However, these thirteen studies only evaluate ∆T2x66

for models from five modelling centers. In most cases they use mixed-layer oceans, ne-67

glecting changes in ocean dynamics that can affect sensitivity (Kutzbach et al., 2013; Farnsworth68

et al., 2019).69

Recently, two datasets have become available with coupled atmosphere-ocean gen-70

eral circulation model (AOGCM) simulations at multiple constant CO2 levels initialized71

under preindustrial conditions (abruptnxCO2 simulations, where nxCO2 refers to the72

increase relative to preindustrial CO2 concentration): ten Coupled Model Intercompar-73

ison Project Phase 6 (CMIP6) models with abrupt0.5xCO2 and abrupt2xCO2 simula-74

tions run as part of NonLinMIP (Good et al., 2016) in addition to the standard abrupt4xCO275

simulations (Eyring et al., 2016), and five models in the LongRunMIP archive (a collec-76

tion of 1000+ year simulations of coupled AOGCMs; Rugenstein et al., 2019) with abrupt2xCO2,77

abrupt4xCO2, and abrupt8xCO2 simulations. One model participated in both projects.78

In this paper, we show that equilibrium climate sensitivity generally increases with79

CO2 level (Section 2); that changes in radiative forcing are not large enough to explain80

this increase for most models (Section 3); and that the increase is instead caused by pos-81

itive feedback temperature dependence, with some contribution from feedback CO2 de-82

pendence (Section 4). We compare these three nonlinear terms and their causes (Sec-83

tion 5) and then summarize our findings (Section 6).84

2 Equilibrium warming85

Let T be the globally-averaged surface temperature, and ∆T ≡ T − Tpi be the86

warming relative to the preindustrial period. We define ∆Teq(C) as the equilibrium warm-87

ing caused by changing the CO2 concentration from its preindustrial value (pCO2,pi ≈88

280ppm) to a new value (pCO2), where C is the number of CO2 doublings relative to89

this preindustrial period,90

C(pCO2) ≡ log2

(
pCO2

pCO2,pi

)
(1)

Under preindustrial conditions, Cpi = 0; in an abrupt2xCO2 simulation, C = 1; and91

so forth. Table S1 is a glossary of all symbols used in this paper.92

One condition for equilibrium is that the net top-of-atmosphere radiative flux N93

(downwards positive) is zero, on average. If we assume that N depends solely on C and94

T , then we can express a change in N in an abruptnxCO2 simulation as an initial change95

due to C and a subsequent change due to T :96

N(C, T )−N(Cpi, Tpi) = (N(C, Tpi)−N(Cpi, Tpi)) + (N(C, T )−N(C, Tpi)) (2)

= (N(C, Tpi)−N(Cpi, Tpi)) +

∫ Tpi+∆T

Tpi

∂N(C, T )

∂T
dT (3)

= F (Cpi, Tpi, C) +

∫ Tpi+∆T

Tpi

λ(C, T )dT (4)

F is the radiative forcing, the change in N relative to a given initial condition (Ci, Ti)97

caused by C doublings of CO2 while holding surface temperature fixed (F (Ci, Ti, C) ≡98

N(Ci+C, Ti)−N(Ci, Ti)), and λ is the radiative feedback, the dependence of N on T99

(λ(C, T ) ≡ ∂N(C, T )/∂T ), where the sign convention implies the feedback is typically100

negative. We can find ∆Teq(C) by setting N(C, T ) = 0:101

F (Cpi, Tpi, C) = −
∫ Tpi+∆Teq(C)

Tpi

λ(C, T )dT (5)
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where we assume N(Cpi, Tpi) = 0, since the preindustrial climate was roughly in equi-102

librium.103

Under preindustrial concentrations, the spectral line shape of CO2 absorption bands104

creates a logarithmic dependence of N on changes in pCO2, so that the forcing per CO2105

doubling (F̃ ≡ ∂N/∂C) is often assumed to be constant (Myhre et al., 1998). Our def-106

inition of radiative forcing also includes adjustments of the atmosphere, land, and ocean107

to CO2 changes that occur independently of subsequent changes in surface temperature108

(e.g., Sherwood et al., 2014; Kamae et al., 2015). This “effective radiative forcing” is also109

often assumed to be constant per CO2 doubling (Forster et al., 2016), as is the radia-110

tive feedback (Hansen et al., 1985; Gregory et al., 2004). Substituting these constant terms111

into Eq. 5, we can solve for ∆Teq(C):112

∆Teq(C) = − F̃
λ
C (6)

Assuming a constant F̃ and λ is equivalent to approximating N(T,C) with the linear113

Taylor expansion of N around preindustrial values of Cpi and Tpi (i.e., N(C, T ) ≈ F̃C+114

λ∆T , where C = ∆C because Cpi = 0). The linear approximation of Eq. 6 is ubiqui-115

tuous in climate science (e.g., Stocker et al., 2013; Knutti et al., 2017).116

The linear approximation implies that the equilibrium climate sensitivity (∆T2x),117

the equilibrium warming per CO2 doubling, is simply −F̃ /λ, which, being a ratio of two118

constants, is itself a constant. It should therefore not matter how many CO2 doublings119

are used to estimate it, since ∆T2x = ∆Teq(C1)/C1 = ∆Teq(C2)/C2. Fig. 1a shows120

instead that our estimates of ∆Teq(C)/C increase with CO2 concentration for thirteen121

of fourteen models. Colored bars show estimates made by extrapolating regressions of122

years 21 to 150 of N against ∆T to equilibrium (N = 0) for abrupt2CxCO2 simula-123

tions (Gregory et al., 2004, see also solid gray lines in Fig. S1). In these estimates, N124

and ∆T are anomalies: for LongRunMIP, we subtract the model’s control simulation’s125

mean value; for CMIP6, we subtract the linear fit of the control simulation after the branch126

point for the abruptnxCO2 simulations. We use only one ensemble member for each sim-127

ulation.128

Estimates of ∆Teq typically increase with simulation length (Rugenstein et al., 2020;129

Dai et al., 2020; Dunne et al., 2020). While most CMIP6 simulations are only 150 years130

long, some are longer, and the LongRunMIP models are all at least 1000 years long. Black131

horizontal lines in Fig. 1a show estimates using years 101 to 750+ (see Table S2 for ex-132

act number of years). Here and in the following we use bootstrapping to estimate the133

2.5th to 97.5th percentile range of uncertainty (gray and black vertical lines in Fig. 1;134

see Text S1). Black bars show multi-model mean values for the two experiments for which135

we have simulations of all models.136

The sensitivity definition in Fig. 1a (i.e., ∆T2x(C) ≡ ∆Teq(C)/C) is often used137

to estimate ∆T2x from abrupt4xCO2 simulations, which our results suggest would lead138

to an average overestimate of at least 0.5K, even neglecting the outlier of FAMOUS. Equiv-139

alently, the nonlinearity of N leads to an average increase in equilibrium warming of at140

least 1K under 4xCO2. Sherwood et al. (2020) suggested that using only the first 150141

years to estimate ∆Teq of an abrupt4xCO2 simulation compensates for this overestimate.142

For our five models with 1000+ year abrupt2xCO2 simulations, this compensation does143

not hold individually (CNRM-CM6-1’s ∆T2x would be 0.4K too small, FAMOUS’s 1.8K144

too large), or on average (an 8% overestimate). If we define sensitivity instead as the equi-145

librium warming caused by successive CO2 doublings (∆T2x(C) ≡ ∆Teq(C)−∆Teq(C−146

1); Jonko et al., 2013), then changes in sensitivity are larger, with increases larger than147

1K for seven models (Fig. S2). Alternatively, if we define sensitivity as the warming from148

doubling CO2 relative to preindustrial conditions only (∆T2x ≡ ∆Teq(1); e.g., Knutti149

et al., 2017; Ceppi & Gregory, 2017), our results suggest that this metric may have a lim-150

ited applicability.151
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The above shows that the equilibrium climate sensitivity is inconstant, and thus152

the linear approximation is inaccurate. To understand the increase in sensitivity, we take153

the quadratic Taylor expansion of N around (Cpi, Tpi):154

N(C, T ) ≈ ∂N

∂C

∣∣∣C=Cpi

T=Tpi

C+
∂N

∂T

∣∣∣C=Cpi

T=Tpi

∆T +
1

2

(
∂2N

∂C2
C2 +

∂2N

∂T 2
(∆T )2 + 2

∂2N

∂C∂T
C∆T

)
(7)

Substituting these new terms into Eq. 5, we have:155

(F̃pi +
1

2
∂C F̃C)C = −(λpi + ∂CλC +

1

2
∂Tλ∆Teq)∆Teq (8)

where F̃pi ≡ ∂N
∂C |Cpi,Tpi

and λpi ≡ ∂N
∂T |Cpi,Tpi

are the preindustrial forcing per CO2 dou-156

bling and preindustrial feedback respectively, ∂C F̃ ≡ ∂2N
∂C2 is the CO2 dependence of the157

forcing per doubling (which we call the nonlinear forcing), ∂Cλ ≡ ∂2N
∂C∂T is the feedback158

CO2 dependence, and ∂Tλ ≡ ∂2N
∂T 2 is the feedback temperature dependence.159

The three nonlinear terms (∂C F̃ , ∂Cλ, and ∂Tλ) can all cause the equilibrium cli-160

mate sensitivity to change with CO2 concentration. Solving for ∆Teq(C), we have161

∆Teq(C) =
−(λpi + ∂CλC)−

√
(∂Cλ2 − ∂Tλ∂C F̃ )C2 + 2(λpi∂Cλ− F̃pi∂Tλ)C + λ2

pi

∂Tλ
(9)

We ignore the other quadratic solution, which gives an unstable equilibrium for C. In162

the following sections, we consider the impact of these terms on ∆Teq.163

3 Radiative forcing164

Direct forcing depends linearly on C for small C (Myhre et al., 1998, who estimate165

F (C) = 3.71C Wm−2; dashed black line, Fig. 1b). At higher CO2 levels, new absorp-166

tion bands make this dependence superlinear (Byrne & Goldblatt, 2014; Etminan et al.,167

2016). Using the left side of Eq. 8, we have168

F (Cpi, Tpi, C) = F̃piC +
1

2
∂C F̃C

2 (10)

Byrne and Goldblatt (2014) used line-by-line radiative calculations and a simple strato-169

spheric adjustment model to estimate F̃pi = 3.69 Wm−2 and ∂C F̃ = 0.375 Wm−2 for170

0.7xCO2 to 36xCO2, implying an increase in forcing per doubling with CO2 concentra-171

tion (gray bars in Fig. 1b).172

We estimate forcing per doubling for each simulation (colored bars, Fig. 1b) by re-173

gressing the first ten years of N vs. ∆T to ∆T = 0 (dashed black lines in Fig. S1; Gre-174

gory et al., 2004). This estimate includes adjustments as well as direct effects. Forcing175

per doubling decreases with C about as often as it increases, so that nonlinear forcing176

cannot explain the general increase in sensitivity. For CO2 levels for which we have sim-177

ulations for all models (2xCO2 and 4xCO2), the multi-model mean forcing per doubling178

slightly decreases with C, although this decrease is not statistically significant.179

Sensitivity increases with CO2 concentration by a greater factor than forcing per180

doubling for most models (Fig. 1c). While all simulations but one have superlinear warm-181

ing (i.e., are right of the vertical dashed line), nine simulations have sublinear forcing (i.e.,182

are below the horizontal dashed line). Thirteen out of seventeen simulations have a smaller183

forcing increase than a warming increase (i.e. fall below the 1-to-1 line), as do the multi-184

model means. Moreover, there is little correlation between the nonlinear warming and185

forcing factors (R2 = 0.05), even ignoring models with anomalous sensitivity increases186

(FAMOUS and CESM2; R2 = 0.14). Forcing does not play a large role in the sensitiv-187

ity increase for most models, although it may for individual models (e.g., CESM1.0.4).188
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Using twenty years instead of ten to estimate F reduces uncertainty (Fig. S3a) but189

biases estimates of F low, because of an increase in the slope of N vs. ∆T over time (Fig.190

S3b), and has little effect on our findings in Fig. 1c (see Fig. S3c). Sensitivity also in-191

creases by a greater factor than would be implied by Byrne and Goldblatt (2014) (Fig.192

S3d). Our findings are also the same if we first estimate F̃pi and ∂C F̃ for each model by193

fitting the quadratic function in Eq. 10 (Figs. S4a and S4b): ∂C F̃ is positive for only half194

of the models, with multi-model mean values of F̃pi = 4.01 Wm−2 and ∂C F̃ = 0.017195

Wm−2.196

4 Radiative feedback197

If sensitivity is not proportional to forcing, then Eq. 5 implies the feedback is in-198

constant. Inconstant feedbacks are commonly associated with the “pattern effect,” in199

which the slope of N vs. ∆T under constant forcing varies. This slope is the weighted200

average of the spatial pattern of feedbacks, where the weights are given by the spatial201

pattern of surface warming, which evolves primarily due to the warming delay in regions202

of deep ocean heat uptake (e.g., Senior & Mitchell, 2000; Armour et al., 2013; Andrews203

et al., 2015; Rose et al., 2014; Rugenstein et al., 2016; Zhou et al., 2017; Dong et al., 2019;204

Bloch-Johnson et al., 2020).205

The framework in Section 2 does not account for spatially-varying feedbacks, which206

make N(C, T ) an ill-defined function, in that it can have multiple values: the same globally-207

averaged T with warmer temperatures in regions with strong negative feedbacks implies208

a lower N than if the surface temperature was spatially uniform. It is more accurate to209

define N(C, ~T ), where ∆~T is the spatial temperature pattern (Haugstad et al., 2017).210

This means that the equilibrium response cannot generally be estimated from the slope211

of N vs. ∆T , which may evolve differently at different forcing levels simply because the212

patterns of warming associated with each simulation are different. For example, it is pos-213

sible for the slope of N vs. ∆T to change due to a pattern effect, but for the overall re-214

sponse to forcing to be linear, so that the equilibrium climate sensitivity is constant (Rohrschneider215

et al., 2019).216

To create a tractable framework, we assume that every globally-averaged surface217

temperature T is associated with a unique equilibrium pattern, ~Teq(T ), which is the pat-218

tern when T is in equilibrium (stable or unstable) for some C. We then substitute N with219

Neq(C, T ) ≡ N(C, ~Teq(T )) in our above definitions of λ and F . This substitution does220

not affect our forcing definition, as forcing is typically defined with respect to an equi-221

librated state, but ensures that any change in the feedback implies a change in the pro-222

portionality of F (C) to ∆Teq(C), and vice versa, as expected from Eq. 5. It also implies223

that the only way in which the pattern effect affects the equilibrium climate sensitivity224

is through changes in the equilibrium pattern of warming.225

From Eq. 8, we have:226

λ(C, T ) = λpi + ∂CλC + ∂Tλ∆T (11)

where λpi ≡ ∂N/∂T |pi is the preindustrial feedback, ∂Cλ ≡ ∂λ/∂C = ∂2N/∂C∂T227

represents the feedback CO2 dependence, and ∂Tλ ≡ ∂λ/∂T = ∂2N/∂T 2 represents228

the feedback temperature dependence (Roe & Armour, 2011; Bloch-Johnson et al., 2015).229

Feedback CO2 dependence quantifies the effect of additional atmospheric CO2 on230

radiative feedbacks, such as damping the Planck feedback by making more frequencies231

optically thick (Seeley & Jeevanjee, 2020). It can also include effects due to forcing ad-232

justments. The pattern effect prevents us from comparing the slope of N vs. ∆T across233

forcing levels to estimate ∂Cλ. Instead, we use additional experiments for five coupled234

AOGCMs, CESM1.2.2, CESM2∗, CNRM-CM6-1∗, HadGEM2, and HadGEM3-GC31-235

LL∗ (starred models are from our main analysis; see Table S3 and Text S2), to estimate236
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∂Cλ. Since ∂λ/∂C ≡ ∂2N/∂C∂T = ∂F̃ /∂T , feedback CO2 dependence is also the de-237

pendence of the forcing per doubling on the reference temperature. We use pairs of ex-238

periments initialized at a colder temperature (Tcold) and a warmer temperature (Twarm)239

and the same initial CO2 concentration Ci to estimate forcing from the same amount240

of CO2 doubling C:241

∂Cλ = ∂T F̃ ≈
1

∆T

∆F (Ci, Ti, C)

C
=

Fwarm − Fcold
(Twarm − Tcold)C

(12)

where Fwarm ≡ F (Ci, Twarm, C) and Fcold ≡ F (Ci, Tcold, C).242

Fcold and Fwarm can be estimated using pairs of abrupt simulations (i.e., an abrupt4xCO2243

simulation to estimate Fcold, and a simulation where CO2 is abruptly lowered from 4xCO2244

to preindustrial values to estimate −Fwarm) or from two pairs of fixed-SST experiments245

(Hansen et al., 2005) at two different temperatures and CO2 concentrations. ∂Cλ has246

a multi-model mean value of ∂Cλmean = 0.0256 Wm−2K−1 and a range of 0.0057 to247

0.049 Wm−2K−1, suggesting that feedback CO2 dependence is generally positive, increas-248

ing sensitivity with CO2 concentration.249

To estimate each model’s feedback temperature dependence, we perform a least squares250

fit of Eq. 8 using estimates of F̃pi and ∂C F̃ from the previous section, as well as model-251

specific estimates of ∂Cλ when available, or otherwise ∂Cλmean. We perform this fit us-252

ing pairs of C and ∆Teq for each simulation, including the pair C = 0 and ∆Teq = 0253

for the control simulation, giving estimates of λpi and ∂Tλ (colored dots, Fig. 2). We254

find that ten of the fourteen models have positive feedback temperature dependence, with255

a multi-model mean value of ∂Tλmean = 0.029 Wm−2K−2 and a range of -0.14 to 0.109256

Wm−2K−2.257

With positive feedback temperature dependence, warming increases the feedback,258

leading to further warming, and so on. Under sufficient forcing, runaway warming oc-259

curs (Zaliapin & Ghil, 2010; Bloch-Johnson et al., 2015), specifically when Eq. 9 has no260

real solution (∂Tλ > (λpi+∂CλC)2/(∂C F̃C
2+2F̃piC)), as shown by the light gray re-261

gion for 8xCO2 and dark gray region for 4xCO2 (assuming that radiative forcing follows262

Byrne and Goldblatt (2014) and ∂Cλ = ∂Cλmean). FAMOUS falls in the latter region,263

and its abrupt4xCO2 simulation does appear to lose its negative feedback (Fig. S1); four264

models lie in the 8xCO2 runaway region. Climates in the gray regions do not actually265

warm infinitely, but simply warm sufficiently that the quadratic approximation breaks.266

Higher-order terms determine the temperature at which stability is regained, or if sta-267

bility is lost in the first place. Models close to these runaway regions experience a sen-268

sitivity increase at the associated forcing level: the six models with black outlines ex-269

perience an estimated increase of equilibrium warming under 8xCO2 of at least 3K, given270

each model’s forcing and ∂Cλ estimates.271

High estimated sensitivity (∆T4x/2 > 4.5K) has been found in twenty CMIP6272

models (Table S4). Of the six models with ∆T4x/2 > 4.5K that appear in our study273

(i.e., models right of the dotted line in Fig. 2), four have ∆T2x < 4.5K (i.e., are left274

of the dashed line). These models reconcile the moderate ∆T2x implied by observations,275

paleoclimate, and processed-based analysis (Sherwood et al., 2020) with the sensitivity276

increases seen in paleoclimate studies of the warm Cenozoic (Caballero & Huber, 2013;277

Pierrehumbert, 2013; Anagnostou et al., 2016; Shaffer et al., 2016; Farnsworth et al., 2019).278

To test the assumptions behind Fig. 2, we recalculate it with default values of ∂Cλ =279

0 and 0.05 Wm−2K−1 (Fig. S5a and S5b, respectively). This shifts the estimates of ∂Tλ280

in the opposite direction as ∂Cλ, but also shifts the thresholds in the same manner, so281

that qualitatively the results are unchanged. Estimating forcing using years 1-20 instead282

of 1-10 has little effect (Fig. S5c), nor does using the direct estimate of F (C) instead of283

(F̃pi+
1
2∂C F̃C)C on the left side of Eq. 8 (Fig. S5d). Fig. S5e shows how ∂Tλ evolves284

as more years are used to estimate the equilibrium warming. While more years do not285
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greatly affect the results relative to each other, using years 101-1000 instead of 21-150286

increases the magnitude of ∂Tλ (excepting FAMOUS, which appears to be in a state of287

runaway). Since feedback temperature dependence should continue to affect the slope288

of N vs. ∆T beyond year 150 (Rugenstein et al., 2020), our estimates of CMIP6 mod-289

els’ |∂Tλ| and sensitivity changes may both be biased low.290

5 Causes of sensitivity increases291

Fig. 3a compares the contribution of the three nonlinear terms to each model’s change292

in equilibrium climate sensitivity, ∆∆T2x ≡ ∆T4x/2 − ∆T2x. Using Eq. 9 to express293

equilibrium warming as a function of the quadratic approximation coefficients, ∆Teq(C; F̃pi, λpi, ∂C F̃ , ∂Cλ, ∂Tλ),294

we define:295

∆∆T2x,∂C F̃
≡ ∆Teq(2; F̃pi, λpi, ∂C F̃ , 0, 0)/2−∆Teq(1; F̃pi, λpi, ∂C F̃ , 0, 0) (13)

∆∆T2x,∂Cλ ≡ ∆Teq(2; F̃pi, λpi, 0, ∂Cλ, 0)/2−∆Teq(1; F̃pi, λpi, 0, ∂Cλ, 0) (14)

∆∆T2x,∂Tλ ≡ ∆Teq(2; F̃pi, λpi, 0, 0, ∂Tλ)/2−∆Teq(1; F̃pi, λpi, 0, 0, ∂Tλ) (15)

Feedback temperature dependence is the dominant term for the three models with the296

largest sensitivity increases, accounts for 69% of the average increase, and contributes297

the largest term to the median increase (where FAMOUS is excluded from the averages,298

as the quadratic model suggests it experiences runaway warming under 4xCO2). Feed-299

back CO2 dependence contributes a small, positive increase in sensitivity, while nonlin-300

ear forcing decreases sensitivity about as much and as often as it increases it.301

To better understand these sensitivity increases, we estimate the flux components302

of the preindustrial feedback and feedback temperature dependence (Fig. 3b-d; see Fig.303

S6 for all components and uncertainties) by substituting individual top-of-atmosphere304

fluxes for N in the above derivations (see Text S3). We consider longwave vs. shortwave305

and noncloud vs. cloud components. For longwave fluxes, noncloud vs. cloud compo-306

nents are estimated using clear-sky fluxes and cloud radiative effect. For shortwave fluxes,307

to avoid cloud masking (Soden et al., 2004) we instead use approximate partial radia-308

tive perturbation (APRP; Taylor et al., 2007) for models with sufficient data available,309

including most CMIP6 models. For all other models we use clear-sky fluxes and cloud310

radiative effect as with the longwave.311

The longwave noncloud feedback typically has positive temperature dependence312

(colored circles, Fig. 3b) due to an increasing water vapor feedback (Crucifix, 2006; Col-313

man & McAvaney, 2009; Meraner et al., 2013). While some studies found that this in-314

crease is balanced by a strengthening negative lapse rate feedback (Boer et al., 2005; Col-315

man & McAvaney, 2009; Yoshimori et al., 2009; Caballero & Huber, 2013), in recent stud-316

ies the water vapor feedback dominates (Block & Mauritsen, 2013; Jonko et al., 2013;317

Meraner et al., 2013; Rieger et al., 2017), and Meraner et al. (2013) found a positive ∂TλLWnoncloud318

for most CMIP5 models. Our findings contradict recent papers that find a constant long-319

wave clear-sky feedback (Koll & Cronin, 2018; Zhang et al., 2020), though we agree that320

the value of the preindustrial feedback is likely close to -2 Wm−2K−1.321

The shortwave noncloud feedback (colored circles, Fig. 3c) is the sum of a surface322

term (Fig. S6e) and an atmosphere term (Fig. S6f). The former represents a positive323

ice albedo feedback, which typically saturates, giving a negative temperature dependence324

(Colman & McAvaney, 2009; Block & Mauritsen, 2013; Jonko et al., 2013; Meraner et325

al., 2013; Rieger et al., 2017; Duan et al., 2019). The noncloud atmosphere term repre-326

sents a positive water vapor feedback, which typically has a positive temperature depen-327

dence. Their sum has a positive preindustrial feedback with negligible temperature de-328

pendence (Fig. 3c). The SW noncloud outliers are models for which clear-sky fluxes were329

used instead of APRP (circles with black dots, Fig. 3c). Comparison of clear-sky vs. APRP330

estimates of the SW noncloud component suggests that cloud masking biases generally331

increases the uncertainty of the SW noncould component (Fig. S6c vs. S6g).332
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While the cloud feedback has multi-model mean values close to zero, it has more333

intermodel spread than the other two components (Fig. 3d) and has positive temper-334

ature dependence for most models. For CESM2, this occurs because its negative mixed-335

phase cloud feedback saturates (Tan et al., 2016; Frey & Kay, 2018; Bjordal et al., 2020).336

The spread in cloud feedback explains the range of nonlinearity in Fig. 3a. The aver-337

age longwave noncloud feedback on its own (gray circle in Fig. 3b) would experience too338

little warming for its temperature dependence to matter (i.e., ∆∆T2x = ∆T4x/2−∆T2x ≈339

0.17K assuming forcing from Byrne and Goldblatt (2014) and average ∂Cλ). Adding the340

shortwave noncloud feedback does not change the temperature dependence, but makes341

the preindustrial feedback more positive (gray triangle in Fig. 3b), causing more warm-342

ing, increasing the nonlinearity (i.e., ∆∆T2x ≈ 0.33K). Adding the average cloud feed-343

back causes little change (gray square in Fig. 3b). For individual models, cloud feedbacks344

can move the climate into nonlinear regions, either by increasing the preindustrial feed-345

back (CanESM5), or by increasing the feedback temperature dependence (CESM2 and346

FAMOUS). On the other hand, GISS-E2-2-G’s cloud feedback temperature dependence347

is anomalously negative, and therefore it is the only model for which sensitivity decreases348

with CO2 concentration.349

We briefly discuss the flux components of the other two nonlinear terms (Fig. S7).350

The LW clear-sky term of the nonlinear forcing is negative for eleven of fourteen mod-351

els (Fig. S7a). Since the direct LW clear-sky forcing depends superlinearly on CO2 dou-352

bling (Byrne & Goldblatt, 2014), this negative term is due either to oversimplifications353

in the model’s radiative scheme, or to adjustments. The other components vary in sign,354

with the largest source of intermodel spread coming from the cloud components. Since355

APRP accounts for cloud masking, the SW cloud spread must also be due to forcing ad-356

justments. Adjustments thus play a first-order role in determining nonlinear forcing. The357

LW clear-sky component of feedback CO2 dependence is positive for all five models (Fig.358

S7b), likely due to a blocked Planck feedback. SW cloud contributes the largest source359

of intermodel spread, so that forcing adjustments also play a first-order role in this non-360

linearity.361

6 Conclusions362

Equilibrium climate sensitivity increases with CO2 concentration for thirteen of four-363

teen models, contradicting the linear approximation of global energy balance, which as-364

sumes a constant forcing per CO2 doubling and a constant radiative feedback. On av-365

erage, climate models experience at least a degree of additional equilibrium warming un-366

der 4xCO2 due to this sensitivity increase. Using a quadratic approximation allows us367

to capture the sensitivity increase using three second-order terms: nonlinear forcing, feed-368

back CO2 dependence, and feedback temperature dependence.369

Feedback temperature dependence explains 69% of the sensitivity increase, and ex-370

plains more of the median increase than any other term. Most importantly, it explains371

the particularly large increase seen in a handful of models, as positive feedback temper-372

ature dependence can cause runaway increases in sensitivity. Four models are predicted373

to experience runaway warming under CO2 concentrations eight times larger than the374

preindustrial, and six models are projected to experience at least three additional de-375

grees of equilibrium warming under this concentration. Feedback temperature depen-376

dence plays a key role in determining the risk of extreme warming in the coming cen-377

turies.378

Ten of fourteen models have positive feedback temperature dependence, primar-379

ily due to the longwave clear-sky feedback. Models with large sensitivity increases have380

cloud feedbacks with either anomalously positive temperature dependence or anomalously381

positive preindustrial values. Feedback CO2 dependence plays a smaller role, but results382

from five models suggests that it is likely positive, increasing sensitivity, primarily due383

–9–
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Figure 1. a. Equilibrium warming per CO2 doubling (∆Teq(C)/C) for abrupt-2Cx simula-

tions estimated using years 21 to 150 (colored bars and gray horizontal lines) and years 101 to

n (where n is at least 750 years and given in Table S2; black horizontal lines). Vertical lines in

panels a and b and all lines in panel c give the 2.5th to 97.5th percentile range of uncertainty (see

Text S1). FAMOUS abrupt4xCO2 is an outlier, with ∆T4x/2 = 7.6K when 1000 years are used.

b. Radiative forcing per CO2 doubling (F (C)/C) for abrupt-2Cx simulations estimated using

years 1 to 10 (colored bars and gray horizontal lines. The dashed black line shows the Myhre et

al. (1998) assumption of linear F (C), while the gray bars give the analytic formula from Byrne

and Goldblatt (2014).

c. Colored squares (octagons) show the factor by which equilibrium warming and forcing for

an abrupt4xCO2 (abrupt8xCO2) simulation exceeds the linear extrapolation of its model’s

abrupt2xCO2 values. Colors are the same as panels a and b. FAMOUS and CESM2 4x have

nonlinear warming factors greater than 1.8.

to its longwave clear-sky component. The forcing per CO2 doubling decreases with CO2384

concentration for as many models as it increases. Nonlinear forcing contributes less to385

the sensitivity increase than either other term, although it can be important for individ-386

ual models. Forcing adjustments play a first-order role in determining the nonlinear forc-387

ing.388

The substantial uncertainties in some of our findings could be greatly decreased389

with additional simulations. Longer simulations give better estimates of equilibrium warm-390

ing (Rugenstein et al., 2020; Dai et al., 2020; Dunne et al., 2020); fixed-SST experiments391

give better radiative forcing estimates (Forster et al., 2016; Pincus et al., 2016); and sim-392

ulations at multiple CO2 levels allow for an assessment of nonlinearities (Good et al.,393

2016). Simulations that behave in surprising or anomalous ways may be exhibiting non-394

linear dynamics, and should not be neglected (Valdes, 2011). Even if a loss of stability395

causes models to warm outside the range for which they were calibrated, the increase396

in sensitivity may still be physical. Exploring and documenting the nonlinear frontiers397

of warming in climate models is essential to assessing the risk of extreme warming for398

the real world.399
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Figure 2. Preindustrial feedback vs. feedback temperature dependence (colored dots; colored

ellipsoids give the 75th percentile of uncertainty). Values in the dark (light) gray region imply

runaway warming under 4xCO2 (8xCO2) and values above the dashed (dotted) black line have a

sensitivity estimated from abrupt2xCO2 (abrupt4xCO2) above 4.5K. All thresholds are calculated

assuming forcing from Byrne and Goldblatt (2014) and model-mean feedback CO2 dependence.

Colored dots with black outlines experience an additional 3K of equilibrium warming under

8xCO2 given our estimate of that model’s forcing and ∂Cλ.
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Figure 3. a. Contributions to the change in sensitivity from 2xCO2 to 4xCO2 (black bars)

from nonlinear forcing (∂C F̃ , horizontally-hatched bars), feedback CO2 dependence (∂Cλ,

crossed-hatched bars), and feedback temperature dependence (∂Tλ, diagonally-hatched bars).

Dotted bars represent cross-terms, higher-order nonlinearities, and errors in our estimates. FA-

MOUS is not included in the mean and median as the quadratic model suggests it is in a state of

runaway under 4xCO2.

b., c., and d. Colored circles give estimates of the longwave noncloud, shortwave noncloud, and

net cloud components respectively of the preindustrial feedback and feedback temperature de-

pendence. Models with dotted circles use clear-sky fluxes instead of approximate partial radiative

perturbation to partition the shortwave flux into noncloud and cloud components. Colors are

given by the model names in panel a. Gray circles give the multi-model mean and gray ellipsoids

give the estimated 75th percentile of uncertainty. The shaded regions in panel b are as in Fig. 2.

Triangles in panel b show the result of adding the shortwave noncloud component to longwave

noncloud components. Squares show the result for additionally adding the net cloud component.
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