

Climate sensitivity increases under higher CO₂ levels due to feedback temperature dependence

Article

Accepted Version

Bloch-Johnson, J. ORCID: https://orcid.org/0000-0002-8465-5383, Rugenstein, M., Stolpe, M. B., Rohrschneider, T., Zheng, Y. and Gregory, J. M. ORCID: https://orcid.org/0000-0003-1296-8644 (2021) Climate sensitivity increases under higher CO₂ levels due to feedback temperature dependence. Geophysical Research Letters, 48 (4). e2020GL089074. ISSN 0094-8276 doi: 10.1029/2020GL089074 Available at https://centaur.reading.ac.uk/97773/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1029/2020GL089074

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading Reading's research outputs online

Climate sensitivity increases under higher CO_2 levels due to feedback temperature dependence

Jonah Bloch-Johnson¹, Maria Rugenstein^{2,3}, Martin B. Stolpe, Tim Rohrschneider², Yiyu Zheng², and Jonathan Gregory^{1,4}

¹NCAS, University of Reading, Reading, UK ²Max Planck Institute for Meteorology, Hamburg, Germany ³Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA ⁴Met Office Hadley Centre, Exeter, UK

9 Key Points:

1

2

3

10	•	• Equilibrium warming per CO_2 doubling increases with CO_2 level for 13 of 14 cli-
11		mate models.

- Positive feedback temperature dependence explains most of the sensitivity increase.
- Nonlinear feedbacks increase the long-term risk of extreme warming under high
 CO₂ emissions.

 $Corresponding \ author: \ Jonah \ Bloch-Johnson, \ {\tt j.bloch-johnson@reading.ac.uk}$

15 Abstract

Equilibrium climate sensitivity - the equilibrium warming per CO_2 doubling - increases

with CO_2 concentration for thirteen of fourteen coupled general circulation models for

0.5 to 8 times the preindustrial concentration. In particular, the abrupt4xCO₂ equilibrium warming is more than twice the 2xCO₂ warming. We identify three potential causes:

¹⁹ rium warming is more than twice the 2xCO₂ warming. We identify three potential causes: ²⁰ nonlogarithmic forcing, feedback CO₂ dependence, and feedback temperature dependence.

Feedback temperature dependence explains at least half of the sensitivity increase, while

feedback CO_2 dependence explains a smaller share, and nonlogarithmic forcing decreases

sensitivity in as many models as it increases it. Feedback temperature dependence is pos-

²⁴ itive for ten out of fourteen models, primarily due to the longwave clear-sky feedback,

²⁵ while cloud feedbacks drive particularly large sensitivity increases. Feedback tempera-

ture dependence increases the risk of extreme or runaway warming, and is estimated to

cause six models to warm at least an additional 3K under 8xCO₂.

²⁸ Plain Language Summary

Increasing CO_2 reduces the rate at which energy leaves Earth, causing a net en-29 ergy gain at its surface. The resulting warming increases the rate that energy leaves the 30 planet. The planet stops warming once it regains balance. Studies usually assume that 31 doubling atmospheric CO_2 always produces the same eventual global temperature rise 32 (called the "equilibrium climate sensitivity"), whatever the starting CO_2 level. We show, 33 on the contrary, that in nearly all the computer climate models we have examined, the 34 extra warming for each doubling goes up as the CO_2 level increases. In most models, the 35 warmer the climate becomes, the more it has to warm in order to balance a further CO_2 36 doubling, because warming becomes less effective at rebalancing the flow of energy. This 37 effect increases projections of warming, especially for scenarios of greatest CO_2 increase. 38

³⁹ 1 Introduction

The equilibrium climate sensitivity (ΔT_{2x}) is the equilibrium global-mean surface 40 warming per CO₂ doubling (Hansen et al., 1985; Stocker et al., 2013). ΔT_{2x} is often as-41 sumed to be constant (Stocker et al., 2013), allowing the equilibrium warming from dif-42 ferent CO_2 increases to be characterized by a single metric, and for time series with var-43 ious CO₂ changes to be used to estimate ΔT_{2x} . A constant ΔT_{2x} rests on two assump-44 tions: each CO_2 doubling induces the same radiative forcing, and each unit of forcing 45 induces the same equilibrium warming (i.e., that the net radiative feedback is constant). 46 However, for low or high enough CO_2 concentrations, the net radiative feedback becomes 47 positive, causing runaway glaciation (Hoffman et al., 1998) or a runaway greenhouse (Komabayasi, 48 1967; Ingersoll, 1969) respectively. Given these limits, will ΔT_{2x} remain constant across 49 the range of CO_2 levels expected under future emissions scenarios? 50

Paleoclimatologists have investigated this question (Heydt et al., 2016; Farnsworth 51 et al., 2019). Studies of the early Cenozoic find an increase in climate sensitivity with 52 CO₂ concentration (Caballero & Huber, 2013; Anagnostou et al., 2016; Shaffer et al., 2016; 53 Farnsworth et al., 2019; Zhu et al., 2019; Anagnostou et al., 2020), while studies of the 54 Pleistocene disagree about whether sensitivity increases (three of four models in Cru-55 cifix, 2006; Yoshimori et al., 2009; Friedrich et al., 2016; Köhler et al., 2017; Snyder, 2019), 56 stays the same (Martínez-Botí et al., 2015), or decreases (one of four models in Cruci-57 fix, 2006) with CO_2 . However, different continental configurations may affect how sen-58 sitivity changes with CO₂ (Caballero & Huber, 2013; Wolf et al., 2018; Farnsworth et 59 al., 2019). 60

While most studies of general circulation models under modern conditions have found that sensitivity increases with CO₂ (Hansen et al., 2005; Bitz et al., 2012; Block & Mauritsen, 2013; Caballero & Huber, 2013; Jonko et al., 2013; Meraner et al., 2013; Gregory et al., 2015; Rieger et al., 2017; Duan et al., 2019; Rohrschneider et al., 2019), some have found that it decreases (Stouffer & Manabe, 2003; Kutzbach et al., 2013) or remains roughly constant (Colman & McAvaney, 2009). However, these thirteen studies only evaluate ΔT_{2x} for models from five modelling centers. In most cases they use mixed-layer oceans, neglecting changes in ocean dynamics that can affect sensitivity (Kutzbach et al., 2013; Farnsworth et al., 2019).

Recently, two datasets have become available with coupled atmosphere-ocean gen-70 eral circulation model (AOGCM) simulations at multiple constant CO₂ levels initialized 71 under preindustrial conditions (abrupt $nxCO_2$ simulations, where $nxCO_2$ refers to the 72 increase relative to preindustrial CO_2 concentration): ten Coupled Model Intercompar-73 ison Project Phase 6 (CMIP6) models with $abrupt0.5xCO_2$ and $abrupt2xCO_2$ simula-74 tions run as part of NonLinMIP (Good et al., 2016) in addition to the standard $abrupt4xCO_2$ 75 simulations (Eyring et al., 2016), and five models in the LongRunMIP archive (a collec-76 tion of 1000+ year simulations of coupled AOGCMs; Rugenstein et al., 2019) with abrupt2xCO₂, 77 $abrupt4xCO_2$, and $abrupt8xCO_2$ simulations. One model participated in both projects. 78

In this paper, we show that equilibrium climate sensitivity generally increases with CO_2 level (Section 2); that changes in radiative forcing are not large enough to explain this increase for most models (Section 3); and that the increase is instead caused by positive feedback temperature dependence, with some contribution from feedback CO_2 dependence (Section 4). We compare these three nonlinear terms and their causes (Section 5) and then summarize our findings (Section 6).

⁸⁵ 2 Equilibrium warming

Let T be the globally-averaged surface temperature, and $\Delta T \equiv T - T_{pi}$ be the warming relative to the preindustrial period. We define $\Delta T_{eq}(C)$ as the equilibrium warming caused by changing the CO₂ concentration from its preindustrial value ($pCO_{2,pi} \approx$ 280ppm) to a new value (pCO_2), where C is the number of CO₂ doublings relative to this preindustrial period,

$$C(pCO_2) \equiv \log_2\left(\frac{pCO_2}{pCO_{2,pi}}\right) \tag{1}$$

⁹¹ Under preindustrial conditions, $C_{pi} = 0$; in an abrupt2xCO₂ simulation, C = 1; and ⁹² so forth. Table S1 is a glossary of all symbols used in this paper.

One condition for equilibrium is that the net top-of-atmosphere radiative flux N(downwards positive) is zero, on average. If we assume that N depends solely on C and T, then we can express a change in N in an abrupt $nxCO_2$ simulation as an initial change due to C and a subsequent change due to T:

$$N(C,T) - N(C_{pi},T_{pi}) = (N(C,T_{pi}) - N(C_{pi},T_{pi})) + (N(C,T) - N(C,T_{pi}))$$
(2)

$$= (N(C, T_{pi}) - N(C_{pi}, T_{pi})) + \int_{T_{pi}}^{T_{pi} + \Delta T} \frac{\partial N(C, T)}{\partial T} dT \quad (3)$$

$$= F(C_{pi}, T_{pi}, C) + \int_{T_{pi}}^{T_{pi} + \Delta T} \lambda(C, T) dT$$

$$\tag{4}$$

⁹⁷ F is the radiative forcing, the change in N relative to a given initial condition (C_i, T_i)

caused by C doublings of CO₂ while holding surface temperature fixed $(F(C_i, T_i, C) \equiv N(C_i + C, T_i) - N(C_i, T_i))$, and λ is the *radiative feedback*, the dependence of N on T

 $(\lambda(C,T) \equiv \partial N(C,T)/\partial T)$, where the sign convention implies the feedback is typically

negative. We can find $\Delta T_{eq}(C)$ by setting N(C,T) = 0:

$$F(C_{pi}, T_{pi}, C) = -\int_{T_{pi}}^{T_{pi} + \Delta T_{eq}(C)} \lambda(C, T) dT$$
(5)

where we assume $N(C_{pi}, T_{pi}) = 0$, since the preindustrial climate was roughly in equilibrium.

Under preindustrial concentrations, the spectral line shape of CO_2 absorption bands 104 creates a logarithmic dependence of N on changes in pCO_2 , so that the forcing per CO_2 105 doubling $(F \equiv \partial N/\partial C)$ is often assumed to be constant (Myhre et al., 1998). Our def-106 inition of radiative forcing also includes adjustments of the atmosphere, land, and ocean 107 to CO₂ changes that occur independently of subsequent changes in surface temperature 108 (e.g., Sherwood et al., 2014; Kamae et al., 2015). This "effective radiative forcing" is also 109 often assumed to be constant per CO_2 doubling (Forster et al., 2016), as is the radia-110 tive feedback (Hansen et al., 1985; Gregory et al., 2004). Substituting these constant terms 111 into Eq. 5, we can solve for $\Delta T_{eq}(C)$: 112

$$\Delta T_{eq}(C) = -\frac{\tilde{F}}{\lambda}C\tag{6}$$

Assuming a constant \tilde{F} and λ is equivalent to approximating N(T, C) with the linear Taylor expansion of N around preindustrial values of C_{pi} and T_{pi} (i.e., $N(C,T) \approx \tilde{F}C + \lambda \Delta T$, where $C = \Delta C$ because $C_{pi} = 0$). The linear approximation of Eq. 6 is ubiquituous in climate science (e.g., Stocker et al., 2013; Knutti et al., 2017).

The linear approximation implies that the equilibrium climate sensitivity (ΔT_{2x}) , 117 the equilibrium warming per CO₂ doubling, is simply $-\dot{F}/\lambda$, which, being a ratio of two 118 constants, is itself a constant. It should therefore not matter how many CO_2 doublings 119 are used to estimate it, since $\Delta T_{2x} = \Delta T_{eq}(C_1)/C_1 = \Delta T_{eq}(C_2)/C_2$. Fig. 1a shows 120 instead that our estimates of $\Delta T_{eq}(C)/C$ increase with CO₂ concentration for thirteen 121 of fourteen models. Colored bars show estimates made by extrapolating regressions of 122 years 21 to 150 of N against ΔT to equilibrium (N = 0) for $abrupt 2^{C} x CO_{2}$ simula-123 tions (Gregory et al., 2004, see also solid gray lines in Fig. S1). In these estimates, N124 and ΔT are anomalies: for LongRunMIP, we subtract the model's control simulation's 125 mean value; for CMIP6, we subtract the linear fit of the control simulation after the branch 126 point for the $abruptnxCO_2$ simulations. We use only one ensemble member for each sim-127 ulation. 128

Estimates of ΔT_{eq} typically increase with simulation length (Rugenstein et al., 2020; 129 Dai et al., 2020; Dunne et al., 2020). While most CMIP6 simulations are only 150 years 130 long, some are longer, and the LongRunMIP models are all at least 1000 years long. Black 131 horizontal lines in Fig. 1a show estimates using years 101 to 750+ (see Table S2 for ex-132 act number of years). Here and in the following we use bootstrapping to estimate the 133 2.5^{th} to 97.5^{th} percentile range of uncertainty (gray and black vertical lines in Fig. 1; 134 see Text S1). Black bars show multi-model mean values for the two experiments for which 135 we have simulations of all models. 136

The sensitivity definition in Fig. 1a (i.e., $\Delta T_{2x}(C) \equiv \Delta T_{eq}(C)/C$) is often used 137 to estimate ΔT_{2x} from abrupt4xCO₂ simulations, which our results suggest would lead 138 to an average overestimate of at least 0.5K, even neglecting the outlier of FAMOUS. Equiv-139 alently, the nonlinearity of N leads to an average increase in equilibrium warming of at 140 least 1K under $4xCO_2$. Sherwood et al. (2020) suggested that using only the first 150 141 years to estimate ΔT_{eq} of an abrupt4xCO₂ simulation compensates for this overestimate. 142 For our five models with 1000+ year abrupt $2xCO_2$ simulations, this compensation does 143 not hold individually (CNRM-CM6-1's ΔT_{2x} would be 0.4K too small, FAMOUS's 1.8K 144 too large), or on average (an 8% overestimate). If we define sensitivity instead as the equi-145 librium warming caused by successive CO₂ doublings $(\Delta T_{2x}(C) \equiv \Delta T_{eq}(C) - \Delta T_{eq}(C))$ 146 1); Jonko et al., 2013), then changes in sensitivity are larger, with increases larger than 147 1K for seven models (Fig. S2). Alternatively, if we define sensitivity as the warming from 148 doubling CO₂ relative to preindustrial conditions only $(\Delta T_{2x} \equiv \Delta T_{eq}(1); \text{ e.g., Knutti})$ 149 et al., 2017; Ceppi & Gregory, 2017), our results suggest that this metric may have a lim-150 ited applicability. 151

The above shows that the equilibrium climate sensitivity is inconstant, and thus the linear approximation is inaccurate. To understand the increase in sensitivity, we take the quadratic Taylor expansion of N around (C_{pi}, T_{pi}) :

$$N(C,T) \approx \frac{\partial N}{\partial C}\Big|_{\substack{C=C_{pi}\\T=T_{pi}}} C + \frac{\partial N}{\partial T}\Big|_{\substack{C=C_{pi}\\T=T_{pi}}} \Delta T + \frac{1}{2} \left(\frac{\partial^2 N}{\partial C^2} C^2 + \frac{\partial^2 N}{\partial T^2} (\Delta T)^2 + 2\frac{\partial^2 N}{\partial C \partial T} C \Delta T\right)$$
(7)

¹⁵⁵ Substituting these new terms into Eq. 5, we have:

$$(\tilde{F}_{pi} + \frac{1}{2}\partial_C \tilde{F}C)C = -(\lambda_{pi} + \partial_C \lambda C + \frac{1}{2}\partial_T \lambda \Delta T_{eq})\Delta T_{eq}$$
(8)

where $\tilde{F}_{pi} \equiv \frac{\partial N}{\partial C}|_{C_{pi},T_{pi}}$ and $\lambda_{pi} \equiv \frac{\partial N}{\partial T}|_{C_{pi},T_{pi}}$ are the preindustrial forcing per CO₂ doubling and preindustrial feedback respectively, $\partial_C \tilde{F} \equiv \frac{\partial^2 N}{\partial C^2}$ is the CO₂ dependence of the forcing per doubling (which we call the nonlinear forcing), $\partial_C \lambda \equiv \frac{\partial^2 N}{\partial C \partial T}$ is the feedback CO_2 dependence, and $\partial_T \lambda \equiv \frac{\partial^2 N}{\partial T^2}$ is the feedback temperature dependence.

The three nonlinear terms $(\partial_C \tilde{F}, \partial_C \lambda, \text{ and } \partial_T \lambda)$ can all cause the equilibrium climate sensitivity to change with CO₂ concentration. Solving for $\Delta T_{eq}(C)$, we have

$$\Delta T_{eq}(C) = \frac{-(\lambda_{pi} + \partial_C \lambda C) - \sqrt{(\partial_C \lambda^2 - \partial_T \lambda \partial_C \tilde{F})C^2 + 2(\lambda_{pi}\partial_C \lambda - \tilde{F}_{pi}\partial_T \lambda)C + \lambda_{pi}^2}}{\partial_T \lambda} \quad (9)$$

We ignore the other quadratic solution, which gives an unstable equilibrium for C. In the following sections, we consider the impact of these terms on ΔT_{eq} .

¹⁶⁴ **3** Radiative forcing

¹⁶⁵ Direct forcing depends linearly on C for small C (Myhre et al., 1998, who estimate ¹⁶⁶ $F(C) = 3.71C \text{ Wm}^{-2}$; dashed black line, Fig. 1b). At higher CO₂ levels, new absorp-¹⁶⁷ tion bands make this dependence superlinear (Byrne & Goldblatt, 2014; Etminan et al., ¹⁶⁸ 2016). Using the left side of Eq. 8, we have

$$F(C_{pi}, T_{pi}, C) = \tilde{F}_{pi}C + \frac{1}{2}\partial_C \tilde{F}C^2$$
(10)

Byrne and Goldblatt (2014) used line-by-line radiative calculations and a simple stratospheric adjustment model to estimate $\tilde{F}_{pi} = 3.69 \text{ Wm}^{-2}$ and $\partial_C \tilde{F} = 0.375 \text{ Wm}^{-2}$ for 0.7xCO₂ to 36xCO₂, implying an increase in forcing per doubling with CO₂ concentration (gray bars in Fig. 1b).

We estimate forcing per doubling for each simulation (colored bars, Fig. 1b) by regressing the first ten years of N vs. ΔT to $\Delta T = 0$ (dashed black lines in Fig. S1; Gregory et al., 2004). This estimate includes adjustments as well as direct effects. Forcing per doubling decreases with C about as often as it increases, so that nonlinear forcing cannot explain the general increase in sensitivity. For CO₂ levels for which we have simulations for all models (2xCO₂ and 4xCO₂), the multi-model mean forcing per doubling slightly decreases with C, although this decrease is not statistically significant.

Sensitivity increases with CO_2 concentration by a greater factor than forcing per 180 doubling for most models (Fig. 1c). While all simulations but one have superlinear warm-181 ing (i.e., are right of the vertical dashed line), nine simulations have sublinear forcing (i.e., 182 are below the horizontal dashed line). Thirteen out of seventeen simulations have a smaller 183 forcing increase than a warming increase (i.e. fall below the 1-to-1 line), as do the multi-184 model means. Moreover, there is little correlation between the nonlinear warming and 185 forcing factors ($R^2 = 0.05$), even ignoring models with anomalous sensitivity increases 186 (FAMOUS and CESM2; $R^2 = 0.14$). Forcing does not play a large role in the sensitiv-187 ity increase for most models, although it may for individual models (e.g., CESM1.0.4). 188

Using twenty years instead of ten to estimate F reduces uncertainty (Fig. S3a) but 189 biases estimates of F low, because of an increase in the slope of N vs. ΔT over time (Fig. 190 S3b), and has little effect on our findings in Fig. 1c (see Fig. S3c). Sensitivity also in-191 creases by a greater factor than would be implied by Byrne and Goldblatt (2014) (Fig. 192 S3d). Our findings are also the same if we first estimate \bar{F}_{pi} and $\partial_C \bar{F}$ for each model by 193 fitting the quadratic function in Eq. 10 (Figs. S4a and S4b): $\partial_C \tilde{F}$ is positive for only half 194 of the models, with multi-model mean values of $\tilde{F}_{pi} = 4.01 \text{ Wm}^{-2}$ and $\partial_C \tilde{F} = 0.017$ 195 Wm^{-2} . 196

¹⁹⁷ 4 Radiative feedback

If sensitivity is not proportional to forcing, then Eq. 5 implies the feedback is in-198 constant. Inconstant feedbacks are commonly associated with the "pattern effect," in 199 which the slope of N vs. ΔT under constant forcing varies. This slope is the weighted 200 average of the spatial pattern of feedbacks, where the weights are given by the spatial 201 pattern of surface warming, which evolves primarily due to the warming delay in regions 202 of deep ocean heat uptake (e.g., Senior & Mitchell, 2000; Armour et al., 2013; Andrews 203 et al., 2015; Rose et al., 2014; Rugenstein et al., 2016; Zhou et al., 2017; Dong et al., 2019; 204 Bloch-Johnson et al., 2020). 205

The framework in Section 2 does not account for spatially-varying feedbacks, which 206 make N(C,T) an ill-defined function, in that it can have multiple values: the same globally-207 averaged T with warmer temperatures in regions with strong negative feedbacks implies 208 a lower N than if the surface temperature was spatially uniform. It is more accurate to 209 define $N(C, \vec{T})$, where $\Delta \vec{T}$ is the spatial temperature pattern (Haugstad et al., 2017). 210 This means that the equilibrium response cannot generally be estimated from the slope 211 of N vs. ΔT , which may evolve differently at different forcing levels simply because the 212 patterns of warming associated with each simulation are different. For example, it is pos-213 sible for the slope of N vs. ΔT to change due to a pattern effect, but for the overall re-214 sponse to forcing to be linear, so that the equilibrium climate sensitivity is constant (Rohrschneider 215 et al., 2019). 216

To create a tractable framework, we assume that every globally-averaged surface 217 temperature T is associated with a unique equilibrium pattern, $\vec{T}_{eq}(T)$, which is the pattern when T is in equilibrium (stable or unstable) for some C. We then substitute N with 218 219 $N_{eq}(C,T) \equiv N(C,\vec{T}_{eq}(T))$ in our above definitions of λ and F. This substitution does 220 not affect our forcing definition, as forcing is typically defined with respect to an equi-221 librated state, but ensures that any change in the feedback implies a change in the pro-222 portionality of F(C) to $\Delta T_{eq}(C)$, and vice versa, as expected from Eq. 5. It also implies 223 that the only way in which the pattern effect affects the equilibrium climate sensitivity 224 is through changes in the equilibrium pattern of warming. 225

From Eq. 8, we have:

226

$$\lambda(C,T) = \lambda_{pi} + \partial_C \lambda C + \partial_T \lambda \Delta T \tag{11}$$

where $\lambda_{pi} \equiv \partial N/\partial T|_{pi}$ is the preindustrial feedback, $\partial_C \lambda \equiv \partial \lambda/\partial C = \partial^2 N/\partial C \partial T$ represents the feedback CO₂ dependence, and $\partial_T \lambda \equiv \partial \lambda/\partial T = \partial^2 N/\partial T^2$ represents the feedback temperature dependence (Roe & Armour, 2011; Bloch-Johnson et al., 2015).

Feedback CO₂ dependence quantifies the effect of additional atmospheric CO₂ on radiative feedbacks, such as damping the Planck feedback by making more frequencies optically thick (Seeley & Jeevanjee, 2020). It can also include effects due to forcing adjustments. The pattern effect prevents us from comparing the slope of N vs. ΔT across forcing levels to estimate $\partial_C \lambda$. Instead, we use additional experiments for five coupled AOGCMs, CESM1.2.2, CESM2*, CNRM-CM6-1*, HadGEM2, and HadGEM3-GC31-LL* (starred models are from our main analysis; see Table S3 and Text S2), to estimate $\partial_C \lambda$. Since $\partial \lambda / \partial C \equiv \partial^2 N / \partial C \partial T = \partial \tilde{F} / \partial T$, feedback CO₂ dependence is also the dependence of the forcing per doubling on the reference temperature. We use pairs of experiments initialized at a colder temperature (T_{cold}) and a warmer temperature (T_{warm}) and the same initial CO₂ concentration C_i to estimate forcing from the same amount of CO₂ doubling C:

$$\partial_C \lambda = \partial_T \tilde{F} \approx \frac{1}{\Delta T} \frac{\Delta F(C_i, T_i, C)}{C} = \frac{F_{warm} - F_{cold}}{(T_{warm} - T_{cold})C}$$
(12)

where $F_{warm} \equiv F(C_i, T_{warm}, C)$ and $F_{cold} \equiv F(C_i, T_{cold}, C)$.

 $\begin{array}{ll} F_{cold} \mbox{ and } F_{warm} \mbox{ can be estimated using pairs of abrupt simulations (i.e., an abrupt4xCO_2 simulation to estimate <math>F_{cold}$, and a simulation where CO_2 is abruptly lowered from 4xCO_2 to preindustrial values to estimate $-F_{warm}$) or from two pairs of fixed-SST experiments (Hansen et al., 2005) at two different temperatures and CO_2 concentrations. $\partial_C \lambda$ has a multi-model mean value of $\partial_C \lambda_{mean} = 0.0256 \ \mathrm{Wm}^{-2}\mathrm{K}^{-1}$ and a range of 0.0057 to 0.049 $\ \mathrm{Wm}^{-2}\mathrm{K}^{-1}$, suggesting that feedback CO_2 dependence is generally positive, increasing sensitivity with CO_2 concentration.

To estimate each model's feedback temperature dependence, we perform a least squares 250 fit of Eq. 8 using estimates of \tilde{F}_{pi} and $\partial_C \tilde{F}$ from the previous section, as well as model-251 specific estimates of $\partial_C \lambda$ when available, or otherwise $\partial_C \lambda_{mean}$. We perform this fit us-252 ing pairs of C and ΔT_{eq} for each simulation, including the pair C = 0 and $\Delta T_{eq} = 0$ 253 for the control simulation, giving estimates of λ_{pi} and $\partial_T \lambda$ (colored dots, Fig. 2). We 254 find that ten of the fourteen models have positive feedback temperature dependence, with 255 a multi-model mean value of $\partial_T \lambda_{mean} = 0.029 \text{ Wm}^{-2} \text{K}^{-2}$ and a range of -0.14 to 0.109 256 $Wm^{-2}K^{-2}$. 257

With positive feedback temperature dependence, warming increases the feedback, 258 leading to further warming, and so on. Under sufficient forcing, runaway warming oc-259 curs (Zaliapin & Ghil, 2010; Bloch-Johnson et al., 2015), specifically when Eq. 9 has no 260 real solution $(\partial_T \lambda > (\lambda_{pi} + \partial_C \lambda C)^2 / (\partial_C \tilde{F} C^2 + 2\tilde{F}_{pi} C))$, as shown by the light gray re-261 gion for $8xCO_2$ and dark gray region for $4xCO_2$ (assuming that radiative forcing follows 262 Byrne and Goldblatt (2014) and $\partial_C \lambda = \partial_C \lambda_{mean}$). FAMOUS falls in the latter region, 263 and its $abrupt4xCO_2$ simulation does appear to lose its negative feedback (Fig. S1); four 264 models lie in the $8xCO_2$ runaway region. Climates in the gray regions do not actually 265 warm infinitely, but simply warm sufficiently that the quadratic approximation breaks. 266 Higher-order terms determine the temperature at which stability is regained, or if stability is lost in the first place. Models close to these runaway regions experience a sen-268 sitivity increase at the associated forcing level: the six models with black outlines ex-269 perience an estimated increase of equilibrium warming under $8xCO_2$ of at least 3K, given 270 each model's forcing and $\partial_C \lambda$ estimates. 271

High estimated sensitivity ($\Delta T_{4x}/2 > 4.5K$) has been found in twenty CMIP6 models (Table S4). Of the six models with $\Delta T_{4x}/2 > 4.5K$ that appear in our study (i.e., models right of the dotted line in Fig. 2), four have $\Delta T_{2x} < 4.5K$ (i.e., are left of the dashed line). These models reconcile the moderate ΔT_{2x} implied by observations, paleoclimate, and processed-based analysis (Sherwood et al., 2020) with the sensitivity increases seen in paleoclimate studies of the warm Cenozoic (Caballero & Huber, 2013; Pierrehumbert, 2013; Anagnostou et al., 2016; Shaffer et al., 2016; Farnsworth et al., 2019).

To test the assumptions behind Fig. 2, we recalculate it with default values of $\partial_C \lambda =$ 0 and 0.05 Wm⁻²K⁻¹ (Fig. S5a and S5b, respectively). This shifts the estimates of $\partial_T \lambda$ in the opposite direction as $\partial_C \lambda$, but also shifts the thresholds in the same manner, so that qualitatively the results are unchanged. Estimating forcing using years 1-20 instead of 1-10 has little effect (Fig. S5c), nor does using the direct estimate of F(C) instead of ($\tilde{F}_{pi} + \frac{1}{2} \partial_C \tilde{F} C)C$ on the left side of Eq. 8 (Fig. S5d). Fig. S5e shows how $\partial_T \lambda$ evolves as more years are used to estimate the equilibrium warming. While more years do not greatly affect the results relative to each other, using years 101-1000 instead of 21-150 increases the magnitude of $\partial_T \lambda$ (excepting FAMOUS, which appears to be in a state of runaway). Since feedback temperature dependence should continue to affect the slope of N vs. ΔT beyond year 150 (Rugenstein et al., 2020), our estimates of CMIP6 models' $|\partial_T \lambda|$ and sensitivity changes may both be biased low.

²⁹¹ 5 Causes of sensitivity increases

Fig. 3a compares the contribution of the three nonlinear terms to each model's change in equilibrium climate sensitivity, $\Delta \Delta T_{2x} \equiv \Delta T_{4x}/2 - \Delta T_{2x}$. Using Eq. 9 to express equilibrium warming as a function of the quadratic approximation coefficients, $\Delta T_{eq}(C; \tilde{F}_{pi}, \lambda_{pi}, \partial_C \tilde{F}, \partial_C \lambda, \partial_T \lambda)$, we define:

$$\Delta \Delta T_{2x,\partial_C \tilde{F}} \equiv \Delta T_{eq}(2; \tilde{F}_{pi}, \lambda_{pi}, \partial_C \tilde{F}, 0, 0)/2 - \Delta T_{eq}(1; \tilde{F}_{pi}, \lambda_{pi}, \partial_C \tilde{F}, 0, 0)$$
(13)

$$\Delta \Delta T_{2x,\partial_C \lambda} \equiv \Delta T_{eq}(2; \tilde{F}_{pi}, \lambda_{pi}, 0, \partial_C \lambda, 0) / 2 - \Delta T_{eq}(1; \tilde{F}_{pi}, \lambda_{pi}, 0, \partial_C \lambda, 0)$$
(14)

$$\Delta \Delta T_{2x,\partial_T \lambda} \equiv \Delta T_{eq}(2; \tilde{F}_{pi}, \lambda_{pi}, 0, 0, \partial_T \lambda) / 2 - \Delta T_{eq}(1; \tilde{F}_{pi}, \lambda_{pi}, 0, 0, \partial_T \lambda)$$
(15)

Feedback temperature dependence is the dominant term for the three models with the largest sensitivity increases, accounts for 69% of the average increase, and contributes the largest term to the median increase (where FAMOUS is excluded from the averages, as the quadratic model suggests it experiences runaway warming under $4xCO_2$). Feedback CO₂ dependence contributes a small, positive increase in sensitivity, while nonlinear forcing decreases sensitivity about as much and as often as it increases it.

To better understand these sensitivity increases, we estimate the flux components 302 of the preindustrial feedback and feedback temperature dependence (Fig. 3b-d; see Fig. 303 S6 for all components and uncertainties) by substituting individual top-of-atmosphere 304 fluxes for N in the above derivations (see Text S3). We consider longwave vs. shortwave 305 and noncloud vs. cloud components. For longwave fluxes, noncloud vs. cloud compo-306 nents are estimated using clear-sky fluxes and cloud radiative effect. For shortwave fluxes, 307 to avoid cloud masking (Soden et al., 2004) we instead use approximate partial radia-308 tive perturbation (APRP; Taylor et al., 2007) for models with sufficient data available, 309 including most CMIP6 models. For all other models we use clear-sky fluxes and cloud 310 radiative effect as with the longwave. 311

The longwave noncloud feedback typically has positive temperature dependence 312 (colored circles, Fig. 3b) due to an increasing water vapor feedback (Crucifix, 2006; Col-313 man & McAvaney, 2009; Meraner et al., 2013). While some studies found that this in-314 crease is balanced by a strengthening negative lapse rate feedback (Boer et al., 2005; Col-315 man & McAvaney, 2009; Yoshimori et al., 2009; Caballero & Huber, 2013), in recent stud-316 ies the water vapor feedback dominates (Block & Mauritsen, 2013; Jonko et al., 2013; 317 Meraner et al., 2013; Rieger et al., 2017), and Meraner et al. (2013) found a positive $\partial_T \lambda_{LWnoncloud}$ 318 for most CMIP5 models. Our findings contradict recent papers that find a constant long-319 wave clear-sky feedback (Koll & Cronin, 2018; Zhang et al., 2020), though we agree that 320 the value of the preindustrial feedback is likely close to $-2 \text{ Wm}^{-2}\text{K}^{-1}$. 321

The shortwave noncloud feedback (colored circles, Fig. 3c) is the sum of a surface 322 term (Fig. S6e) and an atmosphere term (Fig. S6f). The former represents a positive 323 ice albedo feedback, which typically saturates, giving a negative temperature dependence 324 (Colman & McAvaney, 2009; Block & Mauritsen, 2013; Jonko et al., 2013; Meraner et 325 al., 2013; Rieger et al., 2017; Duan et al., 2019). The noncloud atmosphere term repre-326 sents a positive water vapor feedback, which typically has a positive temperature depen-327 dence. Their sum has a positive preindustrial feedback with negligible temperature de-328 pendence (Fig. 3c). The SW noncloud outliers are models for which clear-sky fluxes were 329 used instead of APRP (circles with black dots, Fig. 3c). Comparison of clear-sky vs. APRP 330 estimates of the SW noncloud component suggests that cloud masking biases generally 331 increases the uncertainty of the SW noncould component (Fig. S6c vs. S6g). 332

While the cloud feedback has multi-model mean values close to zero, it has more 333 intermodel spread than the other two components (Fig. 3d) and has positive temper-334 ature dependence for most models. For CESM2, this occurs because its negative mixed-335 phase cloud feedback saturates (Tan et al., 2016; Frey & Kay, 2018; Bjordal et al., 2020). 336 The spread in cloud feedback explains the range of nonlinearity in Fig. 3a. The aver-337 age longwave noncloud feedback on its own (gray circle in Fig. 3b) would experience too 338 little warming for its temperature dependence to matter (i.e., $\Delta\Delta T_{2x} = \Delta T_{4x}/2 - \Delta T_{2x} \approx$ 339 0.17K assuming forcing from Byrne and Goldblatt (2014) and average $\partial_C \lambda$). Adding the 340 shortwave noncloud feedback does not change the temperature dependence, but makes 341 the preindustrial feedback more positive (gray triangle in Fig. 3b), causing more warm-342 ing, increasing the nonlinearity (i.e., $\Delta\Delta T_{2x} \approx 0.33$ K). Adding the average cloud feed-343 back causes little change (gray square in Fig. 3b). For individual models, cloud feedbacks 344 can move the climate into nonlinear regions, either by increasing the preindustrial feed-345 back (CanESM5), or by increasing the feedback temperature dependence (CESM2 and 346 FAMOUS). On the other hand, GISS-E2-2-G's cloud feedback temperature dependence 347 is anomalously negative, and therefore it is the only model for which sensitivity decreases 348 with CO_2 concentration. 349

We briefly discuss the flux components of the other two nonlinear terms (Fig. S7). 350 The LW clear-sky term of the nonlinear forcing is negative for eleven of fourteen mod-351 els (Fig. S7a). Since the direct LW clear-sky forcing depends superlinearly on CO_2 dou-352 bling (Byrne & Goldblatt, 2014), this negative term is due either to oversimplifications 353 in the model's radiative scheme, or to adjustments. The other components vary in sign, 354 with the largest source of intermodel spread coming from the cloud components. Since 355 APRP accounts for cloud masking, the SW cloud spread must also be due to forcing ad-356 justments. Adjustments thus play a first-order role in determining nonlinear forcing. The 357 LW clear-sky component of feedback CO_2 dependence is positive for all five models (Fig. 358 S7b), likely due to a blocked Planck feedback. SW cloud contributes the largest source 359 of intermodel spread, so that forcing adjustments also play a first-order role in this non-360 linearity. 361

362 6 Conclusions

Equilibrium climate sensitivity increases with CO_2 concentration for thirteen of fourteen models, contradicting the linear approximation of global energy balance, which assumes a constant forcing per CO_2 doubling and a constant radiative feedback. On average, climate models experience at least a degree of additional equilibrium warming under $4xCO_2$ due to this sensitivity increase. Using a quadratic approximation allows us to capture the sensitivity increase using three second-order terms: nonlinear forcing, feedback CO_2 dependence, and feedback temperature dependence.

Feedback temperature dependence explains 69% of the sensitivity increase, and ex-370 plains more of the median increase than any other term. Most importantly, it explains 371 the particularly large increase seen in a handful of models, as positive feedback temper-372 ature dependence can cause runaway increases in sensitivity. Four models are predicted 373 to experience runaway warming under CO_2 concentrations eight times larger than the 374 preindustrial, and six models are projected to experience at least three additional de-375 grees of equilibrium warming under this concentration. Feedback temperature depen-376 dence plays a key role in determining the risk of extreme warming in the coming cen-377 turies. 378

Ten of fourteen models have positive feedback temperature dependence, primarily due to the longwave clear-sky feedback. Models with large sensitivity increases have cloud feedbacks with either anomalously positive temperature dependence or anomalously positive preindustrial values. Feedback CO₂ dependence plays a smaller role, but results from five models suggests that it is likely positive, increasing sensitivity, primarily due

Figure 1. a. Equilibrium warming per CO₂ doubling $(\Delta T_{eq}(C)/C)$ for abrupt-2^Cx simulations estimated using years 21 to 150 (colored bars and gray horizontal lines) and years 101 to n (where n is at least 750 years and given in Table S2; black horizontal lines). Vertical lines in panels a and b and all lines in panel c give the 2.5th to 97.5th percentile range of uncertainty (see Text S1). FAMOUS abrupt4xCO₂ is an outlier, with $\Delta T_{4x}/2 = 7.6$ K when 1000 years are used. b. Radiative forcing per CO₂ doubling (F(C)/C) for abrupt-2^Cx simulations estimated using years 1 to 10 (colored bars and gray horizontal lines. The dashed black line shows the Myhre et al. (1998) assumption of linear F(C), while the gray bars give the analytic formula from Byrne and Goldblatt (2014).

c. Colored squares (octagons) show the factor by which equilibrium warming and forcing for an abrupt $4xCO_2$ (abrupt $8xCO_2$) simulation exceeds the linear extrapolation of its model's abrupt $2xCO_2$ values. Colors are the same as panels a and b. FAMOUS and CESM2 4x have nonlinear warming factors greater than 1.8.

to its longwave clear-sky component. The forcing per CO₂ doubling decreases with CO₂ concentration for as many models as it increases. Nonlinear forcing contributes less to the sensitivity increase than either other term, although it can be important for individual models. Forcing adjustments play a first-order role in determining the nonlinear forcing.

The substantial uncertainties in some of our findings could be greatly decreased 389 with additional simulations. Longer simulations give better estimates of equilibrium warm-390 ing (Rugenstein et al., 2020; Dai et al., 2020; Dunne et al., 2020); fixed-SST experiments 391 give better radiative forcing estimates (Forster et al., 2016; Pincus et al., 2016); and sim-392 ulations at multiple CO_2 levels allow for an assessment of nonlinearities (Good et al., 393 2016). Simulations that behave in surprising or anomalous ways may be exhibiting non-394 linear dynamics, and should not be neglected (Valdes, 2011). Even if a loss of stability 395 causes models to warm outside the range for which they were calibrated, the increase 396 in sensitivity may still be physical. Exploring and documenting the nonlinear frontiers 397 of warming in climate models is essential to assessing the risk of extreme warming for 398 the real world. 399

400 Acknowledgments

401 We thank Tim Andrews for making the HadGEM3-GC3.1-LL abrupt-2xCO2 simulation

- 402 available at https://github.com/timothyandrews/abrupt-2xC02. CMIP6 data is at
- 403 https://pcmdi.llnl.gov/CMIP6/. LongRunMIP data access is at http://www.longrunmip

Figure 2. Preindustrial feedback vs. feedback temperature dependence (colored dots; colored ellipsoids give the 75^{th} percentile of uncertainty). Values in the dark (light) gray region imply runaway warming under $4xCO_2$ ($8xCO_2$) and values above the dashed (dotted) black line have a sensitivity estimated from abrupt2xCO₂ (abrupt4xCO₂) above 4.5K. All thresholds are calculated assuming forcing from Byrne and Goldblatt (2014) and model-mean feedback CO₂ dependence. Colored dots with black outlines experience an additional 3K of equilibrium warming under $8xCO_2$ given our estimate of that model's forcing and $\partial_C \lambda$.

Figure 3. a. Contributions to the change in sensitivity from 2xCO_2 to 4xCO_2 (black bars) from nonlinear forcing ($\partial_C \tilde{F}$, horizontally-hatched bars), feedback CO₂ dependence ($\partial_C \lambda$, crossed-hatched bars), and feedback temperature dependence ($\partial_T \lambda$, diagonally-hatched bars). Dotted bars represent cross-terms, higher-order nonlinearities, and errors in our estimates. FA-MOUS is not included in the mean and median as the quadratic model suggests it is in a state of runaway under 4xCO_2 .

b., c., and d. Colored circles give estimates of the longwave noncloud, shortwave noncloud, and net cloud components respectively of the preindustrial feedback and feedback temperature dependence. Models with dotted circles use clear-sky fluxes instead of approximate partial radiative perturbation to partition the shortwave flux into noncloud and cloud components. Colors are given by the model names in panel a. Gray circles give the multi-model mean and gray ellipsoids give the estimated 75th percentile of uncertainty. The shaded regions in panel b are as in Fig. 2. Triangles in panel b show the result of adding the shortwave noncloud component to longwave noncloud components. Squares show the result for additionally adding the net cloud component.

- 404 .org/. This project has received funding from the European Research Council (ERC)
- ⁴⁰⁵ under the European Union's Horizon 2020 research and innovation programme (grant
- agreement No. 786427, project "Couplet" and grant agreement No. 820829, project "CON-
- 407 STRAIN").

408	References
400	LCCICI CHICCO

429

430

431

432

433

- Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt, D. J.,
 ... Foster, G. L. (2020, September). Proxy evidence for state-dependence
 of climate sensitivity in the Eocene greenhouse. Nature Communications,
 11(1), 4436. Retrieved 2020-09-11, from https://www.nature.com/articles/
 s41467-020-17887-x (Number: 1 Publisher: Nature Publishing Group) doi:
 10.1038/s41467-020-17887-x
- Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis,
 G. N., ... Pearson, P. N. (2016). Changing atmospheric CO 2 concentration
 was the primary driver of early Cenozoic climate. *Nature*, 533(7603), 380–384.
 Retrieved 2019-12-21, from https://www.nature.com/articles/nature17423
 doi: 10.1038/nature17423
- Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature
 Change in Climate Models. *Journal of Climate*, 28(4), 1630–1648. Retrieved
 2019-11-27, from https://journals.ametsoc.org/doi/full/10.1175/
 JCLI-D-14-00545.1 doi: 10.1175/JCLI-D-14-00545.1
- 425
 Armour, K. C., Bitz, C. M., & Roe, G. H.
 (2013).
 Time-Varying Climate Sen

 426
 sitivity from Regional Feedbacks.
 Journal of Climate, 26(13), 4518–4534.

 427
 Retrieved 2018-05-12, from https://journals.ametsoc.org/doi/10.1175/

 428
 JCLI-D-12-00544.1

 429
 JCLI-D-12-00544.1
 - Bitz, C. M., Shell, K. M., Gent, P. R., Bailey, D. A., Danabasoglu, G., Armour,
 K. C., ... Kiehl, J. T. (2012). Climate Sensitivity of the Community Climate
 System Model, Version 4. Journal of Climate, 25(9), 3053-3070. Retrieved
 2019-11-27, from https://journals.ametsoc.org/doi/full/10.1175/
 JCLI-D-11-00290.1 doi: 10.1175/JCLI-D-11-00290.1
- Bjordal, J., Storelvmo, T., Alterskjr, K., & Carlsen, T. (2020, November). Equilibrium climate sensitivity above 5 C plausible due to state-dependent cloud
 feedback. Nature Geoscience, 13(11), 718-721. Retrieved 2020-11-20, from
 https://www.nature.com/articles/s41561-020-00649-1 (Number: 11
 Publisher: Nature Publishing Group) doi: 10.1038/s41561-020-00649-1
- Bloch-Johnson, J., Pierrehumbert, R. T., & Abbot, D. S. (2015). Feedback temperature dependence determines the risk of high warming. *Geophysical Re- search Letters*, 42(12), 4973–4980. Retrieved 2019-11-27, from https://
 agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064240 doi:
 10.1002/2015GL064240
- Bloch-Johnson, J., Rugenstein, M., & Abbot, D. S. (2020). Spatial Radiative Feedbacks from Internal Variability Using Multiple Regression. Journal of Climate,
 33(10), 4121-4140. Retrieved 2020-04-22, from https://journals.ametsoc
 .org/doi/full/10.1175/JCLI-D-19-0396.1 (Publisher: American Meteorological Society) doi: 10.1175/JCLI-D-19-0396.1
- 449Block, K., & Mauritsen, T.(2013).Forcing and feedback in the MPI-ESM-450LR coupled model under abruptly quadrupled CO2.Journal of Advances451in Modeling Earth Systems, 5(4), 676–691.Retrieved 2019-11-27, from452https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jame.20041453doi: 10.1002/jame.20041
- 454
 Boer, G. J., Hamilton, K., & Zhu, W. (2005). Climate sensitivity and climate change

 455
 under strong forcing. Climate Dynamics, 24(7), 685–700. Retrieved 2018

 456
 10-31, from https://doi.org/10.1007/s00382-004-0500-3 doi: 10.1007/

 457
 s00382-004-0500-3
- Byrne, B., & Goldblatt, C. (2014). Radiative forcing at high concentrations of
 well-mixed greenhouse gases. *Geophysical Research Letters*, 41(1), 152–160.
 Retrieved 2019-11-27, from https://agupubs.onlinelibrary.wiley.com/
 doi/abs/10.1002/2013GL058456 doi: 10.1002/2013GL058456
- ⁴⁶² Caballero, R., & Huber, M. (2013). State-dependent climate sensitivity in past

463	warm climates and its implications for future climate projections. $Pro-$
464	ceedings of the National Academy of Sciences, 110(35), 14162–14167. Re- trieved 2018-06-28, from http://www.pnas.org/content/110/35/14162 doi:
465 466	10.1073/pnas.1303365110
400	Ceppi, P., & Gregory, J. M. (2017, December). Relationship of tropospheric stabil-
468	ity to climate sensitivity and Earths observed radiation budget. <i>Proceedings of</i>
469	the National Academy of Sciences, 114(50), 13126–13131. Retrieved 2018-06-
470	28, from http://www.pnas.org/content/114/50/13126 doi: 10.1073/pnas
471	.1714308114
472	Colman, R., & McAvaney, B. (2009). Climate feedbacks under a very broad
473	range of forcing. Geophysical Research Letters, 36(1). Retrieved 2019-11-
474	27, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
475	2008GL036268 doi: 10.1029/2008GL036268
476	Crucifix, M. (2006). Does the Last Glacial Maximum constrain climate sensitivity?
477	Geophysical Research Letters, 33(18). Retrieved 2019-12-20, from https://
478	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL027137 doi:
479	10.1029/2006GL027137
480	Dai, A., Huang, D., Rose, B. E. J., Zhu, J., & Tian, X. (2020, April). Improved
481	methods for estimating equilibrium climate sensitivity from transient warm-
482	ing simulations. <i>Climate Dynamics</i> . Retrieved 2020-04-23, from https://
483	doi.org/10.1007/s00382-020-05242-1 doi: 10.1007/s00382-020-05242-1
484	Dong, Y., Proistosescu, C., Armour, K. C., Battisti, D. S., Dong, Y., Proistosescu, C., Battisti, D. S. (2019). Attributing Historical and Future Evolution of
485	Radiative Feedbacks to Regional Warming Patterns using a Greens Function
486	Approach: The Preeminence of the Western Pacific. Journal of Climate. Re-
487 488	trieved 2019-09-28, from https://journals.ametsoc.org/doi/abs/10.1175/
489	JCLI-D-18-0843.1 doi: 10.1175/JCLI-D-18-0843.1
490	Duan, L., Cao, L., & Caldeira, K. (2019). Estimating Contributions of Sea Ice
491	and Land Snow to Climate Feedback. Journal of Geophysical Research:
492	Atmospheres, 124(1), 199–208. Retrieved 2019-12-21, from https://
493	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029093 doi:
494	10.1029/2018 JD029093
495	Dunne, J. P., Winton, M., Bacmeister, J., Danabasoglu, G., Gettelman,
496	A., Golaz, JC., Wolfe, J. D. (2020). Comparison of equi-
497	librium climate sensitivity estimates from slab ocean, 150-year,
498	and longer simulations. $Geophysical Research Letters, n/a(n/a),$
499	e2020GL088852. Retrieved 2020-07-30, from https://agupubs
500	.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088852 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088852) doi:
501	10.1029/2020GL088852
502	Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals
503 504	of Statistics, 7(1), 1–26. Retrieved 2020-04-23, from https://www.jstor.org/
505	stable/2958830 (Publisher: Institute of Mathematical Statistics)
506	Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forc-
507	ing of carbon dioxide, methane, and nitrous oxide: A significant revision of
508	the methane radiative forcing. Geophysical Research Letters, 43(24), 12,614–
509	12,623. Retrieved 2019-11-27, from https://agupubs.onlinelibrary.wiley
510	.com/doi/abs/10.1002/2016GL071930 doi: 10.1002/2016GL071930
511	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &
512	Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison
513	Project Phase 6 (CMIP6) experimental design and organization. Geosci-
514	entific Model Development, $9(5)$, 1937–1958. Retrieved 2020-01-10, from
515	https://www.geosci-model-dev.net/9/1937/2016/gmd-9-1937-2016.html
516	doi: https://doi.org/10.5194/gmd-9-1937-2016
517	Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N., Markwick,

518	P., Robinson, S. A. (2019). Climate Sensitivity on Geological Timescales
519	Controlled by Nonlinear Feedbacks and Ocean Circulation. Geophysical Re-
520	search Letters, 46(16), 9880–9889. Retrieved 2019-11-27, from https://
521	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083574 doi:
522	10.1029/2019GL083574
523	Forster, P. M., Richardson, T., Maycock, A. C., Smith, C. J., Samset, B. H., Myhre,
524	G., Schulz, M. (2016). Recommendations for diagnosing effective radiative
525	forcing from climate models for CMIP6. Journal of Geophysical Research:
526	Atmospheres, 121(20), 12,460–12,475. Retrieved 2019-12-24, from https://
527	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025320 doi:
528	10.1002/2016JD025320
529	Frey, W. R., & Kay, J. E. (2018, April). The influence of extratropical cloud
530	phase and amount feedbacks on climate sensitivity. <i>Climate Dynamics</i> ,
531	50(7), 3097-3116. Retrieved 2020-11-23, from https://doi.org/10.1007/
532	s00382-017-3796-5 doi: 10.1007/s00382-017-3796-5
533	Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E., & Ganopolski, A.
534	(2016, November). Nonlinear climate sensitivity and its implications for future
535	greenhouse warming. Science Advances, 2(11), e1501923. Retrieved 2019-12-
536	20, from https://advances.sciencemag.org/content/2/11/e1501923 doi:
537	10.1126/sciadv.1501923
	Good, P., Andrews, T., Chadwick, R., Dufresne, JL., Gregory, J. M., Lowe, J. A.,
538	Shiogama, H. (2016). nonlinMIP contribution to CMIP6: model inter-
539	comparison project for non-linear mechanisms: physical basis, experimental
540 541	design and analysis principles $(v1.0)$. Geoscientific Model Development, $9(11)$,
	4019-4028. Retrieved 2019-12-19, from https://www.geosci-model-dev.net/
542	9/4019/2016/gmd-9-4019-2016-discussion.html doi: https://doi.org/
543 544	10.5194/gmd-9-4019-2016
	Gregory, J. M., Andrews, T., & Good, P. (2015, November). The inconstancy
545	of the transient climate response parameter under increasing CO2. <i>Philo-</i>
546	sophical Transactions of the Royal Society A: Mathematical, Physical and
547	Engineering Sciences, 373 (2054), 20140417. Retrieved 2020-02-27, from
548	https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0417
549 550	doi: 10.1098/rsta.2014.0417
	Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe,
551	R. B., Williams, K. D. (2004). A new method for diagnosing radiative
552	forcing and climate sensitivity. <i>Geophysical Research Letters</i> , 31(3), L03205.
553	Retrieved 2018-01-19, from http://onlinelibrary.wiley.com/doi/10.1029/
554	2003GL018747/abstract doi: 10.1029/2003GL018747
555	
556	Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D., & Stone, P. (1985). Cli- mate Response Times: Dependence on Climate Sensitivity and Ocean
557	Mixing. Science, 229(4716), 857–859. Retrieved 2018-05-15, from
558	http://science.sciencemag.org/content/229/4716/857 doi: 10.1126/
559	science.229.4716.857
560	
561	Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,Zhang, S. (2005). Efficacy of climate forcings. <i>Journal of Geophysical</i>
562	Zhang, S. (2005). Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres, 110(D18). Retrieved 2019-11-27, from https://
563	
564	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JD005776 doi: 10.1029/2005JD005776
565	
566	Haugstad, A. D., Armour, K. C., Battisti, D. S., & Rose, B. E. J. (2017).
567	Relative roles of surface temperature and climate forcing patterns in the inconstance of radiative feedbacks
568	the inconstancy of radiative feedbacks. Geophysical Research Let- tage $1/(14)$ 7455 7463 Batriavad 2020 04 22 from https://agupubg
569	<i>ters</i> , 44 (14), 7455–7463. Retrieved 2020-04-22, from https://agupubs
570	.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074372 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL074372) doi:
571	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL074372) doi: 10.1002/2017GL074372
572	10.1002/201101011012

573	Heydt, A. S. v. d., Dijkstra, H. A., Wal, R. S. W. v. d., Caballero, R., Crucifix, M.,
574	Foster, G. L., Ziegler, M. (2016). Lessons on Climate Sensitivity From
575	Past Climate Changes. Current Climate Change Reports, 2(4), 148–158. Re-
576	trieved 2019-12-19, from https://link.springer.com/article/10.1007/
577	s40641-016-0049-3 doi: 10.1007/s40641-016-0049-3
578	Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neo-
579	proterozoic Snowball Earth. Science, 281(5381), 1342–1346. Retrieved 2019-
580	12-19, from https://science.sciencemag.org/content/281/5381/1342
581	doi: 10.1126/science.281.5381.1342
582	Ingersoll, A. P. (1969). The Runaway Greenhouse: A History of Water on
583	Venus. Journal of the Atmospheric Sciences, 26(6), 1191–1198. Re-
584	trieved 2019-12-19, from https://journals.ametsoc.org/doi/abs/
585	10.1175/1520-0469%281969%29026%3C1191%3ATRGAH0%3E2.0.C0%3B2 doi:
586	10.1175/1520-0469(1969)026(1191:TRGAHO)2.0.CO;2
587	Jonko, A. K., Shell, K. M., Sanderson, B. M., & Danabasoglu, G. (2013). Cli-
588	mate Feedbacks in CCSM3 under Changing CO2 Forcing. Part II: Variation of
589	Climate Feedbacks and Sensitivity with Forcing. Journal of Climate, $26(9)$,
590	2784-2795. Retrieved 2019-11-27, from https://journals.ametsoc.org/doi/
591	full/10.1175/JCLI-D-12-00479.1 doi: 10.1175/JCLI-D-12-00479.1
592	Kamae, Y., Watanabe, M., Ogura, T., Yoshimori, M., & Shiogama, H. (2015).
593	Rapid Adjustments of Cloud and Hydrological Cycle to Increasing
594	CO <subscript>2</subscript> : a Review. Current Climate Change Reports,
595	1(2), 103-113. Retrieved 2018-08-01, from https://link.springer.com/
596	article/10.1007/s40641-015-0007-5 doi: 10.1007/s40641-015-0007-5
597	Knutti, R., Rugenstein, M. A. A., & Hegerl, G. C. (2017). Beyond equilibrium cli-
598	mate sensitivity. Nature Geoscience, $10(10)$, $727-736$. Retrieved 2018-11-01,
599	from https://www.nature.com/articles/ngeo3017 doi: $10.1038/ngeo3017$
600	Köhler, P., Stap, L. B., von der Heydt, A. S., de Boer, B., van de Wal, R. S. W.,
601	& Bloch-Johnson, J. (2017). A State-Dependent Quantification of Climate
602	Sensitivity Based On Paleodata of the Last 2.1 Million Years. Paleoceanogra-
603	<i>phy</i> , <i>32</i> , 1102–1114. Retrieved 2018-06-28, from http://doi.org/10.1002/
604	2017PA003190 doi: 10.1002/2017PA003190
605	Koll, D. D. B., & Cronin, T. W. (2018, October). Earths outgoing longwave radia-
606	tion linear due to H2O greenhouse effect. Proceedings of the National Academy
607	of Sciences, 115(41), 10293–10298. Retrieved 2019-09-30, from https://www
608	.pnas.org/content/115/41/10293 doi: 10.1073/pnas.1809868115
609	Komabayasi, M. (1967). Discrete Equilibrium Temperatures of a Hypothetical
610	Planet with the Atmosphere and the Hydrosphere of One Component-Two
611	Phase System under Constant Solar Radiation. Journal of the Meteorological
612	Society of Japan. Ser. II, 45(1), 137–139. doi: 10.2151/jmsj1965.45.1_137
613	Kutzbach, J. E., He, F., Vavrus, S. J., & Ruddiman, W. F. (2013). The dependence
614	of equilibrium climate sensitivity on climate state: Applications to studies of $(0,14)$ 2721 2726
615	climates colder than present. Geophysical Research Letters, $40(14)$, 3721–3726.
616	Retrieved 2019-12-19, from https://agupubs.onlinelibrary.wiley.com/ doi/abs/10.1002/grl.50724 doi: 10.1002/grl.50724
617	
618	Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Schmidt, D. N. (2015). Plio-Pleistocene climate sensitivity
619	evaluated using high-resolution CO 2 records. <i>Nature</i> , 518(7537), 49–54. Re-
620	trieved 2019-12-20, from https://www.nature.com/articles/nature14145
621	doi: 10.1038/nature14145
622	Meraner, K., Mauritsen, T., & Voigt, A. (2013). Robust increase in equilibrium cli-
623	mate sensitivity under global warming. <i>Geophysical Research Letters</i> , 40(22),
624 625	5944–5948. Retrieved 2019-11-27, from https://agupubs.onlinelibrary
625	.wiley.com/doi/abs/10.1002/2013GL058118 doi: 10.1002/2013GL058118
627	Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New esti-
021	

628	mates of radiative forcing due to well mixed greenhouse gases. Geophys-
629	<i>ical Research Letters</i> , 25(14), 2715–2718. Retrieved 2020-01-10, from
630	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98GL01908
631	doi: 10.1029/98GL01908
632	Pierrehumbert, R. T. (2013, August). Hot climates, high sensitivity. Proceedings of
633	the National Academy of Sciences, 110(35), 14118–14119. Retrieved 2018-10-
	31, from http://www.pnas.org/content/110/35/14118 doi: 10.1073/pnas
634	.1313417110
635	
636	Pincus, R., Forster, P. M., & Stevens, B. (2016, September). The Radiative Forcing
637	Model Intercomparison Project (RFMIP): experimental protocol for CMIP6.
638	Geoscientific Model Development, $9(9)$, 3447–3460. Retrieved 2020-04-23, from
639	https://www.geosci-model-dev.net/9/3447/2016/ (Publisher: Copernicus
640	GmbH) doi: https://doi.org/10.5194/gmd-9-3447-2016
641	Rieger, V. S., Dietmller, S., & Ponater, M. (2017). Can feedback analysis be used to
642	uncover the physical origin of climate sensitivity and efficacy differences? Cli-
643	mate Dynamics, 49(7), 2831-2844. Retrieved 2019-11-27, from https://doi
644	.org/10.1007/s00382-016-3476-x doi: 10.1007/s00382-016-3476-x
645	Roe, G. H., & Armour, K. C. (2011, July). How sensitive is climate sensitivity?
646	Geophysical Research Letters, 38(14). Retrieved 2018-10-31, from https://
647	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL047913 doi:
648	10.1029/2011GL047913
649	Rohrschneider, T., Stevens, B., & Mauritsen, T. (2019). On simple representa-
650	tions of the climate response to external radiative forcing. <i>Climate Dynamics</i> ,
651	53(5), 3131-3145. Retrieved 2019-11-27, from https://doi.org/10.1007/
652	s00382-019-04686-4 doi: 10.1007/s00382-019-04686-4
653	Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N., & Koll, D. D. B. (2014).
654	The dependence of transient climate sensitivity and radiative feedbacks on the
655	spatial pattern of ocean heat uptake. $Geophysical Research Letters, 41(3),$
656	1071-1078. Retrieved 2018-06-28, from https://agupubs.onlinelibrary
657	.wiley.com/doi/abs/10.1002/2013GL058955 doi: 10.1002/2013GL058955
658	Rugenstein, M., Bloch-Johnson, J., Abe-Ouchi, A., Andrews, T., Beyerle, U.,
659	Cao, L., Yang, S. (2019). LongRunMIP motivation and design
660	for a large collection of millennial-length AO-GCM simulations. Bul-
661	letin of the American Meteorological Society. Retrieved 2019-11-27, from
662	https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-19-0068.1 doi:
663	10.1175/BAMS-D-19-0068.1
664	Rugenstein, M., Bloch-Johnson, J., Gregory, J., Andrews, T., Mauritsen, T., Li, C.,
665	Knutti, R. (2020). Equilibrium climate sensitivity estimated by equili-
	brating climate models. Geophysical Research Letters, $n/a(n/a)$. Retrieved
666 667	2019-11-27, from https://agupubs.onlinelibrary.wiley.com/doi/abs/
667	10.1029/2019GL083898 doi: 10.1029/2019GL083898
668	Rugenstein, M., Gregory, J. M., Schaller, N., Sedlek, J., & Knutti, R. (2016).
669	Multiannual OceanAtmosphere Adjustments to Radiative Forcing. Jour-
670	nal of Climate, 29(15), 5643–5659. Retrieved 2018-08-01, from https://
671	journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0312.1 doi:
672	10.1175/JCLI-D-16-0312.1
673	
674	Seeley, J., & Jeevanjee, N. (2020, August). H2O windows and CO2 radiator fins: a clear-sky explanation for the peak in ECS [preprint]. Retrieved 2020-08-28,
675	from http://www.essoar.org/doi/10.1002/essoar.10503539.1 (Archive
676	Location: world Publisher: Earth and Space Science Open Archive Section:
677	
678	Atmospheric Sciences) doi: $10.1002/\text{essoar}$. 10503539.1
679	Senior, C. A., & Mitchell, J. F. B. (2000). The time-dependence of climate sensi-
680	tivity. Geophysical Research Letters, 27(17), 2685–2688. Retrieved 2018-06-
681	28, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
682	2000GL011373 doi: 10.1029/2000GL011373

683	Shaffer, G., Huber, M., Rondanelli, R., & Pedersen, J. O. P. (2016). Deep time
684	evidence for climate sensitivity increase with warming. $Geophysical Re-$
685	search Letters, 43(12), 6538–6545. Retrieved 2018-05-15, from https://
686	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL069243 doi:
687	10.1002/2016GL069243 Sharwood S. C. Bony S. Boucher, O. Bratherton, C. Forster, P. M. Cro
688	Sherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M., Gre-
689	gory, J. M., & Stevens, B. (2014). Adjustments in the Forcing-Feedback
690	Framework for Understanding Climate Change. Bulletin of the Ameri-
691	can Meteorological Society, 96(2), 217–228. Retrieved 2018-08-01, from
692 693	https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00167.1 doi: 10.1175/BAMS-D-13-00167.1
694	Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Har-
695	greaves, J. C., Zelinka, M. D. (2020). An assessment of Earth's cli-
696	mate sensitivity using multiple lines of evidence. Reviews of Geophysics,
697	n/a(n/a), e2019RG000678. Retrieved 2020-09-15, from https://agupubs
698	.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000678 (_eprint:
699	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019RG000678) doi:
700	10.1029/2019RG000678
701	Smith, C. J., Kramer, R. J., Myhre, G., Alterskjr, K., Collins, W., Sima, A.,
702	Forster, P. M. (2020, January). Effective radiative forcing and adjustments
703	in CMIP6 models. Atmospheric Chemistry and Physics Discussions, 1–37.
704	Retrieved 2020-04-23, from https://www.atmos-chem-phys-discuss.net/
705	acp-2019-1212/ (Publisher: Copernicus GmbH) doi: https://doi.org/
706	10.5194/acp-2019-1212
707	Snyder, C. W. (2019, September). Revised estimates of paleoclimate sensitivity over
708	the past 800,000 years. Climatic Change, 156(1), 121–138. Retrieved 2020-
709	04-03, from https://doi.org/10.1007/s10584-019-02536-0 doi: 10.1007/
710	s10584-019-02536-0
711	Soden, B. J., Broccoli, A. J., & Hemler, R. S. (2004, October). On the Use of Cloud
712	Forcing to Estimate Cloud Feedback. Journal of Climate, 17(19), 3661–3665.
713	Retrieved 2018-06-28, from https://journals.ametsoc.org/doi/full/
714	10.1175/1520-0442%282004%29017%3C3661:0TU0CF%3E2.0.C0%3B2 doi:
715	10.1175/1520-0442(2004)017(3661:OTUOCF)2.0.CO;2
716	Stocker, T. F., Qin, D., Plattner, GK., Tignor, M., Allen, S., Boschung, J.,
717	Midgley, P. (2013). AR5 Climate Change 2013: The Physical Sci-
718	ence Basis IPCC (Tech. Rep.). Cambridge, United Kingdom and New
719	York, NY, USA: Cambridge University Press. Retrieved 2019-12-19, from
720	https://www.ipcc.ch/report/ar5/wg1/
721	Stolpe, M. B., Medhaug, I., Beyerle, U., & Knutti, R. (2019). Weak dependence of
722	future global mean warming on the background climate state. <i>Climate Dynam</i> -
723	ics, 53(7), 5079–5099. Retrieved 2019-11-27, from https://doi.org/10.1007/
724	s00382-019-04849-3 doi: 10.1007/s00382-019-04849-3
	Stouffer, R. J., & Manabe, S. (2003). Equilibrium response of thermohaline cir-
725	culation to large changes in atmospheric CO2 concentration. Climate Dynam-
726	ics, 20(7), 759-773. Retrieved 2019-11-27, from https://doi.org/10.1007/
727	s00382-002-0302-4 doi: 10.1007/s00382-002-0302-4
728	Tan, I., Storelvmo, T., & Zelinka, M. D. (2016, April). Observational constraints on
729	mixed-phase clouds imply higher climate sensitivity. Science, 352(6282), 224–
730	
731	227. Retrieved 2020-04-24, from https://science.sciencemag.org/content/
732	352/6282/224 (Publisher: American Association for the Advancement of Sci-
733	ence Section: Report) doi: 10.1126/science.aad5300
734	Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broc-
735	coli, A. J., Webb, M. J. (2007, June). Estimating Shortwave Radiative
736	Forcing and Response in Climate Models. Journal of Climate, 20(11), 2530–
737	2543. Retrieved 2020-03-08, from https://journals.ametsoc.org/doi/

738	10.1175/JCLI4143.1 (Publisher: American Meteorological Society) doi:
739	10.1175/JCLI4143.1
740	Valdes, P. (2011). Built for stability. Nature Geoscience, 4(7), 414–416. Re-
741	trieved 2020-01-06, from https://www.nature.com/articles/ngeo1200 doi:
742	10.1038/ngeo1200
743	Winton, M., Adcroft, A., Dunne, J. P., Held, I. M., Shevliakova, E.,
744	Zhao, M., Zhang, R. (2020). Climate Sensitivity of GFDL's
745	CM4.0. Journal of Advances in Modeling Earth Systems, 12(1),
746	e2019MS001838. Retrieved 2020-04-22, from https://agupubs
747	.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001838 (_eprint:
748	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001838) doi:
749	10.1029/2019MS001838
750	Wolf, E. T., HaqqMisra, J., & Toon, O. B. (2018). Evaluating Climate Sensitivity
751	to CO2 Across Earth's History. Journal of Geophysical Research: Atmo-
752	spheres, 123(21), 11,861–11,874. Retrieved 2020-04-21, from https://agupubs
753	.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029262 (_eprint:
754	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JD029262) doi:
755	10.1029/2018JD029262
756	Yoshimori, M., Yokohata, T., & Abe-Ouchi, A. (2009). A Comparison of Cli-
757	mate Feedback Strength between CO2 Doubling and LGM Experiments.
758	Journal of Climate, 22(12), 3374–3395. Retrieved 2019-09-28, from
759	https://journals.ametsoc.org/doi/full/10.1175/2009JCLI2801.1 doi:
760	10.1175/2009JCLI2801.1
100	10.1110/200330112001.1
761	Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity.
761	Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity.
761 762	Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10-
761 762 763	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of
761 762 763 764	Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010
761 762 763 764 765	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of
761 762 763 764 765 766	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs
761 762 763 764 765 766 767	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint:
761 762 763 764 765 766 767 768	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs
761 762 763 764 765 766 767 768 769	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235
761 762 763 764 765 766 767 768 769 770	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113-122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence
761 762 763 764 765 766 767 768 769 770 771	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature
761 762 763 764 765 766 767 768 769 770 771	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model-
761 762 763 764 765 766 767 768 769 770 771 771 772 773	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113-122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174-2189. Retrieved 2018-05-12, from https://
761 762 763 764 765 766 767 768 769 770 771 772 773 774	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model-
761 762 763 764 765 766 767 768 769 770 771 772 773 773	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113-122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174-2189. Retrieved 2018-05-12, from https:// agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017MS001096 doi: 10.1002/2017MS001096
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113-122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174-2189. Retrieved 2018-05-12, from https:// agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017MS001096 doi: 10.1002/2017MS001096 Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019, September). Simulation of
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174–2189. Retrieved 2018-05-12, from https:// agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017MS001096 doi: 10.1002/2017MS001096 Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019, September). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feed-
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174–2189. Retrieved 2018-05-12, from https:// agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017MS001096 doi: 10.1002/2017MS001096 Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019, September). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feed- backs. Science Advances, 5(9), eaax1874. Retrieved 2019-12-21, from
 761 762 763 764 765 766 767 768 771 772 773 774 775 776 777 778 779 	 Zaliapin, I., & Ghil, M. (2010, March). Another Look at Climate Sensitivity. Nonlinear Processes in Geophysics, 17(2), 113–122. Retrieved 2018-10- 31, from http://arxiv.org/abs/1003.0253 (arXiv: 1003.0253) doi: 10.5194/npg-17-113-2010 Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models. Geophysical Research Letters, 47(17), e2020GL089235. Retrieved 2020-11-20, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089235 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089235) doi: https://doi.org/10.1029/2020GL089235 Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Model- ing Earth Systems, 9(5), 2174–2189. Retrieved 2018-05-12, from https:// agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017MS001096 doi: 10.1002/2017MS001096 Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019, September). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feed-