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Abstract. The model error in climate models depends on
mesh resolution, among other factors. While global refine-
ment of the computational mesh is often not feasible com-
putationally, adaptive mesh refinement (AMR) can be an
option for spatially localized features. Creating a climate
model with AMR has been prohibitive so far. We use AMR
in one single-model component, namely the tracer transport
scheme.

Particularly, we integrate AMR into the tracer transport
module of the atmospheric model ECHAM6 and test our im-
plementation in several idealized scenarios and in a realis-
tic application scenario (dust transport). To achieve this goal,
we modify the flux-form semi-Lagrangian (FFSL) transport
scheme in ECHAM6 such that we can use it on adaptive
meshes while retaining all important properties (such as mass
conservation) of the original FFSL implementation. Our pro-
posed AMR scheme is dimensionally split and ensures that
high-resolution information is always propagated on (lo-
cally) highly resolved meshes. We utilize a data structure that
can accommodate an adaptive Gaussian grid.

We demonstrate that our AMR scheme improves both ac-
curacy and efficiency compared to the original FFSL scheme.
More importantly, our approach improves the representa-
tion of transport processes in ECHAM6 for coarse-resolution
simulations. Hence, this paper suggests that we can over-
come the overhead of developing a fully adaptive Earth sys-
tem model by integrating AMR into single components while
leaving data structures of the dynamical core untouched. This
enables studies to retain well-tested and complex legacy code

of existing models while still improving the accuracy of spe-
cific components without sacrificing efficiency.

1 Introduction

The climate system is inherently multi-scale. In climate mod-
els, various processes are under-resolved because the res-
olution cannot represent details of these processes. One of
the most straightforward approaches to better accuracy is in-
creasing spatial resolution. However, high-resolution climate
simulations are still computationally expensive, especially
for long-term climate simulations like paleoclimate simula-
tion. Adaptive mesh refinement (AMR) is an attractive alter-
native for global high-resolution climate models. The AMR
technique refines and coarsens grid cells locally during run-
time based on designated refinement criteria.

There is active research on AMR applications in the cli-
mate community dating back to the 1980s. For example, Ska-
marock and Klemp (1993) proposed an early non-hydrostatic
model using AMR. More recently Jablonowski et al. (2009)
constructed a finite-volume general circulation model on
a reduced latitude–longitude (lat–long) grid. Kopera and
Giraldo (2015) constructed an atmospheric model using a
Galerkin method on a cubed sphere. These efforts focus on
the dynamical cores of atmospheric models. Utilizing these
methods for realistic climate simulations needs further re-
search and development.
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We propose an alternative pathway towards adaptivity in
climate models to address difficulties applying AMR in op-
erational climate models ranging from properties of numer-
ical schemes to the coupling between dynamical core and
physics packages (Weller et al., 2010). Constructing a com-
plete model from scratch usually takes decades of research.
Instead, we propose integrating AMR into single components
of existing models (here ECHAM6), which could bring about
immediate benefits. It is not uncommon to apply different
resolutions for different components of a numerical model.
For example, Herrington et al. (2019) showed that a high-
resolution dynamical core using low-resolution parameteri-
zations generates satisfactory results.

Enabling AMR in the passive tracer transport module of a
climate model can improve the representation of such trans-
port processes and can potentially improve the general qual-
ity of its host climate simulation. The tracer transport module
controls advective passive tracer transport processes in cli-
mate models. Because tracers interact with many other pro-
cesses in the climate system and generate feedback to the
radiative balance or cloud formations, their accurate repre-
sentation affects the state of the climate system.

Despite potential benefits of integrating AMR into the
tracer transport module of an existing model, there are dif-
ficulties in achieving this goal.

– How does the tracer transport scheme perform with non-
conforming adaptive meshes?

– How much improvement can we gain from an adaptive
tracer transport scheme without refining other compo-
nents?

We introduce AMR into the tracer transport module of
ECHAM6. ECHAM6 is the atmospheric model compo-
nent of the MPI-ESM (Stevens et al., 2013). The first part,
“EC”, indicates that the model was derived from the Eu-
ropean Center’s model, while “HAM” means it was devel-
oped mainly in Hamburg, Germany. ECHAM6 solves the
hydrostatic primitive equations using a spectral transform
method. The tracer transport module uses the flux-form semi-
Lagrangian (FFSL) scheme (Lin and Rood, 1996). The FFSL
scheme has two essential properties: mass conservation and
semi-Lagrangian time stepping. Semi-Lagrangian schemes
are particularly useful for the Gaussian grid in ECHAM6.
The Gaussian grid is a variation of the lat–long grid, where
the longitude is equally spaced in the longitudinal dimen-
sion, and the latitude grid corresponds to Gaussian quadra-
ture points for numerical integration. The Gaussian grid leads
to smaller grid intervals around poles, which poses a limit on
the time step size due to the Courant–Friedrichs–Lewy (CFL)
criterion. If the time step size is large, the numerical scheme
can become unstable.

However, on the adaptive mesh ECHAM’s existing trans-
port scheme does not retain all desired properties when hang-
ing nodes are present. Hanging nodes lie at the interface

between high-resolution and low-resolution areas. So-called
ghost cells are commonly used to treat hanging nodes. Such
scheme creates high-resolution ghost cells in low-resolution
areas along the interface to high resolution, such that the dis-
cretization stencil of the numerical scheme relies on a (vir-
tual) uniform resolution. For example, Jablonowski et al.
(2009) used ghost cells for the FFSL scheme but their im-
plementation does not maintain the semi-Lagrangian time-
stepping. St-Cyr et al. (2008) adopted the FFSL scheme for
shallow water equations on a block-structured AMR scheme
that also did not retain the large Courant number.

Another approach to deal with the interface between
high- and low-resolution areas is to substitute the existing
transport scheme by a mass conservative semi-Lagrangian
scheme, which can handle irregular meshes. For example,
Nair and Machenhauer (2002) proposed a cell-integrated
semi-Lagrangian scheme; Lauritzen et al. (2010) proposed
a more efficient mass conservative semi-Lagrangian scheme
using Stokes’ theorem. However, the comparison between
the original climate model and the climate model with adap-
tive tracer transport would be difficult if we used two differ-
ent transport schemes.

We propose a modified version of the existing tracer trans-
port scheme that retains essential properties of the original
scheme. By keeping the numerical properties of our AMR-
enabled transport scheme as close to the original as possible,
we state that our transport module has the same numerical
properties as the original module. Furthermore, our modified
tracer transport scheme allows us to reuse the code for ver-
tical tracer transport and a class of limiters in the existing
model without further investigation. As a hydrostatic model,
ECHAM6 uses a 1-D finite-volume method for the vertical
transport. The vertical transport is independent from the hor-
izontal transport. This treatment of the vertical tracer trans-
port is similar to the original FFSL scheme in Lin and Rood
(1996) but differs from it due to the use of hybrid η coordi-
nates. The reuse of the vertical tracer transport of ECHAM6
also allows the reuse of the grid-to-grid transformation in
ECHAM6 described by Jöckel et al. (2001). The grid-to-grid
transformation alleviates the wind–mass inconsistency issue
due to different numerical schemes for continuity and tracer
transport equations in hybrid vertical coordinate systems. As
we adopt the treatment of the wind–mass inconsistency in the
existing ECHAM6 setup directly, the paper focuses on the
effect of AMR and does not further address the wind–mass
inconsistency.

Utilizing idealized test cases, we quantitatively investigate
the properties of our modified scheme on adaptive meshes
and non-adaptive meshes even though many other tracer
transport schemes using AMR are well studied (Behrens,
1996; Kessler, 1999; Iske and Käser, 2004; Jablonowski
et al., 2006). In particular, we examine the effect of using
coarse-grid initial condition and wind field using idealized
test cases as we only apply AMR to a single component of
the climate model.
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We further validate our proposed AMR approach simulat-
ing the prototypical but realistic example of dust transport
in ECHAM6. Dust is particularly suitable to demonstrate the
effect of AMR since it has local sources and is transported
around the entire globe. The global distribution of dust de-
velops pronounced local features, which can be represented
more accurately by local refinements.

The paper is organized as follows. We introduce our adap-
tive tracer transport scheme in Sect. 2. In order to quanti-
tatively demonstrate the properties of the modified AMR-
enabled scheme, we show results of idealized tests in Sect. 3.
We further demonstrate the idea of integrating AMR into
more realistic single-component tracer transport of the ex-
isting ECHAM6 model in Sect. 4 and conclude with a dis-
cussion of our results and future work in Sect. 5.

2 The adaptive transport scheme

In order to ensure a fair examination of the partial intro-
duction of AMR into the existing model ECHAM6, we use
the original FFSL scheme in ECHAM6. The FFSL scheme
is particularly suitable for climate models because it is ac-
curate, efficient, mass conservative and semi-Lagrangian.
The FFSL scheme is a combination of a dimensionally split
technique, 1-D finite-volume transport scheme, and semi-
Lagrangian extension for finite-volume schemes.

The dimensional splitting within the FFSL scheme is of
the second order in time. The overall order of accuracy
of the FFSL scheme therefore also depends on the 1-D
solver of the transport equation. In our idealized tests, we
use the piecewise parabolic method (PPM) in space, which
is formally fourth and third order in space for equidistant
and non-equidistant grids, respectively. The operational code
ECHAM6 uses a mixture of first-order forward Euler time-
stepping and PPM space discretization, a practice we adopt in
the realistic test. In order to deal with large Courant numbers,
we use a first-order Euler method to compute the departure
cells.

Our aim is to use the FFSL scheme on adaptive meshes.
However, we cannot extend the FFSL scheme to adaptive
meshes while retaining all its properties without modifica-
tion. We will explain details of the FFSL scheme, the prob-
lem of applying it to adaptive meshes, and our modification
in this section.

2.1 The flux-form semi-Lagrangian scheme

We present the flux-form semi-Lagrangian (FFSL) transport
scheme proposed by Lin and Rood (1996). The FFSL scheme
solves the 2-D transport equation. Climate models often rely
on the transport equation in spherical coordinates:

∂ρc

∂t
+

1
a cosθ

(
∂ρcu

∂λ
+
∂ρcv cosθ

∂θ

)
= 0, (1)

where a is the radius of the sphere, (λ,θ) is the longitude and
latitude on the sphere, (u,v) is the horizontal velocity, ρ is
the air density, c is the tracer mixing ratio. For convenience
of introducing the scheme, we set c ≡ 1.

The dimensionally split technique of the FFSL scheme is
second-order accurate in time. The method splits the 2-D
transport equation in Eq. (1) into two 1-D transport equa-
tions:
∂ρ

∂t
+

∂ρu

a cosθ∂λ
= 0, (2)

∂ρ

∂t
+
∂ρv cosθ
a cosθ∂θ

= 0. (3)

The dimensionally split technique eases the difficulty in ex-
tending 1-D methods into higher dimensions and enables the
application of various 1-D limiters to 2-D problems.

This method is equivalent to the COSMIC splitting pro-
posed in Leonard et al. (1996). The advantage of the FFSL
scheme is that it leads to a mass-conservative and consistent
dimensionally split technique since the Strang splitting can-
not preserve both mass conservation and consistency condi-
tion for tracer transport problems.

The FFSL scheme defines a 1-D conservative operator for
the flux difference of two cell edges FC(ρ):

F λC(ρ)=−
1

a cosθ1λ

∫
(ρu)

i+ 1
2
− (ρu)

i− 1
2
dt,

F θC(ρ)=−
1

a1sinθ

∫
(ρv cosθ)

i+ 1
2
− (ρv cosθ)

i− 1
2
dt. (4)

Here, the subscript “C” means that the operator is conserva-
tive and the superscript represents the coordinate direction
of the 1-D operator; the subscript i± 1

2 represents the cell
boundaries of cell i. The conservative operator is the flux dif-
ferences of the cell in one time step. The dimensionally split
technique allows any 1-D finite-volume transport scheme to
solve the 1-D operator FC(ρ). The finite-volume scheme en-
sures mass conservation of the FFSL scheme.

In order to achieve the consistency condition of the FFSL
scheme, the scheme also uses an advective operator with the
assumption of non-divergent flows, which is a variation of
the FC(ρ):

F λA(ρ)= F
λ
C(ρ)+1tρ

∂u

a cosθ∂λ
,

F θA(ρ)= F
θ
C(ρ)+1tρ

∂v cosθ
a cosθ∂θ

, (5)

where “A” means the operator only solves the advective part
of the transport equation and1t is the time interval. The sec-
ond term of Eq. (5) is computed by a second-order finite-
difference scheme (Lin, 2004).

Similar to the Strang splitting, the FFSL scheme alternates
the direction sequentially. The dimensionally split scheme
first solves the 1-D equation in λ or θ dimension:

ρA(λ)= ρ
n
+F λA(ρ

n),

ρA(θ)= ρ
n
+F θA(ρ

n), (6)
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Figure 1. Schematic illustration of the dimensionally split scheme.
ρn, ρn+1, ρA(λ), and ρA(θ) are tracer mixing ratios corresponding
to Eqs. (6), (7), and (8); the Greek letters α, β, γ , and ζ represent
the individual cells.

where the superscript n denotes the current time step. The
scheme uses the advective operator FA(ρ) as the inner oper-
ator, which guarantees the consistency condition.

Using ρA as the initial condition, the scheme subsequently
solves the 1-D equation in the other direction:

ρ(ρA(λ),ρ
n)= ρn+F λC(ρ

n)+F θC(ρA(λ)),

ρ(ρA(θ),ρ
n)= ρn+F θC(ρ

n)+F λC(ρA(θ)), (7)

where the mass conservation is guaranteed by the con-
servative outer operator. Results of ρ(ρA(λ),ρ

n) and
ρ(ρA(θ),ρ

n) tilt to different directions. Hence, the final so-
lution for the next time step, n+1 is the average of the outer
operator in each direction:

ρn+1
=

1
2
(ρ(ρA(λ),ρ

n)+ ρ(ρA(θ),ρ
n)). (8)

We illustrate the scheme in Fig. 1. If the cell ζ is the departure
cell corresponding to the arrival cell α, the scheme transports
information dimensionally from cell ζ to cells β and γ . The
process of transport from cell ζ to cells β and γ corresponds
to the advective operator in Eq. (6). After the intermediate
step, cell β and γ are the departure cells of the arrival cell α
in each dimension, which is updated by Eq. (8). Therefore,
ρn+1 is based on ρA(λ) and ρA(θ) as intermediate step.

2.2 Semi-Lagrangian extension on adaptive meshes

The FFSL scheme attains long time steps by a semi-
Lagrangian extension from 1-D finite-volume schemes
(Leonard et al., 1995). Similar to traditional semi-Lagrangian
schemes, the extension requires computation of trajectories
described by the flow field. However, by construction, the
extension also requires the mass flux of each cell edge dur-

Figure 2. Illustration of the semi-Lagrangian extension for finite-
volume schemes on adaptive meshes. The marks, α, β, and γ , rep-
resent their underlying cells. Cell α is the arrival cell with high res-
olution, while cells β and γ are coarse cells. The dashed red cells
are ghost cells. The shaded domain represents the departure area
determining the mass flux into the arrival cell.

ing one time step, which is a sweep of mass along trajec-
tories. This semi-Lagrangian computation accounts for the
exact integration of mass flux across an edge, similar to a
finite-volume scheme, and thus yields mass conservation. In
order to improve the efficiency of the implementation, the
FFSL scheme employs the widely used idea of cumulative
mass first described in Colella and Woodward (1984). The
cumulative mass of a cell is the mass from the beginning of
the domain to the cell. Thus, the mass along the trajectory is
the difference between the arrival cell and the departure cell
and the finite-volume flux at the departure cell. Using cumu-
lative mass significantly reduces the computational cost.

However, when using the semi-Lagrangian extension on
adaptive meshes, problems arise. The FFSL scheme assumes
a structured rectangular grid, where the cell centers align
with each other in each dimension such that the dimension-
ally split scheme can use 1-D solvers for each dimension.
For example, the cell center always lies at the same lati-
tude when the scheme computes for longitudinal direction.
However, hanging nodes on adaptive meshes cannot guaran-
tee an alignment as shown in Fig. 2. Breaking the alignment
assumption leads to inconsistency and violates mass conser-
vation. For example, if a 1-D finite-volume scheme computes
the value of the next time step at the arrival cell α in Fig. 2,
the 1-D scheme would include the mass at the entire cell β,
while a consistent treatment needs only the mass at the lower
shaded area of cell β.

In order to satisfy the alignment assumption, we could
use ghost cells, illustrated as the red cells in Fig. 2. How-
ever, using ghost cells for large Courant numbers prevents
the scheme from using cumulative mass since it is difficult to
define the cumulative mass for high-resolution cells. Without
cumulative mass, the semi-Lagrangian extension may lead to
multiple computations of the mass because the departure tra-
jectory of different edges may overlap, leading to an ineffi-
cient scheme.

2.3 Modified flux-form semi-Lagrangian scheme

As described in Sect. 2.2, the original FFSL scheme can-
not handle hanging nodes efficiently because it uses a finite-
volume scheme with a semi-Lagrangian extension to solve 1-

Geosci. Model Dev., 14, 2289–2316, 2021 https://doi.org/10.5194/gmd-14-2289-2021
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Figure 3. Illustration of the CISL scheme in 1-D and 2-D settings;
α, β, and γ are labels of cells. u denotes the longitudinal velocity at
cell edges. We set cell α as arrival cell in both the 1-D and 2-D cases,
and hence the subscript i = α in Eqs. (10) and (13). The dashed line
in the 1-D scheme is the departure interval, and the shaded area is
the departure cell in the 2-D scheme. The 1-D CISL scheme follows
Eq. (10) using a 1-D integral, while the 2-D CISL uses Eq. (13) with
an area integral that uses a 2-D sub-grid distribution as a reconstruc-
tion function.

D problems, where it is computationally expensive to obtain
the mass along the trajectory. We expect that a mass conser-
vative semi-Lagrangian scheme without the sweep along tra-
jectories can solve the problem arising with hanging nodes.
The cell-integrated semi-Lagrangian (CISL) scheme by Nair
and Machenhauer (2002) is a good candidate. Instead of
adding up the mass along the whole trajectory of cell edges,
the CISL scheme updates values from the mass at departure
cells. In particular, Lauritzen (2007) shows that the CISL
scheme is an alternative point of view of Godunov-type
finite-volume schemes with a semi-Lagrangian extension.
Hence, we can safely substitute the finite-volume scheme
with the CISL scheme and expect similar numerical results
on adaptive and non-adaptive meshes.

Here, we present a brief description of the CISL scheme
under reference coordinates instead of spherical coordinates.
The numerical results can easily be mapped between ref-
erence and spherical coordinates. Similar to finite-volume
schemes, in a 1-D setting the CISL scheme assumes the cell
center value as the cell average:

ρci =
1
1xi

∫
1xi

ρdx, (9)

where x ∈ [− 1
2 ,

1
2 ] and 1xi is the width of cell i. The inte-

grand is a sub-cell reconstruction function based on the cell
center value. For example, the Godunov scheme assumes the
sub-cell reconstruction function to be constant.

In the CISL scheme, the departure cell is formed by the
departure position of the cell edges of the arrival cell and the

1-D scheme updates values from the departure cell:

ρn+1
i (x)=

1
1xi

∫
1xd

ρndx, (10)

where1xd = xd,i+ 1
2
−xd,i− 1

2
is the interval of departure cells

in each dimension and i± 1
2 corresponds to cell edges. As

shown in Fig. 3, the dashed line is the departure cell in 1-D.
The scheme gets new values from the mass at the departure
cells, which is an integral of the sub-cell reconstruction func-
tion over the interval of departure cells. The CISL scheme
avoids the computation of mass along the trajectory while
keeping the advantage of long time steps on adaptive meshes.

On the sphere, the departure position of cell edges in each
dimension is described by

a cosθdλ
dt

= u

adµ
dt
= v cosθ, (11)

where µ= sinθ . Here, we follow ECHAM6 and use a first-
order Euler method to solve the ODE:

λd,i+ 1
2
= λ

i+ 1
2
−

u
i+ 1

2

a cosθa
1t

µd,i+ 1
2
= µ

i+ 1
2
− (v cosθ)

i+ 1
2
1t, (12)

where θa is the latitude of the cell center. Similar to Arakawa
C-staggering, the velocity (u,v) is defined on cell edges and
the first-order Euler method assumes constant velocity along
the trajectory. This practice can provide a fair comparison
between our AMR method and the original scheme used in
ECHAM6.

The staggering of the velocity means that v cosθ = 0 at
poles. Hence, the cross-pole advection is controlled by the
velocity u in the λ direction restricted by the deformational
Courant number, | ∂u1t

a cosθ∂λ |, which is less restrictive than
the Courant number. When the deformational Courant num-
ber is less than 1, trajectories do not cross, which ensures
the stability of the semi-Lagrangian scheme. This restriction
holds on adaptive meshes and we disable mesh refinement in
case interpolated wind would lead to trajectory crossing. We
will also discuss the restriction of the deformational Courant
number on mesh refinement in Sect. 2.4.

On an adaptive mesh with hanging nodes, the 1-D integral
in Eq. (10) does not consider the sub-grid distribution in the
other dimension, which breaks the 2-D mass conservation as
discussed in Sect. 2.2. Therefore, we must use a 2-D integral:

ρn+1(λ)=
1
1Ai

∫∫
1Aλ,d

ρndλdµ

ρn+1(θ)=
1
1Ai

∫∫
1Aθ,d

ρndλdµ, (13)
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Figure 4. Illustration of the use of different reconstruction function
in our modified scheme. The shaded area 1Aλ,d is the departure
cell of the arrival cell α. When the departure cell overlaps with the
underlying Eulerian cell β, the size (refinement level) of the depar-
ture cell and Eulerian cell are the same and a 1-D reconstruction
function suffices. When the departure cell overlaps with the under-
lying Eulerian cell γ , the size (refinement level) of the departure cell
is smaller (higher) than the Eulerian cell and a 2-D reconstruction
function is required.

where1Ai =1µi1λi is the area of the arrival cell. The defi-
nition of the cell area follows Nair and Machenhauer (2002).
The area of the departure cell is 1Ad =1µd1λd, and the
dimensionally split scheme uses the fractional area of the de-
parture cell in each dimension:

1Aλ,d =1Ad
1µi

1µd

1Aθ,d =1Ad
1λi

1λd
. (14)

Here, we make use of the benefits of the dimensionally split
technique. The scheme only needs to compute 1-D departure
positions of the cell while the scheme performs a 2-D inte-
gral to compute the mass. Equation (13) can be reduced to
Eq. (10) when the departure cell is aligned with the arrival
cell. As shown in Fig. 3, 1-D CISL is sufficient when the ar-
rival cell α aligns with the departure cell in the Eulerian cell
γ , where 1µγ =1µα . However, 2-D CISL is necessary as
1µα 6=1µγ .

The resemblance between Eqs. (10) and (13) allows us to
use 1-D and 2-D reconstructions for different conditions. As
shown in Fig. 4, we apply a 2-D reconstruction function on
adaptive meshes when a departure cell has a lower refine-
ment level than the arrival cell. Otherwise, we apply a 1-D
reconstruction function. For example, in Fig. 4, a 1-D recon-
struction function is used for an integral over the shaded area
in the cell β as 1µα =1µβ and Eq. (13) can be reduced to
Eq. (10), while a 2-D reconstruction function is used for an
integral over the shaded area in the cell γ .

In order to be consistent with the original implementation,
we choose the same reconstruction function as the one used
by the FFSL scheme in ECHAM6 such that we can make
a fair comparison between the AMR scheme and the origi-
nal scheme in the following sections, and thus our idealized
tests can provide insight for realistic simulations. The de-
fault option of the FFSL scheme in ECHAM6 uses the piece-
wise parabolic method (PPM) as 1-D finite-volume solver.
The PPM is a finite-volume Godunov-type method, which
assumes a quadratic subcell distribution function. Interested

readers can refer to Colella and Woodward (1984) for a de-
tailed description of the PPM. Here, we use a 1-D second-
order polynomial and a quasi-2-D reconstruction as in Nair
and Machenhauer (2002) in a reference coordinate:

ρ(λ,µ)=


ρc+ axx+ bx( 1

12 − x
2) ld>=l

ρc+ axx+ bx( 1
12 − x

2)

+ayy+ by( 1
12 − y

2) ld < l

, (15)

where x ∈ (− 1
2 ,

1
2 ) is either λ or µ in 1-D case, the condi-

tion l represents the refinement level of the Eulerian cell, ld
represents the refinement level of the departure cell, the co-
efficients a and b are computed following Carpenter et al.
(1990):

a = ρ
i+ 1

2
− ρ

i− 1
2

b = 6ρc− 3(ρ
i+ 1

2
+ ρ

i− 1
2
), (16)

where ρ
i− 1

2
and ρ

i+ 1
2

are interpolated by a quartic polyno-
mial based on Colella and Woodward (1984). The limiters
are applied to the coefficients a and b. We do not use any lim-
iters in the idealized tests in Sect. 3, but we apply the default
relaxed limiters in ECHAM6 as described in Appendix B of
Lin (2004) for dust simulations in Sect. 4.

Because a and b are computed by 1-D interpolations, we
remap the coarse-cell values to refined cells by recursively
using Eq. (15) to form the interpolation stencil. The 2-D
reconstruction function can also be used in the fully 2-D
schemes, as in the original work of Nair and Machenhauer
(2002). The dimensionally split scheme benefits from the
simplicity of the implementation in that the computation of
the departure cell’s position is still 1-D and the departure
cell’s shape is more regular than in a fully 2-D scheme.

Using our modified 1-D operator in the FFSL scheme, the
original F dC (ρ) in Sect. 2.1 becomes

F λC(ρ)= ρ
n+1(λ)− ρn+1,

F θC(ρ)= ρ
n+1(θ)− ρn+1, (17)

where ρn+1 is the updated value in Eq. (10).
Our modified operator for the dimensionally split scheme

retains the semi-Lagrangian time stepping. Moreover, the ef-
ficiency of the CISL scheme is similar to the original finite-
volume scheme with a semi-Lagrangian extension. Finally,
the scheme is mass conserving as is the original scheme.

2.4 Wind interpolation for tracer transport

In our targeted applications, our integrated adaptive trans-
port scheme uses information from the non-adaptive low-
resolution dynamical core and parameterizations. For each
time step, in the one-way coupling the AMR method ob-
tains wind information and surface pressure from the coarse-
resolution ECHAM6 model. The coarse-resolution model
(dynamical core and parameterization) runs independently
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from the AMR method, and the refined tracer distribution is
not averaged back into the coarse-resolution host model.

As the momentum equations – from which the wind data
are obtained – are still solved on a coarse resolution by the
spectral dynamical core, our AMR scheme needs to interpo-
late the wind field from the coarse mesh to the AMR mesh.
To prevent numerical oscillations and maintain monotonicity,
we use first-order bilinear interpolation. The wind interpola-
tion can lead to trajectory crossing around poles, especially
when the resolution around the poles is higher than other re-
gions on the lat–long grid. We need to avoid mesh refinement
when the interpolated wind leads to trajectory crossing on
refined mesh. Hence, we do not refine cells around the poles
when wind interpolation is necessary (e.g., in the realistic test
case). For most cases, it is sufficient to avoid refinement at a
distance of only one grid cell from the poles. The wind inter-
polation is not applied when we use analytical wind fields in
idealized test cases in Sect. 3.

Compared to the high-resolution simulations, our AMR
experiments lead to two sources of error: the error from
coarse initial conditions and the error from wind interpo-
lations. Behrens et al. (2000) investigated the sensitivity of
wind interpolation on tracer fields, indicating that even with
interpolated wind, local refinement can improve the numer-
ical accuracy of passive tracer transport schemes. Hence,
wind interpolation should be an effective method when a
high-resolution wind field is not available. We further in-
vestigate the numerical error in an idealized test case in
Sect. 3.2.3.

2.5 Refinement strategy

Our refinement procedure follows the description in Chen
et al. (2018). AMR requires flexible data structures, and thus
the original mostly array-oriented data structure needed to be
replaced by a forest of trees data structure. A forest of trees
is used for example in the parallel p4est library (Burstedde
et al., 2011). However, as our targeted application has a sim-
pler geometry, we use the simplified data structure in Chen
et al. (2018). While the forest of trees data structure can be
readily parallelized (Burstedde et al., 2011), we do not con-
sider this here and run it in serial, since it is not the focus of
our study.

The data structure allows drastic spatial resolution
changes. However, to alleviate numerical oscillations due to
sudden spatial resolution variations, we restrict our simula-
tions to a 1 : 2 refinement ratio such that it is locally quasi-
uniform. In our idealized tests, we present results with up to
two refinement levels.

Based on the data structure, our mesh can be refined
or coarsened at each time step. To predict the tracer dis-
tribution in the next time step, we use a first-order non-
conservative semi-Lagrangian scheme. We refine the mesh
using refinement criteria based on the predicted tracer dis-

tribution and then perform the modified FFSL scheme de-
scribed in Sect. 2.3.

To select refinement criteria one can either choose mathe-
matically rigorous error estimators, based on the convergence
theory of the underlying equation and on the consistency
of the numerical scheme, or one can choose more ad hoc
physics-based refinement indicators (Behrens, 2006a). The
investigation of appropriate refinement criteria is an active
research field that is outside the scope of this study. In climate
models, it is often not possible to use mathematical error es-
timators because rigorous convergence is hard to achieve for
such complex multi-physics systems.

In our experiments, we use two different refinement cri-
teria: a gradient-based and a value-based criterion. Both cri-
teria are used in non-normalized versions and are calibrated
to the specific test case. We acknowledge that this is an ad
hoc approach and refer to the literature (e.g., Behrens, 2006b;
Becker and Rannacher, 2001) for a more concise description
of such criteria.

In order to use the refinement criteria, we assign each cell
a quantity: ϑi,j . Based on the targeted applications, we set ϑr
as the threshold for the refinement and ϑc as the threshold for
the coarsening of the cell. We refine a cell when ϑi,j > ϑr and
coarsen a cell when ϑi,j < ϑc. The refinement criterion and
the threshold determines whether a cell is refined or coars-
ened. As we use ad hoc refinement criteria instead of an error
estimator, we need to set a maximum number of refinement
levels to prevent the AMR from excessive refinement. In this
paper, we test the AMR scheme with a one-level refinement
and a two-level refinement.

For dimensionally split schemes, we need to consider an
additional refinement criterion. While in multi-dimensional
transport the information propagates directly from the de-
parture area to the arrival area and refinement is applied to
both, the tracer is always represented by refined grid cells. In
contrast, dimensionally split schemes propagate information
in each coordinate direction independently. As indicated in
Fig. 1, using the advective (inner) operators in Eq. (6), the
scheme moves the information from the departure point, cell
ξ , to intermediate positions, cell γ and β, before moving the
information to the arrival point, cell α, using the final up-
date in Eq. (8). Therefore, the AMR scheme needs to track
this information and needs to refine intermediate steps corre-
sponding to Eq. (6).

3 Idealized tests

In order to test the implementation and verify our design
choices for the AMR scheme, we conduct a number of ide-
alized tests. Idealized tests can expose the accuracy and effi-
ciency of the AMR scheme under various conditions. We de-
sign our experiments to mimic the behavior of the intended
application to prepare for the integration of the adaptive
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tracer transport scheme into an existing model while keep-
ing other components unchanged.

The idealized tests are intended to demonstrate three es-
sential aspects of our AMR scheme. Firstly, we show that the
dimensionally split scheme needs a special refinement strat-
egy in the AMR applications. Secondly, we examine vari-
ous properties of our AMR scheme, including accuracy, effi-
ciency and mass conservation. Thirdly, we explore the accu-
racy of the solution on adaptive meshes in situations where
the AMR scheme interpolates low-resolution wind fields to
high-resolution meshes.

We utilize three test cases: a solid body rotation test case
(Williamson et al., 1992), a divergent test case (Nair and
Lauritzen, 2010), and a moving vortices test case (Nair and
Jablonowski, 2008). Each test case poses different challenges
to the transport scheme. Hence, we can demonstrate that our
AMR scheme possesses all numerical properties essential to
the purpose of application.

The solid body rotation test case has a discretely
divergence-free wind field, and in the theoretical absence
of diffusion the shape of the tracer distribution should not
change during the run time. In the solid body rotation test
case, the flow orientation can be controlled by the parameter
α, where α is the angle between the flow orientation and the
equator. This test case is challenging when the tracer moves
around the poles due to the convergence of coordinate lines.
It is a useful test case to explore accuracy and efficiency of
our numerical scheme under idealized conditions.

The divergent test case deforms the tracer distribution with
a divergent wind field. Divergent wind is especially challeng-
ing for large time steps since the transport scheme needs to
correctly move the tracer when the divergent wind leads to a
high gradient in the tracer mixing ratio.

Different from the solid body rotation test case and the
divergent test case, the moving vortices test case distributes
tracer over the entire globe. The moving vortices test case
also severely deforms the tracer, and the vortices form fil-
aments in the tracer mixing ratio. Strong deformation leads
to steep gradients and furthermore poses challenges for the
AMR scheme because improper refinement criteria may re-
sult in refinement of the entire domain.

Here we use a gradient-based refinement criterion:

ϑi,j =max|
ci,j − ci−1,j

a cosθ1λ
,
ci+1,j − ci,j

a cosθ1λ
,

ci,j − ci,j−1

a1µ
,
ci,j+1− ci,j

a1µ
|, (18)

where c is the tracer mixing ratio and the subscript i,j is the
index of the grid cell. We use the same refinement criterion
for all idealized test cases and apply different thresholds for
refinement, ϑr, and coarsening, ϑc, for different test cases.
Our implementation of the gradient criterion is a way to mea-
sure the changes between the cell and its adjacent cells. By
this we ensure capturing steep slopes, which in turn lead to
the largest error in reconstructing the upstream integrals in

the CISL scheme. We note that in atmospheric modeling,
wind-based refinement criteria are sometimes preferred, but
these would not capture those sensitive regions where the
tracer needs to be represented accurately.

We use a Gaussian grid in the idealized test cases. To pro-
vide straightforward information, we denote the spatial reso-
lution in degrees. The idealized test cases are run in a stand-
alone application independently from ECHAM6, while the
dust transport test in Sect. 4 uses the AMR scheme incorpo-
rated as a module into ECHAM6.

In these idealized tests, we measure the numerical results
quantitatively in the `2 and `∞ error norms:

`2 =

√∑ncell
t

i (qi − q
exact
i )2dAi√∑ncell

t

i (qexact
i )2dAi

, (19)

`∞ =
max|qi − qexact

i |

max|qexact
i |

, (20)

where qi is the tracer mixing ratio in the ith cell, qexact
i is

the exact solution in the ith cell, and dAi is the cell area of
the ith cell. In order to test the performance of our AMR
scheme, we do not apply any limiters to the scheme in ide-
alized tests. Hence, in the idealized tests, we do not preserve
positive tracer mixing ratio.

In many tests, we need to investigate the number of cells
in a simulation. The number of cells changes with time on
adaptive meshes. In order to show the overall number of cells
in each test, we average the number of cells over time:

N := number of cells=
nt∑
t

ncell
t

nt
, (21)

where nt is the number of time steps, ncell
t is the number of

cells at time step t . The cell number can effectively and ob-
jectively reflect the efficiency of the AMR scheme regardless
of the optimizations applied to the rest of the code, since the
number of floating point operations in the transport scheme
is directly proportional to the number of cells.

We use1x→ 0 when we focus on the numerical accuracy
of the numerical scheme, while it is helpful to also look at the
efficiency of the numerical scheme using a plot with N→
∞.

3.1 Grid refinement for intermediate steps

As mentioned in Sect. 2.5, the dimensionally split scheme re-
quires the refinement of intermediate steps. Here, using the
solid body rotation test case as an example, we compare nu-
merical errors between two refinement strategies. One strat-
egy refines intermediate steps, whereas the other does not.
The flow transports the tracer around the globe with an angle
of α = 0 and α = 3

20π with respect to the equator. These two
settings lead to different maximum Courant numbers |u|

1x
1t ,

i.e., the speed of information propagation in one time step.
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Here, |u| is the wind speed in the longitudinal direction, 1x
is the grid space in the longitudinal direction, and 1t is the
time step size.

In dimensionally split schemes, large Courant numbers
can highlight the displacement between intermediate steps
and final results because the information propagation is far
away from the departure cell. When α = 0, there is no di-
vergence in each dimension in the wind field, and the AMR
scheme allows arbitrarily large Courant numbers. We use a
Courant number of around 6 over the globe corresponding to
a total number of 13 time steps on a roughly 5◦× 5◦ Gaus-
sian grid. The total number of time steps doubles with dou-
bled spatial resolution.

The dimensionally split scheme poses a limit to the time
step interval even if the two-dimensional wind field is diver-
gence free, which is given analytically on both AMR and
non-AMR meshes. The dimensionally split scheme essen-
tially performs 1-D semi-Lagrangian steps. The divergence-
free wind field in 2-D can be a result of the cancellation of
1-D divergence wind, where the 1-D divergence wind field
leads to crossing of trajectories in 1-D and limits the time
step interval.

When α = 3
20π , the maximum Courant number around

poles is 12 in the longitudinal direction, which is the largest
Courant number without the crossing of trajectories in 1-
D. However, the tracer does not cross poles. The maximum
Courant number for the local tracer is around 1.8, which is
far smaller than the maximum Courant number on the do-
main. This setup corresponds to a total of 55 time steps on a
roughly 5◦× 5◦ Gaussian grid.

In order to expose the difference in these two refinement
strategies, we use different spatial resolutions and keep the
Courant number roughly fixed. Note that the Courant number
is not exactly the same on different resolutions as the grid
spacing changes with the latitude. The AMR scheme uses a
gradient-based refinement criterion.

When α = 3
20π , the threshold for mesh refinement is ϑr =

10−3 and the threshold for coarsening is ϑc = 5× 10−3.
When α = 0, ϑr = 5× 10−6 and ϑc = 5× 10−5.

In Fig. 5, we illustrate how both flow orientations induce
displacements between intermediate steps and final results
under both flow orientations on a mesh with 1.25◦× 1.25◦

spatial resolution. The displacement is more visible when
the tracer rotates along the equators due to different Courant
numbers.

Figure 6 shows the numerical errors of these two refine-
ment strategies. The AMR results use the same maximum
resolution as the non-adaptive results. Hence, the base reso-
lution of AMR mesh is lower than the maximum resolution.
When α = 3

20π , numerical errors and the convergence rate
of these two refinement strategies are comparable. Similar
results arise from small displacements between intermediate
steps and final results as shown in Fig. 5. Our local high-

resolution areas cover intermediate steps due to our sensitive
refinement criterion.

Numerical errors show a significant difference between
these two refinement strategies when α = 0. Without re-
fining intermediate steps, the numerical error is higher on
adaptive meshes than on non-adaptive meshes because high-
resolution information (the same resolution as the non-
adaptive meshes) is contaminated on the low-resolution base
mesh during the intermediate step. The AMR scheme leads
to similar accuracy on adaptive meshes and non-adaptive
meshes when the numerical scheme refines intermediate
steps. Our implementation exposes the difference as the
AMR scheme transports information from the mesh for the
previous time step to the mesh for the new time step. Com-
putations for both intermediate and final time step exist on
the mesh for the new time step.

We show the difference of cell numbers between these two
refinement strategies in Fig. 7. Due to the large Courant num-
ber for the case of α = 0 the number of additional cells for
intermediate refinement is larger than for the case α = 3

20π .
Refinement of intermediate steps leads to larger numbers of
cells in general, but the overhead of additional cells amounts
to less than 10 %. Furthermore, the additional cost of inter-
mediate refinement is less significant or even negligible on
high-resolution meshes.

Our results demonstrate that dimensionally split schemes
require refinement of intermediate steps for better accuracy
when the Courant number is large. Although it is unlikely
that the numerical model uses an extremely large Courant
number away from the poles, we refine intermediate steps to
ensure accuracy.

3.2 Numerical accuracy and efficiency

The transport scheme behaves differently under different ini-
tial conditions and flow features. We examine the accuracy,
efficiency and mass conservation of our AMR scheme using
three different test cases.

3.2.1 Non-divergent flow with local tracer distribution:
the solid body rotation test case

We examine our adaptive transport scheme in the solid body
rotation test case. The solid body rotation test case has dis-
cretely non-divergent flow given analytically on both adap-
tive and non-adaptive meshes. The non-divergent flow also
does not severely distort the tracer distribution and the gradi-
ent of the tracer does not change during the test. Hence, we
can test the numerical properties in an ideal condition.

The test case uses a local tracer distribution with a radius
of a third of the Earth’s radius. The test case allows us to
initialize the tracer distribution on high-resolution adaptive
meshes. The AMR scheme should result in very local high-
resolution areas.
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Figure 5. Illustration of the displacement of the numerical solution between the intermediate step after update in latitudinal direction and
final results. The red distribution is the intermediate step, and the black distribution is the final result. When α = 0, the flow orientation is
parallel to the equator and the Courant number is around 6. When α = 3

20π , tracer is affected by a Courant number around 1.8.

Figure 6. Comparison of the error of the solid body rotation test case after 12 d between refinement with intermediate step and refinement
without intermediate step. Filled markers show results with refinement at intermediate steps, and empty markers show results without re-
finement at intermediate steps. The x axis is the maximum resolution in the domain. Hence, one-level refinement and two-level refinement
has the same maximum resolution (the cosine bell is covered by the same resolution), and only the coarsest resolution is lower when using
two-level refinement.

Geosci. Model Dev., 14, 2289–2316, 2021 https://doi.org/10.5194/gmd-14-2289-2021



Y. Chen et al.: Adaptive mesh refinement for single-component tracer transport 2299

Figure 7. Percentage of cell difference of cell numbers between re-
finement of intermediate steps and without intermediate steps when
they use the same maximum resolution with one-level refinement.

We set the flow orientation as α = 0, α = π
4 , and α = π

2 .
When α = 0, the tracer rotates around the globe parallel to
the equator. When α = π

4 , the flow leads to a solid body rota-
tion along the line, which is 45◦ with respect to the equator.
When α = π

2 , the flow leads to cross-pole transport, which
suffers from the geometrical problem of Gaussian grids at
poles.

We test these three flow orientations with a maximum
Courant number around 1 and 6. When α = 0, the total num-
ber of time steps is 84 for a maximum Courant number
around 1. We use 13 time steps for a maximum Courant
number around 6 on a spatial resolution of 5◦× 5◦. When
α = π

4 , the total number of time steps is 1320 for a maximum
Courant number around 1 and 240 time steps for a maximum
Courant number around 6 on a spatial resolution of 5◦× 5◦.
When α = π

2 . The total number of time steps is 1800 for a
maximum Courant number around 1 and 240 for a maximum
Courant number around 6 on a spatial resolution of 5◦× 5◦.

The AMR scheme utilizes a gradient-based criterion. Our
threshold for cell refinement is ϑr = 0.02 and the threshold
for cell coarsening is ϑc = 0.015 when α = π

4 and α = π
2 ,

while the threshold for α = 0 is the same as in Sect. 3.1.
As shown in Fig. 8, the cosine bell is located in the high-

resolution area throughout the simulation, showing the abil-
ity of the refinement criterion to detect the significant re-
gions. The large high-resolution areas are a result of the strat-
egy to refine intermediate steps.

The distribution of mesh cells explains the numerical ac-
curacy of our transport scheme on adaptive meshes. The dis-
crete representation of the non-zero tracer components is
similar on high-resolution areas of adaptive meshes and on
the uniformly refined grid in case of equal maximum resolu-
tion. This is illustrated in Fig. 9 for α = 0 and α = π

2 .

Figure 9 also shows that the AMR scheme demands fewer
cells than non-adaptive schemes to achieve similar accuracy.
We also note that higher-order refinement does not necessar-
ily result in fewer cells on the mesh. The solid body rotation
test case uses a cosine bell, which is not infinitely differen-
tiable around the boundary of the tracer, and we observe a
second-order convergence rate. Hence, we cannot observe
the optimal convergence rate of the third order even if the
splitting error diminishes and the exact departure position is
computed when the cosine bell is transported along the equa-
tor.

Figure 10 additionally shows the numerical efficiency
when α = π

4 . The 45◦ solid body rotation test case poses
a challenge to the dimensionally split scheme as the FFSL
scheme introduces splitting errors compared to the case when
α = 0. The convergence rate is not severely affected since the
FFSL scheme has a second-order splitting error in time. Due
to the refinement of the intermediate time steps, the numer-
ical errors on adaptive meshes are comparable to the results
on non-adaptive meshes.

The Gaussian grid accumulates cells around poles. Since
the refinement area at the pole covers a larger number of
cells, refinement generates proportionally more refined cells
when passing the poles. Figure 11 illustrates this with max-
ima of the cell number at times when the tracer passes the
pole.

Figure 12 shows the time evolution of the numerical error
in the solid body rotation test case. The numerical error grad-
ually grows with time. When the tracer crosses poles, the `∞
error clearly grows due to strong deformation on the mesh.
On high-resolution meshes, the `∞ error is higher than `2 er-
ror since oscillations in the numerical solutions can only be
shown in a more sensitive metric. On low-resolution meshes,
the `2 error is comparable to or larger than the `∞ error,
mainly because of larger numerical oscillations, which can
be captured by the `2 error. There is no observable difference
between non-adaptive meshes and adaptive meshes. The re-
sults are consistent with Fig. 9.

To demonstrate the efficiency of the AMR, we also present
a CPU time per time step in serial runs in Fig. 13. The code
is run on one CPU of a Dual-Core Intel Xeon E5-2697A,
2.6 GHz machine. Even though our current transport scheme
implementation is not fully optimized, the CPU time per time
step is nearly linear with respect to the number of cells. Fig-
ure 13 also shows that the CPU time per time step for mesh
refinement is relatively fixed compared to the total CPU time
per time step and that the higher refinement level consumes
more time. We need to note that the CPU time for the numer-
ical scheme can be further reduced with better implemen-
tation (e.g., avoiding frequent memory (de)allocation.). We
note further that with an overhead for the refinement of cur-
rently approx. 30 %–40 % of the total computing time of the
transport scheme, the refined features need to be local to gain
computational benefit from AMR (as indicated in Fig. 13).

https://doi.org/10.5194/gmd-14-2289-2021 Geosci. Model Dev., 14, 2289–2316, 2021



2300 Y. Chen et al.: Adaptive mesh refinement for single-component tracer transport

Figure 8. Snapshots of the solid body rotation test case when α = 0 and α = 0.5π at each day with one-level refinement. The coarse mesh
has a resolution of 5◦× 5◦, and high-resolution areas have a resolution of 2.5◦× 2.5◦.

In summary, we explored the numerical accuracy, effi-
ciency, and convergence rate of the adaptive transport scheme
in an ideal context, where we use a high-resolution initial
condition and a non-divergent wind field. Our adaptive trans-
port scheme, using reduced numbers of cells, achieves simi-
lar accuracy to the original scheme on non-adaptive meshes.

3.2.2 Divergent flow with local tracer distribution: the
divergent test case

We test our AMR scheme in the divergent test case. The
magnitude and the direction of the wind change swiftly in
a divergent flow. The swift change in wind challenges the
accuracy of our semi-Lagrangian scheme, which needs the
correct departure position. Furthermore it may reveal inexact
mass conservation, since the tracer mixing ratio will change
to compensate for converging or diverging trajectories.

In this test case, background flow transports two cosine
bells along the equator, while the divergent flow stretches
them. From day 6 on, the test case reverses its direction and
the tracer theoretically restores to its initial state. The final

tracer distribution at day 12 is the same as the initial condi-
tion. There is no analytical solution for the test case, but we
can compare the final state with the initial condition to obtain
a quantitative error.

Similar to the solid body rotation test case, the tracer dis-
tribution does not cover the entire domain but only limited
areas. However, the size of the tracer is larger in the diver-
gent test case than in the solid body rotation test case. The
AMR scheme might need more grid cells to cover the whole
tracer. To compare numerical properties of the AMR scheme
and non-AMR scheme, we assign a given wind field on adap-
tive meshes exactly instead of using wind interpolation.

We initialize the tracer distribution on the high-resolution
areas and use a gradient-based refinement criterion. Our
threshold for the refinement is ϑr = 0.2, and the threshold
for the coarsening is ϑc = 0.15.

In the divergent test case, we take three steps to verify the
performance of our AMR scheme.

1. We first run the test case with and without one-level re-
finement using a Courant number around 1 and a resolu-
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Figure 9. Convergence rate of the numerical results with respect to the number of cells in the solid body rotation test case.

Figure 10. Convergence rate of the numerical results with respect to the number of cells in the solid body rotation test case with α = π
4 .

tion of 5◦× 5◦ and investigate the representation of the
tracer on a high-resolution mesh. This test requires 120
time steps on non-adaptive meshes and 240 time steps
on adaptive meshes.

As shown in Fig. 14, the refinement criterion cap-
tures the tracer completely. The asymmetry in the high-
resolution area at day 0 is a manifestation of the re-
finement of intermediate steps based on the initial wind
field. As the tracer gets stretched during the runtime, the
high-resolution area leads to a better representation of

filaments. The final tracer distribution is not completely
the same as the initial condition, which is a result of nu-
merical damping and distortion.

2. Secondly, we use multiple levels of refinement to verify
the sensitivity of the refinement level to the numerical
accuracy and efficiency. The AMR scheme runs with
an initial resolution of 20◦× 20◦. The refinement on
adaptive meshes ranges from two-level refinement up
to five-level refinement, resulting in a resolution of up
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Figure 11. Evolution of the cell number rotating around the equator (left) and cross-pole transport (right) in the solid body rotation test case
with a resolution of 2.5◦× 2.5◦. The solid line shows the cell number evolution with time when the Courant number is small, and the dashed
line shows the cell number evolution with time when the Courant number is large.

Figure 12. Evolution of the normalized numerical error for α = 0 and α = π
2 on two different resolutions in the solid body rotation test case.

The resolution for each figure represents the highest spatial resolution on the mesh.

to 0.625◦× 0.625◦ using a Courant number around 5,
which corresponds to 24 time steps in a 5◦× 5◦ mesh.

As shown in Fig. 15, we observe a similar convergence
rate between uniformly refined meshes and locally re-
fined meshes. Our results show that the AMR scheme
and the non-AMR scheme generate numerical results
with similar accuracy where the AMR scheme requires
only a reduced number of cells in the divergent flow.

3. Thirdly, we inspect another aspect of numerical accu-
racy: mass conservation. We show the evolution of rel-
ative mass change in the divergent test case when the
maximum resolution is 0.625◦× 0.625◦ with no adap-
tive refinement and one-level refinement with a coarse
resolution of 1.25◦× 1.25◦. We define the relative mass
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Figure 13. CPU time per time step compared to the cell number. The left figure indicates the CPU time per time step for the transport scheme,
while the right figure shows the percentage of the CPU time per time step used for mesh refinement compared to the total CPU time.

change as follows:

relative mass change=
mass−massmean

massmean
, (22)

where mass is the mass at individual time step and
massmean is the temporal average of the mass in all time
steps. The relative mass shows the deviation of the mass
at one time step compared to the time-averaged mass.

We observe that mass is conserved without AMR in
Fig. 16. However, mass declines with AMR experi-
ments. After 960 time steps, the loss of relative mass
change is on the order of 10−12 and the mass is
greater than time-averaged mass initially. The loss of
mass arises from the accumulation of rounding error of
floating-point calculation with time in the computation
of geometrical information in AMR procedures. Never-
theless, the mass variation in each time step is at ma-
chine precision, which is on the order of 10−16.

Summing up, our adaptive transport scheme is capable of
accurately handling the divergent flow on adaptive meshes.
The numerical error is nearly the same on non-adaptive
meshes as on adaptive meshes, and the scheme conserves
mass in each time step. The heuristic gradient-based refine-
ment criterion controls the mesh distribution by capturing the
relevant tracer field and improves the efficiency of the numer-
ical simulation. Better error estimators may further improve
computational efficiency. The test case demonstrates that our
adaptive transport scheme is able to be used in realistic sim-
ulations.

3.2.3 Non-divergent flow with global tracer
distribution: the moving vortices test case

The moving vortices test case is a challenging test case for
AMR. Numerical accuracy on adaptive meshes and globally
refined meshes is similar regardless of the feature of the flow
when we use local tracer distributions as shown in Sect. 3.2.1

and 3.2.2. The moving vortices test case utilizes a global
tracer distribution. To avoid global refinement in our AMR
runs, the goal of our AMR scheme is to improve the local
representation of the tracer distribution in vortices instead of
improving the numerical accuracy globally.

As the vortices in this test case develop with time, local
refinement is not present at initial time steps. Our numeri-
cal experiments use low-resolution initial condition, which is
different from experiments in Sect. 3.2.1 and 3.2.2. The mov-
ing vortices test case allows us to mimic the setting in our
targeted applications in ECHAM6 as described in Sect. 2.4.
Figure 17 shows the effect of omitting grid refinement around
poles due to the wind interpolation.

To investigate errors from coarse initial conditions and
wind fields, we examine three different settings. (1) We set up
numerical experiments, where the initial condition and wind
field is defined analytically on grid cells. (2) We run AMR
experiments with one-level and two-level adaptive refine-
ment, where coarse initial condition and interpolated wind
field from initial refinement levels are used. (3) We also set
up experiments using uniform refinement with coarse initial
condition and wind interpolation. Here, uniform refinement
refines all cells on the mesh, leading to a higher global res-
olution than the coarse mesh, such that the third experiment
setting can be used as a reference solution to experiment 2
because both experiment 2 and 3 use the interpolated wind
field from coarse meshes.

In all experiment settings, we set α = π
4 and test the nu-

merical scheme with both large and small Courant numbers
on various resolutions. On a mesh of 5◦× 5◦, the test requires
1320 time steps for a small Courant number and 240 for large
Courant numbers.

On adaptive meshes, the refinement threshold for the
gradient-based refinement criterion is ϑr = 0.8 and the coars-
ening threshold is ϑc = 0.4. The threshold in this test case is
more relaxed than in the solid body rotation test case due to
the strong deformation arising from the vortices. We use the
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Figure 14. Numerical results of the divergence test case with a res-
olution of 5◦× 5◦ in the left panel and one-level refinement in the
right panel. The maximum resolution is 2.5◦× 2.5◦. The Courant
number is around 1.

same gradient-based criterion with different thresholds for
all idealized test cases. This avoids focusing on the choice
of the refinement criterion in this study and focuses on the
effect of AMR in the transport module of an existing model.
We expect that the choice of a refinement criterion requires
further investigations, especially in operational settings, to
maximize computational efficiency and accuracy.

We show snapshots of the numerical solution at 5◦× 5◦

coarse resolution and one-level refinement in Fig. 18. The re-
finement criterion captures the development of the vortices.
Finer grids reduce the error around the steep gradient induced
by the vortices. The filaments of the tracer are not identifi-
able in low-resolution simulations, but high-resolution sim-
ulations can capture the fine-scale feature in the tracer field

such that we resolve finer filaments. The adaptive transport
scheme refines the regions where vortices appear.

The large refinement area in Fig. 17 is a result of the
gradient-based refinement criterion, which is sensitive to the
accumulation of grid cells around the poles. The less tailored
refinement criterion still shows improved efficiency for the
idealized test cases.

Our results indicate that AMR can improve local accu-
racy of numerical results even if the scheme can only access
coarse grid information, which is consistent with the results
from Behrens et al. (2000).

As shown in Fig. 19, errors from the initial condition and
wind interpolation do indeed contribute to the overall error.
While the results with the initial condition and wind on the
same resolution behave similar when refined adaptively or
uniformly, using a high-resolution initial condition and wind
with uniform mesh shows better accuracy. A higher level
of refinement means a lower-resolution initial condition and
thus a larger contribution of the interpolation error. On the
other hand, even with low-resolution initial conditions and
wind, higher adaptive resolution improves the results due to
the improved ability to resolve filamentation.

The convergence rate of the numerical scheme using zero-
level refinement is as expected. The numerical scheme can be
third order, as shown in Fig. 9 in the solid body rotation for
optimal conditions, i.e., smooth tracer distribution and con-
stant wind field. In low-resolution runs, the scheme shows a
convergence rate between the first and second order due to
the sharp gradient arising from the vortices, which is con-
sistent with the results from Nair and Jablonowski (2008),
who used basically the same scheme with a Courant num-
ber of less than 1. Although Nair and Jablonowski (2008)
tested the scheme with α = 0, our results also show similar
numerical accuracy using zero-level refinement. The curved
convergence rate toward its best performance in this test case
is also observed by Ferguson et al. (2016) using a different
numerical scheme.

To highlight the effect of wind interpolation, we present
the difference of numerical errors between the standard test
case, where data (wind and initial conditions) are given at
finest grid resolution, and tests using coarse data interpolated
to the finest grid level in Fig. 20. Uniform refinement using
coarse data leads to additional errors where two-level refine-
ment, which uses data that is 2 times more coarsely resolved
than the exact initial condition, shows larger errors than one-
level refinement. AMR and uniform refinement expose sim-
ilar behavior with a slight advantage in some situations for
uniform refinement. The error due to wind interpolation is
generally one to two orders of magnitude smaller than the
solution error (cf. Fig. 19), indicating that even with interpo-
lated data AMR leads to accurate results with low computa-
tional effort.

Although the coarse initial distribution reduces the effect
of refinement, using the high-resolution mesh still results in
better numerical accuracy than only using the low-resolution

Geosci. Model Dev., 14, 2289–2316, 2021 https://doi.org/10.5194/gmd-14-2289-2021



Y. Chen et al.: Adaptive mesh refinement for single-component tracer transport 2305

Figure 15. Convergence rate of the numerical results with respect to the number of cells in the divergent test case using the same initial
spatial resolution with multiple refinement levels.

Figure 16. Evolution of mass change on both non-adaptive (a) and adaptive (b) meshes. Note that we do not plot the mass error but the mass
with respect to the average, which explains the initially non-zero value for the adaptive run. The loss of mass arises from the accumulated
floating point rounding error with time on adaptive meshes. The mass variation in each time step is at machine precision (on the order of
10−16).

Figure 17. Numerical results of the moving vortices test case at the
final time step on a lat–long plane, indicating that the cells around
poles are not refined. The numerical results have the resolution of
a 5◦× 5◦ coarse grid with one-level refinement and an interpolated
wind field.

mesh. Coarse input wind reduces the numerical accuracy.
However, we still observe convergent and accurate numeri-
cal results using the AMR scheme. Our AMR scheme can
improve the numerical accuracy using fewer grid cells than
uniformly refined mesh when we integrate it into the tracer
transport module of an existing coarse resolution model.

4 A realistic test case: simulation of dust transport

The tracer transport process exhibits multi-scale features in
climate simulations. As indicated in Sect. 3, low-resolution
simulations cannot represent fine-scale features of the tracer
transport processes. Improving the local representation of
the tracer transport scheme can therefore reduce at least one
source of error in climate models. On the other hand, the
tracer transport process plays an important role in climate
systems. The transported gases and aerosols have a signif-
icant impact on the state of climate through solar radiation
(Carslaw et al., 2010). For example, carbon dioxide is one of
the major driving factors of anthropogenic climate change.
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Figure 18. Numerical results of the moving vortices test case. The
left column shows the numerical results on the a resolution of a
5◦× 5◦ coarse grid. The right column shows the numerical results
on the resolution of a 5◦× 5◦ coarse grid with one-level refinement
and an interpolated wind field.

Volcanic ashes have a cooling effect on the global tempera-
ture. Hence, better tracer transport simulations can improve
overall results in climate simulations.

We select dust to test our adaptive transport scheme in re-
alistic settings. Dust has evident local origins like the Sa-
hara and it can traverse across long distances while retaining
local features because the atmospheric flow can lift dust to
higher levels (Liu and Westphal, 2001). Emission and de-
position parameterizations have less impact on higher-level
aerosols. Hence, dust simulations are suitable to demonstrate
the advantages of using AMR.

We test our AMR scheme while maintaining a non-
adaptive coarse climate model to which our AMR scheme
is coupled in a one-way fashion. The one-way coupling pre-
vents our tracer from interacting with other components of

the climate model such that we can compare the difference
between our adaptive tracer transport scheme and the origi-
nal scheme using our conclusions from Sect. 3.

4.1 The host model: ECHAM-HAMMOZ

We integrate our adaptive tracer transport scheme into
ECHAM6 without breaking its current code structure. Fur-
ther, the structure of ECHAM6 can also provide insight into
numerical results of our simulation of dust transport. Hence,
it is necessary to understand the model.

ECHAM6 is the atmospheric component of the Earth sys-
tem model MPI-ESM (Stevens et al., 2013). It is composed
of several components: the dynamical core, the physical pa-
rameterizations, and a land surface model (JSBACH).

The dynamical core solves hydrostatic primitive equations
of the atmosphere, which describe the motion of air and as-
sume absence of acceleration in the vertical. The dynami-
cal core in ECHAM6 was originally derived from an early
version of the atmospheric model developed at the Euro-
pean Center for Medium-Range Weather Forecast (Eliasen
et al., 1970). ECHAM6 also applies a terrain-following co-
ordinate to accommodate the varying orography at the bot-
tom of the atmosphere. The terrain-following coordinate is a
hybrid coordinate (Simmons and Burridge, 1981). Both the
passive tracer transport scheme and the parameterizations in
ECHAM6 are computed on a Gaussian grid using the flux-
form semi-Lagrangian scheme, which we discussed in detail
in Sect. 2. ECHAM6 also includes various parameterization
schemes, including convection, cloud, radiation, and vertical
diffusion. The land surface model comprises a class of pa-
rameterizations that provides the properties of land surface
for other components of the climate model.

ECHAM-HAMMOZ is a coupled model that combines
ECHAM6 and HAMMOZ, where ECHAM6 is flexible
enough to host various sub-models. The sub-model HAM-
MOZ provides a class of aerosol and atmospheric chemistry
modules (Schultz et al., 2018) that predict the evolution of
aerosols and trace gases. In our application, we focus on the
evolution of the dust mixing ratio. ECHAM-HAMMOZ di-
vides tracers into seven different modes (Vignati et al., 2004).
These modes are dependent on the size and solubility of the
particles. There are four different modes for dust: accumu-
lation mode mixed (DU_AS), coarse mode mixed (DU_CS),
accumulation mode insoluble (DU_AI), and coarse mode in-
soluble (DU_CI). HAMMOZ describes the emission, diffu-
sion, dry deposition, wet deposition, cloud scavenging, and
sedimentation of these tracers.

4.2 Tendency equation of dust concentration

We replace the 2-D tracer transport scheme in ECHAM6 with
our proposed AMR scheme. However, the evolution of the
dust mixing ratio in a climate model is more complicated
than a 2-D tracer transport equation. The large-scale tem-
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Figure 19. Convergence rate of the numerical results in the moving vortices test case on adaptive meshes using a coarse initial condition and
interpolated wind except for zero-level refinement.

poral changes in dust mixing ratio are not only controlled
by tracer transport but also affected by various other param-
eterizations. The large-scale temporal changes in the tracer
mixing ratio are also referred to as the tendency of the tracer
mixing ratio.

In this section, we present the tendency equation of the
dust mixing ratio in ECHAM6. In addition, we also present
our implementation when integrating our adaptive transport
scheme to ECHAM6.

4.2.1 Numerical treatment of tendency equation in
ECHAM6

ECHAM6 describes the tendency equation of the tracer mix-
ing ratio using the following equation:

∂ρc

∂t
+∇ · (ρcu)= F. (23)

Here ρ is the air density, c is the tracer mixing ratio, the com-
bination of ρc is the density of the tracer in the air, ∂ρc

∂t
is the

tendency of the tracer density, ∇· is the three-dimensional
divergence operator, and F represents external forcings. In
climate models, the tracer mixing ratio c represents the mix-
ing ratio, which is the mass of the aerosol or gas relative to
the mass of dry air. The unit of the mixing ratio is kgkg−1.

The forcing term includes the vertical diffusion, dust
emission, dry deposition, wet deposition, sedimentation, and
cloud scavenging process. The wet deposition process also
involves the convective and cloud processes. Hence, the forc-
ing term is a collection of parameterizations.

ECHAM6 uses η coordinates as follows:

η
k+ 1

2
=

A
k+ 1

2

p0
+B

k+ 1
2

p
k+ 1

2
= A

k+ 1
2
+B

k+ 1
2
ps. (24)

where k is the kth vertical layer, A and B are constant coef-
ficients, and ps is the surface pressure.

The transport equation under hybrid η coordinate is as fol-
lows:

∂

∂t

(
∂p

∂η
c

)
+∇ ·

(
∂p

∂η
cu

)
+
∂

∂η
(η̇
∂p

∂η
c)= 0, (25)

where the velocity vector u is the horizontal velocity vector,
the vertical velocity is η̇, and η ∈ [0,1]. The boundary con-
dition for the equation is η̇ = 0 at η = 0 and η = 1.

Integrating both sides of Eq. (25) over η and using the
finite-difference method, the tendency equation in hybrid co-
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Figure 20. Differences of numerical errors between non-adaptive meshes using exact initial conditions and exact wind fields and adaptive or
uniformly refined mesh using a coarse initial condition and interpolated wind field in the moving vortices test case.

ordinates is as follows:

∂1pkck

∂t
+∇ · (1pkckuk)= F, (26)

∂1pk

∂t
+∇ · (1pkuk)= F, (27)

where 1pk is the pressure at the kth layer, ck is the tracer
mixing ratio at the kth layer, and uk is the horizontal wind
vector at the kth layer.

The FFSL scheme solves the vertical transport separately
in the hydrostatic model (Lin and Rood, 1996). As our
mesh refinement runs on a 2-D mesh and keeps the vertical
mesh fixed, the vertical transport subroutine of ECHAM6 is
reused. In ECHAM6, the surface pressure is ps =

∑
k1pk

and the pressure at each layer is pk = ps−
∑
k1pk . This

leads to an inconsistency between pk and the definition of
pressure levels in Eq. (24). To solve the problem and the ver-
tical transport, ECHAM6 uses the technique introduced in
Jöckel et al. (2001) and PPM remapping. We reuse the ver-
tical remapping subroutine in the original ECHAM6 without
any modifications in the AMR scheme.

The FFSL scheme actually used in ECHAM6 leads to
more diffusive results due to some modifications making it
computationally less expensive than the scheme presented in
Sect. 3. For example, the FFSL scheme in ECHAM6 uses a
first-order Godunov scheme as the inner operator and a third-

order piecewise parabolic method (PPM) as the outer oper-
ator instead of the third-order PPM for both inner and outer
operators. In ECHAM6, the scheme includes limiters to en-
sure the positivity of the numerical results and averages over
the longitude bands around the poles to avoid pole problem.
We reuse these limiters in our experiment in this section for
the realistic dust simulations. Note that we do not apply any
limiters or special treatment around the poles in Sect. 3.

4.2.2 Refinement strategy

One of the benefits of integrating AMR into an existing
model is that we do not need to implement and design a new
model with the AMR technique. Rather, we can reuse most
components of the existing model. In realistic dust simula-
tions, we only need to replace the horizontal tracer transport
scheme by our adaptive scheme.

The hydrostatic primitive equations require the vertical in-
tegration of a column over each cell. Hence, for simplicity,
instead of refining the mesh in 3-D, we only refine the hor-
izontal 2-D mesh, obtaining locally smaller columns. Using
2-D refinement enables us to reuse the vertical tracer trans-
port scheme without any modification.

As we integrate AMR into the passive tracer transport
module without any modification in other components, the
passive tracer transport module always gets wind, pressure,
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and passive tracer mixing ratio on a coarse grid. High-
resolution wind can therefore only be obtained by interpo-
lation from a coarse grid. Similar to the treatment of wind
in Sect. 3, we use a bilinear interpolation. As our aim is
to demonstrate the applicability of AMR for a single tracer
transport module, we apply an absolute value refinement
criterion instead of a gradient-based criterion here to en-
force the generation of high-resolution regions even when
dust mixing ratio are low (but present). Therefore, we use
the absolute value of ρc as a refinement criterion. When
N tracers are simulated in ECHAM6, the refinement crite-
rion is mini(

∑
lρci), where l is the vertical level and i =

1, . . ., N corresponds to the tracer components. Thus, for
each column we first take the sum of the density of each
tracer for all vertical levels in a single column, and then
we take the minimum value of the N tracers as the refine-
ment criterion. We apply a refinement threshold of ϑr =

10−11 kgkg−1
= 10−5 mgkg−1 and a coarsening threshold

of ϑc = 10−12 kgkg−1
= 10−6 mgkg−1.

4.3 Results of one-way coupling dust simulation

We test our adaptive tracer transport scheme with realistic
dust mixing ratio data using one-way coupling; i.e., we get
coarse resolution wind and pressure as input data at each time
step. During the simulations, we do not map the dust mix-
ing ratio back to the coarse resolution mesh used by other
components. Therefore, the dust mixing ratio does not affect
other components of the climate model, especially pressure
and wind field. This corresponds to the situation in the ideal-
ized simulations of Sect. 3 with realistic data.

The dust mixing ratio is always simulated on adaptive
meshes. Since the parameterizations compute the tendency
of tracer mixing ratio in columns, our adaptive scheme can
accommodate the use of the existing parameterizations.

4.3.1 Experiment setting

In our one-way coupling experiments, parameterization
schemes running on coarse-resolution meshes should affect
the dust mixing ratio on adaptive meshes. Our implementa-
tion (refining columns) is aware of the original ECHAM6 pa-
rameterizations and is a positivity-preserving method, lead-
ing to a compatible dust transport.

We can illustrate our treatment using a differential equa-
tion:

DcAMR

Dt
= F(Xcoarse,cAMR), (28)

where D
Dt is the material derivative, cAMR is the tracer mixing

ratio of the AMR scheme, F is a parameterization scheme,
and Xcoarse is a vector of variables involved in the parameter-
ization scheme other than the tracer mixing ratio. Therefore,
our one-way coupling always uses coarse-resolution param-
eters for parameterization schemes even if our tracer mixing

Figure 21. Illustration of our setting for the one-way coupling
experiment. c is the tracer mixing ratio on the coarse resolution,
Xcoarse is a vector of variables other than the tracer mixing ratio in
the model at a coarse resolution, and cAMR is the tracer mixing ratio
of the AMR scheme. The rectangles include modules and processes
in the model, ellipses are the output of each module or process, and
arrows indicate the input variables in each module or process.

ratio is at a higher resolution. We can achieve such an imple-
mentation since parameterization schemes run within each
column of the horizontal mesh. The flowchart in Fig. 21 il-
lustrates this approach.

ECHAM6 provides a variety of options for the parame-
terization schemes. Although there are default settings for
most parameterizations, we use some non-default options to
simplify our experiment. In our experiment we use a verti-
cal resolution of 31 layers, (L31), corresponding to a model
top at 10 hPa. Hence, ECHAM6 does not compute the mid-
atmosphere in our experiments.

In order to perform dust emission, we turn on the
ECHAM-HAM submodel while muting the chemistry and
MOZ1.0 (Schultz et al., 2018) submodel for simplicity. In
our experiment, we also use the dust scheme proposed by
Stier et al. (2005) and omit the additional Saharan and East
Asian dust sources in the default settings.

We also set all agricultural and biogenic emissions as inac-
tive, including forest fire and volcanic ashes. Hence, we only
have emissions of dust species from the dust emission param-
eterizations. With this setting we simulate the dust evolution
during the period of 1 to 31 October 2006 as there were dust
emission events in the Sahara during this month.
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4.3.2 Comparison between low-resolution and
high-resolution simulations

We expect that high-resolution simulations can represent cli-
mate states with higher quality. High-resolution climate mod-
els better represent not only the initial conditions but also the
boundary conditions, such as the topography and different
types of land surface.

Our AMR scheme increases the resolution of the pas-
sive tracer transport scheme. However, our scheme can im-
prove neither the initial condition nor the representation of
the boundary conditions. Nevertheless, it is still of interest to
compare the dust mixing ratio on a low spectral resolution of
T 31L31 (3.75◦× 3.75◦ in degrees) and a higher resolution
of T 63L31 (1.875◦× 1.875◦ in degrees) configuration such
that we can understand the difference between high- and low-
resolution simulations.

We adopt the default time step setting in ECHAM6. In the
T 31 resolution, the time step length is 1800 s, while in the
T 63 resolution it is 450 s. In the following experiments, we
use the time step configuration based on the coarsest compo-
nent of the model.

We present the dust mixing ratio of DU_AI in Fig. 22. The
Saharan air layer as a large-scale system is assumed to lift
and transport dust up to a height of 5 km (Rodríguez et al.,
2011). In order to capture the transport of dust without inter-
ference from the emission in lower levels, we show the dust
mixing ratio of DU_AI at 800 hPa.

The simulation at a uniform resolution of T 31L31 shows
dust appearing in the 800 hPa layer after 3 October. The
wind field transports dust westward toward the Atlantic
Ocean. After day 9, the dust mixing ratio increases in East
Asia and gradually moves southwestward. The uniform high-
resolution T 63L31 simulation shows quite different patterns.
There is a high dust mixing ratio at the east and west of
North Africa on 6 October, and we cannot observe such
high dust mixing ratios using low-resolution simulations. Al-
though both dust simulations show a westward transport, the
pattern of the dust distribution differs significantly. For ex-
ample, hardly any dust disperses in East Asia in the high-
resolution simulations.

These simulations show an important fact of multi-physics
simulations: there exist sub-grid-scale parameterizations that
inhibit convergence in a classical mathematical sense. The
differences between T 31 and T 63 horizontal resolution sim-
ulations are caused by both the increased resolution in the
dynamical core and the necessary change in parameteriza-
tions due to the increased resolution.

In particular, Gläser et al. (2012) showed that the dust
emission scheme is sensitive to different horizontal resolu-
tions. The observed dust mixing ratio is also affected by
wet and dry deposition, which itself is affected by cloud and
convection parameterizations. These results indicate that we
cannot use a high-resolution simulation as a converged-state

quasi-reference solution. Our analysis of accuracy will there-
fore be more subtle.

Since we will add AMR only to the tracer transport, our
comparison will be focused on differences in filamentation
of tracer clouds and the resolution of sharp gradients. Our
scheme cannot compensate for insufficient scale-awareness
of the parameterization, and we will rely on the given param-
eterization schemes.

4.3.3 Comparison between low-resolution and adaptive
meshes

There are multiple sources of uncertainties in low-resolution
simulations. The coarse initial condition and boundary con-
dition can lead to less accurate results, while the coarse res-
olution dynamical core and parameterizations cannot resolve
the finer features of the atmosphere.

The results from our idealized tests in Sect. 3 show that
using AMR in the tracer transport module can effectively re-
duce the numerical error of the tracer transport process. Us-
ing an interpolated wind field with a coarse-resolution initial
condition can still improve the numerical accuracy of passive
tracer transport schemes. It is promising that we can treat one
source of error by using AMR in coarse resolution climate
simulations.

Since we observed in the previous paragraph that uniform
refinement of the whole atmosphere model does not yield a
converged solution that is usable as a reference, we adopt the
following approach. We will use a dust transport scheme run
on a uniform high-resolution T 63 grid, coupled to a coarse
T 31 dynamical core with corresponding low-resolution pa-
rameterizations. This solution, shown in the left panel of
Fig. 23, will serve as a reference for our adaptive mesh sim-
ulations.

Compared to low-resolution simulations, we observe that
uniformly refined meshes show less diffusive results. Dust
mixing ratio is higher than in low-resolution simulations,
while the filaments of the dust distribution are more obvi-
ous. Even with a low-resolution dynamical core and param-
eterization, the higher-resolution tracer transport leads to re-
duced numerical diffusion and thus better-quality simulation
results.

Now, we take the uniformly refined transport module mesh
as the benchmark for our adaptive mesh refinement. Our re-
sults in Fig. 23 show that AMR captures the appearance of
dust very well. The results for uniformly refined meshes and
adaptive meshes are very similar, indicating that using AMR
for only one component can improve the accuracy of the sim-
ulation.

We also observe large refined regions in Fig. 23. The size
of the refined regions is a result of the thresholds used in
the refinement criterion. Further optimization of refinement
criteria could potentially alleviate this in future applications.

However, a more important reason is that the mesh is
refined only horizontally. Therefore, even if a significant
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Figure 22. Dust mixing ratio of DU_AI (mgkg−1) at 800 hPa on 3, 6, 12, and 15 October using model resolutions of T 31L31 (left) and
T 63L31 (right). The dust mixing ratio is masked due to high altitude in areas such as the Tibetan Plateau.

amount of tracer concentration is only present in a lower (or
higher) level of the atmosphere, the refinement is performed
on all levels. Finally, another reason for such large refined re-
gions is that four different dust tracers share the same adap-
tive mesh. Using different adaptive meshes can be desirable
when the number of tracers is high, but it can affect the reuse
of the departure point computations. One of the benefits of
multi-tracer efficiency in the semi-Lagrangian scheme arises
from its capability to reuse departure points of trajectories.
As a compromise, putting tracers into groups sharing the
same (adaptive) mesh may achieve a better balance between
the individual adaptivity of meshes and the multi-tracer effi-
ciency in semi-Lagrangian schemes.

We note that even with the non-optimal refinement cri-
terion the one-way coupled dust simulation on an adaptive
mesh requires 9062 cells on average over the 30 d simula-
tion, while the uniformly high-resolution transport mesh re-
quires 17 280 cells. This difference highlights the potential
efficiency gain from adaptive mesh refinement.

In order to show the difference between the local-
resolution runs and adaptive runs, we show a local tracer dis-
tribution in North Africa in Fig. 24, which highlights the less
diffusive and more pronounced tracer mixing ratio in high-
resolution regions.
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Figure 23. Dust mixing ratio of DU_AI (mgkg−1) at 800 hPa on 3, 6, 12, and 15 October based on a coarse model resolution of T 31L31.
The entire model runs on T 31L31 with the tracer transport module at a doubled resolution in the left panel, while the dust transport is on
adaptive meshes in the right panel.

Our results show that integrating AMR into a passive
tracer transport scheme can effectively reduce errors even if
we do not use high-resolution data for other components.

5 Conclusions

We propose a new approach toward adaptivity in climate
models. Our method is different from the traditional AMR
approach, which constructs a completely new climate model
using AMR. Our approach overcomes the difficulty of inte-
grating AMR into operational climate models. We integrate

an AMR passive tracer transport module into the existing at-
mospheric model ECHAM6. Partially integrating AMR into
the existing climate model improves accuracy and efficiency
in operational climate simulations.

We demonstrate the effectiveness of our approach by
simulating dust transport processes in ECHAM6. In a first
step, we find that running the tracer transport module on
a uniformly refined mesh improves the quality of the re-
sults. Adding adaptive mesh refinement yields similar high-
resolution accuracy with improved efficiency, since our
AMR approach avoids mesh refinement of the entire globe
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Figure 24. Dust mixing ratio of DU_AI (mgkg−1) at 800 hPa on 3 and 6 October at a model resolution of T 31L31 using our modified
transport scheme in the region of [10◦ S, 50◦ N]× [30◦W, 90◦ E]. In the left panel, the entire model runs on T 31L31. In the right panel, the
dust transport is on adaptive meshes and the rest of the model is on T 31L31. The insets in the right column show the mesh distribution.

and successfully captures regions where high-resolution
meshes are necessary.

Since we apply only one-way coupling, high-resolution
simulations improve the accuracy of dust transport processes,
but the general accuracy of the climate simulation remains
limited by the coarse spatial resolution of other components,
such as the dynamical core and parameterizations. This ap-
proach allows us to rely on the general model infrastructure,
such as parameterization schemes and vertical convection
schemes.

Our idealized tests indicate that the AMR approach can
potentially be as accurate as global high-resolution simula-
tions when the tracer is present at local areas and the AMR
scheme can access the exact wind field. Reducing local nu-
merical errors can improve the overall accuracy of numerical
solutions. Our AMR scheme leads to superior accuracy and
efficiency compared to non-adaptive schemes.

Enabling AMR in existing climate models relies on several
techniques proposed here: adequate AMR enabled transport
schemes, refinement strategies, and transparent data struc-
tures, which were described in Chen et al. (2018). These
techniques can be applied in a wider context than the appli-
cations shown here.

Our modification to the widely used flux-form semi-
Lagrangian (FFSL) scheme in ECHAM6 allows the trans-
port scheme to be used on adaptive meshes while retain-
ing its important properties, i.e., being dimensionally split
and mass conserving and featuring semi-Lagrangian time
stepping. Preserving the dimensionally split property results
in efficiency and numerical compatibility between the new
AMR and the original scheme. Mass conservation is essen-
tial for climate models as an unphysical numerically induced

mass variation in transport processes could accumulate over
the long simulation cycles of climate models. The semi-
Lagrangian time stepping is particularly useful for AMR
because it can use a uniform time step on multi-resolution
meshes without any stability issues. Hence, similar to the
original FFSL scheme, our AMR scheme is a candidate for
more complex systems (Lin, 2004; Jablonowski et al., 2009).

We also demonstrate the effectiveness of the proposed re-
finement strategy for dimensionally split schemes. Our AMR
strategy ensures that high-resolution information remains
highly resolved over the whole propagation cycle from de-
parture cell to target cell, which in turn guarantees the ac-
curacy of numerical results. Thus, our AMR strategy results
in accurate simulations, as discussed in Sect. 3. The men-
tioned properties of our AMR-enabled FFSL transport allow
for a transparent replacement of existing non-adaptive trans-
port modules in climate models.

We expect that our results from dust simulations are appli-
cable to other aerosols and gases as well. However, more rig-
orous investigation is needed. It is still of interest to explore
two-way coupling, where aerosols on adaptive meshes have
an impact on processes such as cloud formation, radiation,
or pressure. The development of two-way coupling would re-
quire the retention of high-resolution information on the low-
resolution mesh, i.e., effective upscaling. Averaging can lead
to the loss of some fine-scale features, so more sophisticated
multi-scale methods to upscale high-resolution information
to low-resolution meshes need to be applied (e.g. Simon and
Behrens, 2018). These upscaling methods are in a sense the
reverse of AMR.

While two-way coupling is still not available, this study
provides a first step towards full functionality of AMR ap-
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proaches in climate models. Our method may also be ex-
tended to more components of climate models. To achieve
full operability our AMR scheme requires additional work
on code optimization and parallelization.

An alternative possible use of AMR could be dynamical
coarsening of the mesh for a single component. Dynami-
cal coarsening can circumvent the limitation of coarse initial
conditions and parameterizations. However, this may require
extended data structures.

Our approach provides an AMR-enabled transport mod-
ule with transparent data structures and numerical properties
similar to the original scheme, which allows us to include
component-wise AMR into existing climate models. This
reduces the time of development significantly compared to
constructing a complete new AMR climate model and opens
an evolutionary path towards AMR-enabled climate model-
ing.

Code and data availability. The code for running and
plotting idealized tests in Sect. 3 is available from
https://doi.org/10.5281/zenodo.4013277 (Chen et al., 2020)
under the GNU General Public License v3.0. The results from
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