
Development of a profile-based electricity 
demand response estimation method: an 
application based on UK hotel chillers 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Curtis, M., Smith, S. T. ORCID: https://orcid.org/0000-0002-
5053-4639 and Torriti, J. ORCID: https://orcid.org/0000-0003-
0569-039X (2021) Development of a profile-based electricity 
demand response estimation method: an application based on 
UK hotel chillers. Energy and Buildings, 246. 111071. ISSN 
0378-7788 doi: 10.1016/j.enbuild.2021.111071 Available at 
https://centaur.reading.ac.uk/97831/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.enbuild.2021.111071 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



 

Development of a profile-based electricity demand response 

estimation method: An application based on UK hotel chillers 

 

Mitchell Curtis1, Stefan Thor Smith1, Jacopo Torriti1 

 
1 School of Built Environment, University of Reading, UK RG6 6DF 

 

Corresponding Author: s.t.smith@reading.ac.uk 

 

Abstract 

In principle, Demand Side Response (DSR) is increasingly seen as a critical component 

of a low-carbon electricity network with renewables as main sources of generation. In 

practice, DSR has been slow to emerge in most electricity markets of developed and 

developing countries. One of the main reasons for the slow penetration of DSR is the 

difficulty to assess the flexibility potential of individual sites. This paper develops a new 

DSR estimation method which uses detailed profiles information based on data on 

Heating, Ventilation and Air Conditioning (HVAC) chillers in five UK hotels between 

2013 and 2017 and applies a combination of clustering analysis and subsequent stochastic 

sampling using cluster-weighted date-based predictors. Findings show that the profile 

DSR estimation method features a better balance of error compared with previous 

methods.  

 

Keywords: Demand side response, electricity demand, flexibility assessment, error 

estimation, usage profiles 

 

Highlights 
 The profile DSR estimation method features a better balance of error compared with 

previous methods.  

 Clustering of detailed usage data to create profiles is a viable approach for improving 

DSR estimation.  

 Profiles can provide greater account of estimation uncertainty compared to existing 

deterministic methods.  

1 Introduction 

In principle, Demand Side Response (DSR) is increasingly seen as a critical component 

of a low-carbon electricity network with renewables as main sources of generation. In 

practice, DSR has been slow to emerge in most electricity markets of developed and 

developing countries. One of the main reasons for the slow penetration of DSR is the 

difficulty to assess the flexibility potential of individual sites. A comparison of existing 

site-level DSR estimation methods showed that these have high output errors, high costs 
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and are also deterministic in nature, and therefore unable to provide any measure of 

certainty in their outputs (Curtis et al., 2018). Accordingly, obtaining any accuracy in 

understanding the nature and scale of the output uncertainty for existing methods would 

require retroactively evaluating estimation results against actual data once the new site 

has gone live. Yet this is inefficient as a solution for improving the viability and market 

penetration of DSR solutions. This paper develops a new estimation method that aims to 

address limitations in existing estimation methods. The profile DSR estimation method, 

or ‘profile method’, established in this paper uses detailed usage information (from sub-

meters for example) of electrical assets to create a set of load profiles to represent 

common usage patterns. These profiles can then be used to determine the likely usage 

levels for similar assets at sites where detailed usage data are not available.  

 

Once the DSR estimation profiles have been created, this method aims to provide as 

benefits: (i) only requiring very basic information to perform a DSR potential assessment 

for a new site (namely the site’s business category and maximum kW ratings for potential 

DSR assets), (ii) being immediately implementable (with the usage profiles being applied 

automatically once the basic information is entered), and (iii) providing the user with the 

ability to manage and understand the estimation uncertainty.  

 

By seeking to develop a new estimation method through creating and then applying load 

profiles, this paper builds upon existing published approaches for analysing electricity 

demand. At a macro level, for example, load profiles are already used by the electricity 

industry to understand country level demand for electricity (Heffron et al., 2020). To 

enable demand forecasting, Elexon (the UK’s electricity settlement service) has created 

temperature based regression models in eight expected usage profile classes for domestic 

and non-domestic sites that lack half hourly metering (Elexon, 2013). These Elexon 

profiles are generated by using data captured from up to 2,500 half hourly meters which 

are installed across sites throughout the UK.  

 

In contrast, Räsänen et al. (2010) demonstrated the value of improved monitoring for load 

profile assignment over use of site characteristics and annual usage alone. By use of 

clustering techniques for 3,989 sites in Finland, the approach was shown to improve 

(increased index of agreement: 0.478 to 0.627) demand forecasting across 230 sites in 
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comparison to site characteristic profiling. The granularity of load profile has also been 

considered at finer scales such as by room type (non-domestic, Liddiard (2014)) and by 

end-use activity (domestic, Widén et al. (2009)), with varying degree of accuracy 

reported in estimation capability. 

 

Despite the extensive use of load profiles in the energy industry, their value to assess a 

site’s DSR potential has received little attention. The closest relevant research arises in 

the context of estimating country level DSR potential. Non-domestic DSR capability was 

estimated for the UK using industry level profiles (offices, retail, etc.) with breakdown by 

end-use categories - e.g. catering, IT, heating and lighting (Element Energy, 2012). Yet 

these profiles were limited as end-usage levels were calculated using sector level values 

of percentage use with an assumed constant rate of usage across the day. Sector level 

half-hourly data provided high level consideration of daily profiles with seasonal 

adjustments. The lack of available sub-metered data was a major limitation to estimating 

end-use profiles in most cases and for sectors such as hotel and catering, 

communications, and transport even site level half hourly electricity data were limited.   

 

In this paper, previously published research into load profiling for the energy industry 

will be used to help develop a method for DSR estimation of individual sites with greater 

consideration of site variance in potential response. Variability in demand will be used as 

a measure of uncertainty in ability of a site to respond, with monitored usage profiles of 

similar sites providing the prior knowledge of load profile distributions. The approach is 

evaluated using sub-metered data from a set of similar hotel sites.  

 

After this introduction, the paper outlines the main steps for developing profiles (Section 

2); presents findings (Section 3); and discusses the implications of this work (section 4). 

 

2 Method  

The development of the profile method for estimating DSR potential is undertaken using 

a combination of clustering analysis and subsequent stochastic sampling using cluster-

weighted date-based predictors. The profiles created from monitored assets provides 

representative daily usage patterns of an asset that can be used for estimating turn down 

potential at sites identified as similar. Usage profiles of assets such as chillers, however, 
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will be dependent on factors such as building design, meteorological conditions, and 

occupancy levels and occupant preferences. The development of usage profiles must, 

therefore, consider the variance resulting from these factors.  

 

All variance is not necessarily of value in estimating DSR potential, as aggregated assets 

for DSR companies provides some assurance over small scale difference. In the first 

instance, large scale structural characteristics in demand profiles have been effective in 

profile creation, with specific reference to the use of unsupervised methods such as 

clustering (Zhou et al., 2013). 

 

Figure 1 outlines the process undertaken for development of the profiles, which starts 

with obtaining the primary information input of sub-metered usage data for the same 

types of electrical assets as used in selected categories of businesses. The example asset 

used in this study being Heating, Ventilation and Air Conditioning (HVAC) chiller assets 

at hotels. The data are normalised to a percentage of the intended DSR asset’s maximum 

load for the sites and assets identified as similar. The normalised sub-metered data are 

then clustered into comparable groups of daily usage patterns. Each group is then formed 

into a profile that represents the upper, median, and lower usage boundaries of the 

group’s daily patterns. The profiles are then assigned a calendar-based predictor that best 

represents how the data was clustered (for example, Week-of-Year, Month-of-Year, etc). 

The profiles are then utilised by applying these to similar assets and business categories 

to estimate their potential for DSR. These steps are outlined in the following sub-sections 

with further detail in appendix A.  
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Figure 1: Profile creation process  

 
 
2.1 Data (step 1) 

Data were collected on HVAC chillers in five hotels from January 2013 to June 2017 in 

partnership with a UK DSR operator. HVAC chillers were being monitored in hotels as 

part of participating in a DSR Short Term Operating Reserve (STOR) turndown 

programme. Sub-metering information was required to enable these services and ensure 

accurate measurement of the assets’ performance during DSR events.  To meet the 

National Grid STOR programme’s metering requirements, minute interval kW readings 

(National Grid, 2017) were taken on each Chiller unit in each of the five hotels. Real 

1 – Each hotels Chiller Sub-Metered Data is aggregated to half-hourly and 

normalised as percentage of total Chiller Capacity.  

2 – All normalised Half-hourly hotel datasets are combined and then split 

into training and testing datasets using the K-fold Cross Validation Using 

Random Selection method with a 75% Training/25% Testing ratio.  

3 – Select Predictor:  

(Week-of-Year, Month-of-Year: Day-of-Week, Weekend-Weekday) 

4 – Select number of clusters 

(1 to 5 clusters)  

5 – Cluster training dataset based on selected predictor and number of 

clusters using the K-Means method 

6 – Create Profiles from clustered data based on a weighted 

distribution of usage values from each associated cluster 

7 – Use the profiles to create estimated chiller usage data that aligns 

with the testing dataset 

8 – Test estimated usage results against test dataset and calculate 

MAPE and MBE values   

9 – Review MAPE and MBE values for all Predictor/Cluster Number 

permutations and select combination with lowest values  

10 – Repeat steps 5 and 6 with the whole dataset using the selected 

Predictor/Cluster Number to create the final profiles.  
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power (kW) was given as minute interval averages from higher frequency current and 

voltage readings.  

 

HVAC chillers were deemed suitable for inclusion in DSR as switching them off, or 

ramping down, for up to an hour was thought to have minimal impact to hotel occupants. 

Flexibility gets implemented through HVAC as this requires limited changes to sensing, 

computation and communications infrastructure (El Geneidy & Howard, 2020). They 

offer a large centralised asset that is straight forward to enable for DSR (i.e. can be 

switched on/off quickly either manually or by an automated system).  

 

Table 1 summarises the information about the chillers in each hotel. The number of days 

that usage records of each chiller are available for is varied as a result of different 

monitoring and agreement issues for each site.  

 

Table 1: Details of anonymised sub-metered hotel chillers used for profile creation. PR - maximum power 

rating (kW); Number of Days - total day count with recorded usage data.  

Meter ID Hotel ID Description PR kW  Number of Days 

H1_C1 H1 Chiller 1 111 1115 

H1_C2 H1 Chiller 2 111 1115 

H1_C3 H1 Chiller 3 111 1115 

H2_C1 H2 Main Chiller 132 952 

H3_C1 H3 Main Chiller 135 365 

H4_C1 H4 Main Chiller 290 973 

H5_C1 H5 Main Chiller 86 607 

 

 

Missing data points at minute resolution were identified on 18 days, equating to 0.16% of 

all readings. For the purpose of aligning the data with DSR estimation methods, 1-minute 

resolution data is averaged across 30-minute periods that align to each UK half-hourly 

settlement period (for example 00:00 to 00:29, 00:30 to 00:59). Most of the missing data 

were attributed to a small (no greater than 0.31%) number of half hour periods. This high 

concentration of missing data in a few select periods resulted in null values for all the 368 

half hour periods with missing readings. 
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2.2 Training and testing dataset selection (step 2) 

To evaluate the ability of these profiles to estimate demand, the data were split in to two 

categories - training vs. testing data. Three approaches to creating training and test data 

were reviewed ‘Out-Of-Sample’ (OOS), `K-fold Cross Validation Using Sites’ (KFCs), 

and ‘K-fold Cross Validation Using Random Selection’ (KFCr). The KFCr method was 

chosen with a ratio of 75% training to 25% testing (split by day) to reduce the impact of 

outliers – a noted concern of the other methods reviewed.  

 

2.3 Determine optimal predictor and cluster number (step 3 to 9) 

To create the profiles a clustering approach is utilised. In order to use the clusters in DSR 

estimation, it is necessary to be able to identify which cluster (or clusters) to use, when 

and where. The premise of this study is that features such as asset type (e.g. chiller) and 

site category (e.g. hotel) will have already been used to determine whether the estimation 

profiles can be used for the new site. They cannot, therefore, be used in determining what 

cluster to use as all would be thought to be appropriate. However, the profiles are based 

on time-series data with expected seasonal and `day-type’ variance and therefore four 

date-based predictors were selected (see appendix A).   

 

In addition to predictor selection, the number of clusters used also plays a critical factor 

in the resulting outcomes. As this DSR profile-based estimation method is intended to be 

flexible for different types of assets it has been developed to provide flexibility to select 

different predictor and cluster number values as fits best with each dataset. To facilitate 

this, the process iterates through all combinations of each predictor against a range of 

cluster sizes as per steps 4 to 8. The results of each iteration are evaluated and then 

compared in step 9 to identify the optimum values to use for the current dataset. For the 

Hotel Chiller data used in this paper the 4 predictors were iterated against clusters of 1 to 

5, therefore creating 20 iterations for evaluation. The selection approach for these input 

values is explained in appendix A.  

 

3 Results from developing the profile method  

One set of generated chiller load profiles is presented as pars pro toto to highlight both 

intraday and inter-day variance (section 3.1) and how the profiles help evaluate 

uncertainty during DSR estimation (section 3.2).  The implication of how uncertainty in 



 

7 

 

 

DSR estimation is handled by the profile method is subsequently evaluated by 

comparison with four pre-existing DSR methods.  

 

3.1 Review of generated profiles 

Figure 2 shows the chiller statistical profiles generated using the Month-of-Year 

predictor. The daily average load is plotted in addition to the range in daily load curves 

for each month-of-year profile for the purpose of trend analysis. Four months (December, 

April, July, October) are shown as indicative of behaviour in all months and showing 

variation across the seasons. The median is used as an initial indicator in screening of a 

site’s DSR potential (i.e. before site survey, where initial estimates are refined). Three 

major features of the generated hotel chiller profiles are discussed below: (i) unusual load 

spikes, (ii) variation across months, and (iii) variations across days.  

 

Load spikes occur in the upper confidence interval lines at 06:30-07:00 (half hour period 

14) from November to April, and 18:00-18:30 (half hour period 38) from December to 

February. These spikes were attributed to the management of one asset (H3 hotel chiller) 

that entailed: (1) a period (87 days) of night (00:00-06:30hrs) switch-off, followed by 

load peaking (40.7 to 57.8%) in the first half hour after switch-on (06:30-07:00hrs), and 

(2) a similar period (63 days) of afternoon (16:00-18:00 hrs) switch-off followed by a 

load peak (30.3 to 49.6%) at switch-on. Figure 2 (December) illustrates this behaviour 

and shows the loss of information (in terms of sequencing) in confidence interval curves 

by plotting actual half-hourly asset load (Monday 23/12/2013) onto the existing 

December load profile. These usage spikes can be attributed to the chiller having to bring 

the system cooling fluid back to within a pre-set temperature range; seen as a rebound 

effect (Palensky & Dietrich, 2011).     
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Figure 2: Monthly distributions of half-hour hotel chiller usage - presented as a proportion of the asset maximum 

capacity. All subfigures showing the 95% confidence interval [CI -95], the inter-quartile range [IQR], the mean half-

hourly usage [mean] and daily average [daily av] for December (indicative of November, January and February), April 

(indicative of March), July (indicative of May, June, August and September), and October (similar profile to May-

September but with peak usage dropping below 0.5 of asset capacity). For December an actual single day (23/12/13) 

usage for one asset is overlaid showing loss of sequencing information in the entire distribution range. 

 

Daily average values by month-of-year highlight seasonal influences on chiller operation, 

Figure 3. Minimum usage found in winter, the maximum in summer and the rate of 

change in the spring shoulder months varying (March increase of 2.9% compared to a 

46.6% increase in May) compared to a steady decrease in the Autumn (September: 

25.4%, October: 26.1%, November: 27.2%). Figure 4 highlights the strong correlation 

(R2 of 0.92) of average UK temperature against average chiller usage levels within each 

month.  
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Figure 3: Daily average of HVAC chiller usage profile values per month 

 

 

 
Figure 4: Correlation of daily average of HVAC chiller usage profile values against monthly average UK temperatures 

between 2013 and 2017. Temperature Source: (UK Met Office, 2017) 

 

The variance within month-of-year demand, both within day and across all days, is 

important in relation to DSR estimation as it represents risk in asset availability for 

participation in a DSR event.  Figure 5 reveals something of the stability in daily profile 

of particular assets across the year, despite variance in time of day for the minima and 

maxima of usage (MinU and MaxU of  Figure 5) and seasonality of asset usage (LowT 

and HighT, Figure 5). These different factors are important for understanding demand 

response potential in relation to the pre-post transition states of asset usage in the day 

(lower graph  Figure 5) and the associated range in available demand response across 

days, months, and seasons (upper graph of  Figure 5). Combined, these asset `behaviours’ 

represent variation in the median monthly usage associated with different monitored 
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assets of this study as well as a stability in timing of opportunity for DSR for the asset 

type. 

 

The percentage of time across all twelve (month-of-year) profiles (using the median) that 

the asset loads are above the daily average value. All asset load profiles (median, month 

of year) are consistently lower than the daily average from 00:00 to 08:00 (half hourly 

period 17) and higher than average from 10:30 to 22:00 (half hourly periods 22 to 45). 

The lowest (highest) average usage occurs within the range of 03:00-05:00 (14:00-18:30) 

across the year and the highest average usage time is within the range of 14:00 to 18:30 

(half hourly periods 29 to 38). Difference between the monthly minimum and maximum 

asset-percentage usage are greatest (>20%) for the four months (June to September) with 

highest percentage load.  

 

 
Figure 5: Indication of stability, variance and seasonality in asset availability for demand-response. The top graph 

shows the minimum (MinU) and maximum (MaxU) median of asset usage for each month as a percentage of asset 

maximum capacity. The time of day (half-hour period) for the occurrence of lowest (LowT) and highest (HighT) usage 

are also marked out – right hand ordinate. The lower graph shows the percentage of time (for all 12 monthly profiles) 

where usage is below (Ub) or above (Ua) the daily median usage 
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3.2 Reducing DSR estimation uncertainty 

The purpose of developing the new profile DSR estimation method is to reduce, or at 

least give a more considered assessment of confidence in, the uncertainty during initial 

desktop assessment of the DSR potential of a new site. The ability to assess uncertainty at 

the time of estimation, by reference to the profile distribution helps overcome the 

limitations of deterministic estimation associated with methods reviewed in Curtis et al. 

(2018). Uncertainty for the existing methods can only be addressed by retroactively 

evaluating the DSR potential estimates once asset usage data is made available after site 

enrolment to a DSR programme. In this section the uncertainty levels of the profiles 

generated for the HVAC chillers will be examined to assess how they can be utilised 

during DSR estimation. 

 

Figure 6 provides a box plot of the usage levels from the profiles presented in Figure 2. 

The difference between the 95% confidence interval and the inter-quartile range for usage 

levels by month-of-year predictor. December to March have lowest variance (mean of 

28.7% across 95% ci. range) alongside lowest usage, whilst May and September have 

highest variance (mean of 51.5% across 95% ci. Range). June, July, August, October and 

November also have relatively high variance in usage (mean 45.1%, ci 95%). The 

shoulder months for the heating and cooling seasons as well as peak periods of asset 

usage (summer) carry the greatest uncertainty in DSR estimation. Coinciding with 

periods of highest load (average and peak) lower risk can be associated with similar 

levels of DSR capacity as in the months of lowest load and variance. Using the lower 

(2.5%) confidence bound would minimise the risk to the DSR operator in terms of ability 

to meet contracted quota. Depending on the asset control options during turndown, the 

impact to the client may also be minimised (i.e. rarely full switch-off required of asset 

over DSR period).   
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Figure 6: Boxplot of hotel HVAC chiller percentage usage for median and interquartile range with whiskers at 95% 

confidence interval 

 

Taking the lower 2.5% confidence bound would imply losing out on the majority of the 

site’s DSR potential. As, however, the profile method is proposed here to be used during 

the early assessment stages for new sites, the confidence bound, rather, informs whether 

the site being considered presents good potential for DSR. The load profile range 

provides a risk estimate in terms of further pursuing a site for DSR engagement.  

 

The variances between the uncertainty levels can also be used to ascertain the likelihood 

of an estimate being different to the median usage levels. To illustrate this, Table 2  

shows the results from applying the profile method to estimate the DSR potential of a site 

with a 200kW chiller. As an example, the January median usage percentage is 12.5%. 

Therefore, the chiller is expected to use an average of 25kW throughout the month of 

January. Load profiles vary across the day but as timing of DSR opportunity is not 

prescribed, daily averages have been used here. This use of daily median presents an in-

day risk that is not considered further here. 

 

The percentage difference between the kW values at each usage level is calculated as 

shown in Table 2. This analysis can be used to understand which months will have a 

higher impact if the selected level of usage is not met. For example, in July the median 

level estimate shows the chiller usage will be 74kW, yet the lower quartile level shows 

there is up to a 25% chance that it could be as low as 58kW, which is -22% less than the 
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usage estimate. The lower confidence interval level instead shows that there is up to a 

22.5% chance of usage being as low as 29kW, which is -61% less than the median 

estimate. In comparison the January median usage is 24kW, which drops to 4kW at the 

lower quartile and then 0kW at the lower confidence interval, comprising a -85% and -

100% difference respectively.  

 

Understanding the difference in kW usage per level enables users of the profile method to 

have a risk acceptance policy.  For example, the user could impose a risk tolerance based 

on the relative difference between the median and lower quartile (the smaller the 

difference the less risk in opting for the median). If the risk tolerance was set to a 

difference of 50%, based on Table 2, this would result in using the median usage level for 

months May to October, and the lower quartile usage level for the remaining months.  

 

 

 

Table 2: Percentage differences between usage levels (kW) using the profile method with a 200 kW chiller. Clear rows 

provide kW load at given confidence bound (cb) and grey rows provide percentage difference (Δ) between the median 

and confidence bounds  
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Load (kW) 97.5% (upper) cb 57 58 57 66 102 104 124 118 112 90 86 57 

Δ (%) 97.5% cb  57% 57% 56% 57% 59% 39% 41% 41% 54% 58% 67% 57% 

Load (kW) 75% cb  34 34 34 40 57 77 89 83 72 52 38 33 

Δ (%) 75% cb 38% 38% 34% 39% 36% 23% 20% 20% 38% 35% 38% 36% 

Load (kW) at 50% (median) 

cb  
24 25 25 28 42 63 74 70 52 38 28 24 

Δ (%) 25% cb 85% 85% 75% 52% 29% 30% 22% 19% 26% 29% 53% 82% 

Load (kW) 25% cb 4 4 6 14 30 44 58 56 38 27 13 4 

Δ (%) 2.5% cb 100% 100% 100% 100% 100% 80% 61% 57% 86% 100% 100% 100% 

Load (kW) 2.5% (lower) cb  0 0 0 0 0 12 29 30 7 0 0 0 

 

 

3.3 Profile method evaluation 

This section examines how the profile method compares to four (M1 to M4) existing 

DSR estimation methods examined in Curtis et al. (2018). The results of this comparison 

are evaluated by comparison of MAPE and MBE outcomes and comparison against 

actual usage data.   
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The main benefit of the profile method (hereinafter M5) is the ability to evaluate usage 

against a measure of uncertainty (confidence limits). For development of M5 we combine 

additional datasets to the 4 years of asset data from H1 and H4 used previously in 

developing methods M1-M4 Curtis et al. (2018). For the purpose of comparing M5’s 

confidence limits with methods M1-M4, only the four year-two hotel (H1,H4) data were 

used.  MAPE and MBE results based on the error in month-of-year predictors for the 

95% confidence interval, as well as median and inter-quartile range are presented in 

Figure 7 alongside the four existing methods. The hotel site being estimated was removed 

from the profile creation process to enable an estimate for an unknown hotel. 

 

When compared with M1 to M4, the median profile of M5 had the second lowest MAPE 

(46.5%), behind M3 (38.8%). The positive MBE value for the M5-median profile (1.1%) 

indicates that using the median usage level will likely result in a small amount of over 

estimation; in contrast to the existing methods (except M1-V1) that underestimate. The 

impact of using confidence intervals in M5 is one of increasing MAPE with increasing 

over estimation for higher confidence limits (increasing, positive, MBE) and under 

estimation for lower confidence limits (decreasing, negative, MBE). The MBE and 

MAPE values reflect the risk in relation to missed DSR potential (negative MBE) and 

potentially missing contracted DSR targets (positive MBE). 
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Figure 7: Mean absolute percentage error (MAPE) and mean bias error (MBE) of existing (M1-M4) and new (M5) DSR 

estimation methods when compared to 4 years of data from 2 hotels.  Existing methods: M1-V1 (using set percentage 

of asset usage); M1-V2 (baseload calculation with set percentage of asset usage); M2 (baseline comparison using 

cluster analysis); M3 (regression analysis utilising historical DSR event outcomes); M4 (building energy modelling); M5 

(profile method). 

 

 

Direct comparison of the estimation methods against actual usage has been undertaken 

using the H1 Hotel’s 2013 results, as shown in Figure 8. There is an overall trend of 

underestimating (negative MBE), except for M1-V1, with annual trend captured in most 

cases. The periods of low asset use and previously identified periods of low variance 

show greatest alignment between actual usage and estimation. Where the variance in 

profile method was noted as high, there is a larger error associated with estimation. This 

is particularly pronounced for July; approximately a third lower than actual usage. 
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Figure 8: Comparison of actual normalised asset usage (A) from the H1 hotel 2013 HVAC chiller dataset against 

estimation methods averaged by day. Usage normalised by asset maximum capacity. M11 (M1-V1 MAPE = 193%, MBE 

= 122%); M12 (M1-V2 MAPE = 35%, MBE = -46%); M2 (MAPE = 57%, MBE=-41%); M3 (MAPE = 33%, MBE = -15%); M4 

(MAPE = 58%, MBE = -1%); M5 (MAPE = 24%, MBE = -12%)  

 

M1-V1 is based on assuming a fixed 50% usage level of the assessed asset’s maximum 

kW rating. Although a simple estimation approach it has the highest MAPE (193%) and 

MBE (122%), over estimating load in all months except June and July, see Figure 8. M1-

V2 is a variation of M1-V1 and performs a pre-calculation step by first determining the 

site’s baseload usage, which is calculated at a 5% percentile of overall electricity usage 

levels for a year. A percentage (default 10%) of the baseload is then deemed to be used 

by the DSR asset. This approach reduced the MAPE to 35%, the third lowest error level 

of the methods for H1 Hotel in 2013. The baseline approach results in a consistent 

estimation level, which results in a -46% MBE due to underpredictions during the 

summer months. However, as the estimation closely aligns to the non-summer months, 

M1-V1 has a significantly lower MAPE error than M1-V2.  

 

M2 used clustering to identify when the chiller was operating based on the site’s overall 

electricity usage records. As this method assumed that the lowest usage cluster represents 

the chiller not operating, the estimation levels (see Figure 8) show a distinctive on-off 
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cycling due to certain days deemed to have no usage. This method underestimated usage 

(-41% MBE) and produced the third highest MAPE of 57%. 

 

M3 uses regression analysis of past DSR event outcomes in conjunction with outside air 

temperature to predict the expected level of chiller usage over a year. This method had 

the second lowest MAPE of 33% for the H1 Hotel in 2013 and an overall underestimation 

bias based on an MBE of -15%.  

 

M4 used a Building Energy Model to simulate the expected kW usage level of the chiller 

for the site. The energy model used the same outdoor air temperature dataset as M3 and 

the estimations from these two methods also follow a similar trend from May to October. 

Outside of these months the simulation estimate is generally higher than the actual usage 

levels, which results in this method receiving the second highest MAPE of 58% with an 

MBE of -1%. It should be noted this is both a time and information intensive approach. 

 

The M5 profile method outlined in this paper provided the lowest error level for the H1 

Hotel in 2013, with a MAPE of 27% and a MBE of -12% when using the median values 

from the HVAC chiller profiles. If the profile optimisation process had instead selected 

the day-of-week predictor, for example, then this would have resulted in greater 

variations within month; as observed in other estimation methods.  

 

It is noted that the underprediction in June, and more notably July, reflects a 

comparatively warmer period than other years in the data set.  As all estimation methods 

considered are averaging over time and all assets, these case specific peaks in demand are 

not represented in prediction models, particularly in relation to using the median profile 

for M5. We note, however, the observed peaks in actual demand are not necessarily 

indicative of capacity for demand response (i.e. high-environmental stress limiting ability 

to switch off/turn down a HVAC chiller at this time). 

 

4 Conclusion 

This paper developed and evaluated a new DSR estimation method with capability for 

evaluating uncertainty in the resulting outputs. The method requires detailed usage 

information (e.g. from sub-meters) of electrical assets to be used in DSR programmes in 
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order to develop load profile distributions that can be applied for similar asset DSR 

estimation. The nature of the approach enables an updating of prior knowledge informing 

the load profile distributions as more sites/assets of the same type are brought into a DSR 

programme.  

 

In the development and evaluation of the profile method, a ‘rebound’ effect was shown to 

cause spiking of usage during winter in the morning and evening at one of the hotels of 

our study (H3). Associating these features with sequencing and modes of asset operation 

(i.e. overnight switch-off, existing demand shifting programmes) would not be possible 

within the profiles alone. A question of ability to flex time of switch-on needs to be 

addressed alongside asset response capacity. Identifying modes of asset operation is 

important additional information for assessing potential sites for DSR. 

 

The data showed the assets (chillers) to have similar diurnal load profiles across the year 

with a common seasonal influence in the median usage as well as variance. Despite 

greater potential asset demand response in summer months, the variance (and so 

uncertainty in estimation) also increased. These features have several implications for 

DSR. Where DSR programmes have inflexible reduction commitments like STOR (e.g. 

only allowing a single daily kW reduction amount), the daily and seasonal variations 

impact DSR potential. The seasonal variation will also impact the amount of load 

reduction, depending on how inflexible the DSR programme is (e.g. single annual fixed 

amount vs. multiple tendered for periods). Where DSR programmes involve higher levels 

of flexibility, like frequency response, then usage profiles could be used to improve the 

DSR estimation potential, by varying the reduction targets across the day and month.  

 

Using the median load curve from the profile method demonstrated comparable (or better 

MAPE) asset load estimation to existing methods. However, the profile method can also 

evaluate uncertainty in assessment through alternative load curves representing different 

confidence limits. The implications of the capability for assessing uncertainty in the DSR 

estimation arises in the ability of the user to determine an acceptable risk strategy, 

informed by anticipated percentage variances between the profile usage levels. The 

confidence limits provide a formal approach to evaluate risk of under and over estimation 
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due to uncertainties in operational loads that give an ability to adjust DSR estimates 

according to user risk preferences.  

 

The profile method has been developed and evaluated using hotel chiller usage data only 

where seasonal and diurnal cycles are typical. The differing patterns of load and variance 

(and the associated error in estimation) for different asset types and end-user categories 

are not understood.   
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5 Appendix A 

A description of steps 3 to 10 in profile creation method Figure 1. 
 
Step 3 - Select predictor 

Four date-based (using time-series data) predictor options used for evaluation are: week-

of-year (1 – 52); month-of-year (1-12); day-of-week (Monday to Sunday); and weekday-

weekend (Weekday or Weekend). Within these predictors the asset usage (percentage of 

capacity) is used as the measure on which the clusters are identified. 

 

Step 4 - Select number of clusters 

To determine a suitable range an initial test of 1-10 clusters showed a plateauing of 

difference after 3 clusters. A selection range of 1 to 5 was chosen for evaluation.  

 

Step 5 – Perform clustering 

For the purpose of load pattern grouping, Chicco (2012) identified the k-means method of 

clustering as appropriate, and Panapakidis et al. (2014) showed k-means to have the 

lowest error in comparison to minimum variance criterion, fuzzy c-means, and self-

organising maps. For these reasons, k-means clustering was adopted to group (cluster) the 

daily usage records in the training dataset; with average intra-cluster distance determining 

the optimal cluster centroids.   

 

Step 6 - Create profiles 

The cluster trained dataset is then assessed to identify and count all daily usage records 

for each date-based predictor. Using these counts, the percentage split of cluster usage for 

each predictor is calculated. For example, a January profile predictor (from Month-of-

year) value might have a cluster split of 60% of daily records for cluster 1, 30% of daily 

records for cluster 2, and 10% of daily records for cluster 3. For each profile predictor an 

array of half-hourly usage records is created, using the previous percentage-of-clusters 

array to determine a weighted random selection of values from each applicable cluster.  

 

The profile predictor’s half-hourly usage record arrays are then converted into the final 

usage profiles by identifying the median, upper and lower quartile, and the 95% 

confidence limits are identified at each half-hour. These are used to facilitate trend 

analysis. Half hourly values at each confidence interval are independent such that 

sequencing of load is not captured. The profiles only show the trend that the next value is 
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likely to be in a similar value range. This is suitable for DSR estimation of a new site 

over a year as the load profiles can provide an indication of overall potential.  

 

Sampling in each cluster is intended to capture variation in daily profiles that do not 

follow a single probability level of the given date-based predictor - as seen in real daily 

profiles (demonstrated in the December profile of new Figure 2). It is the statistical 

variation across all clusters, rather than within clusters, that is being captured. We 

therefore sample across clusters to generate the daily statistical profiles for use in analysis 

of DSR potential across the year, with a choice of 3,000 samples in the presented work 

determined by measuring the impact of sample size (ranging from 100 to 10,000) on 

MAPE. A stability in MAPE was observed from 3,000 samples onward and so used to 

minimise computational constraints. 

 

Step 7 – Use profiles to create usage estimates 

The profiles are then used to estimate a usage value for each actual half-hour in the 

testing dataset based on the median profile value (e.g. if a test dataset has an actual usage 

of 50% at 12:00 on 2nd January then the profile for January is used to select the 

corresponding estimated usage value for this time). 

 

Step 8 – Evaluate estimates against test dataset 

The half hourly estimated usage values are then evaluated against the actual usage in the 

test dataset using the Mean Absolute Percentage Error (MAPE) and Mean Bias Error 

(MBE) metrics. 

 

Step 9 – Review evaluation results  

The MAPE and MBE metrics are compared for all interactions of predictor and cluster 

size to determine the optimal values to use for the current dataset profile creation. For the 

Hotel Chiller dataset, it was determined that Month-of-Year predictor and a cluster size 

of 3 provided the lowest MAPE and MBE.  

 
Step 10 – Create final profiles using optimal values 

To generate the final profiles as shown in Figure 2, steps 5 and 6 are repeated using the 

complete dataset with the Month-of-Year predictor and cluster size of 3 input values. 
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