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Abstract

Biologists are increasingly aware of the importance of protein structure in
revealing function. The computational tools now exist which allow researchers to
model unknown proteins simply on the basis of their primary sequence. However,
for the non-specialist bioinformatician, there is a dazzling array of terminology,
acronyms, and competing computer software available for this process. This
review is intended to highlight the key stages of computational protein structure
prediction, as well as explain the reasons behind some of the procedures and list
some established workarounds for common pitfalls. Thereafter follows a review
of five one-stop servers for start-to-finish structure prediction.
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1.  Introduction

Understanding macromolecular 3-D structure remains a major ambition for
molecular biologists. This is due, not only to the therapeutic potential offered by
nucleic acid–protein and protein–ligand interactions as new medicinal drug targets,
but also to many wider applications of protein structure knowledge including
agricultural crop improvement or even biofuel development [1].

Computational or in silico methods for the determination of protein structure are
becoming ever more widespread and important in fulfilling this ambition. This is
fundamentally the consequence of two phenomena: firstly, that the ability to
elucidate protein sequences from genomic information continues to outpace the
capability of experimental methods to determine the structure of these newly
sequenced proteins [1], despite advances in X-ray crystallography technique and
improvements of NMR and cryo-EM accuracy and resolution; and secondly, the
continuing assertion that structure implies function in protein biology and that, in
turn, sequence determines structure. Therefore, the sequence to structure gap
continues to grow and manual experimental techniques are unlikely to close this in
the near future [2].

AQ2
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Since the creation of the Protein Data Bank (PDB) [3] in 1971, there has been an
increasing reliance on curated sequence and structural repositories by the molecular
biology community. Furthermore, along with community-wide experiments such as
CASP (Critical Assessment of techniques for protein Structure Prediction) and
CAPRI (Critical Assessment of the PRediction of Interactions)—see Subheading 6
for more details, growth in the area of in silico methods has led to an explosion in
predicted protein structures [4]. This has mainly occurred through the rise of
homology (or template-based) modeling and has in turn driven the associated
proliferation of prediction software and data repositories, which are now available
to research communities via the internet.

In this chapter, we will attempt to explain some of the main techniques used in 3-D
protein structure prediction along with decoding a number of acronyms commonly
encountered within the field; and secondly, to clarify the wide array of software
packages and databases that now exist and, in the process, reference and analyze
some key representative examples.
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2.  A Brief Summary of Protein Classification and Data

Repositories

Proteins can be classified in a number of ways; in terms of primary structure or
sequence similarity; secondary structure and associated motifs; tertiary structure
and associated folds and domains and an emerging categorization based on protein–
protein interactions (PPI) [1]. In addition, and perhaps related more closely to
secondary structure classification than any of the others, is the grouping of proteins
into classes and families on the basis of evolutionary relationship. The following
describes a little about resources that fall into these classification categories.

In the case of primary structure, there are a number of databases containing
information on amino acid sequences of which probably the most important from a
structural prediction point of view is the Protein Knowledge Base—
UniProtKB/TrEMBL [5]. This vast protein sequence database consists of the
Universal Protein Resource (UniProt from PIR) which evolved from the early
manually annotated SWISS-Prot sequence database (1986) allied to the
automatically annotated TrEMBL sequence database administered by the European
Bioinformatics Institute (EBI). The resource also contains UniRef a clustering
service which lists groups of related sequences together and UniParc, an additional
development intended to represent a complete and comprehensive non-redundant
database of all known protein sequences with each sequence listed only once with a
unique identifier (see Table 1). Tools for assessing sequence similarity and
alignment based on sequence database searches are discussed in Subheading 4.1
below.

Table 1

Protein sequence databases
AQ4

Name Description Website

UniProtKB
[5]

Repository for sequence, taxonomy, annotation, ontology,
and classification information including TrEMBL
(automatically annotated sequences)

www.unipro
t.org/help/u
niprotkb

UniParc
[5] Non-redundant database of all known protein sequences

www.unipro
t.org/help/u
niparc

UniRef [5] Clustering service of related sequences
www.unipro
t.org/help/u
niref
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Information on classifying proteins according to secondary structure is most easily
obtained from the structural classification repositories [1]; Pfam [6] (from the EBI,
classifies proteins into families based on domain similarity), SCOP [7] (Structural
Classification Of Proteins—classifies into family, superfamily, and fold similarity),
and CATH [8] (from UCL, classifies proteins into class, architecture, topology, and
homologous families on the basis of domain similarity) and each of these has a
website with full information on their classification system and how best to
interpret it. These databases contain a great deal of evolutionary and relationship
information as well as links to other software and are widely referenced by many 3-
D prediction algorithms.

For novel protein sequences whose structures are not recorded in any existing
database, the most widely accepted methods of secondary structure prediction (also
referenced below) are those based on the Dictionary of Protein Secondary Structure
algorithm (DSSP) [9] and these include PSIPred [10] and JPred4 [11] although it is
possible to find many others via links within the ExPASy Bioinformatics Resource
Portal.

The major resource for known tertiary structure information is, of course, the PDB
(Protein Data Bank) [12] although a number of alternative databases can be found
including those at the NCBI and EBI webpages (see Table 2). These have links to
many classification and prediction resources. Again, the SIB (Swiss Institute of
Bioinformatics) resource portal ExPASy may be useful with links to nextProt [14]
(a human protein knowledge base), STRING [15] as well as Swiss-Model [16] (see
Subheading 6.5 5.5).

Table 2

Protein structure and classification databases

CATH
[8]

Structural classification into class, architecture,
topology, and homology www.cathdb.info/

Pfam [6] Protein family classification (EBI) https://pfam.xfam.or
g/

SCOP
[7] Structural classification of proteins http://scop.mrc-lmb.

cam.ac.uk/scop/

PDB [3] The protein data bank, from wwPDB, a collaboration
of PDBe (UK), PDBj (Jpn), and BMRB (US) www.rcsb.org/pdb

PDBe-
PISA
[13]

Proteins, interfaces, structures, and assemblies
database for protein–protein interactions and
quaternary structures

www.ebi.ac.uk/msd-
srv/prot_int/pistart.h
tml
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nextProt
[14]

Human protein knowledge base https://www.nextpro
t.org/

STRING
[15]

Alternative protein–protein interaction knowledge
base from the SIB https://string-db.org/

AQ5

Probably the most comprehensive quaternary and protein–protein interaction
database is PDBe-PISA [13] (Proteins Interfaces, Structures, and Assemblies) that
is hosted by the EBI although SIB’s SMTL (Swiss-Model Template Library) [16]
and STRING are also useful for studying interactions and networks.

3.  Types of Structure Prediction; Comparative Versus

Ab Initio Modeling

The most successful form of structure prediction to emerge over the last 25 years is
comparative modeling [12]. At its most basic, this is the process of modeling a
protein with an unknown tertiary structure on the basis of sequence similarity to
those with known structures.

Proteins that have a matching sequence (sequence identity above 30% as a rule of
thumb) [17] are deemed homologs and can be used as templates on the presumption
that sequence similarity suggests a common functional evolutionary ancestor. A
similar structure can therefore be inferred from a similar sequence.

This approach is known variously and almost interchangeably as Comparative
Modeling (CM), Homology Modeling (HM), and Template-Based Modeling (TBM)
(although true homology modeling relies on an established evolutionary
relationship between proteins rather than just a distant sequence similarity or shared
domain). For the rest of the chapter, we will refer to this process as Template-Based
Modeling or TBM.

Ab initio modeling, on the other hand attempts to use the so-called physics-based
rules and routine, e.g., torsion angles in the protein carbon backbone,
hydrophobicity ratings, bond length calculations, and van der Waals interactions, to
predict the folding and hence tertiary structure of a protein from sequence alone,
i.e., without comparison with a template [18]. This is often alternatively termed de
novo modeling, although, strictly speaking de novo modeling may include some
type of sequence fragment check against a database whereas true ab initio
techniques should model from sequence alone. A complication that might be
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encountered is that a number of programs now include a certain level of ab initio
modeling embedded within their TBM calculations (e.g., the Rosetta algorithm [2,
19]) or to help resolve unstructured parts of the suggested model (e.g., Phyre2
[20]). However, there are other programs that offer a complete ab initio modelling
service (e.g., QUARK, FALCON as well as ROSETTA).

The following sections will concentrate on describing TBM only, as this is likely to
be the most useful route for the general molecular biologist who is not part of a
specialist protein modeling group, and the technique is applicable to the majority of
new protein targets.

4.  Stages in Template-based Modeling (TBM)

TBM is a multi-step process [1], often made to appear seamless by publicly
accessible webserver programs (see Table 3 below for a list). However, the
identification of suitable homologs to use as templates is often not an insignificant
task, and there are a number of technical solutions employed across various
platforms to ensure that the templates used in model building are as relevant as
possible. Another problematic stage in the modeling process is the sorting, scoring,
and ranking of the (often) many alternative models (termed decoys) that are built
[2]. These two stages remain the greatest challenge in TBM with the latter
potentially more challenging than the former due to the nature of selecting the
closest model to the native protein whose structure is unknown.

Table 3

Tertiary structure prediction tools

IntFOLD
[21]

A high-performance server
developed by the McGuffin
group, offering a suite of
programs for tertiary and
quaternary
predictionSpecializing in
model quality assessment

https://www.reading.ac.uk/bioinf/IntFO
LD/

I-TASSER
[22]

A powerful threading-based
online server offering a
number of services in addition
to modeling

https://zhanglab.ccmb.med.umich.edu/I-
TASSER/

MODELLER
[23]

Downloadable program for 3-
D structure prediction. Users
must provide their own
alignment data

https://salilab.org/modeller/

MULTICOM
[24]

Part of an online toolbox for
structure prediction hosted by

http://sysbio.rnet.missouri.edu/multico
m_cluster/
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the university of Missouri

Pcons [25]
Online server specializing in
quality assessment (Stockholm
university)

http://pcons.net/

Phyre2 [20]
Online full-service server from
the structural bioinformatics
Group at Imperial College part
of Genome3D

http://www.sbg.bio.ic.ac.uk/phyre2

Predict
protein (PP)
[26]

Developed by RostLab
(university of Munich)
offering full prediction service

https://www.predictprotein.org/

RaptorX [27]

Online server (Xu group,
University of Chicago),
specializing in predicting
sequences with no close
homologs

http://raptorx.uchicago.edu/

ROBETTA
[28] (Rosetta
[19, 29])

Online server (Baker lab,
University of Washington) full
structure prediction using the
powerful Rosetta algorithm

http://robetta.bakerlab.org/

SWISS-
MODEL
[16]

Comprehensive online server;
both tertiary and protein
interaction prediction by the
SIB (Swiss Institute of
Bioinformatics)

https://swissmodel.expasy.org/

Rangwala and Kapris, 2010 [1] split the process of TBM (comparative modeling in
their review) into five distinct stages: Selection of templates, Alignment of
sequences, Model building, Quality evaluation, and Refinement, and in the
following sections we have highlighted a similar but updated sequence of events
routinely used by the protein modeling community.

The flowchart below gives an overall guide to the way the sequence fits together
and the decision points that drive the process. It must be noted, however, that these
stages are in-built and often invisibly merged in most public webservers making it
unclear which distinct stage is being carried out at any one time. For those wishing
to perform TBM in a more hands-on manner, there are specialist programs which
can be downloaded and run separately from many of the website listed in Table 3,
but for most non-specialist bioinformaticians these sections represent background
information as the majority of your modeling needs will be catered for by using the
full structure prediction webservers described in Subheading 5.

4.1.  Sequence Alignment and Template Identification
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The initial task is that of identifying one or more suitable homologs to use as
templates on which to base the model (see Table 4 for a list of programs). The
amino acid sequence of the protein of interest, the target protein, will be run against
a database of sequences, often the UniprotKB or a non-redundant derivative
thereof. Here, the first problem is encountered; evolutionarily related proteins often
have a greater level of structure conservation than sequence conservation [20].
Therefore, it is possible that simply aligning the whole of your target sequence
against a sequence from another protein will produce a poor match. Most sequence
alignment programs (e.g., Uniprot-align [5] and PSI-BLAST [30]) will therefore
attempt local sequence alignment where sequences are cut into sections that are
then cross-aligned [35]. The rationale is that protein domains may swap places over
time and therefore one needs to search the whole sequence for matches rather than a
simple pairwise comparison. Even with successful alignments there is a high
probability of missing sequence sections (deletions), additional sections
(insertions), and substitutions where amino acids have been replaced with others.
For this reason, sequence alignments are scored from a BLOSUM matrix [18] that
attempts to give good scores for amino acid conservation or replacement in non-
structured parts of the protein (loop regions) and penalties for missing sections or
replacement of amino acids in ordered secondary structure regions. A number of
programs will also employ a secondary structure consensus check between target
and templates at this stage [20] to increase confidence in final template selection, a
popular choice of program being PSIPRED (UCL).

Table 4

Protein sequence search and alignment tools

BLAST
[30]

Basic local alignment tool (also see
PSI-BLAST a more sensitive version) https://blast.ncbi.nlm.nih.gov/

ClustalW
[31]

Multiple sequence alignment using
traditional sequence profiling

https://embnet.vital-it.ch/softwar
e/ClustalW.html

Clustal
Omega
[32]

Multiple sequence alignment tool using
HMM profiling

https://www.ebi.ac.uk/Tools/msa/c
lustalo/

EMBOSS
[33]

Global alignment (needle option) and
local alignment (water option)

https://www.ebi.ac.uk/Tools/psa/e
mboss_needle/emboss_water/

FASTA
[33] A simple local alignment tool https://www.ebi.ac.uk/Tools/sss/fa

sta/

HH-blits
[34]

Popular hidden Markov model (HMM)
alignment site

https://toolkit.tuebingen.mpg.de/t
ools/hhblits

HMMER Sequence search tool using hidden http://hmmer.org/ (to download)
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[34] Markov models (HMM) prediction https://www.ebi.ac.uk/tools/hmme
r/search/phmmer (online)

4.2.  Loop Identification and Side-Chain Packing

Many homologous proteins will share not only a certain agreement in sequence
identity but also in secondary structure, folds, and overall configuration. However,
it is quite frequent for related proteins to differ in the length of the unstructured
loop regions that connect secondary structure as well as the order of the individual
folds or domains. For this reason, researchers have often been obliged to take the
extra step of loop building in order to account for longer or shorter unstructured
regions between folds. Many contemporary programs now include loop building as
an automatic function [20], but optimization of loops and unstructured regions still
occurs in refinement programs (see below). Side-chain packing is another element
of model building which has become absorbed into the regular functioning of
modern modeling programs [36], but which is still an important part of refinement
procedures. Often the last part of refining a model will be to assess clashes or
unlikely contacts between amino acid side chains and attempt to modify angles and
residue positions slightly in order to resolve these.

4.3.  QA and Ranking Models

Once models are constructed by the modeling software the importance of assessing
their quality is necessary for two reasons. The first, which is discussed further in
the following section, is to rate the models on general agreement with known
protein structures, in other words, have you built a native-like potentially functional
model or is it so far beyond acceptable structural limits as to be unlikely to exist?
The second is the task of assessing which of your models matches your protein’s
native structure the best and therefore should be at the top of your ranking list.

In general, single-model quality assessment methods (those assessing each model
individually) employ a number of physical checks to assess the models’ structural
integrity. These range from residue environment compatibility, e.g., hydrophobicity
and solvent accessibility to structural features, such as secondary structure
compatibility and assessment of backbone torsion angles [12]. Users are then
presented with scores showing how well the model conforms to hypothetical 3D
norms. One problem that must be borne in mind when interpreting these plausibility
checks is that a model may score well because it conforms to pre-programmed
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ideals and so be ranked above a model which displays some structural defects but
nevertheless is much closer to the native structure.

The second issue of ranking models may be relatively simple if all that was
required was to select the best model on the basis of its resemblance to the
template. However, with lower sequence identities the key question becomes, how
closely does resemblance to the template suggest closeness to the native structure?
Ranking models’ resemblance to a native structure that is unknown will always be a
subjective process and so consensus assessment has been developed in an attempt to
overcome this.

Consensus methods use scores from a number of different programs, and many
include a clustering stage in which models are clustered together on the basis of
structural similarity, selecting those that lie close to the largest clusters. Consensus
assessment can often out-perform single methods, with clustering working well
when templates and models show a close structural relationship [37]. However, if
there is a large variability in templates leading to a significant number of low-
quality models or very few models in the first place, clustering and consensus
methods that include them can prove less reliable.

As can be imagined, the distinction between the disciplines of assessment for
ranking and final model quality assessment has become blurred and the processes
now overlap somewhat.

Model quality is, to a large extent, dependent on the evolutionary distance between
the target protein and the template(s) used to model it [1]. When working with low
sequence identity, target-template 3-D similarity naturally decreases meaning that
models may contain significant errors. As stated, model quality assessment assigns
a predictive score to a model [12] in an attempt to rate its accuracy or similarity to
the native protein prior to any confirmatory experimental structure being available
and over the years a number of approaches have been developed.

Early versions of quality checks focused on stereochemical calculations measuring,
amongst others, bond angles, steric clashes, and Ramachandran outliers. Others
were based on calculating an energy score based on the model’s perceived distance
from a hypothetical free energy minimum. The so-called energy function checks
fell broadly into two groups: those calculating a statistical score by analyzing the
model against known protein structures and those calculating an empirically
derived energy score from force field and molecular dynamic data. The
shortcomings of these quality checks were, as mentioned before, that models could
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have perfectly reasonable stereochemical profiles and a low energy conformation
but neither guaranteed similarity to the unknown native structure.

Current MQAPs (a selection listed in Table 5) attempt to overcome these
shortcomings by combining a number of approaches. Firstly, as well as giving a
global score for the overall model many programs will also give a local, or per
residue score which assesses each amino acid residue and the favorability of the
surroundings in which it finds itself in the proposed chain (factors like solvent
accessibility, secondary structure compatibility, and side-chain contacts may be
assessed). Secondly, in addition to basic stereochemical checks and energy
considerations most MQAPs will perform a clustering routine [37] where potential
models (decoys) are clustered on the basis of their conformation similarities.
Models representative of large clusters are assumed to have a higher likelihood of
resembling the native structure than remote models. Lastly, to increase the
statistical confidence of the final score, neural networks can be used to perform an
all-against-all comparison of conformations and then calculate a probability score
[12]. The advantage of using neural networks is not only their ability to handle vast
amounts of data but also the ability to train the networks to recognize native
conformations from decoys using a training set of experimentally solved structures.

Table 5

A selection of Model Quality Assessment Program servers (MQAPs)

ModFOLD6
[21]

A resource for estimates of model accuracy
(EMA), using a hybrid quasi-single model
approach

https://www.reading.ac.uk/b
ioinf/ModFOLD/ModFOLD
6_form.html

PCons [25]
Analyses models for recurring 3-D
structural patterns and assigns a
commonality score

http://pcons.net/index.php?a
bout=pcons

ProQ3 [38]
Based on Rosetta, including all-atom
(ProQRosFA) and centroid (ProQRosCen)
energy functions

http://proq3.bioinfo.se/

QMEAN
[39]

The sum of four measures; backbone
torsion angles, Cβ interactions, all atom
interactions, solvation score

https://swissmodel.expasy.o
rg/qmean/

See Appendix II Section 8 Notes (Table 11) for a table of scores commonly
encountered with model quality assessment, refinement, and ranking output.

AQ6

4.4.  Refinement
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Refinement is the process of taking a raw model and attempting to improve its
quality score by making small changes to the 3D structure in the hope and
expectation that the newly produced model will be closer to the native protein than
the original. Refinement programs essentially perform two separate functions; the
first is one of sampling, that is, to create improved 3D models from those already
built by the modeling software (often by MD employing the AMBER or CHARMM
force fields) and the second is one of scoring these models, mostly via energy
functions (such as DFIRE, RWPlus, and Rosetta), so that improvements can easily
be identified [36]. It is in the second function that refinement programs overlap
significantly with model quality assessment programs and the process of MQA and
refinement can often be iterative as shown in Fig. 1 above below.

Fig. 1

A flow chart of the key stages in template-based modeling
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As well as performing two functions, refinement programs can be broadly split into
two types. First are those, sometimes referred to as manual programs, which
perform very computationally intensive functions such as molecular dynamics
(MD) and Monte Carlo statistical simulations and may also be augmented by
applying knowledge-based constraints. These tend to be programs available to
download and run locally in Linux or available to run from specialist research
groups who complete in the CASP experiments. Second are the automated server-
style programs that are available via public webpages. These tend to be quicker and
focus more on computationally less-intensive methods such as side-chain
optimization and less stringent energy minimization functions [40]. The second
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group tend to make more conservative changes to the models, which is often
desirable if the models are of reasonably good quality in the first place. Table 6 lists
a number of publicly available refinement servers.

Table 6

Publicly available refinement webservers. (Reproduced from Methods for the Refinement of
Protein Structure 3D Models, 2019 (Adiyaman R and McGuffin LJ) with permission from
International Journal of Molecular Science [36])

PREFMD
[41]

Developed by the Feig group, based on
molecular dynamics (MD)

http://feiglab.org/pre
fmd

locPREFMD
[42]

As above but focussed on local (per residue)
quality

http://feig.bch.msu.e
du/web/services/locp
refmd/

GalaxyRefine
[43]

From the Seok group, focused on side-chain
repacking

http://galaxy.seoklab.
org/refine

KoBaMIN
[44]

Energy minimization strategies using a
knowledge-based force field

http://csb.stanford.ed
u/kobamin

Princeton
TIGRESS 2.0
[45]

Combines many strategies from other servers,
scored well in CASP experiments

http://atlas.engr.tam
u.edu/refinement/

ModRefiner
[46]

Multi-step algorithm for side-chain optimization
with physics and knowledge-based force fields

http://zhanglab.ccm
b.med.umich.edu/Mo
dRefiner

3DRefine
[47]

Optimization of H-bonds and energy
minimization with physics and knowledge-based
force fields

http://sysbio.rnet.mis
souri.edu/3Drefine/

ReFOLD
[48]

A quasi single-model approach with H-bond
optimization and MD, using ModFOLD, from
the IntFOLD server

http://www.reading.a
c.uk/bioinf/ReFOLD/

FG-MD [49] MD-based algorithm using TM-align to identify
analogous fragments from the PDB

http://zhanglab.ccm
b.med.umich.edu/FG
-MD/

4.5.  What if your Model Is Not a Good One?

If your model does not score well when subjected to quality assessment programs
and attempted refinement, then it is likely that the template, on which it is based, is
not a good match. Checking back to the flow chart in Fig. 1, we can see that
problems may become obvious much earlier than this if there are few or no
homologs identified for your target sequence. In either case, there are a number of
avenues that may lead to an improvement in the model quality. These are
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summarized in Fig. 2 below and the following sections where one or more options
may be necessary.

Fig. 2

A flow chart showing some alternative modeling strategies

4.6.  Disorder and Secondary Structure Prediction

One possible reason that your chosen modeling software fails to produce a good
model of your target protein may be that it contains some intrinsically disordered
regions (IDRs). Many proteins contain flexible regions in place of well-defined
secondary structure [50], and these regions have been linked with a number of
functions including recognition and binding of ligands and DNA, signaling and cell
cycle control or even potential phosphorylation sites. In many of these cases, the
phenomenon of disorder-to-order is only observed upon binding and so the protein,
in its native-unbound state, will be unlikely to comply with programmed
expectations of 3D structure. Disorder prediction may therefore give some clues as
to why models are poorer than expected.
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In a similar way, it may be worth checking the predicted secondary structure of
your target. Although modern modeling software is very good at recognizing folds
and domains that occur at different positions in polypeptide chains, there is the
possibility that multi-domain proteins containing long loops and areas of disorder
will be poorly scored and ranked with the available software. It is therefore worth
checking secondary structure agreement between target protein and the templates
and/or the models generated, to inform your interpretation of the models you are
presented with. Indeed, McGuffin writing in 2010 [12] asserted that simple scores
based on secondary structure compatibility can be very effective model quality
assessment and be used to filter out models with incorrectly or poorly formed
secondary structures. See Table 7 for a list of disorder prediction tools.

Table 7

Protein disorder and secondary structure prediction tools

JPred4
[11] Secondary structure prediction online server www.compbio.dund

ee.ac.uk/jpred/

PSIPred
[10]

Hosted by UCL, London. Secondary structure
prediction with links to associated applications

http://bioinf.cs.ucl.a
c.uk/psipred/

Disopred
[51] Recognition of disordered regions http://bioinf.cs.ucl.a

c.uk/psipred/

IUPred
[50] Predictions of intrinsically unstructured proteins https://iupred2a.elt

e.hu/

PrDOS
[52] Protein DisOrder prediction system http://prdos.hgc.jp/c

gi-bin/top.cgi

4.7.  Distant Homology Searches, Fold Recognition, and

Threading Programs

In order to negate the limitations of sequence alignment, particularly where
sequence identity is below that 35% threshold, the process of protein fold
recognition was developed [1, 20]. This technique employs the rationale that
evolutionary homologs often display less structural divergence than sequence
divergence [35] and therefore less reliance on matching sequence and more on
matching fold structure can result in less clutter of sequence-related but structurally
distant template suggestions. Fold recognition commonly involves statistical
methods (e.g., Hidden Markov Models—HMM) [20] to compare sequence profiles
of targets with potential templates and identify the most suitable ones from which
to construct 3D models. Traditionally, threading methods were also developed
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which would fit or “thread” target sequences into the backbones of existing
structures and then evaluate suitable templates using statistical energy potentials.
Stand-alone individual fold recognition and threading techniques have enjoyed
success in previous CASP experiments and include those listed below in Table 8.
However, there is now a question as to whether their predictive powers have
reached a plateau [57], as most successful servers now deploy a combination, or
consensus, of alternative techniques.

Table 8

Tools when no close matches are found

THREADER [53] Fold recognition methods for predicting
protein structure

http://bioinf.cs.ucl.
ac.uk/software_do
wnloads/threader/

GenTHREADER
[54]

Rapid fold recognition, matching sequences
against PDB chains assuming an
evolutionary link

http://bioinf.cs.ucl.
ac.uk/web_servers/

pGenTHREADER
[54]

Highly sensitive fold recognition using
profile–profile comparison

http://bioinf.cs.ucl.
ac.uk/web_servers/

pDomTHREADER
[54]

Highly sensitive homologous domain
recognition using profile–profile comparison

http://bioinf.cs.ucl.
ac.uk/web_servers/

HHPred [34] Tertiary structure prediction and threading,
part of the HH-suite of programs

https://toolkit.tuebi
ngen.mpg.de/tools/
hhpred

MUSTER [55]
MUlti-sources ThreadER, a threading
algorithm combining sequence profile–
profile alignment with structural information

https://zhanglab.cc
mb.med.umich.edu/
MUSTER/

SPARKS-X [56] Fold recognition software
http://sparks-lab.or
g/yueyang/server/S
PARKS-X/

4.8.  Ab Initio or (Template) Free Modeling Methods

Ab initio modeling which is essentially synonymous with template-free modeling
(TFM) is a technique that applies physics-based rules in order to estimate the
structure of a target sequence using the sequence as the only input [18]. These
programs do not query the PDB or any other database, instead relying on the
application of physical algorithms to build the model from scratch.

The algorithms used will be very similar to those discussed so far, focusing on
torsion angles, hydrophobicity, secondary structure agreement as well as energy
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minimization and molecular dynamic technics. The computational power necessary
to cope with the many degrees of freedom that present themselves in these cases is
significant and many ab initio predictive servers run on either integrated CPU
networks, powerful GPUs (graphical processing units), or neural networks and
support vector machines (SVMs)—FALCON (a remote template alignment program
employing a significant number of ab initio routines within its algorithms)
harnesses the power of 20,000 volunteer CPUs for example [58]. QUARK
represents a pure ab initio prediction methodology (there are others) whereas
FALCON and Robetta (in the form of the upgraded ROSIE site—see Notes,
Subheading 8) include a certain amount of ab initio routines behind the scenes
while performing model building (see Table 9 for weblinks).

Table 9

A sample of available Ab initio or de novo modeling software

FALCON
[58]

Software specializing in aligning query
proteins with conserved regions

http://protein.ict.ac.cn/Tre
eThreader/

QUARK
[59]

Structure prediction and protein folding to
construct 3D models from amino acid
sequence only

https://zhanglab.ccmb.me
d.umich.edu/QUARK/

ROSETTA
[19, 28,
29]

ROBETTA server (robot-Rosetta) provides ab
initio folding and structure prediction, as well
as fragment selection

http://robetta.bakerlab.org/

QUARK is typical of many of the modern ab initio prediction sites which now tend
to use small fragments (1–20 residues long) and reference their own fragment
database [59].

Here, it might be prudent to briefly mention the recent development of TFM
programs specializing in amino acid contact prediction. The two leading proponents
of this technology are Google DeepMind, using the Alphafold algorithm, and
DMPfold. Alphafold uses a system of contact distance and angle predictions that
are then solved by gradient descent mathematics [60]. DMPfold works slightly
differently by predicting inter-atomic distances, torsion angles, and main chain
hydrogen bonding to drive the folding prediction. Both use powerful neural
networks and have reported success with CASP tertiary structure targets; DMPfold
predicted 56% of folds correctly in CASP13 targets and Alphafold led the field with
72% correct [61].
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5.  Comprehensive or Integrated Structure Prediction

Webservers

The Swiss Institute of Bioinformatics (SIB) website (https://www.expasy.org/proteo
mics/protein_structure) has links to many publicly available programs designed to
perform specific stages of the prediction process as well as those which perform the
full service from start to finish. OmicX (https://omictools.com) is another useful
website with an abundance of well-categorized resource links. It must also be
mentioned that some of the above-mentioned server programs also offer complete
sequence to 3-D model functionality or are part of a webserver suite or collection of
programs designed to complement each other, for example, the UCL PSIPRED
workbench (http://bioinf.cs.ucl.ac.uk/psipred/) allows one or many stages of the
protein prediction pipeline to be undertaken at any one time with a simple tick-box
system.

Below we will limit our focus to five leading one-stop webservers and describe
briefly their mode of action and any advantages or special features they provide.
They are listed in alphabetical order.

5.1.  IntFOLD

IntFOLD is an integrated protein structure and function server consisting of a suite
of interlinked programs developed by the McGuffin group and hosted by the
University of Reading. As with many stand-alone servers, IntFOLD uses its own
algorithms along with those from numerous other servers in order to multiply the
power of template selection and accuracy of predicted models [21, 62].

INPUT: IntFOLD simply accepts the sequence of the target protein of interest.
There is the option to provide a name for the job and an email address to which the
results page link can be sent. Click on the IntFOLD submission link to be taken to
the latest version of the program. If an email address is not submitted, users should
be sure to bookmark or save the link to the results page as it will be lost upon
navigation away from the page.

MODE: IntFOLD works broadly on a two-step process; first, is a single template
modeling step with Accuracy Self Estimate (ASE) scoring followed by a second
multiple template modeling step, again with ASE scoring.

The first step of template identification harnesses the power of 14 separate
algorithms, six stand-alone fold recognition programs—SP3, SPARKS-2,
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HHsearch, COMA, SPARKS-X, and CNFSearch, and the eight threading programs
comprising the LOMETS package. Each individual algorithm may submit up to 10
templates (140 in total), which are then run through the IntFOLD server’s clustering
and scoring algorithm ModFOLDClust2.

The second step involves an iterative multi-template modeling (MTM) regime using
the cluster scores to rank the templates found in step 1. Firstly, the top two
alignments are used to construct an initial model, this is then compared to models
made using the top ranked plus any other template, the best model is selected based
on amino acid coverage of the models. This is performed twice more for the
evolving model before selected models are re-scored with ModFOLDclust. The 4-
stage iterative model building and comparison process is then repeated.
Additionally, I-TASSER and HHPred [34] are used to build three models each and
these are added to the model group from the iterative process which are then fed
into a ranking and refinement loop. Using ModFOLD6_Rank [21] and reFOLD
algorithms, models are continuously ranked and refined via molecular dynamics
procedures and the final top five-ranked models from this cyclic process constitute
the IntFOLD output.

OUTPUT: The output file lists the top five models ranked by global model quality
score and accompanied by a color-coded p-value. The following sections are also
included; Disorder prediction, Domain Boundary prediction, Binding site
prediction, and full quality assessment results. These are comprehensively
described and explained on the IntFOLD Webserver help page (https://www.readin
g.ac.uk/bioinf/IntFOLD/IntFOLD_help.html#examples) and so will not be repeated
here. Users may download the data files for the predictions via the hyperlinks on
the results page.

CREDENTIALS: In CAMEO server benchmarking IntFOLD4 was rated second on
the common subset comparison (1-year performance 2016–17) and IntFOLD5 was
rated first in 3-D data results for 3 months (Oct 2018–Jan 2019). The McGuffin
group has also been competitively ranked in numerous recent CASP experiments
[4].

5.2.  I-TASSER

Developed and administered by Zhang Lab of the University of Michigan, the
acronym stands for Iterative Threading ASSEmbly Refinement [22].
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INPUT: In addition to the basic sequence in FASTA format, I-TASSER allows users
to specify additional restraint data if known, for example, distance restraints in the
form of atom contacts. If users would like to specify particular proteins to be used
as homologs, their PDB codes can be entered and there is also the facility to upload
a complete 3D homolog structure in PDB file format should that be required. Users
can also take advantage of TASSER’s threading credentials by excluding close
sequence homologs and going below the usual cut-off of 25% sequence identity.

MODE: I-TASSER is a suite of programs. The initial fold recognition is carried out
by the LOMETS meta-server with subsequent fragment threading by the MUSTER
[55] algorithm. The fragments are then assembled into potential models with loop
sections built by ab initio methods as necessary. SPICKER then selects the best
models by clustering on a lowest energy basis and the process is verified by parallel
model-build using TM-Align. The models are then re-clustered, and the final model
is constructed using REMO software.

OUTPUT: Submissions can take 1–2 days to run by the end of which users will be
emailed a results webpage link. The results are extensive and include a secondary
structure visual display, solvent accessibility display, and a B-factor graph showing
variation along the mode (see Note 1). Following this is an interactive list of the
templates used as well as the top five models viewable in a JMol-style graphical
user interface. Each of the model files is downloadable and accompanied by a C-
score, TM score, and RMSD. Included at the bottom of the results page are some
potentially useful sections on predicted co-factors and binding sites, enzyme
potential data, and gene ontology information.

CREDENTIALS: I-TASSER was ranked as the top server in CASP 7, 8, 9, and 10.

5.3.  Phyre2

This is an updated version of the Phyre server that has been completely rewritten
with the emphasis on both enhanced technical attributes and usability. The acronym
stands for Protein Homology/analogY Recognition Engine V 2.0 and is run by the
Structural Bioinformatics Group at Imperial College, London, making up part of the
Genome3D collaboration between UCL, Imperial, Cambridge, and Bristol
universities [20].

INPUT: Phyre2 can be accessed from the Phyre2 homepage, which will accept a
sequence in FASTA format as well as an email address for results. It can also be
accessed via the Genome3D page (http://genome3d.eu) where a FASTA, keyword



2/3/2021 e.Proofing | Springer

https://eproofing.springer.com/books_v3/printpage.php?token=ieLH44nkogo2riiqmY3EMd2qxcezoHvuED2bw7ksTVu89fOhh3GN9… 22/39

or UniProt id submission returns a list of matches that, upon selection, lead to a
predicted domains page. Here there are links to CATH and SCOP for protein
classification information and Phyre2 for 3-D modeling (as well as links to some
other Genome3D annotation software).

MODE: As with many servers, Phyre2 makes use of a number of other programs.
Alignment and template detection is now upgraded from a PSI-BLAST search to a
HMM-based fold library scan using HHsearch/HHpred software. Secondary
structure is also predicted using PSIPRED. Phyre2 has a sophisticated mechanism
for the management of insertions, deletions, and disordered or missing loop
regions; employing a fragment-matching library and testing dihedral angle and
energy scores to ensure the lowest possible perturbance in the structure as potential
fragments are inserted. There is also an acknowledgment of the persistent problem
of few templates or templates that only match one domain for a multi-domain
target. Here the ab initio modeling software Piong, which is designed to work as a
virtual ribosome, is employed to build as much of the model as necessary. Lastly,
DISOPred software predicts areas of disorder and the R3 protocol uses a rotamer
library to orientate amino acid side chains.

OUTPUT: Results are emailed to users with a link to the results page. The page is
split into four sections; firstly, a model based on the top-ranked template which can
be viewed interactively in JMol; secondly, a detailed graphic of predicted secondary
structure and potential disorder scores; third is nice graphic of all templates and the
percentage alignment for each, these are interactive and link to the fourth section
below which lists all templates’ structures and PDB information. These are
downloadable individually, and there is a Download as zip option for the whole
results page (see Note 2).

CREDENTIALS: Phyre2 is an older server that was been ranked sixth in CASP9 and
tenth in CASP10. However, the authors are keen to point out that there is only 2–
3% difference other servers’ performance (measured by GDT_TS) [20], (with the
exception of I-TASSER which scored slightly better in cases where only remote
homologs exist).

5.4.  Robetta

Robetta is the public-facing webpage of the Rosetta server prediction program
developed by the Baker lab at the University of Washington, USA, and now
administered by the Rosetta Commons group. Rosetta has a long history as a
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competitor in CASP and Robetta is a free-to-use front end-running the powerful
Rosetta algorithms that have been so successful [19, 28, 59].

INPUT: Users must register in order to run jobs on Robetta. There are essentially
three options upon registration; Rosetta comparative modeling (CM), Rosetta ab
initio modeling (AB), or a fully automated pipeline. Users can paste (FASTA) or
upload an amino acid sequence and also upload templates or alignments of their
own if required. It is also possible to add custom distance constraints, if known.
Users are only allowed one job at a time and jobs are run on a two-stage process;
firstly, the identification of templates and secondly domain 3-D modeling. Users
will be required to pick a domain to model after stage one and may submit only one
domain at a time to conserve computing power (see Note 3).

MODE: Robetta essentially runs four separate algorithms for template selection and
alignment; these are RaptorX, HHPred, SPARKS-X, and Map align. As above,
users are able to upload their own templates and alignment data if they which to
bypass this stage. Rosetta algorithms then perform 3-D modeling on a domain by
domain basis and also check potential interface areas by Alanine scanning (each
amino acid is in-turn replaced by Alanine and the effect on the calculated binding
energy computed) for binding and interaction prediction.

OUTPUT: Jobs typically take 1–2 days to run and users receive access to the results
page via email. The results are comprehensive and include a multi-server secondary
structure annotation with disorder predictions plus interactive RasMol annotations
of the top five models, which can be colored by error estimation. Graphical error
plots of distances (in Å) between Cα atoms of the model compared to the native
structure also accompany each model. The results page is interactive and a click on
each domain will reveal the templates and alignments used to build it as well as a
cluster graph showing its position relative to the average. For comparative
modeling, a predicted confidence value equivalent to GDT_TS is provided. For ab
initio modeling, a predicted confidence value equivalent to TM-score of the top 10
Rosetta scoring models is provided instead.

CREDENTIALS: Robetta has competed in CAMEO since 2014 and cites its success
in terms of LDDT score (Local Distance Difference Test—which evaluates inter-
atomic distances). Robetta averages around 69 (0–100 where higher scores are
better). The error estimates included in results are also evaluated through CAMEO
and Robetta achieves an average model confidence score of 0.85.
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5.5.  Swiss-Model

This was the first fully automated server developed over 20 years ago and is now a
comprehensive website with enhanced functionality administered by the Swiss
Institute of Bioinformatics (SIB) [16].

INPUT: As well as a FASTA sequence users can input the UniProt accession code
for the target. There also exists the facility to upload potential template files, but
familiarity with the SIB Swiss-PDBViewer, also known as DeepView, will likely be
necessary for this.

MODE: There are a number of key features to SWISS-MODEL. It is designed
specifically to run HMM modeling, via HHblis [34] software, on the SWISS-
MODEL Template Library (STML); an amalgamated version of the SWISS PROT
and PDB databases augmented with derived data allowing the differentiation
between bound ligands and solvent molecules. SWISS-MODEL will also run a
BLAST search and check secondary structure via PSIPRED before allowing the
user a choice between automated or manual selection of the templates found. If
manual mode is selected, the templates are listed along with their Global Mean
Quality Estimation score (GMQE—essentially an average of QMEAN [39] scores
applied to each individual amino acid) and information on predicted ligands,
oligomeric state, and sequence alignment. Users are able to select any number of
templates and these are then displayed in a 3-D structural super-position as well as
a 2-D cluster graph of evolutionary distance. Users can then choose their potential
templates based on clustering, domain matches, and sequence identity scores.

SWISS-MODEL will then build an all-atom model using ProMod II software with a
back-up comparison built using MODELLER [23].

OUTPUT: Users get a comprehensive listing of model coordinates, target-template
alignment, step-by-step modeling log, information on potential oligomeric state,
potential ligands, and co-factors as well as a QMEAN score, all of which can be
downloaded. The models within the graphical interface are also colored by
QMEAN to show areas of higher and lower confidence.

6.  CASP and CAMEO

To give some context to the programs and rating credentials presented in
Subheading 5, it is worth expanding here on the CASP and CAMEO community-
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wide experiments (first referenced in the introduction) which form the arena in
which modeling expertise is tested and advanced.

The CASP experiment has been running as a biannual blind tertiary structure
prediction competition since its inception by John Moult and associates in 1994
[63]. The purpose has been to provide a vehicle for the objective assessment of the
prediction capability of in silico groups globally with the added benefit of shared
practice and identification of technical advancement. Organizers source soon-to-be-
solved crystal or NMR 3-D structures from researchers and invite in silico
prediction groups to solve the structure before revealing the answers and scoring
groups’ efforts around 9 months later [35]. These experiments have seen the
discipline of in silico protein structure prediction rise in integrity over the past
25 years with CASP1 attracting 35 invited predictor groups [63] compared to
CASP6, (run 10 years later in 2004) which received over 30,000 predictions from
200 predictor teams [35] and CASP8 (2008) representing peak predictor
participation with 253 groups across 24 countries worldwide [64].

Since the time of its inception to the latest version the focus of the CASP
experiment has changed and expanded from mostly ab initio modeling to
comparative methods (TBM) which are able to exploit the wealth of structural
information now available (by CASP10 (2012) there were 1393 distinct folds
available in the PDB and a total of 87,000 solved protein structures [65].

CAMEO (Continuous Automated Model EvaluatiOn—see Fig. 3) is a server-based
experiment run along similar lines to CASP but differing in that participating
servers must be fully automated with no human intervention in the prediction
process. Servers receive their targets on a weekly basis and have 3 days in which to
complete the prediction and return results to CAMEO. The ratings and metrics on
the relative successes of the servers is a good indication of their competitiveness
and likelihood of providing a good quality model.

Fig. 3

A screenshot from the CAMEO website showing participating servers. (Taken from ht
tps://www.cameo3d.org/sp/1-year/difficulty/all/?to_date=2019-10-26)
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7.  Protein–Protein Interactions (PPI) and Quaternary

Structure Prediction

While both CASP and CAMEO experiments include predictions of the interaction
of proteins to form dimers and some higher level oligomers, the third community-
wide prediction competition CAPRI (Critical Assessment of Prediction of
Interactions) forms the area of expertise in PPI and quaternary structure prediction.
However, communities are now merging somewhat with CASP 11 (2014) and
CASP 12 (2016) seeing joint CASP-CAPRI collaborations on many prediction
targets, representing a crossover of docking and homology modeling expertise.

7.1.  Docking Programs

Many program routines currently used in the CAPRI experiment were originally
developed to predict protein docking interfaces with either ligands or with
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themselves to form homodimers which explains the inclusion of the word “dock” in
many program names. Although these programs can often perform a protein–ligand
docking function, the ones listed here have been developed to focus primarily on
protein–protein interactions. If a program specifically for docking is required, a
popular choice is Autodock Vina.

A number of different docking approaches have been developed to predict protein–
protein interactions. A favorite technique is the use of a Fast Fourier Transform
(FFT) to search all possible binding modes in a 6-D search space (3 rotational and 3
translational) [66] but there are others based on shape complementarity, spherical
harmonics, and identification of Zernike shape descriptors as well as those
employing more traditional physics-based measurements such as energy
minimization, side-chain orientation, and solvent accessibility.

See Table 10 for a list and brief description of some of the main players in the
prediction of interactions and quaternary structure via docking algorithms.

Table 10

Docking-based PPI modeling software

GRAMM-X [66],
ZDOCK [67], and
MEGADOCK [68]

Fast Fourier transform (FFT)-based programs

FRODOCK [69]
Modified FFT technique (Chacon et al., 2009), using a reduced 3-D
search space to save time and computer power yet reportedly
achieving a comparable level of accuracy

PatchDock [70]
Uses image segmentation techniques to map the contours of the
surface of a protein followed by shape complementarity and
symmetry to fit the protein surfaces together

Hex [71] Uses spherical harmonics (D. Ritchie)

RosettaDock [28] Uses a combination of side-chain orientations and free-energy
calculations linked to its probability-based Monte Carlo algorithm

LZerD [72] A unique approach identifying Zernike 3-D shape descriptors
followed by complementarity calculations

ClusPro [73]
Models are clustered together depending on the location of the
interface residues, the logic being that the size of clusters is
proportional their probability of representing the native model

HADDOCK [74] A physics-based scoring function based on a combination of van
der Waal’s interactions, electrostatics, and desolvation measures
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All approaches have had success over the rounds of CAPRI experiments with
ClusPro scoring a success rate of 5 high and 3 medium quality models, followed by
HADDOCK with 4 high and 1 medium (from 12 targets) in 2009 and LZerD
scoring 4 high and 3 medium models from 20 targets in 2016 (data from the server
modeling section of CAPRI [73]). RosettaDock has also enjoyed success, predicting
all 5 small targets with medium to high accuracy in rounds 3–5 [28] as well as
being ranked second in the 2014 predictor server rankings [75]. All servers are
listed with their varying levels of success in the 2014 CAPRI round 30 [75] at htt
p://www.capri-docking.org/resources/#performance-of-docking-servers-in-capri. It
must be added that most success in protein interaction prediction has come in the
form of predicting dimers and certain higher order oligomers exhibiting spherical
symmetry with hetero complexes continuing to present problems [76]. Analysis of
the joint CASP/CAPRI experiments by Lensink et al. (2016) [75] suggests that, in
general, docking approaches to predicting quaternary structures performed better
than template-based modeling due, in part, to the increased difficulty of finding
reliable oligomeric crystal templates in the PIR database. Therefore, although an
increasing number of 3-D modeling programs will offer a likely quaternary
structure for a target sequence it may be worth bearing in mind the additional
difficulties that this process involves when considering the accuracy of the final
model.

7.2.  The Evolution of Docking Methods

Although docking programs can produce very good models of homodimers, they
are less well adapted to identifying quaternary structure straight from sequence
especially for hetero or larger complexes. While some of the programs listed above
have been adapted to predict higher level homomers, e.g., MZDock and
MultiLZerD (as demonstrated by Nakamura et al. (2017)) [77], their use often still
requires a catalog of specialist software and results can be variable. One server to
both beef-up its computing power and allow easy user input directly from a
webpage interface is MEGADOCK 4.0 (accessible as MEGADOCK-Web http://ww
w.bi.cs.titech.ac.jp/megadock-web/).

Other specialist quaternary prediction sites that are publicly available via a
webpage and require only sequence data in FASTA format as input include SWISS-
MODEL, QuaBingo, and Galaxy.

Bertoni et al. (2017) [78] reported their attempt to go from sequence straight to
quaternary structure using SWISS-MODEL that samples multiple template
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databases as well as adding a co-evolution distance measure score—termed PPI
fingerprint. If it is considered possible to build a quaternary model using SWISS-
MODEL, the quaternary structure quality estimate (QSQE) score will be included
in the output.

Another study, Tung et al. (2016) [79] reported their description of the program
QuaBingo that identifies conserved domains using the BLOCKS database of motifs
based on SWISSPROT. QuaBingo also adds a pseudo amino acid descriptor
(PseACC) that takes into account the hydrophobic-hydrophilic character of
individual residues. QuaBingo can be accessed from http://predictor.nchu.edu.tw/Q
uaBingo.

Galaxy also has a homomer prediction facility based on a simple FASTA sequence
submission (http://galaxy.seoklab.org/) as Galaxy-Homomer.

8.  Notes

1. When using I-TASSER:

Models are selected by clustering and although there is good evidence that
clustering improves model identification [37], care should be taken when a
target sequence has few homologs as clustering may be less powerful. Also,
the ranking of the models by cluster size presents the potential for a good
model (higher C-score) being omitted from the top of the models list as it
appears in a smaller cluster. Results should be checked for these issues.

2. When using Phyre 2:

Phyre2 has a number of ad-on functions that may be useful.

BackPhyre is a genome search tool allowing users to search for homologs to
their solved structure in specific genomes.

One to one threading can be used if users have biological information
indicating that a specific protein should be used as the template. A file can
be uploaded.

Phyre Alarm is a scanning service which checks fold libraries on a weekly
basis and updates users who have not found a good template match in their
initial modeling attempt.
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Phyre Investigator give access to extra information on model quality
analysis, alignment confidence, and Ramachandran analysis as well as
catalytic site, mutation analysis, and potential interface detection.

Lastly, users can opt for Batch Analysis, where up to 100 jobs can be
scheduled to run automatically and Job Manager that gives access to a page
with all previously run jobs.

3. When using Robetta:

Rosetta software is available to download if users would prefer to run the
algorithm locally from the command line. There is also an option to
download pyRosetta for those interested in running the software via Python.
From the Robetta homepage are links to the latest Rosetta incarnation called
ROSIE. This has links to a whole host of functional characterization
programs (one could say a whole lotta Rosie!) and would be worth visiting.

A list of scoring functions often encountered in protein structure prediction
is given in Table 11.

Table 11

A list of scoring functions often encountered in protein structure prediction

Predictive scores (for model quality assessment)

C-score
(I-TASSER). This is a confidence score calculated for threading template
alignments. Scores range from −5 to 2 with higher scores indicating a
better alignment

E-value
(BLAST and RAPTOR). Related to p-value, for two sequences with n
alignments, E-value represents the expected number of false alignments
having greater than n correctly aligned positions. The closer to 0 the better

LG score
(PCons). Essentially a p-value for the significance of a structural similarity
match. A significant threshold would be 1 × 10  (0.031), so anything
below this figure would represent a potentially good match between a
model and the target

MaxSub
score

Identifies the largest set of Cα atoms that superimpose well over two
structures so focusing on well-predicted regions. Produces a score between
0 and 1 with 1 being the best, normalised for the size of the overlap so that
larger sequences do not automatically score better than shorter ones

ProQ score
(PCons). This is the -log of LG score, e.g., for a significant LG score of
1 × 10  The ProQ score would be 1.5. Therefore, 1.5 and upwards are
good scores

p-Value The proportion of models with a particular score that do not share any

–1.5

–1.5
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similarity with the native structure, i.e., will have the same alignment
purely by chance. <0.001 = 1/1000 chance (or less) that the model is
incorrect; <0.01 less than a 1/100 chance; <0.05, less than a 1/20; <0.1 less
than a 1/10; >0.1 likely to be a poor model with little or no similarity to the
native structure

Qmean
score
(qualitative
model
energy
analysis)

The simplest form of this, Qmean4, is the sum of four measures; geometric
analysis of the torsion angles of the carbon backbone, CB interactions, all
atom interactions, and a solvation score (QMean6 additionally includes a
secondary structure agreement score and a solvent accessibility agreement
as percentages. A Qmean4 of 1 is good with 0 considered acceptable but, as
with Z-score, a negative figure indicates a poorer fit. Qmean scores are
often transformed into Z-scores for ease of comparison with experimentally
determined structures

S-score
(PCons). A global super-position score calculated as a transformation of
RMSD on a per amino acid residue basis. 1 would represent a perfect score
and 0 a useless model

TM-score

This is a measure of the similarity of two protein structures based on a
weighted RMSD score, i.e., small RMSD values are weighted more
strongly than large scores in an attempt to overcome the distortion of
RMSD for good models with local errors. Scores can range from 0 to 1
with >0.5 representing a strong match and < 0.17 a match no better than
random

Z-score

A Z-score is an expression of the number of standard deviations from the
mean structure of the templates. A Z-score of zero would indicate that a
template represents the mean structure, a negative score would indicate a
worse fit than the mean whereas a positive score would indicate a better fit.
However, it must be remembered when dealing with normal distributions
and standard deviations, the further one travels from the mean, in any
direction, the more likely one is to be looking at an outlier and the true
value is likely to be close to the mean

Observed scores (obtained when a model is compared to the true structure)

Global
model
quality
score

The global model quality scores range between 0 and 1. In general, scores
less than 0.2 indicate there may be incorrectly modeled domains and scores
greater than 0.4 generally indicate more complete and confident models,
which are highly similar to the native structure

GDT_TS
(Global
distance
test total
score)

A CASP observed score. Explanations may be found at http://predictioncen
ter.org/casp13/doc/help.html#GDT_TS

B-factor

Often known as a temperature factor, this measurement is traditionally
supplied with crystallographic structures as a measure of the displacement
of individual atoms from their true position. Measured in angstroms
squared, 0 would be a perfect score with anything below 30 Å  considered
as acceptable and anything greater than 60 Å , questionable (for reference a
15 Å  score would equate to a mean displacement of an atom by 0.44 Å and
60 Å , a mean displacement of 0.87 Å)

RMSD
(root mean
square
deviation)

This usually refers to the average distance of all amino acid pairs in two
compared structures. Some programs will give a global score for the whole
structure whereas others my give local scores per amino acid residue.
Measured in Å, a good score would be <2.0 although this will depend on

2
2

2
2
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the resolution of the templates used to calculate the model. This measure,
although widely quoted, is particularly sensitive to the problem of local
alignment error discussed below
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