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Abstract 19 

The skill of precipitation forecasts from global prediction systems has a strong regional and 20 

seasonal dependence. Quantifying the skill of models for different regions and timescales is 21 

important, not only to improve forecast skill, but to enhance the effective uptake of forecast 22 

information. The sub-seasonal to seasonal prediction (S2S) database contains near real-time 23 

forecasts and re-forecasts from 11 operational centres and provides a great opportunity to 24 

evaluate and compare the skill of operational S2S systems. This study evaluates the skill of 25 

these state-of-the-art global prediction systems in predicting monthly precipitation over the 26 

Greater Horn of Africa. This comprehensive evaluation was performed using deterministic and 27 

probabilistic forecast verification metrics. Results from the analysis showed that the prediction 28 

skill varies with months and region. Generally, the models show high prediction skill during 29 

the start of the rainfall season in March and lower prediction skill during the peak of the rainfall 30 

in April. ECCC, ECMWF, KMA, NCEP and UKMO show better prediction skill over the region 31 

for most of the months compared with the rest of the models. Conversely, BoM, CMA, HMCR 32 

and ISAC show poor prediction skill over the region. Overall, the ECMWF model performs 33 

best over the region among the 11 models analyzed. Importantly, this study serves as a 34 

baseline skill assessment with the findings helping to inform how a subset of models could be 35 

selected to construct an objectively consolidated multi-model ensemble of S2S forecast 36 

products for the Greater Horn of Africa region, as recommended by the World Meteorological 37 

Organization. 38 

 39 
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 41 
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1. Introduction  42 

Sub-seasonal predictions, from 2 weeks to a season, are relevant for informing decision 43 

making and early warning across a range of sectors in the Greater Horn of Africa (e.g., 44 

agriculture, energy, water and disaster risk management). Sub-seasonal forecasts bridge the 45 

gap between medium-range weather and seasonal forecasts (Vitart et al. 2012; Robertson et 46 

al. 2015; Vitart et al. 2017; White et al. 2017), and have the potential to contribute to early 47 

warning and early action for both flooding and drought disasters (Moron et al. 2018). 48 

Given the potential applications of sub-seasonal predictions (White et al. 2017), and the 49 

increasing demand for forecast information across sectors in recent years, the World Weather 50 

Research Programme (WWRP) and World Climate Research Programme (WCRP) launched 51 

a joint research initiative called the sub-seasonal to seasonal (S2S) prediction project and a 52 

multi-model database of S2S forecasts and re-forecasts. The database provides an 53 

opportunity to make comparisons between the outputs of different prediction models and 54 

advance knowledge of S2S prediction (Vitart et al. 2017). Since the establishment of the S2S 55 

database, some studies have evaluated the skill of S2S models in different regions.  Li and 56 

Robertson (2015) assessed the weekly prediction skill of three global prediction systems over 57 

the globe and indicated the models had very good skill for the first week. Over Africa, de 58 

Andrade et al. (2021) evaluated the sub-seasonal forecasts for three global prediction 59 

systems and found that although skill was relatively low in week 3 and week 4, compared to 60 

weeks 1 and 2, the probabilistic forecasts still had skill in weeks 3-4.  de Andrade et al. (2019) 61 

compared the performance of sub-seasonal precipitation re-forecasts from 11 S2S models 62 

considering lead times up to 4 weeks using deterministic verification metrics and indicated 63 
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higher skill during the first week and reduced skill as lead time increased. Vigaud et al. (2017) 64 

also examined the sub-seasonal rainfall forecast skill over summer monsoon regions of the 65 

Northern Hemisphere using sub-monthly lead times and found good skill (reliability) in multi-66 

model forecasts for forecasts beyond 1 week. 67 

Because of different drivers of S2S variability, and the non-linear response to these drivers, 68 

the skill at predicting the precipitation varies widely from region to region and timescale to 69 

timescale. Evaluating the forecast skill for different regions and timescales is vitally important 70 

to identify model errors, improve forecast skill and also promote the uptake and use of forecast 71 

information in decision making. In this study, we thoroughly assessed the skill of 11 S2S 72 

models over the Greater Horn of Africa (GHA) during the March-April-May (MAM) rainfall 73 

season with a focus on monthly timescales.   74 

Past studies have shown that the MAM rainfall commonly known as the long-rains over the 75 

GHA is weakly associated with large-scale oceanic and atmospheric features (e.g., 76 

Hastenrath et al. 1993; Rowell et al. 1994; Vellinga and Milton 2018) and has low predictability 77 

compared to the October-November-December (OND) rainfall known as the short-rains 78 

(Camberlin and Philippon 2002). Furthermore, it has been noted that there is an intraseasonal 79 

inhomogeneity within the long-rains season. The spatial rainfall anomaly patterns are similar 80 

in March and April but quite different in May (Camberlin and Philippon 2002). Other studies 81 

(e.g., Rowell et al. 1995; Nicholson and Kim 1997) also found that time series of interannual 82 

variability for the months of March, April, and May are different. Nicholson (2015) also 83 

indicated that the prevailing atmospheric circulation and controls on interannual variability are 84 

clearly different during the three months of the long-rains.  As a result of this inhomogeneity 85 
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within the season, some authors (e.g., Camberlin et al. 2009; Moron et al. 2013; Rowell et al. 86 

1994) have suggested that sub-seasonal analysis is required for the long-rains season to 87 

advance the understanding and prediction of precipitation variability. 88 

It is also important to recall that the World Meteorological Organization (WMO) Executive 89 

Council at its 69th Session in May 2017 recommended the operational Regional Climate 90 

Centres (RCCs) and National Meteorological and Hydrological Services (NMHSs) to access 91 

digital forecast and reforecast data from the WMO Lead Centres for long-range forecasts and 92 

produce an objectively consolidated sub-seasonal and seasonal forecast product that is 93 

traceable and reproducible. In the recommendations, the need to assess the skill of 94 

forecasting models for different regions was stressed as well as the selection of a subset of 95 

models which have better skill for the region of interest for the construction of the relevant 96 

multi-model ensemble. Therefore, the results from this study address these recommendations 97 

and provide a crucial baseline for identifying skillful models over GHA on S2S timescale.  98 

 99 

2. Data and methods 100 

2.1 Data 101 

2.1.1 Observed data used for verification 102 

The observed data used to verify rainfall re-forecasts is the Climate Hazards Group InfraRed 103 

Precipitation with Station data (CHIRPS) version v2.0 (Funk et al. 2015). This dataset is a 104 

blended product of 0.05° resolution satellite imagery and in-situ station data provided by the 105 

Climate Hazards Group. CHIRPS dataset is available from 1981 to near-present. Validations 106 
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of CHIRPS rainfall data has been conducted over the different parts of East Africa by 107 

comparing CHIRPS with rain-gauge data and other satellite rainfall products such as African 108 

Rainfall Climatology version 2 (ARC2) and the Tropical Applications of Meteorology using 109 

Satellite and ground-based observations (TAMSAT) (e.g., Maidment et al. 2017, Dinku et al. 110 

2018). It has been found that CHIRPS performed significantly better than ARC2 and TAMSAT 111 

with higher skill, low bias and lower random errors particularly at dekadal (10-days) and 112 

monthly time-scales (Dinku et al. 2018) and indicated its suitability for use as a reference 113 

rainfall dataset.  114 

The European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation 115 

reanalysis (ERA5, Hersbach (2020)) datasets was used to evaluate the mean circulation 116 

features. This global dataset is available from 1979 to near present with a 0.25 resolution. In 117 

this study, monthly 850 hPa zonal and meridional winds are utilized for the analysis period.  118 

The observed Sea Surface Temperature (SST) data utilized in this study is version 2 of the 119 

National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation SST 120 

(NOAA_ OI_SST_V2) analysis, retrieved from https://climatedataguide.ucar.edu/climate-121 

data/sst-data-noaa-optimal-interpolation-oi-sst-analysis-version-2-oisstv2-1x1. The 122 

NOAA_OI_SST_V2 integrates both in situ and satellite data and is available from 1982 to 123 

present at 1.0o spatial resolution. 124 

2.1.2 Model Data 125 

The S2S database consists of re-forecasts and near real-time forecasts (3 weeks behind) 126 

from 11 global prediction centres, which have been made available for scientific research via 127 

the data archive portal at the ECMWF and the China Meteorological Administration (CMA) 128 
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(Vitart et al. 2016/7). The 11 global prediction centers are Australian Bureau of Meteorology 129 

(BoM), China Meteorological Administration (CMA), Météo-France/Centre National de 130 

Recherche Meteorologiques (CNRM), Environment and Climate Change Canada (ECCC), 131 

ECMWF, Hydrometeorological Centre of Russia (HMCR), the Institute of Atmospheric 132 

Sciences and Climate (ISAC), Japan Meteorological Agency (JMA), Korea Meteorological 133 

Administration (KMA), National Centers for Environmental Prediction (NCEP) and the United 134 

Kingdom’s Met Office (UKMO). Not all 11 models are exactly independent from each other. 135 

The UKMO and KMA use the same system and have the same configuration, but different 136 

atmospheric initial conditions and ensemble size. 137 

The re-forecasts and forecasts are archived on a common 1.5-degree grid horizontal 138 

resolution in the S2S database. The re-forecasts, also known as hindcasts, are a set of 139 

forecasts with start and prediction dates in the past, and are used to assess the skill of the 140 

model in reproducing the past forecasts and to calibrate real-time forecasts. Re-forecasts are 141 

similar in every aspect with the real-time forecasts apart from differences in ensemble size. 142 

This study assesses the skill of 11 global prediction systems in predicting the monthly rainfall 143 

over GHA.   144 

As the S2S models are developed and run by different prediction centres, they have different 145 

configurations. For instance, some models have fixed re-forecast configuration, whereas 146 

others have on-the-fly configuration. Fixed re-forecasts are produced once during the lifetime 147 

of a given version of the model (e.g., BoM, CMA, Meteo-France and NCEP). On the other 148 

hand, on-the-fly re-forecasts are produced at the same time as the real-time forecasts (e.g., 149 

ECMWF, KMA and UKMO). The frequency and initial start date of the re-forecast also varies 150 
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from model to model. Some models are run in continuous mode on a daily basis (e.g., CMA, 151 

NCEP), whereas others run on weekly or sub-weekly basis (e.g., BoM, ECMWF). In addition 152 

to that, the re-forecast length and time range varies from model to model. For example, the 153 

NCEP has 12 years re-forecasts initialized every day from 1999 to 2010, whereas ECMWF 154 

produces re-forecasts on-the-fly covering the past 20 years, initialized 2 days per week 155 

(Monday and Thursday) for each model version. The re-forecast ensemble size also varies 156 

from model to model. Some models are atmosphere-only models forced by observed SSTs, 157 

while others have the atmospheric component coupled to an ocean model and a sea ice 158 

model. The general features of the global prediction systems used for this study are 159 

summarized in Table 1. 160 

Even if the S2S prediction systems have different configuration or set-up, there are some 161 

common features between them to make the model inter-comparisons possible (de Andrade 162 

et al. 2019). For instance, all of the prediction systems have re-forecasts covering the period 163 

1999-2010. Each model also has a control re-forecast member using a single unperturbed 164 

initial condition and perturbed forecast members produced for sampling uncertainty in the 165 

initial conditions. Further, most of the prediction systems produce forecasts and re-forecasts 166 

starting on the 1st and middle of each month. Therefore, it is possible to make the model 167 

comparisons using the common period 1999-2010.  168 

In this analysis, all re-forecasts (control and perturbed) from one week lead to zero lead have 169 

been used. For example, to assess the skill of the models during April, all re-forecasts 170 

initialized from 23rd to 31st of March have been analyzed. The rationale for choosing this is: 171 

(1) to include the models that have shorter forecast range in the model comparison analysis; 172 
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and (2) to get a sufficiently large number of ensemble members for the probabilistic verification 173 

as some models, especially the models run on a daily basis, have few ensemble members if 174 

we only consider one or two initialization dates. To enable the comparison between all models, 175 

the analysis is performed over a common period from 1999 to 2010 (for 12 years). For 176 

computational purposes, both CHIRPS and model re-forecasts have been re-gridded to half 177 

degree (0.5°) using bilinear interpolation prior to the skill analysis. We have chosen the 0.5 178 

degree as this is the spatial resolution currently used operationally at IGAD Climate Prediction 179 

and Applications Centre (ICPAC) the RCC over the GHA, when producing the monthly and 180 

seasonal downscaled climate outlooks for the region. 181 

2.2 Verification Methods 182 

It is important to note that forecast quality is multifaceted and there is no single verification 183 

metric that captures all aspects of forecast quality (Murphy 1993). It is therefore important to 184 

assess the forecast skills using a range of different statistical measures. Currently, there are 185 

several methods available to evaluate the skill of weather and climate forecasts - ranging from 186 

simple traditional statistics and scores to methods for more detailed and advanced 187 

verifications. In the present analysis, the skills of the models have been assessed using three 188 

deterministic and three probabilistic forecast verification measures. The deterministic forecast 189 

measures include mean error, linear correlation and root mean square error. The probabilistic 190 

forecast evaluation metrics include the Ranked Probability Skill Score, Relative Operating 191 

Characteristic and Spread-Error Ratio. The deterministic forecast verification assessment is 192 

performed between the ensemble mean of all re-forecast members (control plus perturbed 193 

members) and the verifying observation, whereas the probabilistic forecast verification 194 
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analysis is performed using all the individual ensemble members. In addition to the above 195 

verification metrics, Taylor and reliability (attribute) diagrams, which provide summary 196 

statistical information between the model and reference field are used.  197 

2.2.1 Deterministic Verification Metrics 198 

In this section we summarize the deterministic verifications methods utilized. The 199 

mathematical equations for the deterministic metrics are presented in the supplementary 200 

materials.  201 

2.2.1.1 Mean Error  202 

The mean error represents the average difference between forecast and verification values. 203 

The mean error is primarily a measure of the systematic part of the forecast error. It is 204 

important to note that the mean error does not measure the magnitude of the errors. It also 205 

does not measure the correspondence between forecast and observation as it is possible to 206 

get a perfect score for a bad forecast if there are compensating errors (Kendzierski et al. 207 

2018).  208 

2.2.1.2 Root Mean Square Error (RMSE) 209 

The RMSE represents the square root of the average of the squared differences between 210 

forecasts and verification data. It is a measure of the random component of the forecast error 211 

and often used for representing the accuracy of forecasts. The RMSE is sensitive to large 212 

errors and provides information on the average magnitude of the forecast errors. However, 213 

the RMSE does not indicate the direction of the deviations. The RMSE puts greater influence 214 

on large errors than smaller errors (Jorgensen 2016) and thus it might be a good indicator of 215 

large errors.  216 
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2.2.1.3 Linear Correlation  217 

Correlation is one of the most widely used measures for forecast verification, and provides an 218 

assessment of the strength of the linear association between forecasts and the verifying 219 

observation. It is a good measure of linear association or phase error. Jolliffe and Stephenson 220 

2012 noted that it is possible for a forecast with large errors to still have a good correlation 221 

coefficient with the observation.  222 

2.2.1.4 Taylor diagram 223 

A Taylor diagram (Taylor, 2001) summarizes the statistical relationship between model and 224 

the observed/reference field. The diagram is useful for evaluating the accuracy of multiple 225 

model outputs against a reference data. Further information on the taylor diagram is provided 226 

in the supplementary materials. 227 

2.2.2 Probabilistic Verification Metrics 228 

2.2.2.1 Ranked Probability Skill Score (RPSS)  229 

The ranked probability score (RPS) is a measure of the prediction skill of probabilistic 230 

forecasts issued for categorical events (i.e., tercile-based categorical forecasts). The RPS is 231 

defined as the sum of the squared differences between cumulative forecast probabilities and 232 

cumulative observed probabilities (Murphy 1993). The RPS measures both the reliability and 233 

resolution of a forecast and is closely related to the Brier score (Tippett, 2008). The RPS is 234 

the same as the Brier score in the case of two category forecasts. The discrete expression of 235 

the RPS is given as follows:  236 

𝑅𝑃𝑆𝑡 = ∑ (𝐹𝑛𝑡 − 𝑂𝑛𝑡𝑁
𝑛=1 )2        (1)  237 
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Where 238 

Fnt  is the forecast probability at time t, given by P (forecastn < threshn) 239 

Ont  is the observed probability at time t, given by P (observedn < threshn) 240 

n is the probability category 241 

The ranked probability skill score (RPSS) is a skill score based on the RPS values. It is 242 

computed as the percentage improvement over reference score:  243 

𝑅𝑃𝑆𝑆 = (1 − 𝑅𝑃𝑆
𝑅𝑃𝑆𝑟𝑒𝑓

) 𝑥100 = (1 − 𝑅𝑃𝑆
𝑅𝑃𝑆𝑐𝑙𝑖𝑚

) 𝑥100       (2)  244 

The RPSS compares the RPS of a forecast to some reference forecast, such as a climatology, 245 

and the score ranges between negative infinity and 1. An RPSS below 0 indicates that the 246 

forecast is less skillful than climatology, and above zero indicates the forecast is more skillful 247 

than climatology where 1 is a ‘perfect’ forecast. Scores equal to zero are equivalent to 248 

forecasts given by the climatology. Müller et al. (2005) and Tippett (2008) noted the 249 

dependence of the RPSS on ensemble size.  It has been indicated that RPSS is negatively 250 

biased for ensemble prediction systems with small ensemble sizes. In this analysis, an 251 

ensemble size corrected RPSS called Fair RPSS (Ferro, 2014) is used for evaluating and 252 

comparing the skill of operational S2S systems. Further information about Fair RPSS score 253 

can be found in Ferro (2014). 254 

2.2.2.2 Relative Operating Characteristic (ROC) 255 

 ROC measures the ability of a forecast to discriminate between events and non-events, and 256 

measures the degree of forecast discrimination (Mason, 1982). Discrimination is the ability to 257 

distinguish one categorical outcome from another. The ROC is not sensitive to bias in the 258 

forecast, so it does not say anything about reliability. A biased forecast, however, may still 259 
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have good resolution and produce a good ROC curve, which means that it may be possible 260 

to improve the forecast through calibration (Jolliffe and Stephenson 2012). The ROC score, 261 

which is computed as the area under the ROC curve, is considered as a useful summary 262 

measure of forecast skill. A ROC score of 0.5 indicates unskillful forecasts (i.e., the system is 263 

no better than climatology). A ROC score above 0.5 indicates positive discrimination skill and 264 

a score of 1.0 represents a perfect forecast. More information on the ROC can be found in 265 

Mason (1982), and Jolliffe and Stephenson (2003, 2012).  266 

2.2.2.3 Reliability (or Attribute) Diagram  267 

The reliability (also known as attribute) diagram is a graphical method used to evaluate the 268 

reliability of probabilistic forecast systems. The diagram presents the observed frequency 269 

against the forecast probability. It basically answers the question of how well the predicted 270 

probabilities of an event correspond to their observed frequencies. A forecast system is 271 

reliable if and only if all the forecast probabilities are reliable (Toth et al. 2003). A reliability 272 

diagram displays a range of forecast probabilities for a given event and their corresponding 273 

observed frequencies collected over the re-forecast period (Weisheimer and Palmer 2014). 274 

Generally, the reliability is high when correspondence between the forecast probabilities and 275 

the observed frequencies is good, and it is low when this correspondence is poor. It is 276 

expected that all data points will lie on a straight diagonal line in the reliability diagram when 277 

the correspondence between the forecast probabilities and the observational frequencies are 278 

perfect. A reliability diagram is a form of attribute diagram when the no-resolution (distance 279 

from the horizontal or climatological line) and no-skill with respect to the climatology lines are 280 

included in the diagram. In the attribute diagram if the curve lies below the line, it indicates 281 

overestimation (i.e., the forecast probabilities are too high). On the other hand, if the curve 282 
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lies above the line, it indicates underestimation (i.e., forecast probabilities are too low). 283 

2.2.2.4 Spread-Error Ratio (SPR) 284 

The SPR is used to assess the relationship between ensemble spread and the deterministic 285 

forecast error. It is defined as the square root of the ratio of mean ensemble variance to the 286 

mean squared error of the ensemble mean with the verifying observation. The variance is a 287 

measure of the forecast member spread of a particular forecast indicating whether the 288 

forecast ensemble spread is large or small, while the RMSE is a measure of the forecast error 289 

of the ensemble mean forecast. Thus, the SPR evaluates the ability of the ensemble spread 290 

(variance) to depict the forecast error of the data expressed as the RMSE of the ensemble 291 

means. When the RMSE and spread are equal, the ensemble successfully predicts the 292 

forecast error. When the RMSE is superior to the spread meaning that the SPR is less than 293 

1, it is considered as underdispersive (overconfidence). Conversely, SPR greater than 1 294 

indicates overdispersive (underconfidence). For a reliable forecast system, the ensemble 295 

forecasts are expected to have the same size of ensemble spread as their RMSE (Leutbecher 296 

and Palmer, 2008; Leutbecher, 2009). The SPR is suitable for verification of ensemble 297 

forecasts and sensitive to both forecast resolution and reliability (Christensen et al. 2015).  298 

3. Results and discussion  299 

3.1 Rainfall Climatology  300 

We first analyzed the spatial distribution of rainfall climatology for individual months using 301 

CHIRPS data. Figure 1 shows the observed rainfall climatology during March, April and May 302 

averaged for the period 1981 to 2010. Climatologically, during the month of March the 303 

maximum rainfall is located over southern parts of the region mainly in most parts of Tanzania, 304 
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Burundi and Rwanda. During April and May, the rainfall band moves from the southern to the 305 

northern part of GHA following the position of the Inter-tropical convergence zone (ITCZ). In 306 

April, a marked increase in rainfall occurs throughout the region. In May, the maximum rainfall 307 

is located over western part of Ethiopia, most parts of South Sudan and Uganda. The following 308 

sections presents the monthly rainfall skill of S2S models over GHA for the individual months 309 

using the verification metrics described above. 310 

3.2  Deterministic Verification Scores 311 

3.2.1 Mean Error 312 

Figures 2a, b and c show the spatial distribution of mean errors of rainfall between the S2S 313 

models and CHIRPS over GHA for March, April and May, respectively. During March, CMA, 314 

HMCR, ISAC and JMA overestimated, while BoM underestimated the monthly rainfall over 315 

most parts of the region. In particular, the overestimation of total monthly precipitation for 316 

HMCR and ISAC systems is quite notable.  The rest of the models show a mixed signal with 317 

variations existing in terms of the location and magnitude of the mean error. Generally, BoM, 318 

CMA, CNRM, HMCR and ISAC show large errors, while ECCC, ECMWF, JMA, KMA, NCEP 319 

and UKMO show smaller mean errors over the region during the month of March. 320 

In April, most of the models show larger errors (Fig. 2b) compared to March (Fig. 2a). 321 

Consistent with the results for March, the magnitudes of errors are smaller for ECCC, 322 

ECMWF, JMA, KMA, NCEP and UKMO models. In contrast, CMA, CNRM, HMCR and ISAC 323 

largely overestimate the rainfall especially the overestimation in HMCR and ISAC models over 324 

the northern part of the region is notable.   325 
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During May, the majority of the models overestimate the rainfall mainly over the northern part 326 

of the region (Fig. 2c). In contrast, the BoM underestimates the rainfall in most parts of the 327 

region. Moreover, some of the models including CMA, JMA, KMA, NCEP and UKMO show a 328 

dry bias over the southern part of the region. It is noted that KMA and UKMO models show 329 

similar bias patterns in the region. BoM, CMA, CNRM, HMCR and ISAC still show large errors 330 

over the region.  331 

In general, the results from the mean error analysis show that the magnitude of mean errors 332 

are low during the month of March compared to April and May for all the prediction models. 333 

CMA, CNRM, HMCR and ISAC overestimate the monthly rainfall over most part of the region, 334 

whereas BoM systematically underestimate the rainfall throughout most of the region. Overall, 335 

ECCC, ECMWF, JMA, KMA, NCEP and UKMO show low bias over the region during March, 336 

April and May. The spatial distribution of the mean error of rainfall from KMA and UKMO are 337 

almost identical in most parts of the region. This might be due to the fact that the two models 338 

have exactly the same configurations. As mentioned earlier, the only difference between the 339 

two models is the atmospheric initial condition (Noh et al. 2016). The reason for the month-340 

to-month skill difference will be discussed later. 341 

3.2.2 Root Mean Square Error (RMSE)  342 

The spatial distributions of RMSE from the S2S models with reference to CHIRPS are 343 

presented from Fig. 3a to c. It can be seen that RMSE are generally higher in April compared 344 

to March and May. BoM, CMA, HMCR and ISAC show large errors over the region in all the 345 

months with HMCR and ISAC performing worse (with mean RMSE more than 100 mm), which 346 

is consistent with the mean error results. On the other hand, ECCC, ECMWF, KMA, NCEP 347 

and UKMO exhibit good prediction skills over the region in terms of RMSE. It can also be seen 348 
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that KMA and UKMO prediction systems exhibit similar RMSE patterns over the region. 349 

Generally, the magnitudes of the mean errors are small during March compared with April 350 

and May.   351 

3.2.3 Linear Correlation  352 

Figures 4a to 4c illustrate the spatial distribution of correlation coefficients of rainfall between 353 

models and CHIRPS for March, April and May, respectively, for the period from 1999 to 2010 354 

over GHA. Cross-hatches indicate regions where the correlation is statistically significant at 355 

the 95% confidence level computed using Student’s t test. It can be seen that the skill of the 356 

model in producing the rainfall forecast varies from month to month. During March, the 357 

majority of the models, with the exception of the HMCR model, show high correlation within 358 

the 95% confidence level over the equatorial and southern sector of the region and mainly 359 

higher towards the coast. Some of the models show low correlation over the northern part of 360 

the GHA, mainly over Sudan, South Sudan and northern and western parts of Ethiopia, but it 361 

is important to note that March is not the rainfall season over the northern part of the region 362 

(Fig. 1). Overall, ECMWF, JMA, KMA, NCEP and UKMO show relatively high and significant 363 

correlation over the equatorial sector compared to the rest of the models. During April, the 364 

correlation skills are relatively low over the region compared to March with some models 365 

showing a negative correlation in parts of the region. Most notably, CMA model shows 366 

negative correlation over the eastern part of the region in April (Fig. 4b). Furthermore, CNRM, 367 

HMCR, ISAC, JMA and NCEP also exhibit negative correlation over parts of the equatorial 368 

East Africa, mainly over parts of Kenya and Somalia. BoM, ECMWF, JMA, KMA and UKMO 369 

show relatively improved skill compared to the other models, mainly over the equatorial and 370 

southern part of the region. This may be linked with increased predictability in that region 371 
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associated with the development of low-level Somali Jet and Asian Summer Monsoon system 372 

in May as shown by Nicholson 2015. A discussion about the predictability of Jet and monsoon 373 

will be discussed later in section 3.4. During May (Fig. 4c) the models generally show better 374 

skill than during the month of April. ECCC, ECMWF, KMA, NCEP and UKMO models show 375 

relatively higher skill with significant correlation over the region compared to the other models. 376 

It is found that HMCR presents the negative correlations over most parts of the region 377 

reflecting the fact that the model fails to reproduce the inter-annual variability.  378 

In addition to evaluating the S2S models at monthly timescales, we also analyzed the skill of 379 

the models for weeks 1+2 and weeks 3+4 to investigate if the skill for the monthly forecast is 380 

coming from weeks 1+2 only or there is skill in weeks 3+4. In March (SFig. 1) for weeks 1+2 381 

the correlation coefficients are statistically significant at 5% level for most models except 382 

HMRC showing that the prediction skill is high. In weeks 3+4 (SFig. 2), the skill is lower in 383 

comparison to weeks 1+2. However, ECMWF, KMA, NCEP, and UKMO still have prediction 384 

skills with correlations greater than 0.5 over most of the southern and equatorial region.  In 385 

April (SFig. 3), the weeks 1+2 prediction skill is high for most models except for CMA, CNRM 386 

and HMRC which in some areas have weak negative correlations. The majority of the models 387 

during April have lower skill in weeks 3+4 with most models showing weak negative and 388 

positive correlations (SFig. 4). Only ECCC model shows statistically significant correlations in 389 

equatorial parts of the region. Since these statistics are calculated over a 12 year period, a 390 

larger sample would provide a greater confidence on the skill for weeks3+4 in April. In May 391 

(SFig.5-6), most models show high prediction skill (significant correlations) in weeks 1+2 392 

except for the CMA, ECCC and HMRC models. The weeks 3+4 prediction skills in May are 393 

generally higher compared to weeks 3+4 in April. During weeks 3+4 of May, CMA, KMA, 394 
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NCEP and UKMO show higher prediction skill in comparison with the other models.  Thus, in 395 

general even though the models have lower prediction skills in weeks 3+4, the models do 396 

have skill in weeks 3+4. These results are consistent with Vigaud et al. (2018) who found that 397 

during the February to April season the ECMWF model had skill up to weeks 3+4. Thus, 398 

issuing out the monthly forecasts is likely to aid in tactical decision making over the various 399 

sectors in the region that utilize forecast information from the S2S models. 400 

 401 

Overall, the results from the correlation analysis show that the correlation skills are highest 402 

during March and poor during April. The high prediction skill during March might be linked with 403 

high association of March rainfall with tropical sea surface temperatures (SSTs) compared to 404 

April and May as indicated by Camberlin et al. 2009 and Moron et al. 2013. On the other hand, 405 

the low prediction skill during April might be related with the wind and pressure pattern 406 

changes over the Indian Ocean as there is a directional shift in low level winds from northeast 407 

(in March) to southwest (in May).  408 

 409 

3.2.4 Taylor diagram 410 

Figure 5 shows a Taylor diagram displaying normalized statistical comparison (i.e., 411 

correlation, root-mean-square error and amplitude of variation) of monthly total rainfall of the 412 

S2S models with CHIRPS during March, April and May, respectively. The rainfall is spatially-413 

averaged for the GHA domain by masking out the regions outside GHA. In March, most 414 

models (including CMA, CNRM, ECCC, ECMW, JMA, KMA and UKMO) show high correlation 415 

(> 0.6) in comparison with the observation. In particular, ECMWF, KMA and UKMO present 416 

relatively high correlation (> 0.8) and low root-mean-square difference and have a variation 417 



20 
 

close to the reference data. On the other hand, BoM, HMCR and NCEP show low correlation 418 

(< 0.6) with HMCR showing the lowest correlation (i.e, 0.1) and a variation far from the 419 

reference field. During April, correlations are relatively low in comparison to March. Moreover, 420 

most of the models underestimate the magnitude of year-to-year variation relative to CHIRPS, 421 

while three models (CMA, JMA, and ISAC) overestimate the variation. BoM, ECCC and 422 

ECMWF have relatively high correlation (r> 0.6) compared with other models. ISAC shows a 423 

variation much higher than CHIRPS, while CMA exhibits the lowest correlation. During May 424 

CNRM, ECCC, ISAC, KMA, NECP and UKMO have relatively high correlation (r > 0.6) 425 

compared with other S2S models, while JMA and HMCR presents the lowest correlation. It is 426 

also noticed that HMCR and JMA indicate extremely high variation compared to CHIRPS.  427 

 428 

3.3 Probabilistic Verification Scores 429 

3.3.1 RPSS 430 

The Fair RPSS from the 11 S2S models for March, April and May are presented in Figures 431 

6a, 6b and 6c, respectively. During March most models show positive RPSS (i.e., a forecast 432 

better than the climatological forecast values) over most parts of the region, with maximum 433 

score over the equatorial sector (Figure 6a). Consistent with other verification metrics, HMCR 434 

shows the lowest skill by presenting negative scores over most parts of the region. In April, 435 

the skill for most S2S models is relatively low compared to March. More grid points with 436 

negative scores are found than for March. ECCC, ECMWF and KMA show relatively better 437 

skill in the region. During May, the skills of the forecasts are generally higher than April, but 438 

lower than March. While ECCC, ECMWF, KMA, NCEP and UKMO present the highest skill, 439 

CMA, HMCR and ISAC show the lowest skill (Figure 6c). Overall, the results of RPSS indicate 440 
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that the skill of the S2S model forecasts is lower in April than March and May, agreeing with 441 

the previous results of mean error and correlations. The RPSS values obtained in this study 442 

are relatively higher than those in Vigaud et al. (2018) for seasonal evaluation, highlighting 443 

the importance of the monthly updates during the season. It is also noted that most models 444 

predict worse than climatology over the northern parts of the region, mainly over Sudan. But 445 

it is important to note that the northern part of the GHA is generally dry during this season 446 

(Fig. 1). 447 

3.3.2 ROC 448 

Figures 7a, b and c show ROC Skill Scores (ROCSS) for lower-tercile forecasts for March, 449 

April and May, respectively. During March, most of the models show a forecast skill better 450 

than the climatological forecast (Figure 7a). In particular, CMA, CNRM, ECCC, ECMWF, 451 

ISAC, KMA, NCEP and UKMO show good skill over the region. On the other hand, BoM, 452 

HMCR and JMA present a forecast worse than a climatological forecast over parts of the 453 

region especially over parts of Kenya, Somalia, Ethiopia, South Sudan, Uganda and 454 

Tanzania. In April, most of the S2S models show lower skill than in March. ECMWF, KMA and 455 

UKMO perform better than other models, with the ECMWF model showing high ROCSS over 456 

the region and outperforming the rest of the models.  The rest of the models including BoM, 457 

CMA, CNRM, ECCC, HMCR, ISAC, JMA and NCEP exhibit skill scores of less than 0.5 over 458 

equatorial parts of the region indicating the forecast from those systems is worse than the 459 

climatological forecast over the specified region. During May, ECMWF, KMA, NCEP and 460 

UKMO prediction systems show good prediction skill over the region compared to the other 461 

prediction systems. In contrast, HMCR performs the worst. In general, April forecasts exhibit 462 

lower skill than in both March and May. The ROC skill scores for the upper-tercile forecasts 463 
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have also been analysed and the results are very similar to lower-tercile forecasts (Fig not 464 

shown). ROC skill scores for the lower-tercile in weeks 1+2 and weeks 3+4 for each month 465 

was also computed (SFig. 7- 12).  The results reveal that nonetheless weeks 1+2 have higher 466 

skill than weeks 3+4, the weeks 3+4 still have skill especially in March and May. de Andrade 467 

et al. (2021) also evaluated the quality of sub-seasonal precipitation forecasts over Africa 468 

using reforecasts from three models (ECMWF, UKMO, and NCEP) and indicated that the 469 

probabilistic forecasts showed reasonable skill in weeks 3+4. 470 

3.3.3 Reliability (or attribute) diagrams 471 

Figure 8 shows the attribute diagrams of precipitation for the below-normal category over GHA 472 

from the 11 S2S models during March, April and May. During March, it can be seen that the 473 

majority of the models lie within the grey area particularly for higher probabilities indicating 474 

good reliability in the issued re-forecast probabilities. Only three of the S2S models, namely 475 

CMA, HMCR and ISAC, lie below the no skill line for forecast probabilities above 0.4. During 476 

April, most prediction systems including BOM, CMA, CNRM, ECCC, HMCR, ISAC and NCEP 477 

are away from the perfect reliability diagonal (45°) line particularly for higher forecasted 478 

probabilities and indicate the lack of reliability and resolution for the issued hindcast 479 

probabilities. The rest of the S2S models show good reliability. In particular, the curve for 480 

ECMWF, KMA, NCEP and UKMO are much closer to the perfect reliability line, indicating a 481 

much better agreement between the forecast probabilities and observed frequencies. In May, 482 

the three S2S models (i.e, BoM, HMCR and ISAC) showed the lowest skill by indicating lower 483 

resolution and overconfidence. It is also noted that the majority of the models underestimated 484 

the low probabilities (below the climatological line). During the three months, it has been found 485 

ECMWF shows better prediction skill than the rest of the S2S models. The results for above 486 
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normal category (Fig not shown) were found to be consistent with the results of below normal 487 

category.  488 

 489 

3.3.4 SPR 490 

The SPR from the 11 S2S models for March, April and May are presented in Figures 9a, 9b 491 

and 9c, respectively. In general, it can be seen that most of the S2S models indicate 492 

underdispersion (overconfidence) over wet areas and overdispersion (underconfidence) over 493 

the dry areas in the northern parts of the region mainly over Sudan. A recent study by de 494 

Andrade et al. (2021) also noted overconfidence in ECMWF, NCEP and UKMO models in all 495 

weeks and suggested the need to apply calibration for more reliable predictions. In March 496 

(Fig. 9a), most of the models show good performance particularly over the equatorial and 497 

southern parts of the region. In the HMCR model, the spread is much smaller than the error. 498 

During April (Fig. 9b), most models have an SPR less than 1 indicating underdispersion 499 

(overconfidence). ECCC and ECMWF outperform other models by presenting SPR values 500 

close to 1. In May (Fig. 9c), similar to April, the majority of the models present an error larger 501 

than the spread reflecting underdispersive characteristics, with the exception of the northern 502 

parts of the region. ECMWF and ECCC perform better than the rest of the prediction systems, 503 

while HMCR performs the worst in terms of spread-error relationship. de Andrade et al. (2021) 504 

indicated enhanced skill in ECMWF and associated the forecast skill with correct 505 

representations of climate drivers’ teleconnections such as El Niño–Southern Oscillation 506 

(ENSO), Indian Ocean Dipole (IOD) and Madden Julian Oscillation (MJO).  507 

3.4 SST and atmospheric features 508 
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Further to the evaluation of the skill of S2S models in predicting the monthly rainfall, this study 509 

assessed the ability of the models in representing some of the important large-scale features. 510 

The goal is to provide insight into the connection between the skill of rainfall forecasts and the 511 

representation of key processes that drive monthly rainfall variability in the region. 512 

3.4.1 Indian Ocean SST 513 

The Indian Ocean plays an important role in modulating the climate variability of the GHA. 514 

Previous studies (e.g., Camberlin and Phillipon, 2002; Vellinga and Milton 2018; Wainwright 515 

et al. 2019) have shown the influence of SST anomalies over the tropical Indian Ocean on the 516 

East African long-rains. In this study, we assessed the ability of S2S models to reproduce the 517 

teleconnections between SSTs over the Indian Ocean and corresponding rainfall over the 518 

GHA. This was done by regressing grid-point rainfall over the GHA to SST indices over the 519 

Indian Ocean. The specific regions (boxes) used to compute the indices are shown in Fig. 520 

10a. These regions (boxes) were selected in accordance with previous studies and are based 521 

on the correlation analysis between spatially averaged observed monthly rainfall over the 522 

GHA and concurrent grid point SST shown in Fig. 10a. During March, the SST gradient 523 

between the northern (40°E-75°E, 5°S-10°N) and southern (20°E-60°E, 40°S -20°S) Indian 524 

Ocean is used following Wainwright et al. (2019), which linked a reduced March rainfall and 525 

delayed onset of the long-rains with warm SSTs south of Madagascar.  For the May index, 526 

average SSTs in the northern Indian Ocean box (5°S–15°N, 50°–90°E) were used, where the 527 

correlations with the rainfall are the strongest and statistically significant. 528 

Figure 10b shows SST-rainfall teleconnection patterns obtained by regressing March rainfall 529 

against the meridional SST gradient over the Indian Ocean for observations (top left panel) 530 



25 
 

and individual S2S models (all other panels). The observed patterns indicate that the 531 

equatorial parts of the region (5°S–10°N) are positively correlated with the index indicating 532 

above normal rainfall when the north-south gradient is strong. On the other hand, the southern 533 

and southeastern parts of Tanzania are negatively correlated with the index. In this case, 534 

warm SSTs over south western Indian Ocean weaken the meridional SST gradient which 535 

creates local convective activity (enhanced moisture convergence), and lead to enhanced 536 

rainfall in that part of the region. This is consistent with Wainwright et al. 2019, which 537 

suggested warmer SSTs to the south delay the northward progression of the rain-band and 538 

lead to increased March rainfall in the southern part, but reduced rainfall over the equatorial 539 

and northern part of the GHA. The positive coefficients over the eastern horn of Africa are 540 

statistically significant at the 95% confidence level. It can be seen that most S2S models 541 

reasonably reproduce the observed features (Fig. 10b). This supports the idea that the 542 

relatively strong coupling of SST and rainfall in March is well captured by the S2S models, 543 

and that this leads to the high monthly skill found for March.  544 

Rainfall teleconnections for May against the SST index over the northern tropical Indian 545 

Ocean are shown in Figure 10c. The observations exhibit significant positive coefficients over 546 

most of the equatorial and southern parts of the region, and negative coefficients over western 547 

parts of Ethiopia and the South Sudan-Sudan border areas. This implies that warm SST 548 

anomalies in the northern Indian Ocean bring enhanced rainfall over most parts of Eastern 549 

Africa, but reduced rainfall over parts of western Ethiopia, South Sudan and Sudan. Most 550 

models poorly represented both the spatial distribution and amplitude of this teleconnection 551 

pattern, particularly the positive associations over southern and eastern parts of the region 552 

and the negative association over the summer monsoon areas. It can also be seen that there 553 
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is a linkage between the forecast skill and the teleconnection patterns. For example, ECCC 554 

has quite good skill in May over northern Somalia compared to the other models (Fig 4c & 6c) 555 

and also has the best representation of the teleconnection in that region (Fig. 10c). Similarly, 556 

ECMWF showed good skill over Western Kenya, and has a good representation to the SST 557 

teleconnection in that area.  558 

3.4.2 Somali Low-Level Jet (SLLJ) 559 

The SLLJ, a major component of the Asian summer monsoon system, is one of the most 560 

important sources of moisture for East Africa, particularly during the summer season. It plays 561 

an important role in transporting moisture from the Indian Ocean to the region. Although the 562 

jet is most intense during the boreal summer season, the northward cross-equatorial flow of 563 

the jet starts in April and the jet becomes active over the Indian Ocean during May. A study 564 

by Nicholson (2015) indicated that the surface features of the SLLJ begin to develop over the 565 

Indian Ocean in April, and by May a deep and well-developed monsoon low becomes evident. 566 

The climatological pattern of SLLJ during May from ERA5 and mean errors of the jet from 567 

S2S models in comparison to the ERA5 are shown in SFig. 13.  ERA5 shows the jet is 568 

characterized by southeasterly flow south of the equator, meridional flow around the equator 569 

along the East African coast and southwesterly monsoonal flow over the Arabian Sea. 570 

Generally, models which are able to capture these large-scale features have higher skill. 571 

Consistent with precipitation performance, ECCC, ECMWF, JMA, KMA, NCEP and UKMO 572 

show smaller errors than the rest of the models. On the other hand, BoM, CMA, HMCR and 573 

ISAC show the largest bias.  574 

To examine the ability of S2S models in representing the spatial patterns and magnitude of 575 
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rainfall teleconnections with the SLLJ, a regression analysis was applied to a scalar index of 576 

the Jet. A scalar index of jet intensity was constructed by computing the square root of twice 577 

the spatial mean kinetic energy (KE) of 850 hPa horizontal wind over a spatial domain 5oS –578 

20oN; 50oE –70oE, as in Boos and Emanuel (2009). Figure 11 shows rainfall teleconnections 579 

against SLLJ Index estimated by linear regression during May from observation and the S2S 580 

models. The teleconnection patterns from ERA5 (Fig. 11 top left) indicates a positive 581 

association between the SLLJ Index and rainfall over the summer rainfall region (northwestern 582 

parts of the analyzed domain), indicating wet conditions associated with a strong jet, possibly 583 

through increased moisture flux to the region. It can be seen that most S2S models fail to 584 

capture the pattern and the amplitude of the positive teleconnection over the northern part of 585 

the region. In particular, BoM, CMA, HMCR, and NCEP produced signals with opposite signs 586 

to those found in ERA5 over those areas. ECMWF and ECCC generally capture the positive 587 

relationship between the SLLJ index and rainfall, although ECMWF tends to overestimate the 588 

magnitude and spatial extent of the positive teleconnection patterns.  589 

Most areas of the equatorial and southern part of the region have weak and inverse 590 

relationships with the strength of the SLLJ (ERA5). This implies that enhancement of the Jet 591 

leads to reduced rainfall over the equatorial and southern part of the region. A study by 592 

Nicholson (1996) has also indicated that a strengthening of the SLLJ is associated with 593 

enhanced frictionally-induced subsidence on the coast of East Africa. The majority of S2S 594 

models fairly capture the negative relationship between the strength of the SLLJ and rainfall 595 

over the equatorial and southern parts of the region. Analysis of the rainfall teleconnections 596 

against SLLJ Index from observations over a longer period (1981-2018) revealed that 597 

regression coefficients are statistically significant at the 95% confidence level over most parts 598 
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of the region (Fig. not shown). This suggests that a large sample is crucial to have a greater 599 

confidence on the skill of the models representing the teleconnection patterns. 600 

Overall, our analyses of the important large-scale features revealed that the ability of the 601 

models in reproducing the rainfall is partly linked to their ability in representing the important 602 

potential oceanic and atmospheric circulation features. However, it is important to note that 603 

many other processes contribute to the regional rainfall variability, and thus more in-depth 604 

analysis of other relevant atmospheric and oceanic features (such as the MJO, quasi-biennial 605 

oscillation (QBO) and Arabian heat low) is crucial to better understand the mechanisms 606 

behind the sources of monthly rainfall predictability and elucidate both strengths and 607 

deficiencies in the S2S models. For example, Vitart et al. (2017) showed that the ECMWF 608 

and UKMO models consistently have higher bivariate correlation for the MJO than the other 609 

models, with MJO correlation remaining above 0.6 at several weeks leadtime.  The ability of 610 

such models to better capture large-scale drivers like the MJO could explain their consistently 611 

higher skill throughout the different months.  612 

4. Summary and conclusions  613 

Due to the increasing demand for the availability of S2S forecast products and information 614 

from the user community, it is important to assess and document the prediction skill of 615 

operational prediction systems for different regions and timescales. This study evaluates and 616 

compares the skill of 11 state-of-the-art operational models from the S2S database in 617 

predicting the monthly precipitation over the Greater Horn of Africa during the long-rains. The 618 

prediction skill of S2S models has been examined using re-forecast/hindcast data by 619 

combining forecasts at lead times from one week to zero over the common period of 1999-620 
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2010. The skill has been quantified using different deterministic and probabilistic forecast 621 

verification metrics. The deterministic skill assessment is performed using ensemble mean of 622 

all re-forecast members, whereas the probabilistic forecast verification analysis is performed 623 

using all the ensemble members. It has been found that the skill of the models in predicting 624 

rainfall is dependent on both the month and region. The models generally showed good 625 

prediction skill during the early stage of the rainy season in March and poor prediction skill 626 

during the peak of the rainfall season in April. In addition to the monthly evaluation, analysis 627 

for model skill in weeks 1+2 and weeks 3+4 is also conducted. It is shown that although weeks 628 

1+2 have higher skill than weeks 3+4, the weeks 3+4 still exhibit some skill, especially in 629 

March and May. The high prediction skill observed during March is likely linked to strong 630 

teleconnections between March rainfall and SST over the Indian Ocean, which is well 631 

represented by most S2S models. This is in accordance with Camberlin et al. (2009) and 632 

Moron et al. (2013) findings, which indicate the March rainfall anomaly patterns are more 633 

spatially coherent compared to April and May, and highly associated with tropical SSTs. The 634 

low prediction skill during April might be linked with the directional shift in low level winds as 635 

there is a progressive directional shift from northeasterly in March to southeasterly in April, 636 

where the southeasterlies become stronger and evident in May as highlighted by Nicholson 637 

2015. In May, a diagnostic of SLLJ suggests that the mean error (phase bias) in the position 638 

of the jet is a stronger contributor to the quality of the rainfall forecast than its representation 639 

of the large-scale teleconnections.   640 

Among the 11 prediction systems, ECCC, ECMWF, KMA, NCEP and UKMO demonstrate 641 

noticeably better skill than the other models. In contrast the BoM, CMA, HMCR and ISAC 642 

prediction systems tend to yield poor prediction skills over the region. Overall, ECMWF 643 
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outperforms the rest of the models, in terms of both deterministic and probabilistic verification 644 

metrics. The best and worst performing models identified in this study are in agreement with 645 

findings of the recent study by de Andrade et al 2019, which assessed the deterministic 646 

forecast quality of weekly accumulated precipitation over the globe. This study provides a 647 

crucial baseline skill assessment for selecting those models which perform better, thus 648 

informing which could be used to construct a multi-model ensemble for producing 649 

consolidated forecasts for the GHA region. It is worth noting that in doing so this study directly 650 

addresses the WMO recommendation of the need to critically evaluate the skill of forecasting 651 

models for different regions and timescale and for selecting a subset of models for producing 652 

operational objective S2S forecasts. It has been revealed that the prediction skill of the models 653 

in reproducing the regional rainfall was partly linked with the correct representation of some 654 

of the important potential atmospheric and oceanic processes and teleconnections such as 655 

the SLLJ and SST anomalies over the tropical Indian Ocean. Further diagnostic analysis of 656 

other potential drivers is needed to better understand the sources of sub-seasonal 657 

predictability and the linkage between the skill of rainfall forecast and representation of key 658 

processes. Moreover, this analysis was performed over a relatively short period (12 years) 659 

and thus a large sample size is needed to provide greater confidence on the skill of the S2S 660 

models in predicting the rainfall as well as representing the teleconnection patterns. 661 

 662 

 663 

 664 

 665 
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Model Re-forecast 

configuration 

Time 

range 

(days) 

Re-

forecast 

length 

Re-forecast 

frequency 

Re-

forecast 

size 

Ocean 

Coupling 

BoM Fixed 0-62 1981-2013 6/month 33 Yes 

CMA Fixed 0-60 1994-2014 Daily 4 Yes 

CNRM Fixed 0-61 1993-2014 4/monthly 15 Yes 

ECCC On-the-fly 0-32 1998-2017 Weekly 4 No 
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ECMWF On-the-fly 0-46 past 20 

years 

2/week 11 Yes 

HMCR On-the-fly 0-61 1985-2010 weekly 10 No 

ISAC Fixed 0-32 1981-2010 every 5 

days 

5 No 

JMA Fixed 0-33 1981-2010 3/month 5 No 

KMA On-the-fly 0-60 1991-2010 4/month 3 Yes 

NCEP  Fixed 0-44 1999-2010 daily 4 Yes 

UKMO On-the-fly 0-60 1993-2015 4/month 7 Yes 

 800 

Table 1: Summary of configuration of the global prediction systems (models) used in this 801 

analysis. The re-forecast length, time range, frequency and number of ensemble members 802 

depend on the modeling center.  803 
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 804 

 805 

Figure 1. Spatial distribution rainfall climatology during March, April and May over GHA using 806 

CHIRPS observed data.  807 

 808 
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 809 

 810 

Figure 2a. Spatial distribution of Mean Error of rainfall between models and CHIRPS during 811 

March over GHA for the period from 1999 to 2010.  812 
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 815 

 816 

Figure 2b. Spatial distribution of Mean Error of rainfall between models and CHIRPS during 817 

April over GHA for the period from 1999 to 2010.  818 
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 824 

Figure 2c. Spatial distribution of Mean Error of rainfall between models and CHIRPS during 825 

May over GHA for the period from 1999 to 2010.  826 
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 832 

Figure 3a. Spatial distribution of RMSE of rainfall between 11 S2S models and CHIRPS during March 833 

over GHA.  834 
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 842 

Figure 3b. Spatial distribution of RMSE of rainfall between 11 S2S models and CHIRPS during April 843 

over GHA.  844 
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 853 

Figure 3c. Spatial distribution of RMSE of rainfall between 11 S2S models and CHIRPS during May 854 

over GHA.  855 
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 859 
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 861 

Figure 4a. Spatial distribution of correlation coefficient of rainfall between models and 862 

CHIRPS during March for the period from 1999 to 2010. Hatching indicates regions where the 863 

correlation is statistically significant at the 95% confidence level.  864 
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 866 

 867 
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 869 

Figure 4b. Spatial distribution of correlation coefficient of rainfall between models and 870 

CHIRPS during April for the period from 1999 to 2010. Hatching indicates regions where the 871 

correlation is statistically significant at the 95% confidence level.  872 
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 876 

Figure 4c. Spatial distribution of correlation coefficient of rainfall between models and 877 

CHIRPS during May for the period from 1999 to 2010. Hatching indicates regions where the 878 

correlation is statistically significant at the 95% confidence level.  879 
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 883 



49 
 

 884 

885 

Figure 5. Taylor diagram displaying normalized statistical comparison of monthly total rainfall 886 

of the S2S models with CHIRPS during March (top-left), April (top-right), and May (bottom-887 

left). 888 

 889 
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 891 

 892 

Figure 6a. Ranked Probability Skill Score (RPSS) from 11 S2S models for March validated 893 

against CHIRPS for the period from 1999 to 2010 894 
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 896 

 897 



51 
 

 898 

Figure 6b. Ranked Probability Skill Score (RPSS) from 11 S2S models for April validated 899 

against CHIRPS for the period from 1999 to 2010. 900 
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 905 

Figure 6c. Ranked Probability Skill Score (RPSS) from 11 S2S models for May validated 906 

against CHIRPS for the period from 1999 to 2010. 907 
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 909 

 910 

Figure 7a. Relative Operating Characteristic Skill Score (ROCSS) for lower tercile during 911 

March for the period from 1999 to 2010. 912 
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 916 

 917 

Figure 7b. Relative Operating Characteristic Skill Score (ROCSS) for lower tercile during 918 

April for the period from 1999 to 2010. 919 

. 920 
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 921 

Figure 7c. Relative Operating Characteristic Skill Score (ROCSS) for lower tercile during May 922 

for the period from 1999 to 2010. 923 
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 928 

Figure 8. Attribute diagram in predicting the monthly precipitation during March, April and May 929 

over GHA for the below-normal category (upper tercile) for the period from 1999 to 2010. In 930 

the diagram, the x-axis shows the average forecast probability and the y-axis shows the 931 

corresponding observed relative frequency. 932 
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 934 

 935 

Figure 9a. Spread-error (SPR) ratio for March for the period from 1999 to 2010. SPR below 936 

1 indicates underdispersive (overconfidence) and SPR greater than 1 indicates 937 

overdispersion (underconfidence).  938 

 939 

 940 
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 941 

Figure 9b. Spread-error ratio for April for the period from 1999 to 2010. SPR below 1 942 

indicates underdispersive (overconfidence) and SPR greater than 1 indicates overdispersion 943 

(underconfidence).  944 

 945 

 946 
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 947 

Figure 9c. Spread-error ratio for May for the period from 1999 to 2010. SPR below 1 indicates 948 

underdispersive (overconfidence) and SPR greater than 1 indicates overdispersion 949 

(underconfidence).  950 

 951 

 952 
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 953 

 954 

Figure 10a: Correlations between monthly rainfall (Mar, Apr & May) averaged over GHA 955 

region and concurrent grid-point SSTs for the period from 1982-2018 using CHIRPS rainfall 956 

and NOAA SST data. Hatching indicates regions where the correlation is statistically 957 

significant at the 95% confidence level. The boxes indicate location of SST regions used to 958 

compute indices for the regression analysis. For March analyses, a western Indian Ocean 959 

meridional index is formed by taking the difference between average SSTs over the northern 960 

(red) and southern (blue) boxes shown. 961 
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 964 
 965 

Figure 10b. Linear regression between March rainfall and the SST index (meridional 966 

gradient) over the western tropical Indian Ocean for the for the period from 1999–2010. 967 

Hatching indicates regions where the regression coefficient is statistically significant at the 968 

95% confidence level. Units are mm/month/°C. 969 
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 972 
 973 

Figure 10c. Linear regression between May rainfall and SST index over the northern tropical 974 

Indian Ocean for the period from 1999–2010. Hatching indicates regions where the regression 975 

coefficient is statistically significant at the 95% confidence level. Units are mm/month/°C. 976 
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 979 
 980 

Figure 11. Linear regression between May rainfall and the SLLJ index for the period from 981 

1999–2010. Hatching indicates regions where the regression coefficient is statistically 982 

significant at the 95% confidence level. Units are mm/month/m/s. 983 
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