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ABSTRACT: Computer simulations of alloys’ properties often require calcu-
lations in a large space of configurations in a supercell of the crystal structure. A
common approach is to map density functional theory results into a simplified
interaction model using so-called cluster expansions, which are linear on the cluster
correlation functions. Alternative descriptors have not been sufficiently explored so
far. We show here that a simple descriptor based on the Coulomb matrix
eigenspectrum clearly outperforms the cluster expansion for both total energy and
bandgap energy predictions in the configurational space of a MgO—ZnO solid
solution, a prototypical oxide alloy for bandgap engineering. Bandgap predictions
can be further improved by introducing non-linearity via gradient-boosted decision

trees or neural networks based on the Coulomb matrix descriptor.

D ensity functional theory (DFT) is the most widely used
electronic structure simulation technique in modern
materials theory research. Despite its widespread use, DFT can
incur a very high computational cost, making access to a high-
performance computer a requisite for many applications, and
prompting research into cheaper and more efficient ways to
compute electronic properties of materials.

In recent years, machine learning (ML) has seen growing
research interest in theoretical materials science because of its
potential to reduce computational cost by several orders of
magnitude compared with traditional DFT-only ap-
proaches.'™* The development of atomic-level descriptors
such as the Coulomb matrix has led to great progress in the
accelerated prediction of molecular and material properties.”®
The Coulomb matrix, defined as

0.5z,
M, =3 ZZ
IR, — R’

i=j

i#j

where Z; and R, are the atomic numbers and positions of the
atoms in the structure, was first used by Rupp and co-workers
to show that a Gaussian regression method was able to
accurately predict atomization energies in gas-phase molecules,
significantly reducing the computational cost of a standard ab
initio approach.” Typically the matrix is flattened to vector
form by using the sorted spectrum of eigenvalues, leading to a
convenient vector shape for the descriptor (the Coulomb
matrix eigenspectrum or CME), which is invariant to
translation, rotations, and permutations of atom indices. The
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CME descriptor has been generalized to periodic systems and
employed for the description of formation energies in solids.®

The investigation of the vast configurational space of solid
solutions is another area where ML can accelerate predictions.
The most established approach to calculate the energies (and
sometimes other properties) of solid solution configurations is
to create a so-called cluster expansion, where the energy is
represented as a linear expansion of cluster correlation
functions (CCFs) of increasing order, i.e., points, pairs, trios,
quartets, etc.” Cluster expansions have been hugely successful
in the theoretical understanding of alloys, but they also have
limitations, for example, related to relaxation effects and
numerical errors.'”"" Rosenbrock et al. have recently proposed
ML potentials as an alternative to cluster expansions for the
investigation of alloy phase diagrams.'” Natarajan and van der
Ven employed ML tools including neural networks to
generalize the cluster expansion agproach by relaxing the
condition of linearity on the CCFs."> An alternative approach,
which we follow in this work, is to use a different descriptor
altogether, one that is not constrained by the locality of the
CCFs, like the CME mentioned above. This is especially worth
exploring for the prediction of non-additive properties, such as
bandgaps, where the cluster expansion might not perform as
well as for energies.
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Solid solutions offer the possibility of band structure
engineering for many applications. Mg, _,Zn,O solid solutions,
chosen here as a case study, constitute an important family of
wide-gap semiconductors with tunable bandgaps from 3.3 to
7.8 eV.'"*" Thin films made of these solid solutions are of
interest in the field of ultraviolet optoelectronic devices.'™"®
Precise bandgap engineering is therefore needed, which can be
achieved to a great extent via compositional optimization. We
are interested here in the possibility of optimizing the bandgap
in the configurational space (at fixed composition) rather than
in the compositional space, since it is known that modern
crystal-growth techniques, like molecular beam epitaxy, can
produce targeted crystal structures, often in defiance of
equilibrium thermodynamics. Previous DFT calculations
performed in alloy models in a small 16-atom cell have
already suggested the existence of large bandgap fluctuations
due to differences in the local arrangement of Mg and Zn
atoms.'” However, expanding these DFT-based studies to
larger supercells to properly explore the configuration space
would have a prohibitively large computational cost.

We present here an investigation of different computational
approaches to map the bandgaps of alloy configurations into a
simple model that allows fast prediction and screening across a
large configurational space. We use the 3:1 MgO—ZnO
rocksalt solid solution as a case study, both because it is a
well-known system with important applications and because it
does not pose extra challenges to DFT like partially filled d
orbitals or spin polarization. We will compare the performance
of CCF vs CME descriptors, as well as linear vs non-linear
regression models, in the hope of discovering new routes for
more accurate bandgap engineering in solid solutions.

The MgO and ZnO end members have cubic and hexagonal
crystal structures, respectively.””*' A 64-atom cubic supercell
with composition ZngMg,,O3, was chosen as a case study for
the assessment of ML methods for the prediction of mixing
energy (E,;) and band gap energy (E,,,) in the solid solution.
This composition and cell size give 8043 symmetrically
inequivalent cation configurations, with configurations consid-
ered equivalent if they are related by a symmetry operator of
the parent structure.”” We used the Supercell code to generate
the inequivalent configurations.”> This number of config-
urations is both large enough to yield statistically meaningful
data-driven conclusions and small enough to permit a full DFT
treatment for training and validation of the ML models.

Symmetrically inequivalent configurations were subject to
full geometry and cell vector optimization using DFT
simulations with periodic boundary conditions, as imple-
mented in the VASP code.”* The generalized gradient
approximation (GGA) was used for the exchange-correlation
term, with the functional by Perdew, Burke, and Ernzerhof
(PBE).” The projector augmented wave (PAW) method was
used to describe the interactions between atomic cores and
valence electrons.”®”” A plane wave kinetic energy cutoff of
520 eV was used, which is 30% above the recommended value
for the set of PAW potentials used, to minimize Pulay stress
errors. The end members are modeled with high accuracy with
this type of calculations, as we can see by the good agreement
between DFT-optimized cell parameters and experimental
values in Table 1.

It is well known that GGA-PBE gives a poor description of
bandgaps, generally underestimating the experimental values.
In order to find out how to correct the PBE values, a small
subset of 20 configurations across the full range of bandgaps
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Table 1. Relaxed Cell Parameters and Bandgaps of the Solid
Solution End Members (MgO and ZnO) from DFT
Calculations, in Comparison with Experimental Values

MgO ZnO

cubic (Fm3m)

hexagonal (P6;mc)

crystal system (space group) calc exp calc exp
a/A PBE: 4.24 422 PBE: 3.24 3.25
/A - - PBE: 5.18 521
Egp/eV PBE: 4.5 PBE: 14
HSE: 62 78"  HSE:2.6° 33

“Calculated using the HSE functional at PBE geometry. “Ref 14. “Ref
1S.

was chosen for more accurate calculations using the screened
hybrid functional by Heyd, Scuseria, and Ernzerhof (HSE),
which incorporates 25% Hartree—Fock exchange energy and is
much better than GGA at predicting bandgaps.”® We
demonstrate that for the ZnO/MgO alloy studied here, the
PBE bandgaps may be easily corrected via a simple linear
transformation to reproduce the HSE bandgaps. The linear
relation between the bandgap values calculated with PBE and
with HSE can be seen in Figure Sla in the Supporting
Information (SI). This strong linear correlation between PBE
and HSE bandgaps is not general, and in systems including
transition-metal or rare-earth elements, for example, we would
expect much weaker correlations. For such systems, the non-
linear relationship between PBE and HSE bandgaps can be
established using a machine-learned transformation.”” How-
ever, in our case the simple linear relationship will allow us to
use PBE band gaps for training the bandgap predicting models,
instead of the more expensive but more accurate HSE values. It
can also be seen from Table 1 that, while giving better
predictions than PBE, HSE still underestimates the exper-
imental bandgaps for pure MgO and ZnO, in both cases by
~20%. So it is reasonable to expect a similar underestimation
by HSE of the solid solution bandgaps.

We used ML methods to learn from DFT-derived E,;, and
Eg,, values for a subset of configurations and to predict the
values for the rest of the configurations. This procedure
permits a significant reduction of the computational cost,
brought about by a reduction in the number of DFT
calculations required to obtain accurate E;, and E,,, values
for the entire configurational space. As descriptors of the alloy
configurations, we used either the full vector of cluster
correlation functions (CCFs) or the Coulomb matrix
eigenspectrum (CME). The CCF vectors have 90 components,
corresponding to all the symmetrically distinct clusters up to
four-body terms, as calculated using the CELL code.”® More
information about the CCF descriptor employed in this work
is given in the SI. The 64-component CME vectors were
generated using the Python 3 packages Matminer and
Pymatgen.3 b3z

Linear regression (LR) and gradient-boosted decision tree
(GBDT) methods were performed using Python 3 Scikit-Learn
packages.” For LR models, we added weak LASSO
regularization to obtain physically meaningful parameters.’*
Deep-learning neural networks of the feedforward multilayer
perceptron (MLP) architecture were written using the Keras™”
package, which is built on the TensorFlow™ platform. MLP
models were subject to extensive architecture testing, though
only two architectures, which we will refer to as shallow and
deep, are discussed forthwith. The shallow architecture is a

https://doi.org/10.1021/acs.jpclett.1c01031
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three-layer feedforward perceptron with 64-32-1 nodes per
layer, whereas the deep architecture is a five-layer feedforward
perceptron with 256-128-64-32-1 nodes per layer. Data was
split into sets based on a percentage of the 8043 datapoints
available: training (fractions between 10% and 80% were
tried), validation (10%), and testing (10%). This ensured that
ML vs DFT energy plots involved data that had not been used
for either training or validation, and that the testing dataset size
stayed constant when varying the training dataset size. More
details about the ML algorithms can be found in the SI.

We briefly discuss the DFT results first, before moving into
the regression models. Figure 1 reports the mixing energies

25

a)

lﬂmx(e\/)

Figure 1. (a) DFT data (mixing energy vs band gap energy) for all
8043 symmetrically different ZngMg,,03, configurations. Structures
of the configurations with (b) minimum E,, (c) minimum E,;, (d)
maximum E,,,, and (e) maximum E, ;. Green and gray balls represent
Mg and Zn atoms, respectively (O atoms are omitted for clarity).

plotted against the bandgaps as obtained by DFT calculations
for the whole dataset of 8043 configurations. The wide range
of bandgaps (~1 eV difference between the minimum and
maximum PBE values, which can be estimated to correspond
to a range width of ~1.5 eV in the experimental scale),
together with the small stability difference between config-
urations (less than 0.3 eV per supercell, which is less than 0.01
eV per formula unit), confirms that this would be a suitable
system for configurational bandgap optimization, at fixed
composition. There is some weak but clear correlation between
Enix and Eg,,, suggesting that thermodynamics might oppose
the arrangement of cation distributions in the ways that lead to
maximum bandgaps. However, given the small energy
differences, we would not expect thermodynamics to prevent
the experimental realization of these wide-gap configurations.
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The geometries of the configurations with minimum and
maximum values of E; and Eg,, are also shown in Figure 1.
The configuration with the lowest bandgap (Figure 1b) has the
same distribution of ions as the ordered fcc alloy Cu;Au, i.e,,
has the structure with Strukturbericht designation L1, and
space group Pm3m. This configuration is characterized by
—Zn—0—Zn—0O— one-dimensional chains along the three
equivalent [100], [010], and [001] directions of the crystal
structure. Since ZnO has a much lower bandgap than MgO, it
is not surprising that the presence of periodic ZnO-only chains
tends to lower the bandgaps. The configuration with the lowest
mixing energy, ie., the configurational ground state for the
composition Mg;/,Zn,,,0, is the one with Strukturbericht
designation DO0,, and space group I4/mmm, as in the ordered
alloy Al;Ti, which agrees with the conclusion from the previous
theoretical study by Sanati et al.*® This configuration also has
—Zn—0—Zn—0O— one-dimensional chains along two of the
crystal axes, but the cations alternate in the third direction,
forming —Mg—O—Zn—O— chains (Figure 1c). The config-
urations with the maximum values of E,, (Figure 1d) and E,;,
(Figure le) both have all Zn dopants forming alternating
—Mg—O0—-Zn—0— chains, with no pure —Zn—0O—-Zn—0-—
chains along the crystal axes. However, in the most unstable
configuration (maximum E, ), with space group P4m2, these
chains aggregate within two neighboring layers (the cation size
disparity between Zn and Mg is likely to cause high crystal
strain when concentrated at one side of the cell, which explains
the high mixing energy), whereas in the former the distribution
of the chains forms a more homogeneous, checkered-like
pattern with space group I43m.

The main purpose of this work is not, however, to identify
configurations with extremal properties, but to devise fast and
accurate methods to calculate the properties of any alloy
configuration. Figure 2a shows the plot of predicted vs true
data for the test set, using models based on the CCF (i.e., the

235 4.00
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225 | 360
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Figure 2. Performance of linear regression models, trained on 80% of
the data, when used for the test set using (a) cluster correlation
function (CCF) descriptor for E,y, (b) CCF descriptor for Eg,, (c)
Coulomb matrix eigenspectrum (CME) descriptor for E,;,, and (d)
CME descriptor for Eg,,
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cluster expansions), when 80% of the data was used for
training. The correlation between the cluster expansions and
the mixing energies obtained directly from DFT is rather poor.
This is somewhat surprising, since cluster expansions generally
perform well at describing energy differences between alloy
configurations. For MgO—ZnO solid solutions, Yin et al. have
previously presented a cluster expansion for the formation
energies, which fitted well their DFT energies, with one-point
and two-point clusters found to be dominant in the
expansion.”” However, in that case the authors were examining
configurations across a range of compositions, and therefore
the one-point correlation functions were the dominant term,
thus improving the correlation between predicted and target
energies. In our case, we are working at a fixed composition (so
we leave the one-point cluster correlation functions out of the
regression) and the range of energies is very narrow, which is
more challenging for the cluster expansion. So even when the
mean absolute error for our cluster expansion is small (0.02 eV
per supercell, which is less than 1 meV per formula unit), the
correlation between the predicted and target data is still weak
(R? = 0.39).

The plot of predicted vs true data for the cluster expansion
of the bandgaps, also based on training with 80% of the data, is
shown in Figure 2b. In this case the correlation is even poorer
(R* = 0.22), which is not surprising, given that bandgaps are
not additive and depend on the long-range pattern in the
distribution of ions in the solid, which is not necessarily well
captured by the local cluster functions. But even when cluster
expansions of bandgaps are not as well established or justified
as the cluster expansions of energies,38 the method has been
widely used for bandgaps,””*” and no reliable alternatives have
been developed. Relaxing the linearity condition on the CCFs
(as done recently in a different context in ref 13) did not
significantly improve the performance of the descriptor: a MLP
model trained using the CCF descriptor yielded equally poor
correlations (see SI).

In contrast, using the CME as a descriptor leads to excellent
correlation between predicted and target data, as shown in
Figure 2¢,d. The prediction for E,;, is particularly outstanding,
with a mean absolution error of ~1 meV per supercell on the
test set. Even the bandgap prediction is quite good, although
with some more dispersion. The observation that the CME
descriptor performs better than the CCFs, which are
traditionally used for cluster expansions, is very interesting,
since cluster expansions have been the preferred theoretical
tool for the investigation of the configurational space of alloys
for several decades. Using widely available tools, generating the
CME is just as easy and computationally cheap as generating
the CCFs, and we demonstrate here that it can lead to more
accurate predictions. Of course, the advantage of a model
based on the CCFs is that, once the cluster expansion is
generated, it can be used to explore the configuration energies
in supercells larger than those used in the fitting. This is useful
to compute thermodynamic properties with converged cell
sizes. However, this advantage does not translate trivially to the
prediction of bandgaps or other non-additive quantities. In
these cases, as we are constrained to make predictions within
the same supercell size from where configurations are sampled
for training, the CME descriptor might be a more accurate and
equally cheap choice.

Finally, we consider whether non-linear regression models
can further improve the CME-based description of the
bandgaps, based on the CME descriptor. Figure 3a,b shows
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Figure 3. CME machine learning models for E,,,: (a) deep MLP-10%,
(b) deep MLP-80%, (c) GBDT-10%, (d) GBDT-80%, and () MAE
vs % training data (of 8043 total configurations).

the bandgap prediction made by the deep MLP model (the
shallow MLP results are reported in Figure S3 of the SI).
Clearly, the MLP improves the prediction with respect to the
linear regression model. Even when only 10% of the data is
used for training, the predicted bandgaps are much better
(with roughly half of the MAE) than those predicted with the
linear regression model using 80% of the data for training.
Furthermore, MLP models show significant improvement
when increasing the dataset size, whereas the linear regression
model does not seem to benefit from the use of additional
training data. A comparison between the MLP methods in
terms of performance for the shallow and deep architectures is
reported in Table S1 of the SI. The deep MLP is deeper and
wider than the shallow MLP and provides slightly improved
performance because the increased complexity of this MLP
may capture more non-linearities in the CME—E,,, relation-
ship. There is a slightly increased risk of overfitting when using
a more complex MLP, though we found no evidence of this
during training.

GBDT models (Figure 3c,d), trained using optimized
hyperparameters reported in the SI, also proved to be very
effective in predicting bandgaps, especially for the small- to
medium-sized training sets. The performance of the GBDT
model saturates after a certain size of training set between 50%
and 80% of the data used here, meaning that it is unlikely to
benefit as much as MLP from increasing the training dataset
size. However, given that the associated mean absolute errors
are similar to those of the MLP models, GBDT models
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constitute an attractive alternative, since the computational
cost of training these models is smaller than for the neural
networks. A full performance comparison for the three ML
methods is given in the SI, Table S2.

In conclusion, we have shown that Coulomb matrix
eigenspectrum descriptors outperform the cluster correlation
functions typically used for cluster expansions in the prediction
of both properties for a MgO—ZnO solid solution. Cluster
expansions are more justified for configurational thermody-
namics, because energy expansions are trivially extrapolated to
the very large supercells required for accurate statistical
mechanics. However, for the screening of bandgaps in the
configurational space, cluster expansions are not ideal, not only
because of the non-additive character of bandgaps which limits
the extrapolation to larger supercells but also because the
cluster expansions might not capture well the bandgap
variations in the first place, as we have shown in this study.
We suggest that, for this problem, a better approach is to
sample the configurational space in an affordable supercell,
perform DFT calculations, and then use modern machine
learning tools, based on Coulomb matrix eigenspectrum
descriptors and linear or non-linear regression models
(depending on the size of the available datasets). Given the
wide availability and low computational cost of these machine
learning tools, we believe that this approach will become the
new standard for the prediction of electronic properties in the
configurational space of semiconducting alloys.
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