
Forecasting occurrence and intensity of 
geomagnetic activity with pattern‐
matching approaches 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Haines, C. ORCID: https://orcid.org/0000-0002-9010-0720, 
Owens, M. J. ORCID: https://orcid.org/0000-0003-2061-2453, 
Barnard, L. ORCID: https://orcid.org/0000-0001-9876-4612, 
Lockwood, M. ORCID: https://orcid.org/0000-0002-7397-2172, 
Ruffenach, A., Boykin, K. and McGranaghan, R. ORCID: 
https://orcid.org/0000-0002-9605-0007 (2021) Forecasting 
occurrence and intensity of geomagnetic activity with pattern‐
matching approaches. Space Weather, 19 (6). ISSN 1542-
7390 doi: 10.1029/2020SW002624 Available at 
https://centaur.reading.ac.uk/98356/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1029/2020SW002624 
To link to this article DOI: http://dx.doi.org/10.1029/2020SW002624 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


1. Introduction
Geomagnetic storms present a significant threat to critical infrastructure both in space and on the ground 
(Cannon et al., 2013; Oughton et al., 2017). Through solar wind energy input to the magnetosphere and 
the associated substorm process (e.g., Lockwood, 2019; Pulkkinen, 2007), Earth's ionospheric current sys-
tems can be dramatically enhanced (Buonsanto, 1999). Rapid fluctuations in these enhanced ionospheric 
currents can generate geomagnetically induced currents (GICs. e.g., Boteler, 1994; Pirjola, 2000) in ground-
based conductors, posing a particular risk to power grids and pipelines. To ensure that we minimize service 
disruption and mitigate economic cost (e.g., Eastwood, Biffis, et al., 2017), there is a need for forecasting 
of both the intensity and duration of geomagnetic storms. Reliable forecasts improve the decision-making 
capabilities of operators of affected systems when taking mitigating action. However, current forecast capa-
bilities are limited (Cannon et al., 2013; Koskinen et al., 2017).

Geomagnetic indices, which combine measurements from multiple ground-based magnetometers, are often 
used as a convenient measure of global geomagnetic activity because of their ability to reduce large-scale 

Abstract Variability in near-Earth solar wind conditions gives rise to space weather, which can have 
adverse effects on space- and ground-based technologies. Enhanced and sustained solar wind coupling 
with the Earth's magnetosphere can lead to a geomagnetic storm. The resulting effects can interfere 
with power transmission grids, potentially affecting today's technology-centered society to great cost. It 
is therefore important to forecast the intensity and duration of geomagnetic storms to improve decision 
making capabilities of infrastructure operators. The 150 years aaH geomagnetic index gives a substantial 
history of observations from which empirical predictive schemes can be built. Here we investigate the 
forecasting of geomagnetic activity with two pattern-matching forecast techniques, using the long aaH 
record. The techniques we investigate are an Analogue Ensemble (AnEn) Forecast, and a Support Vector 
Machine (SVM). AnEn produces a probabilistic forecast by explicitly identifying analogs for recent 
conditions in the historical data. The SVM produces a deterministic forecast through dependencies 
identified by an interpretable machine learning approach. As a third comparative forecast, we use the 
27 days recurrence model, based on the synodic solar rotation period. The methods are analyzed using 
several forecast metrics and compared. All forecasts outperform climatology on the considered metrics 
and AnEn and SVM outperform 27 days recurrence. A Cost/Loss analysis reveals the potential economic 
value is maximized using the AnEn, but the SVM is shown as superior by the true skill score. It is likely 
that the best method for a user will depend on their need for probabilistic information and tolerance of 
false alarms.

Plain Language Summary Space weather has the potential to disrupt society and 
the economy on a large scale. One such major impact is on power grids, which can be damaged by 
disturbances in Earth's magnetic field caused by space weather events. As a result, it would be useful 
to have an accurate forecast of space weather that can help power grid operators make decisions about 
taking mitigating action. In this work, we test three forecasting techniques which utilize long historical 
records to exploit patterns in the data and hence predict future disturbances in Earth's magnetic field. We 
find that all three of the techniques provide valuable information and the best method depends on the 
individual needs of the forecast user.
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physical processes into a single time-series of observations. Commonly used measures include low lati-
tude indices Dst and SYM-H, the mid-latitude range index Kp and high latitude auroral index, AE (e.g., 
Lockwood, 2013).

Current approaches to forecasting geomagnetic indices cover a spectrum of techniques from first princi-
pal, physics-based attempts (Pulkkinen et al., 2013) (although even these often incorporate some empir-
ical aspects in practice), through more empirical approaches, which range from those that still rely on 
domain-specific knowledge for their construction (Burton et al., 1975), to those that are almost entirely 
data-driven (e.g., Gu et al., 2019).

Global Magnetohydrodynamic (GMHD) models simulate the magnetosphere using solar wind data as the 
input. These provide a physics-based representation of the magnetosphere which can be run in real time 
(Eastwood, Nakamura, et al., 2017) and thus can be used operationally. Three of the main GMHD models 
were tested by Pulkkinen et al. (2013), with SWMF (Tóth et al., 2005, 2012) found to provide the most accu-

rate reconstruction of 
d
dt
B

, which is related to GIC intensity.

Owens et al. (2017b) argued for the use of empirical models for solar wind forecasting in conjunction with 
numerical physics-based models. Empirical models can add value because they have the advantage of being 
computationally cheap, meaning that they can be readily run in large ensembles to provide an estimate of 
uncertainty (Knipp, 2016). Empirical models can also parameterize unknown physics that a first-principle 
based model does not capture and act as a useful baseline with which to evaluate physics based models.

A range of empirical approaches has been attempted for geomagnetic index forecasting. Recently, Chan-
dorkar et al. (2017) developed a “one step ahead” forecast of the Dst index using an auto-regressive Gaussian 
process approach. It was tested on a set of 68 storms and concluded that for a 1 h lead time, it out-preformed 
persistence on the metrics considered (mean absolute error (MAE), root-mean-square error, and correlation 
coefficient). Zhang and Moldwin (2015) produced a probabilistic forecast of SYM-H and AE using solar 
wind parameters to construct a cumulative probability distribution that the index would exceed the given 
intensity thresholds. A non-linear autoregressive with exogenous inputs (NARX) approach was employed 
by Ayala Solares et al. (2016) for forecasting the Kp index. They found that, in general, the NARX approach 
gave good results for short and long lead times, however it failed to surpass the neural network models of 
Wing et al. (2005), to which they were comparing. Other empirical approaches include: that of O'Brien and 
McPherron (2000) who employed a differential equation from Burton et al. (1975) which maps the evolu-
tion of the corrected Dst index, Dst*; that by Vassiliadis and Klimas (1995) who used a driven harmonic 
oscillator circuit analogy; Vassiliadis et al. (1995) who used linear and nonlinear filters to predict the AL, 
AU, and AE indices. Camporeale (2019) summarized efforts using machine learning techniques to forecast 
geomagnetic indices. The majority of approaches use neural networks, however other machine learning 
techniques have been proposed. Lu et  al.  (2016) compared the use of Support Vector Machines (SVMs, 
Burges, 1998; Cortes & Vapnik, 1995), a machine learning approach that seeks to define a hyper-plane sep-
arating two classes, with neural networks for predicting intense storms in the Dst index using solar wind 
data as input parameters. Lu et al. (2016) concluded that SVMs out-perform neural networks for that appli-
cation and can be improved further through the use of distance correlation learning (Székely et al., 2007). 
Liemohn et al. (2018) present an extensive list of works that forecast the behavior of Dst, SYM-H, Kp, AE, 
AL, and AU along with the metrics used to evaluate them. They showed no single metric is capable of me-
tering a model for all applications. Therefore, we must be rigorous in our application of evaluative metrics. 
In this work, we explore numerous metrics, taking guide from Liemohn et al. (2018).

We here implement two-pattern matching forecasts, both requiring a large data set for training, and an 
additional recurrence forecast. The first method is an analogue ensemble (AnEn) forecast, a purely empir-
ical approach. This method assumes that previous observations provide a good analogue for likely future 
variations (Delle Monache et al., 2013). Thus a historical record that is sufficiently long and covers a large 
enough range of behavior of the system can be used to identify previous periods when conditions are sim-
ilar to the present. A forecast is constructed on the basis of the trajectories of the analogs forward in time. 
The “best” forecast in a deterministic sense is typically taken to be the median of the chosen analogs, but 
a large ensemble of analogs can provide probabilistic information. Probabilistic forecasting helps quantify 
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the forecast uncertainty, which benefits decision making, and can also be useful for evaluating a forecasting 
method (Knipp et al., 2018). An implementation of AnEn has been developed for this project in python.

AnEn has been used for a variety of parameters in terrestrial weather forecasting (e.g., Delle Monache 
et al., 2013; Van den Dool, 1989), but has been surpassed by physics-based models. This is largely due to the 
inherently chaotic nature of the system, which means states can rapidly diverge with a small perturbation 
to the initial conditions. Recently Owens et al. (2017a) and Riley et al. (2017) used an analogue forecast for 
solar wind parameters and the Dst index with some success, finding that it outperformed benchmarks of 
climatology and 27 days recurrence.

The second method investigated here is the SVM (Burges, 1998; Cortes & Vapnik, 1995), a supervised ma-
chine learning method for two-group classification. The volume and quality of data available, particularly 
in the aaH index (see Section 2), and capabilities of modern computing means machine learning approaches 
are ripe for forecasting geomagnetic activity. SVMs seek to define a hyperplane which divides two classes (in 
this case “storm” and “no storm,” for a given definition) and optimize it by maximizing the distance between 
it and the closest data-points, called support vectors. To aid linear separability of the classes, the vector 
space of input parameters is mapped into a higher dimension space using implicit mapping functions with 
a defined kernel function (Burges, 1998). A brief overview of the SVM and application to space-weather is 
given by McGranaghan et al. (2018). An implementation of the SVM has been developed for this project in 
python.

Here we will implement an SVM but, unlike many previous works, without the use of solar wind (exoge-
nous) parameters as input and use solely the time history of observations before the time of forecast. This 
gives a more direct comparison with AnEn and, importantly, allows the best use of the 150 years aaH data 
set, for most of which we do not have simultaneous solar wind observations. Given that both the solar wind 
transit time (between the usual point of observation the L1 point, and the magnetosphere), and the magne-
tospheric response time are small compared the time resolution of the aaH data set (3 h), this is not expected 
to reduce forecast capability.

The third forecast type considered is 27 days recurrence, which implicitly assumes the structure of the cor-
onal magnetic field, varies slowly compared to the solar rotation period. Thus, the same region of the Sun 
is directed toward the Earth every 27 days. This assumption is generally more valid during solar minimum 
and the late declining phase of the solar cycle than during solar maximum periods. Near-Earth solar wind 
conditions and the resulting geomagnetic activity have long been known to exhibit 27  days recurrence 
(Chree & Stagg, 1928; Bartels, 1932, 1934; Owens et al., 2013). The recurrence pattern is also present in the 
occurrence of moderate storms in the aaH index (Haines et al., 2019, see also Section 2). Watari (2011) used 
a 27 days recurrence forecast for the Kp index, concluding that it was a viable forecast method during the 
declining phase of the solar cycle but not for other parts of the cycle.
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Figure 1. Left: An analogue ensemble (AnEn) forecast from 2017-12-05. The median AnEn forecast is shown in red 
with individual analogs in gray. The observed time-series of aaH is shown in black. The benchmark forecasts are shown 
in yellow (27 days recurrence) and green (climatology). Right: The probability of a storm occurrence from each forecast 
method.
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Section 2 describes the aaH data set. Section 3 describes our storm definition, the forecast methods consid-
ered and benchmarks used in this study. Section 4 compares the forecasts using metrics and techniques 
adopted from terrestrial weather forecasting (Henley & Pope, 2017). Many of the verification techniques 
are recommended by Liemohn et al. (2018) with the addition of Taylor diagrams and reliability diagrams 
(described below).

2. Data
We use the aa index (Mayaud, 1971), with recent recalibrations (aaH Lockwood, Chambodut, et al., 2018; 
Lockwood, Finch, et al., 2018). Using a single magnetometer station in each of the UK and Australia, aa 
provides a quasi-global measure of geomagnetic activity with particular sensitivity to the substorm current 
wedge (Lockwood, 2013; Ganushkina et al., 2015). In order to span 150 years back to 1868, aa must be con-
structed from three different stations in each hemisphere, which introduces issues of calibration. However, 
this results in the longest available record of geomagnetic activity. The recent recalibrations account for 
the variation of mean geographic location of the midnight sector auroral oval, due to drifts of the Earth's 
geomagnetic poles. They also allow for time-of-day/time-of-year response pattern of the stations, thereby 
reducing uncertainties related to using just two stations. Lockwood et al. (2019) showed aaH agrees well 
with am (Mayaud, 1981), a similar index but with much greater suppression of longitudinal sampling ef-
fects achieved by using multiple stations in each hemisphere. The disadvantage of am for the present study, 
of course, is that the data sequence is much shorter as the greater data requirement means it can only be 
constructed back to 1959.

Unfortunately, aaH is limited by its temporal resolution of 3 h. Space weather impacts such as GICs occur 
due to magnetic fluctuation on a timescale of seconds and minutes. This means that a 3 h range index can-
not give direct information on potential GICs but it can give an idea of the low frequency variation in the 
magnetosphere. The 3 h resolution of aaH is more coarser than that of the 1 h resolution of Dst. Because 
of this resolution difference, Dst actually has more data points, despite the record only being available for 
approximately 60 years. Although more data points is useful for training models, aaH spans around eight 
more solar cycles than Dst and so captures a more complete picture of the space climate.

A further limitation of aa, and hence aaH, is that it is derived from K indices (Bartels et al., 1939) which are 
based on a quasi-logarithmic scale leaving quantization in the data set (Bubenik & Fraser-Smith, 1977). The 
uncertainty created from quantization is largest in the larger values of aaH, but still present in the small.

Chapman et al.  (2020) investigated the use of aaH in characterizing extreme geomagnetic activity. They 
made a comparison of extreme aaH with Dst, finding that there is good correspondence between the two 

indices and that it is possible to “read across” from extreme aaH to ex-
treme Dst.

3. Methodology
3.1. Storm Definition

Various definitions of geomagnetic storms have been used, often depend-
ent on the purpose of the study (Riley et al., 2018).The most common 
method is to set a threshold in a particular geomagnetic index (e.g., Ven-
nerstrom et al., 2016) with values exceeding the threshold being defined 
as part of a storm, and a storm ends once the value of the index falls 
below the threshold. Kilpua et al. (2015) used a slight variation of this in 
which the last point of a storm is the first point below the threshold. Oth-
er approaches, such as that of Hutchinson et al. (2011), involve a manual 
inspection of the data, looking for characteristic storm traces for each 
event more intense than a chosen threshold. While a more nuanced ap-
proach than blindly applying a geomagnetic threshold, it is labor-inten-
sive to apply to a large data set and is difficult to make truly repeatable.
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Figure 2. F-Scores of each 3 h aaH data point in the 24 h leading up to the 
forecast time t0. The F-scores show the relevance of each parameter to the 
data point immediately after t0.
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In this work we are concerned with the full spectrum of geomagnetic activity which can lead to adverse 
impacts on infrastructure. We point to the work of Schrijver (2015) and Schrijver et al. (2014) which ex-
amine the impact of moderate space weather using insurance claims data. Schrijver (2015) highlights that 
high frequency, low impact events may cumulatively be comparable in economic cost to low frequency, 
high impact events. Congruently, Schrijver et al (2014) examines insurance claims on electrical equipment 
identifying significant rises on both the top 5% and top third of geomagnetically active days. We therefore 
seek to choose a storm definition that captures moderate geomagnetic activity alongside the more rare, 
extreme events.

With the work of Schrijver (2015) and Schrijver et al. (2014) in mind, we use the same storm definition as 
Haines et al. (2019). This approach uses a simple threshold, similar to Vennerstrom et al. (2016) and Kilpua 
et al. (2015), but, as in Gonzalez et al. (1994), with a data-informed threshold set at the 90th percentile of 
the data set. For aaH, this is a value of 40.1 nT. The start of the storm is the first point above the threshold 
and the end of the storm is the last point over the threshold. The effect of threshold on number of events is 
shown in Figure 2 of Haines et al. (2019).

3.2. Analogue Ensemble

To illustrate the methodology for the AnEn forecast, Figure 1 shows an event in the aaH index from 2017-12-
05. The observed time series (black) shows a storm, defined by exceeding a threshold of 40.1 nT, with storm 
onset at t0. aaH continues to rise until to a peak value of around 100 nT at the next data point (3 h later), 
then gradually falls back to non-storm conditions (i.e., below 40.1 nT). We identify the N previous events in 
the aaH data set which most closely match the pattern of the observed time series in the 24 h time period 
before t0, as described in more detail below. The time-series of these analogous periods are then projected 
forward to provide a probabilistic forecast after t0. Also shown in Figure 1 is a 27 days recurrence forecast 
which can be used as a deterministic forecast of storm intensity, or, using the storm-definition threshold, 
to give a dichotomous storm forecast that is, that there will be a storm or that there will be no storm. The 
climatological mean value of aaH is 17.5 nT, shown in green in the left panel, while the climatological prob-
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Figure 3. Examples of contingency tables, sometimes called a confusion matrix, for the Support Vector Machine 
(SVM) showing the number of occurrences (left) and normalized frequencies (right) of true and false positives and 
negatives. Top: SVM trained with a class weight of 10. Bottom: SVM trained with a class weight of 50. Changing the 
class weight affects the ratios of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
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ability of exceeding 40.1 nT is, by definition, 10% shown in green in the 
right-hand panel.

There are a number of aspects of the AnEn that must be tuned for the 
chosen application. The ensemble size, N, should be large enough to give 
sufficient resolution as a probabilistic forecast but small enough to en-
sure that the analogous periods are indeed analogous, particularly for 
rarer events such as larger storms. Values of N have been varied in the 
interval of (10, 50) without significant difference in results. Therefore, for 
clarity, we have selected a single ensemble size of 25 for the presentation 
of results in the remainder of this study.

While the input data to the AnEn is simply the recent time history of 
observations (the previous 24 h was shown in Figure 1), it is to be ex-
pected that some of these observations will be more relevant than others 
for predicting future behavior. For a highly driven system like the mag-
netosphere, the most recent observations are more likely to contain use-
ful information about future evolution than observations from 24 h ago. 
We use the univariate F-score to determine the relevance of each input 
parameter, that is, each 3 hourly aaH data point in the previous 24 h, to 
the subsequent data point of aaH when forecasting with a 3 h lead time 
(Pedregosa et al., 2011). These F-scores are shown in Figure 2 and we see 
that the most recent observation is the most relevant as expected. The 
F-score is used as a weighting factor when selecting the best analogs. The 
total level of agreement is then the inverse of the mean of the weighted 
squared errors over the 24 h training window. The N analogs are then 
those with the lowest mean weighted squared error. These analogs are 
shown in Figure 1 by the gray lines converging as they approach t0, and 
diverging significantly after t0. Thus there is a wide range of possible fu-
ture behavior on the basis of previous analogs to recent conditions. In 
Figure 1 the median of these analogs is shown in red. It matches the ob-
servations in the “training period,” that is, −21–0 h, but in this particular 
example, under-predicts the observed intensity in the forecast window, 
that is, 0–24 h.

The right-hand panel of Figure 1 shows the probabilistic nature of AnEn, 
27 days recurrence and climatology. The gray shaded region shows when 
a storm was actually observed to occur and the colored lines show the 
probability of storm conditions from each forecast considered. In this 
event the AnEn begins by predicting that a storm is likely with a probabil-
ity of approximately 50%, which then drops over the next 12 h to around 
25%. (i.e., 25% of the ensemble members are predicting aaH > 40.1 nT at 
that time). The deterministic 27 days recurrence forecast does reasonably 
well in this particular example.

For analyzing and testing the performance of the forecast methods, we implement them here as hindcasts, 
predicting past events for which we already have the observations of the predicted period. The whole aaH 
data set (excluding the 1 day prior, and 12.5 days subsequent, to t0, which excludes the maximum extent of 
the training and evaluation windows) is made available for computing analogs. We use the full timeseries so 
that the results give an estimate of the predictive power of the model that would be deployed. The hindcasts 
have been run with the hindcast start time, t0, at every point in the aaH data set.

Due to the class imbalance between quiet and storm times, it is possible for a forecast to be valuable on av-
erage but perform poorly during storm times. For this reason, we additionally select and validate hindcasts 
during only the storm subset.
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Figure 4. A comparison of the mean absolute error (MAE) of Analogue 
Ensemble (AnEn) median, 27 days recurrence and the intensity 
climatology for a range of lead times up to 300 h (a) MAE when the 
hindcast is run for t0 at every point in the aaH data set. (b) MAE for t0 as 
the start of known storm events only.
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3.3. SVM

The SVM is a commonly used classification algorithm, which we imple-
ment here to classify whether or not a storm will occur. Given a sample 
of the input and the associated classification labels, the SVM will find 
a function that separates these input features by their class label. This 
is simple if the classes are linearly separable, as the function is a hyper-
plane. The samples lying closest to the hyperplane are called support 
vectors and the distance between these samples and the hyperplane is 
maximized.

Typically, the samples are not linearly separable so we employ Cover's 
theorem (Cover, 1965) which states that linearly inseparable classifica-
tion problems are more likely to be linearly separable when cast non-lin-
early into a higher dimensional spaces. Therefore, a kernel function is 
used to increase the dimensionality of the space. The Gaussian kernel is 
used for this purpose. It has a single hyperparameter, γ, which serves as 
a width parameter, determining the influence of a single data point on 
training. A sensitivity analysis has shown that an appropriate value for 
γ is 0.01.

On the basis of the aaH values in the 24  h training window, the SVM 
predicts whether the next 3 h will be either a storm or not. By comparing 
this dichotomous hindcast with the observed aaH, the outcome will be 
one of True Positive (TP, where a storm is correctly predicted), True Nega-
tive (TN, where no storm is correctly predicted), False Positive (FP, where 
a storm is predicted but not observed), or False Negative (FN, where a 
storm is not predicted but is observed). This is shown in the form of a 
contingency table in Figure 3 (top left).

For development of the SVM, the aaH data has been separated into inde-
pendent training and test intervals. These intervals are chosen to be al-
ternate years. This is longer than the auto-correlation in the data (choos-
ing, e.g., alternate 3 hourly data points, would not generate independent 
training and test data sets) but short enough that we assume there will 
not be significant aliasing with solar cycle variations.

Training is an iterative process, whereby a cost function is minimized. 
The cost function is a combination of the relative proportion of TP, TN, 
FP, and FN. Thus while training itself, an SVM attempts to classify labe-
led data that is, data belonging to a known category, in this case “storm” 
and “no storm” on the basis of the previous 24 h of aaH. If the SVM makes 
an incorrect prediction it is penalized through a cost function which the 
SVM minimizes. The cost parameter determines the degree to which the 

SVM is penalized for a mis-classification in training which allows for noise in the data. A sensitivity analysis 
showed that an appropriate value for cost parameter is 0.1. See also Section 4.3.

It is common that data with a class imbalance, that is containing many more samples from one class than 
the other, causes the classifier to be biased toward the majority class (Longadge et al., 2013). In this case, 
there are far more non-storm intervals than storm intervals. Following McGranaghan et al. (2018), we de-
fine the cost of mis-classifying each class separately. This is done through the weight ratio (Wstorm: Wno storm).  
Increasing the Wstorm increases the frequency at which the SVM predicts a storm and it follows that it 
predicts “no storm” at a reduced frequency, as seen in the left column of Figure 3. The same results have 
been normalized to reveal more clearly how varying the class weights effects the predictions, shown in the 
right column of Figure 3. In this work we have varied Wstorm and kept Wno storm constant at 1. A user of the 
SVM method for forecasting may wish to tune the class weight ratio to give an appropriate ratio of false 
alarms and hit rate dependent on their needs.
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Figure 5. A comparison of skill for Analogue Ensemble (AnEn) median 
and 27 days recurrence with respect to climatology. (a) The entire aaH data 
set. (b) Restricted to the period following observed storms.
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3.4. Bench Marking

Similar to Owens et  al.  (2017a) and following the recommendation of 
Liemohn et al. (2018), we use a benchmark hindcast method to distin-
guish between times when the studied hindcasts perform poorly and 
times when conditions are intrinsically more difficult to predict. For this 
purpose, we use climatology defined by the mean intensity of the entire 
data set or, for a probabilistic hindcast of storms, the fraction of measure-
ments in the entire data set which qualify as storm events. These values 
are 17.5 nT and 10% respectively.

4. Results
4.1. AnEn Deterministic Intensity Hindcast

In the present section we consider the deterministic performance of the 
AnEn by reducing the ensemble to the median value. In this and Sec-
tion 4.2 we present results for three subsets of the aaH data set. The sub-
sets are: the entire aaH data set; the occasions on which a storm was ob-
served at a 3 h lead time; the occasions on which a storm was predicted 
by the AnEn median at a 3 h lead time. The second subsets includes only 
true positives, whereas the third subset includes false negatives and true 
positives. There are many more non-storm events than storm events in 
the data set so a hindcast always predicting no storm would fare well. 
These subsets of aaH help to distinguish whether a hindcast method has 
any predictive power of storm events.

Figure 4 shows the MAE of the deterministic hindcasts of aaH intensity 
compared to observations for lead times up to 300 h (12.5 days). Figure 4a 
shows the MAE when the hindcasts are initiated from every time step in 
the aaH data set. The general pattern is for the AnEn median to produce 
the lowest MAE, followed by 27 days recurrence and climatology with 
the highest. While the MAE in the 27 days recurrence and climatology 
are relatively constant with lead-time, AnEn clearly displays higher ac-
curacy for shorter lead times until it plateaus at approximately 50 h lead 
time. This suggests that the usefulness of information in the preceding 
24 h to t0 is greatest for short lead times. Figure 4b shows the error of 
hindcasts on which the point immediately after t0 is classed as a storm, as 
defined by a threshold of 40.1 nT. All hindcast methods have a high MAE 
for short lead times which drops off for longer lead times. At long lead 
times, approximately the same order of accuracy of the hindcasts exists 
for this storm data set as for the whole data set. At shorter lead times, the 
storms are in progress, and thus the observed aaH is high, and the same 

percentage error leads to a higher MAE than non-storm times. This issue, as well as that of storm conditions 
generally being more difficult to predict than quieter times, can be addressed by computing the skill of the 
hindcasts relative to a reference forecast. In essence, it allows discrimination between poor forecasts and 
periods, which are inherently difficult to forecast.

Skill is computed as:

 skill 1 ,
forecast error

reference error (1)

Thus, skill can vary between −∞ and 1, where a more positive value is more skillfull, and zero is identical perfor-
mance to the reference hindcast. Figure 5 shows the skill of the AnEn median and 27 days recurrence relative 
to climatology. This is done for the whole data set in Figure 5a. Both AnEn median and 27 days recurrence have 
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Figure 6. Taylor diagrams comparing the Analogue Ensemble (AnEn) 
median hindcast to climatology and 27 days recurrence for a 3 h lead-time. 
The diagrams summarize the root mean square deviation (RMSD) (nT), 
correlation coefficient and standard deviation (nT) of the hindcast s. (a) 
The entire aaH data set. (b) Restricted to the period following observed 
storms.
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positive skill for all lead times. AnEn median achieves substantially higher 
skill, especially for shorter lead times. Figure 5b makes the same compar-
isons considering only the time periods immediately following observed 
storm onsets. We again see that AnEn median has positive skill, however 
skill is reduced by approximately 10% compared to the whole data set.

Figure 6 shows Taylor diagrams (Taylor, 2001; Owens, 2018) that summa-
rize the performance of a hindcast in terms of three metrics, visualized on 
a single plot. These metrics are the standard deviation of the hindcast, lin-
ear correlation coefficient between hindcast and observed intensities, and 
the centered root-mean-squared distance (RMSD) between hindcast and 
observed intensities. These three metrics provide measures of agreement 
in both statistical terms (standard deviations) and the correspondence on 
a point-by-point basis (correlation and RMSD). A perfect hindcast would 
lie on the red dot, having a hindcast standard deviation matching that ob-
served, correlation coefficient of 1, and centered RMSD of 0. Put simply, the 
further a hindcast lies from the red dot, the worse the forecast is, and the 
direction of displacement can help diagnose the problem with the forecast.

Figure 6a shows the three hindcast types for the whole 150 year period of 
aaH data for a 3 h lead time. AnEn median provides the best hindcast by 
two of the three metrics considered but has a smaller and reduced stand-
ard deviation than both climatology and 27 days recurrence compared to 
the observations (by the construction, this is expected: both benchmarks 
are direct, unaveraged samples of the observations against which they are 
tested. Conversely, by taking the median of the AnEn, the variability will 
be reduced). Figure 6b shows the hindcasts run only for observed storm 
onsets. The general pattern is similar to that of when the hindcast is run 
on the whole data set.

4.2. AnEn Probabilistic Dichotomous Hindcast

In Section 4.1, the AnEn was reduced to a deterministic hindcast of inten-
sity by considering only the ensemble median. But the AnEn can be used 
as a probabilistic hindcast. We here consider the probabilistic hindcast 
of (dichotomous) event occurrence, in this case the occurrence/non-oc-
currence of storms, by considering all the ensemble members together to 
form a probability distribution of future evolution. While a deterministic 
intensity hindcast looks to minimize the error of the prediction, a prob-
abilistic dichotomous hindcast aims to predict event occurrence at the 
observed frequency. That is to say if a hindcast makes a prediction with 
x% certainty it is said to be reliable if, on average, an event is subsequently 
observed x% of the time. Systematic bias in hindcast probability can be 
quantified with a reliability diagram (Jolliffe & Stephenson, 2003; Sharpe 

& Murray, 2017) which compares predicted and observed probabilities. A perfectly reliable hindcast would 
follow the y = x line, as shown in Figure 7 by the light gray line. A forecast giving a reliability curve below 
this line shows overestimation of event likelihood and a reliability curve over the line shows underestima-
tion of the likelihood of an event. Figure 7a shows AnEn hindcast of storms from all data points in the aaH 
data set for a hindcast lead-time of 3 h. On the whole, the curve fits well to y = x with a slight overestimate 
of storm probability for larger values of hindcast probability. When considering only known storm events, 
the AnEn is less reliable, as shown Figure 7b. While the curve largely follows the y = x line, there is an un-
derestimate of storms for low hindcast probability and an overestimation for high.

This underestimate may be an indicator that there is insufficient information in the observed time-series 
leading up to t0 in order to differentiate between storms and not storms, that is, many of the analogs found 
for the build up to a storm may be associated with only a small increase in aaH because there are simply 
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Figure 7. A reliability diagram of the analogue ensemble dichotomous 
storm hindcast for a 3 h lead-ime. The gray line represents the path of a 
perfectly reliable hindcast, wherein events are forecast with a probability 
equal to the observed occurrence rate. (a) The entire aaH data set. (b) 
Restricted to the period following observed storms.
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many more instances of smaller variations than larger. This would bias 
the hindcast toward predicting smaller storms and thus underestimating 
the probability of an event.

4.3. SVM Classification

To evaluate the SVM and AnEn for storm classification we need a metric 
that is robust to class imbalance. This is because using a storm definition 
of the 90th percentile means we have nine non-storm events for every 
storm, so a prediction method that always predicts non-storm would do 
very well under many metrics. The True Skill Score (TSS) is a combina-
tion of TP, FP and FN only, meaning that it can handle imbalanced class-
es, though it neglects a model's ability to correctly predict non events, 
which can be valuable in its own right. TSS has been recommended 
and used in the space weather community (e.g., Bloomfield et al., 2012; 
McGranaghan et al., 2018).

TSS is defined as

 
 
TP FPTSS

TP FN FP TN
 (2)

which gives a score between −inf and 1 where 0 is a hindcast with no skill 
and 1 is a perfect hindcast.

TSS has been computed for the SVM, AnEn median and 27 days recurrence 
in Figure 8. Figure 8a shows TSS for SVMs with different class weights. A 
unique SVM has been trained for each value of lead-time. We see that us-
ing class weight 10 gives the best performance with positive, reducing skill 
for the full 48 h. The other SVMs perform considerably worse, particularly 
for lead times greater than 3 h. SVMs with class weight of 1 and 2 end up 
predicting no storm events will occur at longer lead times and SVMs with 
class weights 25 and 50 predict storms always occur at longer lead times. 
SVM with class weight 10 seems to strike a good balance, as it approaches 
the proportions of storm and non-storm events in the data set.

In Figure 8b we compare the TSS of SVM class weight 10 to TSS of AnEn 
median and 27 days recurrence. Both SVM and AnEn median have a sim-
ilar shape of diminishing skill with lead-time, however SVM has a far 
superior TSS at all lead times considered. The TSS of 27 days recurrence 
is a flat line since its lead-time is, in essence, always 27 days 27 days re-
currence exceeds AnEn median at 9 h and longer and is approximately 
equivalent to SVM at 48 h. It suggests that the AnEn median does not 
have predictive power for the storm class at longer lead times and quickly 
goes back to predicting quiet-time.

Different forecast applications will have different tolerances for false alarms and missed events. A limitation 
of TSS is that it treats FP and FN the same and does not give useful information for users with an unbalanced 
tolerance. To accommodate this, and as a further comparison of the hindcasts, a Cost/Loss analysis (Mur-
phy, 1977; Richardson, 2000; Owens & Riley, 2017) is implemented in Figure 9. A space-weather example 
of how a Cost/Loss analysis is carried out is shown in Figure 7 of Owens and Riley (2017). In short, C is the 
economic cost associated with taking mitigating action when an event is predicted (whether or not it actually 
occurs) and L is the economic loss suffered due to damage if no mitigating action is taken when needed. For a 
deterministic method, such as the SVM, each time a storm is predicted will incur a cost C. Each time a storm is 
not predicted but a storm occurs a loss L is incurred. If no storm is predicted and no storm occurs then no ex-
pense in incurred. By considering some time interval, the total expense can be computed by summing C and L.
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Figure 8. True Skill Score (TSS) for lead times of 3–48 h (a) shows the 
TSS for the Support Vector Machine (SVM) with a range of class weights. 
We see that using class weight 10 gives the best skill. (b) TSS for Analogue 
Ensemble (AnEn) median, 27 days recurrence and SVM with class weight 
10. We see that the SVM skill exceeds that of the other hindcasts.
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A particular forecast application will have a C/L ratio in the domain (0,1). 
This is because a C/L of 0 would mean it is most cost effective to take 
constant mitigating action and a C/L of 1 or more means that mitigating 
action is never cost effective. In either case, no forecast would be help-
ful. The power of a Cost/Loss analysis is that it allows us to evaluate our 
methods for the entire range of potential forecast end users without spe-
cific knowledge of the forecast application requirements. End users can 
then easily interpret whether our methods fit their situation.

For a probabilistic forecast, a similar process is applied with the differ-
ence that action is taken only when the forecast probability exceeds C/L. 
See Owens et al. (2020) for more information.

Once total costs have been calculated, the potential economic value 
(PEV) is given by




 0
,C

C

E EPEV
E E (3)

where EC is the total expense of using a probabilistic climatological fore-
cast, E is the total cost of the forecast under consideration and E0 is the to-
tal cost of a perfect forecast. The PEV of a forecast is therefore equivalent 

to climatology where PEV = 0 and to a perfect forecast where PEV = 1. Note that a user's Cost and Loss do 
not need to be computed in financial terms, only the ratio of the two values is necessary: high C/L suggests 
that false alarms should be avoided, whereas low C/L suggests missed events would be more problematic.

Figure 9 shows the PEV of the SVM with a range of class weights (CW), probabilistic AnEn and 27 days re-
currence. Here a deterministic Cost/Loss analysis has been implemented for SVM and 27-days recurrence, 
and a probabilistic Cost/Loss for AnEn. The shaded regions indicate which hindcast has the highest PEV for 
that Cost/Loss ratio. The probabilistic AnEn has the highest PEV for the majority of the Cost/Loss domain 
although SVM has higher PEV for lower Cost/Loss ratios. It is possible that an increased resolution in the 
scan of class weights would bring the SVM out on top for a larger part of the domain. However certain users 
may appreciate that the hindcasts generally have a similar PEV for parts of the Cost/Loss domain and will 
find it more valuable to have the probabilistic hindcast of the AnEn. It also highlights that the “best” hind-
cast is dependent on the context in which it is to be employed.

5. Future Directions
There are a number of possible ways the forecast schemes presented here could be improved in the future. 
By taking the fraction of ensemble members which result in a storm to be the AnEn hindcast probability of 
a storm we are implicitly assuming that the analogs form a single distribution. This potentially throws away 
information about different modes of behavior. Clustering ensemble members together using K-means clus-
tering is a way in which we could use the data to extract a number of possible future scenarios. An example 
is shown in Figure 10. The observed storm peaks at t = 21 h, however this behavior is not captured by the 
median of the ensemble members or easily visible amongst the gray ensemble member lines. However the 
scenario in which the storm has a late peak is picked out as a possible mode of behavior by the red cluster in 
the right of Figure 10, identified by K-means clustering. Here, the clustering algorithm aims to minimize the 
sum of the square error between the ensemble member and the cluster it is in. The number of clusters has 
been chosen by using an “elbow plot” which identifies appropriate K values by minimizing both the sum of 
square errors and the number of clusters.

6. Discussion and Conclusions
This study has considered the effectiveness of two pattern-matching methods in hindcasting the aaH index. 
These are an AnEn and a SVM. We have additionally considered the 27 days recurrence hindcast for con-
text. AnEn and 27 days recurrence can be used as intensity hindcasts and AnEn can also give a probability 
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Figure 9. A Cost/Loss analysis showing the potential economic value 
of the hindcasts relative to value of a perfect hindcast (PEV = 1) and 
climatology (PEV = 0). The shaded areas indicate which hindcast type has 
the highest PEV for that C/L ratio. Negative values of potential economic 
value are shown only down to −0.1.
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distribution for dichotomous-event hindcast. SVM has only been implemented as a deterministic dichoto-
mous-event hindcast.

Reducing the AnEn to a deterministic intensity hindcast by taking the median value, it outperformed the 
benchmark of climatology both when applied to the whole aaH data set and limited only to observed storm 
onsets. AnEn clearly outperformed the benchmark for absolute error and skill for lead times up to a week. 
27 days recurrence outperformed the benchmark but did not perform as well as AnEn.

When considering the AnEn as a probabilistic hindcast of storm occurrence, it was found to be highly reli-
able when hindcasting each data point in the aaH data set, in that the predicted probability closely matches 
the observed frequency of events. Reliability was found to drop slightly when considering only storm events. 
In particular, the AnEn underestimates storms when it had a low certainty of a storm and overestimates the 
probability of a storm when it was reasonably certain. The underestimation may be an indicator that there is 
insufficient information in the observed time-series leading up to t0 in order to differentiate between storms 
and not storms. That is, many of the analogs found for the build up to a storm may be associated with only a 
small increase in aaH because there are simply many more instances of smaller variations than larger. This 
would bias the hindcast toward predicting smaller storms and thus underestimating the probability of an 
event.

Finally, an SVM was implemented for a range of class weights and compared to AnEn and 27 days recur-
rence using TSS and a Cost/Loss analysis. The SVM was more skillfull than AnEn by TSS, though neither 
hindcast had a conclusively higher potential economic value across the Cost/Loss domain. It is likely that 
the best method for a user will depend on their individual circumstances.

Data Availability Statement
The aaH data is available at https://www.swsc-journal.org/articles/swsc/olm/2018/01/swsc180022/
swsc180022-2-olm.txt. Code for AnEn is available at https://doi.org/10.5281/zenodo.4604487. Code for 
SVM is available at https://doi.org/10.5281/zenodo.4604485 which includes the code for splitting the data 
into train and test sets. A data file containing a list of storms in aaH is also here.
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