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Abstract

Tipping events in dynamical systems have been studied across many applications, often by

measuring changes in variance or autocorrelation in a one-dimensional time series. In this

thesis, existing techniques in tipping point analysis are reviewed and a novel method, the

Power Spectrum indicator, is introduced. The use of this novel technique is justified by a

study of the scaling behaviour of the AR(1) process which is used to model the critical

slowing down phenomenon in dynamical systems exhibiting tipping behaviour. Methods

for detecting early warning signals of tipping events in multi-dimensional systems are also

reviewed and expanded and these techniques are applied to a variety of dynamical systems.

An analytical justification of the use of dimension-reduction by empirical orthogonal

functions, in the context of early warning signals, is provided. One-dimensional techniques,

including the novel Power Spectrum indicator are also extended to spatially separated

time series over a 2D field. The challenge of predicting an approaching tropical cyclone

by a tipping-point analysis of the sea-level pressure time series is used as the primary

example, and an analytical model of a moving cyclone is also developed in order to test

predictions. We show that the one-dimensional power spectrum indicator may be used

following dimension-reduction, or over a 2D field. We also show the validity of our moving

cyclone model with respect to tipping-point indicators.
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Glossary of tipping point nomenclature

Critical slowing down — The phenomenon whereby recovery rates increase prior to a tipping

point, or critical transition.

Critical transition — Synonymous with tipping point in the context of this thesis. The word

critical here emphasises that the transition occurs at some critical time, or when a system parameter

reaches some critical value: terms which are also used throughout this thesis.

Early warning signal (EWS) — Any signal which is interpreted as providing a warning or predic-

tion of a future tipping point.

EWS indicator — Some measured quantity of a system the change in whose value over time is

itself an early warning signal. In many systems variance may be an EWS indicator since plotting

variance against time may be interpreted as an early warning signal where the variance is expected

to increase with the approach of the tipping point.

Recovery rate — The rate at which a system returns to its equilibrium state after some perturbation

due to some forcing.

Resilience — The ability of a dynamical system to resist outside forcing. A weakly resilient

system may shift to a different stable state due to some forcing, whilst a strongly resilient system

will ‘recover’, i.e. return to its original stable state, with some recovery rate.

Tipping point — The term tipping point is used in a wide range of contexts in the literature.

Generally, it can be taken to mean simply “any abrupt change in a dynamical system”. Some

authors may restrict the meaning to only a change due to a bifurcation, or only a noise-driven

transition between two stable states in a bistable system. In this thesis we use the term in its general

sense and specify when we refer to these sub-categories.





List of abbreviations

ACF — Autocorrelation function, see equation 2.6, page 40.

ACF1 — Lag-1 autocorrelation function, see equation 2.6, page 40.

Used in the context of the ACF1 indicator, see definition 2.3.1, page 62.

AR(p) — Autoregressive model of order p, see equation 1.11, page 6.

DFA — Detrended fluctuation analysis, see definition 2.1.5, page 43.

Used in the context of the DFA indicator, see definition 2.3.2, page 63.

EOF — Empirical Orthogonal Function, see section 3.2, page 117.

EWS — Early warning signal, see section 1.5, page 29.

PS — Power Spectrum, see definition 2.1.6, page 45.

Used in the context of the PS indicator, see definition 2.3.3, page 64.

SLP — Sea-level pressure, see section 4.1.2, page 173.

WS — Wind speed, see section 4.1.2, page 173.
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Chapter 1

Introduction

This work is concerned with tipping points, also referred to as critical transitions, which

are characterised by Kuehn [2011] as follows:

A non-mathematical working definition of a critical transition is an abrupt

change in a dynamical system.

Scheffer [2009] uses the example of a canoe capsizing as the canoeist leans further over

the edge. This example is one in which the dynamical system (the status of the roll of

the canoe as it changes over time) has two stable states (upright and upside-down) and

transitions abruptly from one to the other as a critical threshold is reached, in this case the

point at which the centre of mass is sufficiently offset from the canoe’s axis of vertical

symmetry that it becomes unstable. Many examples of tipping points in nature follow

this model of switching between two stable states due to some outside forcing (in this

case, the action of the canoeist). Other tipping points may occur in dynamical systems

with only a single stable state, if the position of that stable state changes suddenly, or

they may be due to bifurcations in the system, where a stable state becomes unstable and

the number of states changes. In this thesis we attempt to identify common features of

different varieties of tipping points (forced, bifurcational and noise-induced) in order to

present general methods for identifying, detecting and possibly predicting tipping points.

In order to take this thesis beyond a superficial study of the canoeist example, we

introduce in sections 1.1 and 1.2 the concepts of dynamical systems, time series analysis

and tipping points, including some common examples. In section 1.5 we introduce the

foundational ideas of early warning signals, which may be used to predict tipping points.

All of these ideas are introduced here quite generally but are properly defined in chapters 2



2 Introduction

and 3. In section 1.6 we present a summary of the current research into geophysical tipping

points, and then in section 1.7 we outline the structure and key points of the remainder of

this thesis.

1.1 Dynamical systems and time series analysis

The term dynamical system is used in pure mathematical analysis, medicine, climatology,

and other disciplines. For the purposes of the physical sciences, a dynamical system is

defined as “a particle or ensemble of particles whose state varies over time” [Nature, 2019]:

that is, almost any measurable quantity or quality of almost anything that changes over

time. The mathematical field of Dynamical Systems more specifically defines a dynamical

system as a triple (S,T ,Φ), where S is the state space, T is the parameter space and the

map

Φ : (S ×T )→S (1.1)

is the evolution determining the dependence of the state s ∈ S on the parameter t ∈ T
[Brown, 2018]. The state of the system as the parameter changes is called the trajectory of

the system and (S ×T ) is known as the trajectory space.

The majority of the influence on this thesis is tipping point research relating to real

physical systems changing over time, such as the change in atmospheric oxygen concen-

tration over a period of years [Livina et al., 2015]. In chapter 4 the tipping point analysis

techniques developed and studied throughout the previous chapters are applied to observed

sea-level pressure measurements as they change over a period of days. Therefore, in the

context of this thesis, t ∈ T is typically the "time" parameter and T is typically the set

of real numbers R, or a discrete subset (e.g. {0,0.1,0.2, ...}). Hence, the trajectory is the

state of the system as it changes with time. This brings the mathematical definition of a

dynamical system closer to the physical sciences definition. In this thesis we generally

distinguish an analytically defined dynamical system, where the map Φ is often defined by

a set of differential equations [Robinson, 2012], from a physical system, such as the roll

angle of a canoe or the sea-level pressure at a specific geographical location. However, the

two concepts overlap where a physical system is presumed to be governed by (possibly

unknown) analytical equations, or when an analytical dynamical system is used to model

the behaviour of a physical variable.
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Fig. 1.1 The quadratic map (equation 1.2) iterated 200 times with initial value
x0 = 0.4.

A simple example of a dynamical system is based on the quadratic map

f (x) = 4x(1− x). (1.2)

Here, the state is x ∈ R := S, the ‘time’ parameter is n ∈ N := T and the dynamics are

governed by the map

Φ : (x,n)→ f n(x), (1.3)

denoting the function f iterated n times. The trajectory of this dynamical system, with

the initial condition x0 = 0.4, is shown in figure 1.1. The series of values X = {x0,x1, ...}
is, if we continue to refer to the parameter n as ’time’, a time series, a collection of

observations made over time [Chatfield, 2016]. These observation can be the hourly price

of a commodity, the yearly global average temperature deviation or, in this case, the state x

of the dynamical system in equation 1.3.

In chapters 2 and 3 several dynamical systems defined by analytical equations are

studied in order to detect or predict tipping points which occur in those systems. An

instructive example, which is referred to throughout this thesis, is the double-well potential

system, described by the differential equation

ż :=
dz
dt

=− ∂

∂ z

(
z4 −2z2) , (1.4)

where z(t) is the system state variable and t is the time parameter. The right-hand side

could be written more concisely as 4z−4z3 but expressing it as a derivative allows us to
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Fig. 1.2 (a) The shape of the double-well generalised potential function
U(z) = z4 − 2z2, and (b) the trajectory of the dynamical system described
by equation 1.4. The dashed lines represent the equilibria z =−1,0,1.

see the shape of the generalised potential function U(z) = z4 −2z2, which is illustrated in

figure 1.2a. The generalised potential function, in this case, describes two wells into which

the system state falls. The term “potential function” in physics has a specific meaning

relating to the energy potential of a particle but in dynamical systems it is useful to refer to

the “generalised potential function”, as we have done here, in the sense that its minima

correspond to the most probable states of the system [Nicolis and Nicolis, 2007]. In

this sense the reciprocal of the generalised potential function is related to the probability

distribution function of system states, but it is more convenient for our purposes to refer

only to the generalised potential function.

As t changes, so too does the system state z unless ż = 0, which occurs at the equilibria,

the states z =−1,0,1, which are also the solutions to

∂

∂ z

(
z4 −2z2)= 0. (1.5)

Thus, we are able to understand the dynamical system in terms of its equilibria. At z = 0

there is an unstable equilibrium where U ′′ = 12z2 − 4 = −4 < 0 and so if z is close to,

but not equal to zero, the evolution of the system (the change as t increases) will move

away from this state, along the arrows of the trajectory in figure 1.2b, towards the stable

equilibria z =±1, where U ′′ = 12z2 −4 = 8 > 0. Because of the shape of the generalised

potential function, these stable equilibria are known as wells or basins of attraction. Any

state z ̸= 0 will evolve towards either one of these wells and will become asymptotically

close to z =±1.
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1.1.1 Stochastic dynamical systems

When attempting to model a physical system, a purely deterministic equation may not

be appropriate [Shumway and Stoffer, 2017] and so it is useful to couple a dynamical

system with a stochastic process to model uncertainty or unknown short-scale processes.

The stochasticity can also induce tipping in the dynamical system — we note that in the

double-well potential system introduced above, the system variable z heads towards one of

the potential wells (one of the stable states of the system) and remains there: this is not a

suitable model for a physical system such as the canoe example, which tips from one state

to another.

The most basic example of a discrete-time stochastic process, for our purposes, is

independent Gaussian white noise, that is, a time series where each element is sampled

independently from a zero-mean Gaussian distribution. In several systems throughout this

thesis we introduce additive noise [Honerkamp, 1994] so that a system

dx
dt

= f (x), (1.6)

becomes
dx
dt

= f (x)+ηt , (1.7)

where η is a Gaussian white noise process. Adding a white noise process to the double-well

potential system in equation 1.4, we get a stochastic dynamical system described by the

stochastic differential equation

ż =− ∂

∂ z

(
z4 −2z2)+σηt , (1.8)

where the constant σ alters the variance of the noise term. In this system the overall

evolution is still towards the two wells of attraction, and we note that a particle starting

exactly in the state z = 0 will no longer remain on the unstable equilibrium as perturbations

from the noise term will move the particle slightly away from zero, after which point it

will be attracted into one of the two wells. In figure 1.3 the trajectory of the system is

shown with initial condition z = 0 for small noise (σ = 0.4) and for large noise (σ = 0.7).

Note that when the noise is sufficiently large a particle is able to cross over the z = 0 point,

the peak between the two wells of attraction, and move into the other well. This abrupt,

noise-induced transition from one stable state to another is one of the several types of
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Fig. 1.3 Time series of the possible trajectory of the stochastic double-well
potential system described by equation 1.8 with small noise (blue line, σ = 0.4)
and large noise (red line, σ = 0.7).

tipping which will be described in section 1.2. Significantly, this noise-induced tipping

point is not caused by a change in the shape of the generalised potential, as is the case for

other examples of tipping points.

Besides Gaussian white noise, we may introduce many different types of stochastic

processes: Brownian motion, fractional ARIMA processes, the Ornstein-Uhlenbeck pro-

cess, etc. [Gardiner, 1994; Box et al., 2008; Chatfield, 2016; Shumway and Stoffer, 2017].

We make frequent use of the discrete random walk process, which is simply the cumulative

sum of a white noise series, thus:

xt =
t

∑
j=1

ηt , (1.9)

where η is Gaussian white noise. This could also be defined recursively by the equation

xt = xt−1 +ηt , (1.10)

with initial condition x0. A more general stochastic process with a similar form is the

order-p autoregressive process, or AR(p) process, described by the equation

xt = ϕ1xt−1 +ϕ2xt−2 + · · ·+ϕpxt−p +ηt , (1.11)

where ϕ1,ϕ2, ... are constant parameters. Figure 1.4 shows the time series of a random

walk, and an AR(2) process with ϕ1 = 0.8, ϕ2 = −0.2. These two time series appear
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Fig. 1.4 Time series of a random walk (blue line), and an AR(2) process with
ϕ1 = 0.8, ϕ2 =−0.2 (red line).

different, we note that the AR(2) process appears to be stationary (the mean does not

change over time) whereas the random walk is apparently non-stationary.

1.1.2 Methods of analysis

There exist many methods for the analysis of the time series which arise both from

measurements of physical systems and from analytically defined dynamical systems [Box

et al., 2008; Chatfield, 2016]. Besides the sample variance, we often refer to the sample

autocorrelation function (ACF) of a time series X , a measure of the correlation between a

time series and a delayed copy of itself, given by the equation

ACFl(X) =
1

(N − l)s2

N−l

∑
j=1

(X j − X̄)(X j+l − X̄), (1.12)

where X̄ and s are the sample mean and sample standard deviation of X and l is the lag.

The ACF of a Gaussian white noise process has expected value zero at all lags except

l = 0, since each point is sampled independently and so there is no correlation between

them. Since, in tipping point research, we are concerned with abrupt changes in systems,

autocorrelation is frequently used to analyse time series of systems in which tipping has

occurred or may occur [Scheffer et al., 2009]. In chapter 2 the ACF1 indicator is introduced

as a means to quantify how lag-1 autocorrelation changes over time. This method has been

widely used in tipping point research [Held and Kleinen, 2004; Livina and Lenton, 2007]

as has the related DFA indicator (see definition 2.3.2, chapter 2) which was developed by
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Fig. 1.5 The periodogram of a Gaussian white noise series (panel a) and a
random walk (panel b) both of length 106 data points. The logarithm of the
spectral power S( f ) is plotted over the logarithm of the frequency f in both
cases in the frequency range 10-2 < f < 10-1.

Livina and Lenton [2007] and quantifies how the Detrended Fluctuation Analysis exponent

of a system [Makse et al., 1996; Kantelhardt et al., 2001] changes over time.

As an illustration, we calculate the lag-1 ACF of the random walk and the AR(2)

processes plotted in figure 1.4. These are found numerically to be 1.00 and 0.666 respec-

tively, giving just one quantitative measure of the difference in behaviour between the

two processes. The DFA exponents of the two processes are found to be 1.50 and 0.556.

In chapter 2 we compare the lag-1 ACF and the DFA exponent applied to a number of

different dynamical systems in order to assess the advantages of each.

Many methods of time series analysis involve transforming the series from the time

domain, in which the system state is a function of time, into the frequency domain, in

which the amount of the series lying within a frequency band is a function of frequency

[Chatfield, 2016]. In this way we obtain the power spectrum Sx( f ) for the process x as a

function of frequency f , which is simply the modulus squared of the Fourier transform:

Sx( f ) = |x̂( f )|2 , (1.13)

where in this case x̂( f ) denotes the Fourier transform of a function x(t) as a function

of frequency. A more thorough definition of the power spectrum is given in chapter 2

(definition 2.1.6). Likewise, we also define the periodogram (definition 2.1.8), which is the

discrete approximation to the power spectrum [Welch, 1967; Oppenheim, 1999] and allows

us to estimate spectral properties of a dynamical system given a finite time series of discrete
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data. In particular we are interested in how the power spectrum scales with frequency

which we quantify using the power spectrum scaling exponent β (see definition 2.1.7).

Briefly, the exponent β is a measure of the negative gradient of the periodogram plotted

on logarithmic axes. Figure 1.5 shows the periodogram of a Gaussian white noise series

and a random walk (both of length 106 data points). The periodogram is plotted on a

log-log scale — throughout this thesis we use the notation ‘log’ when referring to the

base-10 logarithm. Measuring the gradient in both cases we find that the Gaussian white

noise has PS exponent β = 0 and the random walk has PS exponent β = 2. Similarly to

how the ACF1 indicator and the DFA indicator track how the lag-1 ACF and the DFA

exponent change over time, we introduce the PS indicator [Prettyman et al., 2018] (see

definition 2.3.3) in chapter 2, which tracks how the PS exponent changes over time. We

also explore in chapter 2 (section 2.1) the relationships between the PS exponent β , the

DFA exponent, and the autocorrelation function.

1.1.3 Higher dimensions

The time series and dynamical systems described above have only a single-valued system

variable x, which is required by techniques such as the ACF or the power spectrum. In

chapter 3 we expand the scope of the thesis to include higher-dimensional systems such as

ṙ = µr− r3,

θ̇ = 1+ r2,
(1.14)

which has two variables (in this case, r and θ ). In a physical system, this higher dimen-

sionality could correspond to measuring several different physical variables, or measuring

the same variable at several discrete locations in space. It may be possible only to consider

a single critical variable such as temperature. Otherwise it is also possible to combine

several time series into one, for example using Empirical Orthogonal Functions (EOFs),

which we discuss in section 3.2, or to use a technique similar to ACF but expanded to

higher dimensions [Williamson and Lenton, 2015], which we discuss in section 3.1. As a

further alternative we introduce, in section 3.7, the possibility of analysing several time

series simultaneously using 2D plots. All of these ideas are then applied to a practical

geophysical problem in chapter 4.
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1.2 Bifurcations and tipping points in dynamical systems

In this section we introduce the concept of a bifurcation, which will be closely related to

the more general concept of a tipping point. Introduced by Poincaré and meaning a split

or fork, the term bifurcation has to do with creation, decay or change in the stable states

of a dynamical system (see definition 1.2.1) [Devaney, 2003; Blanchard et al., 2006]. As

such, bifurcations, where they occur, will often be the causes of tipping points: sudden

qualitative changes in the system’s behaviour.

The ‘double well’ system in figure 1.3 (large noise) has two stable equilibria (at z =±1)

and the noise in the system is large enough that the system switches between the two.

Each switch from one stable equilibrium to the other could be viewed as a tipping point

itself (an example of a noise-induced tipping point [Livina et al., 2011]) but is not due to a

bifurcation since the change occurs due to perturbations from the noise term, not due to a

change in the parameter t (that is, it could potentially happen at any time t). An example of

bifurcation might be if the system, evolving along one stable trajectory, suddenly switched

to the second stable equilibrium due to the first equilibrium becoming unstable because of

a change in the system parameters. This is the key feature that distinguishes bifurcations

from other types of tipping points. In this section the concepts of tipping points and

bifurcations are defined more thoroughly, and in the following sections (sections 1.3

and 1.4) several examples of tipping points and bifurcations are presented.

We can introduce a bifurcation into the ‘double well’ system by varying the coefficient

of z2 in equation 1.8 so that the shape of the generalised potential function U changes with

time:

U = z4 +
(

3− t
200

)
z2. (1.15)

When t = 1000 we have the same double-well generalised potential system as in equa-

tion 1.8 with U = z4 −2z2. However, when t < 600 the shape of the generalised potential

function is qualitatively different: only a single stable state (‘well’) exists. Thus we have

introduced a parametric forcing into the system. Such parametrically forced systems

are common in the study of bifurcations [Strogatz, 2014] since it is useful to consider

the nature of the equilibria of a system at various values of the forcing parameter, in

particular those values when the bifurcation occurs. In this chapter and the next we study

parametrically forced systems which exhibit genuine bifurcations in which, by varying

the system parameter, the shape of the generalised potential function is changed and the
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equilibria of the system either appear, disappear or change in nature. This, however, is

not the only way in which a tipping point may occur in an analytically defined dynamical

system: we follow authors such as Scheffer et al. [2009] in defining a tipping point as any

abrupt qualitative change in the dynamical system, which may include a shift in the system

state caused purely by the inherent stochasticity of a system, referred to as noise-induced

tipping [Livina et al., 2011; Ashwin et al., 2012].

The evolution of the generalised potential function U in equation 1.15 is shown in

figure 1.6. The system in equation 1.8 is adjusted to incorporate this evolving generalised

potential function, giving a system defined by the ODE

ż =− ∂

∂ z

(
z4 +

(
3− t

200

)
z2
)
+σηt , (1.16)

where ηt is a Gaussian white noise process. This equation is then integrated numerically

for t ∈ [0,1000] to give the time series shown in figure 1.7. Two separate integrations show

two possible trajectories of the system, typical of the system falling into the two separate

stable equilibria which develop after the bifurcation. This ‘pitchfork’ bifurcation at t = 600

is another example of a tipping point, distinct from the noise-induced transition seen in

figure 1.3. In chapter 2 this same dynamical system is used to create multiple time series

on which we test the tipping point techniques described in that chapter and successfully

identify the tipping event at t = 600. We note that the bifurcation in figure 1.7 appears to

happen gradually in reference to the 0 ≤ t ≤ 1000 scale presented in the plot: in each of

the trajectories we are able to see the increasing variance at t = 400, and it is not clear that

a double-well potential has developed until t > 700. The reference to an "abrupt change"

in the definition of a tipping point [Kuehn, 2011] is in comparison to large, long-scale

deterministic components in the system, which are not present in this simple system for

t < 600. Despite this, systems such as this are commonly used as examples in tipping point

analysis [Scheffer et al., 2009; Kuehn, 2011] because the principle concepts would remain

the same if a long-scale deterministic component were introduced. For example, the stable

equilibria might be described by a sine wave with period 2000, rather than the line z = 0;

plotted on the time scale -105 < t < 105 the tipping at t = 600 will be apparently "abrupt".
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Fig. 1.6 Schematic of the changing shape of the generalised potential function
U in equation 1.15. U is shown for t < 600 where the shape is a "single-well"
(panel a); for t = 600 where the bifurcation occurs (panel b); and for t > 600
when the "double-well" shape has developed (panel c).

Fig. 1.7 Time series of two possible trajectories of the stochastic double-well
potential system with changing generalised potential function described by
equation 1.15. The equation is the same in both cases, with noise level σ = 0.4.
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1.2.1 Defining a “tipping point”

The casual definition of a tipping point offered by Kuehn [2011], "an abrupt change in a

dynamical system", suggests that tipping points are not restricted to a particular type of

change in a dynamical system, either a bifurcation or a transition from one state to another,

but any system in which a sudden change can be observed.

Because the definition is very broad, tipping points are studied in a variety of different

contexts using a variety of different methods [Scheffer, 2009]. Some areas of research in

which tipping points are studied include finance [Scheffer et al., 2009], ecology [Scheffer

et al., 2001], biochemistry [Bagowski and Ferrell Jr, 2001] and climate [Lenton et al.,

2008]. Despite the breadth of the subject, many systems exhibiting tipping points are

mathematically related, that is, when these systems are close to the tipping point they

share certain general properties in their dynamics which arise regardless of their individual

natures [Scheffer et al., 2009]. These shared properties, enumerated by Scheffer [2009] are

summarised by Kuehn [2011] in the following list:

1. An abrupt qualitative change in the dynamical system occurs.

2. The change occurs rapidly in comparison to the regular dynamics.

3. The system crosses a special threshold near a transition.

4. The new state of the system is far away from its previous state.

5. There is small noise in the system i.e. the data has a major deterministic component

with small “random fluctuations”.

6. The system recovers slowly from perturbations (“slowing down”).

7. The variance of the system increases as the transition is approached.

8. The noisy fluctuations become more asymmetric.

9. The autocorrelation increases before a transition.

The point of interest is the third point: “The system crosses a special threshold near a

transition.” since the nature of the “special threshold” determines the nature of the tipping

point and therefore which techniques are used to analyse it.
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Fig. 1.8 Three distinct tipping points: a non-catastrophic transition (a), a
cusp catastrophe bifurcation (b) and a transition between stable states (c). In
each case the small black arrow represents a small forcing and the grey arrow
represents the resulting change in the system state. The attractor is shown in
the top panel and the system generalised potential function is shown beneath.

The idea of the critical threshold comes from catastrophe theory which has in the past

been criticised for an unscientific application of the cusp catastrophe to a huge variety

of social and biological systems [Zahler and Sussmann, 1977], including the fight reflex

of dogs and the psychological states of anorexia nervosa sufferers [Zeeman, 1977], all

of which represent tipping points in a broad sense. Despite this, the cusp catastrophe (or

fold bifurcation) is widely used as an example in tipping point research [Scheffer et al.,

2001; van Nes and Scheffer, 2005; Van Nes and Scheffer, 2007; Kuehn, 2011]. Scheffer

et al. [2009] note that the cusp catastrophe model is “now considered to capture the

essence of shifts at tipping points in a wide range of natural systems” and also that critical

thresholds for tipping points correspond to bifurcations. In figure 1.8 three tipping points

are illustrated: a non-catastrophic transition in which the system state changes smoothly; a

cusp catastrophe in which the system undergoes a bifurcation; and a transition from one

stable state to the another. In the first two cases (panels a and b) the same forcing is used

and the same final system state is reached. Given a sufficiently large forcing, therefore, it

would not be possible to tell the difference between the two scenarios. We use this idea in

chapter 4 to justify the use of the tipping point analysis in a novel system: the approach of

a tropical cyclone. This system is possibly not an example of a two-state system with a

genuine bifurcation or transition, but it is possible that the same analysis will work if the

same sort of forcing is present as if it were a bifurcation. Indeed, Ashwin et al. [2012] note,

in the context of tipping point analysis, that tipping points do not only include bifurcations.
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1.2.2 Defining a bifurcation

Although we have now defined the term tipping point very generally as any abrupt change

in a dynamical system [Kuehn, 2011], and the early-warning techniques introduced in

chapter 2 are applied to systems exhibiting such generally-defined tipping, we will focus, in

chapter 3, on examples of parametrically forced bifurcations in order to facilitate analysis.

Unlike the term tipping point, which is used very generally to refer to “abrupt qualitative

change” [Scheffer, 2009], the word bifurcation, in the context of dynamical systems, has a

specific definition. The word is literally a description of the pitchfork bifurcation depicted

in figures 1.6 and 1.7: the single stable equilibrium splits into two (bifurcates) at the critical

point.

Definition 1.2.1 (Bifurcation) for a system described by the equation

ẋ = f (x,µ), f : Rn ×R→ Rn, (1.17)

where all eigenvalues of the Jacobian matrix J f of f evaluated at x = x0 have non-positive

real part, a bifurcation is said to occur at x0 when one or more of those eigenvalues passes

into the positive-real half of the complex plane due to a change in the parameter µ . That

is, when the real part of at least one eigenvalue becomes positive as µ is varied.

As an example we take Van der Pol oscillator [Van der Pol, 1926], which will be studied

further in chapter 3, and can be represented as a two-dimensional system of first order

ODEs thus:
ẋ = µ

(
x− 1

3x3)+ y,

ẏ = −x.
(1.18)

The system has a stable equilibrium point (ẋ = ẏ = 0) at (x,y) = (0,0) for µ < 0 which

becomes the centre of a stable limit cycle for µ > 0. The Jacobian of this system is

calculated:

J(x,y) =

 µ(1− x2) 1

−1 0

 . (1.19)

Evaluated at the stable point (0,0), the two complex-conjugate eigenvalues of the Jacobian

are λ = 1
2(µ ±

√
µ2 −4). We note that for µ < 0 both eigenvalues have negative real part

so that, according to definition 1.2.1, a bifurcation will occur if either eigenvalue passes

into the real-positive half of the plane as µ changes. We find that at µ = 0 both eigenvalues
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Fig. 1.9 The eigenvalues of the Van der Pol oscillator (equation 1.18) for
-2 < µ < 2. At the critical value µ = 0 both eigenvalues transition into the
real-positive half of the plane, satisfying the definition of a bifurcation (defini-
tion 1.2.1).

are purely imaginary and then have positive real part for 0 < µ , thus µ = 0 is the critical

value at which a bifurcation occurs. The transition of the eigenvalues into the real-positive

half of the plane is represented visually in figure 1.9.

Bifurcations are often understood in terms of specific, named examples of bifurcations,

all of which generally involve the creation or decay of stable equilibria or, in two or more

dimensions, stable limit cycles, or, in three or more dimensions, chaotic attractors. In

section 1.4 we give brief descriptions of several different examples of bifurcations and in

chapters 2 and 3 we analyse several of these examples in an early warning signal context,

including the Van der Pol oscillator shown here.

1.3 Classification of tipping points

A comparison of the transitions in figure 1.8 panels b and c demonstrates the two possible

ways to shift between alternate stable states [Scheffer et al., 2001]: either a slight change

in the system conditions, possibly a parameter value, close to the bifurcation point; or

a sufficiently large perturbation due to noise which is able the push the system over the

boarder to the other attractor well. Ashwin et al. [2012] describe three types of tipping

with applications to climate: bifurcations, noise-induced tipping, and rate-induced tipping.

Whilst differing classifications of tipping points have been made [Thompson and Sieber,
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2011; Ashwin et al., 2012] we here illustrate the three categories of system changes which

may be the cause of a tipping event, as identified by Livina et al. [2011]:

1. A forced transition, where the generalised potential function stays the same shape

but is moved, so that there is a trend (or possibly a sudden jump) in the time series.

2. A genuine bifurcation, where the shape of the generalised potential function is

changed.

3. A noise-induced transition, where the system shifts from one stable state to another

due to a large initial perturbation.

We note that these three scenarios are represented in figure 1.8 (a, b and c respectively)

where the forcing of the system state in figure 1.8c is noise-driven. Rate-induced tipping,

which is not represented in figure 1.8, occurs as a result of the rate of change of a

system parameter (or system conditions). We note also that a “qualitative changes” in a

dynamical system may refer not to the measured or calculated system variable but some

other unmeasured (or unobservable) or derived variable. For example, Livina et al. [2011]

study the system z(t) given by the equation

ż(t) =− ∂

∂ z

(
z4 −2z2)+σ(t)η , (1.20)

where η is white noise and σ(t) is a parameter which varies with time and governs the size

of the standard deviation of the noise. In this example, where σ(t) is made to decrease from

2 to close to zero, a system with a double-well generalised potential function effectively

becomes a single-well system as the noise term becomes so small that it is practically

impossible for the system to change state, although the actual shape of the generalised

potential function does not change. In this case, the qualitative change in the system is not

a change in the system state z but can be seen either as a change in the probability of the

system state changing; or a change in the variance. It is then this decrease in probability, or

decrease in variance, which serves as the ‘system state’ variable in figure 1.8, not z itself.

And if the change is considered “abrupt” in comparison to the long-term dynamics, this

system could be said to exhibit a tipping point at around the time that σ(t) starts decreasing.

This type of tipping point involving a derived variable may only become apparent from the

nature of the equations that govern the system. If presented with time series data alone, it

may be difficult, or impossible, to judge whether a tipping has occurred.
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Fig. 1.10 Three distinct tipping points: a non-catastrophic ‘forced’ transition
(a), a super-critical pitchfork bifurcation (b) and a noise-induced transition be-
tween stable states (c). The dynamical systems are governed by equations 1.22,
1.23 and 1.24 respectively. In each case the tipping point occurs at around
t = 0.6. The three transitions correspond more-or-less to the three depicted in
figure 1.8 and represent the three varieties of tipping point identified in Livina
et al. [2011].
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We now present an example of each of these three types of tipping point listed by

Livina et al. [2011]. The dynamical system equation in each case is presented in the form

ż(t) =− ∂

∂ z
U(z,µ)+ση , (1.21)

where η is a Gaussian white noise term and both µ and σ may be functions of t. This form

allows us to easily visualise the nodes of the system: the stable equilibria are local minima

(‘troughs’ or ‘wells’) of the generalised potential function U ; whilst the unstable equilibria

are the local maxima (‘peaks’).

A single realisation of each of these systems is shown in figure 1.10. In each case the

system equation has been integrated using the Milstein method (see section 2.4, chapter 2)

using a time-step ∆t = 10-5 and sampled at a rate of 103 per unit time.

Type 1: Forced transition (or Transitional tipping point)

As an example of a ‘forced transition’ we use the system described by the equation

ż(t) =− ∂

∂ z
(z− tanh(10t −6)−1)2 +

1
10

η , (1.22)

where η is a Gaussian white noise process. This system has a quadratic-shape generalised

potential which shifts in position over time. For small t, that is t < 0.5, the stable equilib-

rium, the base of the ‘well’, is at the position z ≈ 0. This shifts to the position z ≈ 2 when

t > 0.7. Thus, a sudden shift occurs around t = 0.6, as we can see in figure 1.10a.

Type 2: Genuine bifurcation (or Bifurcational tipping point)

As an example of a genuine bifurcation we present the familiar pitchfork bifurcation,

already used as an example in this chapter, given by the equation:

ż(t) =− ∂

∂ z

(
z4 +(3−5t)z2)+ 1

10
η , (1.23)

where η is a Gaussian white noise process. In this case the bifurcation occurs at t = 0.6.

We see in figure 1.10b the apparent increase in “white” noise just before t = 0.6 as the base

of the ‘well’ flattens out and allows for longer and longer return times to the equilibrium

point z = 0.
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This is a genuine bifurcation in the sense that it satisfies the definition of a bifurcation

(see section 1.4). This system is not, however, representative of bifurcations in general

and there exist several classifications within the term bifurcation. An introduction to some

different types of bifurcation is given in the following section (section 1.4). Bifurcations in

dynamical systems in two or more dimensions may, in particular, be poorly represented by

studying only the ‘pitchfork’ system, since in this case the stable equilibrium may be a

limit cycle or a chaotic attractor, rather than a single point.

Type 3: Noise-induced transition (or Noise-induced tipping point)

As an example of a noise-induced transition we take the system with decreasing noise

studied by Livina et al. [2011] and given by equation 1.20, but run the system in reverse

so that the noise level is increasing. In this way the system has, for small t, effectively a

‘single well’ generalised potential, since the noise level is so small as for it to be practically

impossible for the system to switch stable states. The time series in figure 1.10c is described

by the equation:

ż(t) =− ∂

∂ z

(
z4 −3z2)+ 3t

2
η , (1.24)

where η is a Gaussian white noise process and the coefficient σ(t) = 3t/2 modifies the

standard deviation of the noise as a function of t. At around t = 0.6 the noise standard

deviation is close to 1 which is about large enough that state-switching becomes likely

though not frequent1. As t increases further, the frequency of the state-switch increases.

1.4 Varieties of bifurcations

As stated in section 1.2.2, bifurcations are understood in terms of specific, named examples,

all of which involve the creation or decay of stable equilibria or limit cycles. In this section

we give brief descriptions of the four characteristic bifurcations in one dimension: the

fold bifurcation; the transcritical bifurcation and the supercritical and subcritical pitchfork

bifurcations [Strogatz, 2014]. We also give descriptions of the specific examples of two-

dimensional bifurcations which are used throughout this thesis, namely the Hopf and

homoclinic bifurcations.
1by performing multiple experiments with various fixed noise coefficients we find that for σ = 1 there

are (in the mean) ≈ 12 state-switches in a time series of length 103. For σ = 0.8 there are only ≈ 2 switches
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a (Fold bifurcation)

b (Transcritical)
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Fig. 1.11 Three bifurcations in one-dimensional dynamical systems: a fold
bifurcation (a), a transcritical bifurcation (b) and a sub-critical pitchfork bifur-
cation (c). The dynamical systems are governed by equations 1.26, 1.28 and
1.30 respectively. In each case the bifurcation occurs at t = 0.9 but in panels
(b) and (c), however, we see a tipping point earlier than this when the small
noise term becomes enough to push the system out of the generalised potential
‘well’. Unlike in the case of the super-critical pitchfork bifurcation (fig. 1.10b),
these systems do not fall into a new stable state after the bifurcation but diverge
suddenly.
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1.4.1 Bifurcations in one dimension

When studying one-dimensional dynamical systems in the context of looking at bifurca-

tions, we present the system equation in the form

ż(t) =− ∂

∂ z
U(z,µ)+ση , (1.25)

where η is a Gaussian white noise term and both µ and σ may be functions of t, just as

in section 1.3. This form allows us to easily visualise the nodes of the system: the stable

equilibria are local minima (‘troughs’ or ‘wells’) of the generalised potential function U ;

whilst the unstable equilibria are the local maxima (‘peaks’).

As in section 1.3, the system equation in each case has been integrated using the

Milstein method (see section 2.4, chapter 2) using a time-step ∆t = 10-5 and sampled at

a rate of 103 per unit time so that the resulting time series presented in figure 1.11 are of

length 103.

The fold bifurcation

The fold bifurcation is a very simple example of a tipping point and has been used to model

a wide variety of phenomena, notably in the field of catastrophe theory [Zeeman, 1977;

Arnold et al., 1999]. The normal form for the fold bifurcation is

ż(t) =− ∂

∂ z

(
z3 +µz

)
, (1.26)

which, for µ < 0, has a stable equilibrium at z = -
√

µ/3 and an unstable equilibrium at

z =+
√

µ/3. If µ is made to vary, these equilibria draw closer together as µ → 0 from

below until they collide and both disappear (some might say catastrophically) at µ = 0,

after which point z tends to infinity: this is the defining feature of the fold bifurcation

[Strogatz, 2014]. The state space digram for this particular system is shown in figure 1.12.

It is important to note that the above equation is only the simplest example of a fold

bifurcation, other systems with possibly many other equilibrium points may undergo a fold

bifurcation locally whenever two equilibria (one stable, one unstable) are eliminated due

to a change in parameters. An example might be

ż(t) =− ∂

∂ z

(
z5 −µ

2z3 +µz
)
, (1.27)
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Fig. 1.12 The state space diagram for the fold bifurcation as defined by the
normal form, equation 1.26.

which (by examining the equilibrium points of the generalised potential function) we find

undergoes two fold bifurcations simultaneously (in the regions of z =±1) at µ = - 3
√

20/9,

and then another, reversed fold bifurcation at µ = 0. We say ‘reversed’ since, if we are

increasing the value of µ , the situation at µ = 0 is that two equilibria (one stable, one

unstable) are created rather than destroyed.

The transcritical bifurcation

The transcritical bifurcation is so named because the equilibria cross the critical point: they

are not created nor eliminated. Instead, the stable equilibrium becomes unstable and vice

versa. The normal form of the transcritical bifurcation is

ż(t) =− ∂

∂ z

(
z3 −µz2) , (1.28)

which has the same (cubic) shaped generalised potential function as the fold bifurcation

normal form. When µ = 0, this example has a stable equilibrium at z = 2µ/3 and an

unstable equilibrium at z = 0. At the critical point µ = 0 the equilibria are lost momentarily

but reappear for µ > 0 when the z= 0 state has become unstable and the (positive) z= 2µ/3

state is now stable. Because of the continuity of the equilibrium at z = 0, this type of

equation is used frequently in biology when zero is often a stable state [Nicolis and Nicolis,

2007; Strogatz, 2014], for example in population dynamics (of bacteria, humans, etc.) a

population of zero is a stable population. Indeed, the above equation has the same form

as the logistic equation [Brown, 2018]. The state space diagram for this bifurcation is
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Fig. 1.13 The state space diagram for the transcritical bifurcation as defined by
the normal form, equation 1.28.

shown in figure 1.13: we note the equilibrium at z = 0 which is a constant function of µ

but changes from stable to unstable at µ = 0.

The pitchfork bifurcation

We have seen already the pitchfork bifurcation (figures 1.6 and 1.7; pages 12 and 12) given

by the equation

ż(t) =− ∂

∂ z

(
z4 −µz2) . (1.29)

In equation 1.16 we added a Gaussian noise term to this equation so that the system

fluctuated about the stable state at z = 0 for µ < 0. The bifurcation occurs at the critical

point µ = 0 when the single stable equilibrium becomes unstable and two stable equilibria

develop at z =±
√

µ/2. The ‘pitchfork’ name comes from these three separate trajectories,

one along the unstable equilibrium and two along the stable equilibria. This example is

known as the super-critical pitchfork bifurcation because the three ‘prongs’ of the pitchfork

are above the bifurcation point (µ > 0). The contrasting sub-critical pitchfork bifurcation

has the normal form

ż(t) =− ∂

∂ z

(
-z4 −µz2) , (1.30)

and for µ < 0 has a single stable equilibrium at z = 0 and two unstable equilibria at

z =±
√
-µ/2. At the critical point z = 0 the two unstable equilibria meet the stable point

and develop into a single unstable equilibrium for µ > 0. The supercritical and subcritical

pitchfork bifurcations are both represented in the state space diagrams in figure 1.14 where

we see the different stable (solid line) and unstable (dashed line) states z which exist for
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Fig. 1.14 The state space diagram for the supercritical (panel a) and subcritical
(panel b) pitchfork bifurcations as defined by the normal form equations 1.29
and 1.30.

different values of the parameter µ in the normal-form equations (equations 1.29 and 1.30).

Because of the abrupt loss of the stable equilibrium in the subcritical bifurcation, a system

following the stable trajectory will abruptly become unstable at the critical point and

quickly diverge to ±∞ given any small perturbation. Of course, in cases with higher order

terms in the equation, the system may in fact converge again to a separate stable point

away from z = 0.

1.4.2 Bifurcations in two dimensions

In chapter 2 we turn to bifurcations and other tipping points in two-dimensional dynamical

systems governed by a system of ODEs such as ẋ = f (x,y), ẏ = g(x,y) in Cartesian

coordinates. The one-dimensional bifurcations mentioned above may still occur in two-
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dimensions, for example the system

ẋ = µ − x2 ,

ẏ = -y ,
(1.31)

undergoes a saddle-node bifurcation at µ = 0, and this is simply the two-dimensional

analogue of the one-dimensional fold bifurcation described above. We note that looking

only at the x component, ẋ = µ − x2 we have the exact same normal form as the fold

bifurcation given in equation 1.26. The name saddle-node bifurcation comes from the

unstable equilibrium which, in two-dimensions, is a saddle node since it is convergent in

the y direction and divergent in the x direction.

Likewise, the super-critical pitchfork bifurcation may occur in two dimensions in a

system such as

ẋ = µx− x3 ,

ẏ = -y .
(1.32)

The Hopf bifurcation and homoclinic bifurcation described below are specific to two-

dimensions and involve stable limit cycles, not just the stable points seen in one-dimensional

systems. Other examples of two-dimensional bifurcations include the fold bifurcation

of cycles Strogatz [2014] which involves the elimination of a stable limit cycle and an

unstable limit cycle when the two meet, similar to how a regular fold bifurcation involves

the elimination of a stable point and an unstable point.

The Hopf bifurcation

We have already seen the Van der Pol oscillator presented as a system of two first order

ODEs in our definition of a bifurcation (see section 1.2.2, definition 1.2.1). It is noted

that the Van der Pol oscillator undergoes a bifurcation when a change in parameters

causes the eigenvalues of its Jacobian to cross the imaginary axis (see figure 1.9). In

fact, this particular situation is an example of a Hopf bifurcation. In chapter 2 we study

the Van der Pol system along with another example of a dynamical system experiencing

Hopf bifurcation, a so-called ‘standard example’ [Strogatz, 2014], given by the system of

equations

ṙ = µr− r3

θ̇ = 1+ r2
(1.33)
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in polar coordinates. We note that the system has no fixed point since θ is always increasing

(θ̇ = 1+ r2 > 0), thus the system is constantly circling around the origin, slowly for small

r and more quickly for large r. In r the system is more interesting. We note there are

two fixed values for r by setting ṙ = 0 we find r = 0 or
√

µ . Inside the circle r =
√

µ we

find that ṙ > 0, that is, r is increasing towards the circle. Outside of the circle (r >
√

µ)

the system is spiralling inwards towards the circle as ṙ < 0. Of course, this is only true

for µ > 0 since r cannot take an imaginary value. For µ < 0 the situation is that a single

stable point exists at r = 0 and ṙ < 0, thus the system is constantly spiralling inwards to the

origin. If we allow µ to increase from below we note a bifurcation at µ = 0. The equation

in r, that is,

ṙ = µr− r3, (1.34)

has the same form as the supercritical pitchfork bifurcation (equation 1.29), but after the

critical point only the unstable state r = 0 and one single stable state develops (r =+
√

µ)

since the negative r = -
√

µ does not make sense in these coordinates, this stable circle at

r =+
√

µ is called a stable limit cycle.

It is possible to translate this system into Cartesian coordinates using x = r cos(θ),

y = r sin(θ) which gives

ẋ = ṙ cos(θ)− rθ̇ sin(θ) ,

ẏ = ṙ sin(θ)+ rθ̇ cos(θ) .
(1.35)

Substituting in equations 1.33 we obtain the system of first order ODEs:

ẋ = µx− y+
[
y3 − x3 + x2y− xy2] ,

ẏ = µy+ x+
[
x3 − y3 + xy2 − x2y

]
,

(1.36)

for which the Jacobian matrix at the origin (x = 0, y = 0) is

J(0,0) =

µ −1

1 µ

 (1.37)

with eigenvalues µ ± i. As per the definition of a bifurcation (definition 1.2.1) the eigenval-

ues cross over the imaginary axis into the positive-real half of the plane as µ increases from
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negative to positive, just as the eigenvalues of the Van der Pol system cross the imaginary

axis in figure 1.9.

The homoclinic bifurcation

In a system involving a saddle node there may exist a homoclinic orbit whereby a particle

leave the saddle from the outward direction eventually re-enters the same saddle from the

inward direction, rather than diverging to infinity or entering another stable point or limit

cycle [Strogatz, 2014] . In such systems the change of some parameter may cause the

homoclinic orbit to break and, consequentially, the restoration of the original parameter

value will cause the orbit to re-attach. These changes in a dynamical system due to the

appearance or disappearance of a homoclinic orbit are known as homoclinic bifurcations.

An example is provided by Sandstede [1997] in the system given by the equations

ẋ = x(x−1)+2y ,

ẏ = (2−µ)x− y−3x2 + 3
2xy .

(1.38)

Solving for ẋ = ẏ = 0 we find the system has three stable points. One at the origin (0,0)

and two others given by

x =
-7±

√
121−48µ

6
, y =

12µ −53±
√

121−48µ

18
. (1.39)

We are particularly concerned with the stable point at the origin which is a saddle node

and, for µ = 0 has a homoclinic orbit which follows the curve

H(x,y)≡ x2(1− x)− y2 = 0 , (1.40)

(see Strogatz [2014]). For µ < 0 no such orbit exists and a particle leaving the saddle (0,0)

diverges to infinity. Similarly for µ > 0, although now the homoclinic orbit becomes a

stable limit cycle inside the curve H(x,y) = 0. If µ is made to approach zero from above

then limit cycle stretches so that it passes closer and closer to the saddle until it joins the

saddle and becomes the homoclinic orbit at µ = 0.
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In chapter 3 we study a related system given by the equations

ẋ = y ,

ẏ = x(µ − x) .
(1.41)

This system is similar to the example above in that it has a saddle node at the (0,0) and a

limit cycle for µ > 0 which passes closer and closer to the saddle as µ → 0 from above.

However, this limit cycle encircles the other stable point of the system at (x = µ, y = 0)

and shrinks around this point as µ → 0. Thus, at the critical point µ = 0, when the limit

cycle ‘should’ join to the saddle and become a homoclinic orbit, it cannot do so since it no

longer exists having shrunk, at the exact same moment, down to the point (µ,0) which

itself, at the same moment, collides with the saddle.

This complex-natured bifurcation point is actually not what causes the tipping point in

this system, as we shall see in chapter 3, since the tipping point always occurs some time

before this critical bifurcation when a particle orbiting close to the stable point crosses

over the saddle and diverges to infinity. Depending on the rate of change of µ and the

distance of the system state from the saddle, this may happen quite some time before

the stable point and the saddle actually meet as µ = 0. It will simply happen when the

stable point and the saddle are ‘close enough’ to each other. As we have seen with the

one-dimensional examples in figure 1.11, this is often the case for these systems which

‘blow up’: a system state at some small enough distance from stable equilibrium will cross

the unstable equilibrium and enter the divergent part of the vector field before the stable

equilibrium itself meets the unstable (or saddle) point, which is the actual moment of

bifurcation.

1.5 Early warning signals of tipping points

Closely related to the idea of tipping points is the idea of early warning signals, since it is

often useful to be forewarned of an impending catastrophe. The list on page 13 of nine

shared tipping-point attributes (see Kuehn [2011]) references an “increase in variance”

and an “increase in autocorrelation” prior to the tipping point, both of which facts are

commonly used to predict a tipping point before it happens, given that the existence of a

critical threshold is known [Held and Kleinen, 2004; Livina and Lenton, 2007; Scheffer

et al., 2009; Thompson and Sieber, 2011]. Thus, it is possible to use measurements of
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variance and autocorrelation as tipping point indicators which may provide early warning

signals of a future event. This is the basis of all the techniques used throughout this thesis,

although we also use measurements of the power spectrum properties which are closely

related to autocorrelation, and detrended fluctuation analysis (DFA), both of which are

described in section 2.1. In order to see the change in these statistics over time we use

a tipping point indicator [Held and Kleinen, 2004]: the ACF, variance, or other relevant

statistic is calculated in overlapping segments of the time series. In chapter 2 three tipping

point indicators (ACF, DFA, and the novel PS indicator) are applied to various time series.

A key concept involved in these methods is that of resilience or recovery rates [Scheffer

et al., 2001; Veraart et al., 2012], that is, how quickly the system returns to the stable

state after a small perturbation. The theory states that the recovery rate will slow down

as the system approaches a tipping point [Scheffer et al., 2009], known as critical slow-

ing down. This is equivalent to an increase in long-term correlations or memory. The

prototypical example of a tipping point is the fold bifurcation or ‘cusp catastrophe’ (see

section 1.4) which was used excessively as a model of various tipping events in early work

on catastrophe theory [Zeeman, 1977; Zahler and Sussmann, 1977]. It is important to note,

however, that the concept of critical slowing down is more general than a phenomenon in

one particular dynamical system and is observed in many different contexts [Lenton et al.,

2008; Scheffer, 2009; Livina et al., 2011]. The techniques studied, developed and used

throughout this thesis to detect early warning signals are applicable to a wide range of

dynamical systems exhibiting a variety of tipping points, not only the cusp catastrophe and

not even only bifurcational tipping. In section 2.5 the EWS techniques presented earlier

in chapter 2 are applied to several different dynamical systems exhibiting bifurcations,

noise-induced transitions, and forced transitions: the three types of tipping identified by

Livina et al. [2011] (see section 1.3 of this chapter). In Chapter 4 various EWS techniques

presented throughout the previous chapters are applied to data from a geophysical system

with a tipping point although the tipping point in question is not thought, nor assumed to

be, bifurcational.

As an example we consider the pitchfork bifurcation illustrated in figure 1.6. This

system is trapped within a single well of attraction (at z = 0) for t ≤ 600, at t = 600 a

bifurcation occurs creating a double-well potential system for t > 600. For t ≪ 600 the

sides of the potential well are steep and the system quickly returns to the equilibrium z = 0

following a small perturbation due to noise. For t = 600 (panel b), however, this process
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takes much longer because the base of the well is flat. During the transition from panel a to

panel b the system will take longer and longer to return to the z = 0 equilibrium following

a small perturbation, as the sides of the potential well become less steep. This increasing

return time is known as critical slowing down. Because of the generalness of the pitchfork

bifurcation and similar processes [Kuehn, 2011] in which return times increase close to

a tipping point, the hypothesis is that critical slowing down will be observed in a wide

variety of dynamical systems [Scheffer et al., 2009]. This is tested by Van Nes and Scheffer

[2007] who measure critical slowing down in a number of different ecological models and

find the effect to occur universally.

The speed at which a system returns to equilibrium can be measured by the autocor-

relation, since a non-retuning system will behave as a random walk, whereas a returning

system is usually governed only by noise [Scheffer et al., 2009]. It is this observation

which allows us to successfully apply autocorrelation-based tipping point indicators to

several different dynamical systems in chapters 2 and 3, and to use these indicators to

detect tipping points in time series of geophysical variables in chapter 4.

1.6 Tipping points in geophysical systems

As stated in this introduction, tipping points are found in dynamical systems in every

area of the sciences, from chemical reactions and engineering [Taylor and Ford, 2008;

Cooper et al., 2009; Feudel et al., 2018] to the study of stock markets and social networks

[Carter et al., 2008; Pelling and Dill, 2010; Gaspar et al., 2016; Milkoreit et al., 2018].

Many of the ideas presented in this thesis have derived from tipping point research in

the geophysical sciences, most notably climatic variation. Indeed, the study of the North

Atlantic thermohaline circulation (THC) has yielded the result that as a tipping point of the

THC approaches there is a notable change in the power spectral properties of the associated

temperature and salinity time series [Held and Kleinen, 2004], and this idea is the basis

of the use of a power spectrum scaling exponent as an EWS indicator in chapter 2 of this

thesis [Prettyman et al., 2018].

Most of the techniques we use in this thesis are of the ‘degenerate fingerprinting’

variety: tracking the value of some indicator in a sliding window to produce an early

warning signal. This technique we see used by Kleinen et al. [2003], again in the study

of the North Atlantic THC, where lag-1 autocorrelation (ACF1) is used as the indicator.
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A modified version of this technique is presented by Livina and Lenton [2007] where the

DFA exponent is used as the indicator and the method is applied to paleotemperature data

to detect the tipping from glacial to interglacial periods in the Earth’s climate history. Both

the ACF1 and DFA indicators are also applied to atmospheric oxygen levels by Livina

et al. [2015] which, that paper notes, are in danger of decreasing due to human activity

such as deforestation and fossil fuel use. In fact, the number of Earth systems susceptible

to these sorts of human activities is large, as noted by Lenton et al. [2019] which also

notes the interconnectedness of many of these systems (see also Steffen et al. [2018]).

The large-scale Erath climate system has been identified as a bi-stable system [Hoffman

and Schrag, 2002; Pierrehumbert et al., 2011], the two stable states being a hot Earth

and a ‘snowball’ Earth. The snowball Earth might be highly resilient to outside forcing

(meteor impact, volcanic activity, etc.) but a forcing which causes a large-enough melt of

some sea-ice will decrease the albedo effect enough such that more and more ice melts —

this is what we would recognise as a tipping point [Hoffman and Schrag, 2002; Steffen

et al., 2018]. Besides these sudden, striking events there are also periodic effects leading

to somewhat predictable glacial-interglacial cycles [Kwasniok and Lohmann, 2009; Past

Interglacials Working Group of PAGES, 2016], and stochastic variation in solar radiation

could also result in a ‘jump’ out of one of the two stable states [Lucarini and Bódai,

2019]. The current melting of Arctic sea ice [Stroeve et al., 2007; Lindsay and Zhang,

2005] could lead to a tipping point by the same albedo-feedback mechanism, but it may

also be exacerbated by thawing permafrost releasing yet more greenhouse gasses into

the atmosphere, which is itself hastened by the melting sea ice [Holland et al., 2006]. In

addition, the melting Arctic sea ice may slow the Atlantic circulation by decreasing salinity

[Stocker and Wright, 1991; Rahmstorf, 2002], and this may, in turn, cause the loss of the

Antarctic ice sheet [Oppenheimer and Alley, 2004] which will also affect the Earth albedo,

and which may reach a tipping point itself when sufficient ice has melted so as to increase

circulation and cause the loss of more ice [Mercer, 1978; Oppenheimer, 1998]. Thus, the

loss of stability in one aspect of the Earth system may cause a cascade of tipping-points

affecting the global climate [Steffen et al., 2018; Lenton et al., 2019]. Even considered

individually, there are a number of Earth systems with their own tipping points: Lenton

et al. [2008] identifies a number of these areas considered “policy-relevant”. Besides the

already-mentioned THC, Arctic sea ice, Antarctic sea ice and permafrost thawing, other

systems include the Greenland ice sheet, in which partial thawing causes the top-layer
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of ice to be lower in altitude, which increases temperature and leads to further melting

[Saltzman, 2001; Toniazzo et al., 2004] — in this case there will be a critical value of

summer melting above which the ice sheet will be unable to re-establish due to this positive

feedback2. Another example is the Amazon Rainforest which recycles a large amount of its

precipitation through transpiration [Zeng et al., 1996] and so, at some critical precipitation

rate the forest may die back such that a negative feedback loop is set up [Cox et al., 2004;

Nobre and Borma, 2009]. One factor affecting the decreasing Amazon precipitation is

the El Niño, which itself faces a tipping point [Philander and Fedorov, 2003; Guilyardi,

2006]. In all of these cases the systems are known to have experienced sudden transitions

in the past but the conditions under which those transitions happened are very different to

the rapid, anthropogenic warming happening in the present [Claussen et al., 2003; Lenton

et al., 2008] and so the task of predicting these tipping points is made more complex.

The prospects for predicting tipping points in many of these systems are tied to the

presence of critical slowing down, since the degenerate fingerprinting techniques we have

mentioned are based on the detection of this phenomenon. Dakos et al. [2008a] identifies

critical slowing down, using the ACF1 indicator as a measure, in several proxies for abrupt

climate change, including CaCO3 concentration at the end of the ‘Greenhouse Earth’

period, and the percentage of terrigenous dust found in ice cores during the desertification

of North Africa. Critical slowing down is also shown to occur in a number of ecological

systems approaching tipping point [Rinaldi and Scheffer, 2000; Scheffer et al., 2001;

Van Nes and Scheffer, 2007; Scheffer et al., 2009] including the composite tipping point of

species extinction in a deteriorating environment [Drake and Griffen, 2010]. The critical

slowing down phenomenon is not often observed, however, in noise-induced tipping points,

as noted by Ditlevsen and Johnsen [2010] who argue that the EWS techniques discussed

here may be insensitive to Dansgaard-Oeschger events3 thereby making the interglacial

cycle unpredictable [Crucifix, 2013] although these have more recently shown to display

weak early warning signals [Cimatoribus et al., 2013].

An approach often complimentary to these early warning signal techniques is that of

reconstructing the phase space of a system [Cimatoribus et al., 2013] or the governing

2The IPCC gives at least 1000 years before the ice sheet is lost [Solomon et al., 2007], but 300 years is
‘conceivable’ [Hansen, 2005; Lenton et al., 2008]

3“Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle.
Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement
has emerged on which may be the more correct for describing the palaeo-climatic signal.” — Cimatoribus
et al. [2013]
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potential function4 [Livina et al., 2011] by looking at historical data to assess the presence

of equilibrium states. This has been applied, for example, to the desertification of the

Sahara [Bathiany et al., 2012], shown to be bistable (green/desert). And this idea is

extended, by Livina et al. [2010, 2011], to the ‘potential analysis’ technique, where by

tracking the changing shape of the generalised potential function, one may predict a tipping

point where a stable ‘well’ seen in the potential function profile decays.

Yet other methods have been developed besides these fingerprinting ‘EWS indicator’

techniques which are the primary focus of this thesis. A network analysis approach is

used by Ludescher et al. [2013, 2014] in the prediction of El Niño events, and a similar

technique is adopted by Scheffer et al. [2009] where spatial correlations in the vegetation-

cover levels between different areas of the Sahara are used to predict tipping points in the

greening/desertification of North Africa [Kefi et al., 2014], which has been modelled as

a bistable system [Brovkin et al., 1998]. Elsewhere, spatial correlations have also been

shown to predict tipping points in ecosystems, and the global climate system is shown to

be highly interconnected [Palus et al., 2011]. These ideas have been extended to detecting

‘hotspots’ of stability loss, also applied to the Sahara greening process [Bathiany et al.,

2013a,b]. A more complex approach in the same vein aims to predict tipping points

by analysis ‘resilience patterns’ in networks of interacting processes [Gao et al., 2016]

where the loss of stability in one or more processes may or may not lead to a total loss of

stability (a system-wide tipping point) depending upon the pattern of resilience across all

the individual elements. This brings to mind, again, the interconnectedness of the many

geophysical systems [Steffen et al., 2018; Lenton et al., 2019], whereby the loss of Arctic

sea-ice may slow down the Atlantic overturning circulation which, in turn, may lead to

ice-loss in the West Antarctic ice sheet, etc.. Such a cascade scenario, if immanent, would

be an emergency and makes clear the need for effective early warning signals.

1.7 Outline of thesis

In chapter 2 we study different early warning signal indicators which are applied to

one-dimensional time series exhibiting tipping points. The indicators include the lag-

1 autocorrelation function [Held and Kleinen, 2004; Dakos et al., 2008b], the use of

which has been mentioned in this introduction, the detrended fluctuations analysis (DFA)

4in this thesis referred to as a generalised potential (see page 4)
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coefficient [Kantelhardt et al., 2001], which has been used previously in tipping point

research [Livina and Lenton, 2007], and the power spectrum scaling exponent, the use of

which in tipping point analysis is a novel outcome of this research [Prettyman et al., 2018].

Various properties of the power spectrum scaling exponent, and the justification of its use

as an early warning signal indicator are also presented in this chapter.

In chapter 3 the tipping point indicators used in chapter 2 are adapted for use in multi-

dimensional systems, both by evaluating the indicators simultaneously at many points over

a field to provide a visual description of the indicator’s behaviour, and also by reducing the

dimension of a system using empirical orthogonal functions (EOFs) [Held and Kleinen,

2004]. The specific applicability of the EOF method to tipping point analysis is investigated

analytically using a general dynamical system containing a tipping point, and experiments

are also made with novel variations of the EOF method in a tipping points context. The

methods presented are also compared to an existing method for producing early warning

signals of tipping points in two-dimensional systems [Williamson and Lenton, 2015].

In chapter 4 the methods introduced throughout the thesis are applied to measurement

data from a geophysical system, that is, to measurements of sea-level pressure at points

close to the landfall locations of tropical cyclones. A stochastic model of an approaching

tropical cyclone is also presented, modified from a simple existing model [Holland, 1980]

and parametrised using the results from our tipping point analysis.





Chapter 2

One-dimensional tipping-point
techniques

There exist many methods for the detection and prediction of tipping points in dynamical

systems [Held and Kleinen, 2004; Ditlevsen and Johnsen, 2010; Lenton et al., 2012;

Ashwin et al., 2012; Livina et al., 2012] and, whilst many dynamical systems, including

almost all examples of physical systems studied in ecology, geosciences, climate sciences,

etc. are high-dimensional, they often have a single measured trajectory variable, such as

temperature. We concentrate in this chapter on methods for detecting tipping points in

one-dimensional time series data. Specifically of interest here are methods which provide

an early warning signal (EWS) of the tipping event. Typically, an increase in variance

may be used as an EWS as may autocorrelation [Carpenter and Brock, 2006; Dakos et al.,

2008b].

Central to the methods presented in this chapter is the concept of critical slowing down.

As a system approaches a tipping point, such as a bifurcation, in which a stable mode

is lost, it will take longer to return to that decaying stable mode, known as a "critical

mode" after any perturbation [Ashwin et al., 2012]. This effect suggests an increase in

autocorrelation as the dynamics change from something like white noise around the stable

node, to a progression away from it.

Not only does the concept of critical slowing down suggest that the autocorrelation

increases, but also the autocorrelation scaling exponent changes since the autocorrelation

function (ACF) will experience different rates of change depending on the lag. Other,

related, time-scaling properties of a system could also provide an EWS for tipping points.
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For example, spectral properties of time series are suggested to predict tipping points

[Kleinen et al., 2003] and the detrended fluctuation analysis (DFA) exponent, which is

related to the power spectrum scaling exponent [Heneghan and McDarby, 2000] and the

autocorrelation scaling exponent [Kantelhardt et al., 2001], has been used in various tipping

point applications [Livina and Lenton, 2007; Lenton et al., 2012]. Intuitively, we can

understand that the time-scaling properties of a system in a stable state will be different to

that undergoing a tipping event since, by its nature, a tipping event will not scale.

We do not here examine methods to detect the modes of a generating dynamical system,

such as the potential analysis method [Livina et al., 2011, 2012], but methods designed to

predict an impending tipping point, known as Early Warning Signals. In this chapter we

present three scaling exponents in section 2.1 and explore the relationships between them

in section 2.2. In section 2.3 we then provide examples of the use of these exponents as

early warning signals applied to time series.

2.1 Time series scaling exponents

This thesis is concerned with predicting or detecting tipping points in time series by looking

at various indicators which may provide an ‘early warning’ of such an event before it

occurs. These early warning indicators may be simple statistics such as variance [Ashwin

et al., 2012] or the lag-1 autocorrelation function [Held and Kleinen, 2004] when it is

known that the expected tipping-point event is preceded by an increase in these indicators.

In chapter 1 we presented the pitchfork bifurcation as an example of a tipping point in a

dynamical system (see figure 1.3); it is clear that the variance of the time series increases

prior to the tipping point (the bifurcation) as the generalised potential well becomes less

steep.

More sophisticated early warning indicators such as the DFA exponent [Livina and

Lenton, 2007] use statistics of a time series which are calculated with a particular time

scale (say τ) as a parameter and it is not the value of the statistic which is of interest, but

how the statistics relate to each other at different time scales. In particular, in the case of

the ACF exponent and the DFA exponent, the methods used rely on finding power-law

scaling [Livina and Lenton, 2007], which we define here:
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Definition 2.1.1 (Power law scaling) We say that a function g(x) has power law scaling

exponent ξ , in this thesis referenced simply as the “scaling exponent”, if

g(cx) = cξ g(x) (2.1)

for some constant c.

Thus if FX(τ) is a statistic of the time series X (for example, the autocorrelation) evaluated

using a particular time scale τ , then we say there is power-law scaling if

FX(τ)∼ τ
ξ , (2.2)

and ξ is the scaling exponent.

Scaling properties of time series can be measured using three techniques: the autocor-

relation function (ACF), detrended fluctuation analysis (DFA) and the power spectrum

[Bak et al., 1988; Kantelhardt et al., 2001]. In the case of the power spectrum exponent the

scaling is not presented in terms of different time scales but is measured in the frequency

domain, which is related to time via the Fourier transform.

In this section we will describe the three methods and, in section 2.2, consider their

relationships to each other. In the following sections we will demonstrate the use of

these exponents as early warning indicators when applied to model time series data from

dynamical systems. The DFA exponent has previously been utilised in a method to provide

an EWS [Livina and Lenton, 2007], but the use of the power spectrum scaling exponent in

this way is novel [Prettyman et al., 2018].

2.1.1 The autocorrelation scaling exponent

The concept of autocorrelation, as a direct means of quantifying long-term or short-term

memory in a dynamical system, is crucially important in many studies of tipping points and

early warning signals thereof [Held and Kleinen, 2004; Livina and Lenton, 2007; Lenton

et al., 2008; Ashwin et al., 2012]. Autocorrelation is a measure of the correlation between

a process and itself at two different points in time where the difference between the two

times is the lag. By calculating the autocorrelation we therefore obtain a statistic in terms

of a particular time scale (the lag) and are able to investigate the scaling behaviour of the

autocorrelation as a function of this time scale. First we define the autocorrelation:
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Definition 2.1.2 (Autocorrelation) For a stationary dynamical process xt the autocorre-

lation function Rx(τ) is given by the equation

Rx(τ) = E [xtxt+τ ] (2.3)

where the variable τ is referred to as the lag.

This definition assumes stationarity since the expected value is assumed not to depend

on t. For non-stationary processes some other definition must be adopted, such as

Rx(t1, t2) = E [xt1xt2] , (2.4)

[Gubner, 2006], where the lag τ = t2 − t1 is implicit. However, in all examples and

experiments presented in this thesis stationarity shall be assumed (at least local stationarity

within a short time window). For the purposes of early warning signals we are usually

interested in the autocorrelation not of the entire process but in (relatively) short time

windows, since the quantity of interest is not the autocorrelation itself but the increase or

decrease in autocorrelation over successive time windows.

Although the definition given here is instructive when relating the autocorrelation to

the power spectrum (see theorem 2.1.1) [Chatfield, 2016], in practical examples we use a

mean-centred, normalised version of the autocorrelation, which allows better comparison

between different processes. We have the formula

Rx(τ) =
1

σ2 E [(xt −µ)(xt+τ −µ)] , (2.5)

where µ is the mean of x and σ2 is the variance and, again, stationarity is assumed. For

discrete time series we define the sample autocorrelation function (ACF) thus:

Definition 2.1.3 (The sample autocorrelation function (ACF)) For a discrete, station-

ary time series X(t) the sample autocorrelation function (ACF) of a time series, with lag l,

is given by the formula,

ACFl(X) =
1

(N − l)s2

N−l

∑
j=1

(X j − X̄)(X j+l − X̄), (2.6)

where X̄ and s2 are the sample mean and sample standard variance of the series X and l

is the lag.



2.1 Time series scaling exponents 41

This formula may be used to calculate the simple lag-1 autocorrelation function (ACF1)

which is itself often used to provide an EWS [Held and Kleinen, 2004] and is used in this

chapter as an EWS alongside the DFA and power spectrum scaling exponents. However, it

is also instructive to observe the scaling behaviour of the autocorrelation as a function of

the lag.

Definition 2.1.4 (Autocorrelation scaling exponent) If the autocorrelation Rx of a sta-

tionary process xt , as a function of lag τ , satisfies the power-law scaling relationship

Rx(τ)∼ τ
−γ , (2.7)

then we define γ as the autocorrelation scaling exponent [Makse et al., 1996].

Where the autocorrelation scaling exponent is used in this thesis in the context of a

given discrete time series X(t) it is estimated empirically by calculating the sample ACF

of that time series with a range of lags l = 1,2,3, ... and plotting the results on logarithmic

axes. If the ACF (as a function of lag l) satisfies a power law scaling relationship then the

logarithmic plot will appear as a straight line and the exponent γ can then be estimated by

calculating the negative slope of this line. The value obtained in this way, using the sample

ACF formula, we simply call the ACF exponent. In practice this is done by performing

a linear fit to the points of the logarithmic plot in a given range of lags to be determined.

Livina and Lenton [2007], in their calculation of the ACF exponent, use lags 10 ≤ l ≤ 100

since this gives best results when the exponent is used as an EWS applied to the AR(1)

process, which is the essential model of tipping point analysis due to critical slowing down

[Scheffer, 2009]. In section 2.3.1 we shall investigate this particular reasoning in more

detail.

The calculation of the ACF exponent is demonstrated in figure 2.1b, where the ACF

of time series zt is calculated for lags l = 1,2, ...,100 and plotted on a logarithmic scale.

The negative gradient of this plot is then found by a linear fit to the points in the range

10 ≤ l ≤ 100. The time series zt itself is shown in figure 2.1a and is a simple random walk

generated by taking the cumulative sum of a Gaussian white noise process ηt :

zt = zt−1 +ηt . (2.8)

Panels 2.1c and 2.1d show the calculations of the DFA exponent and the PS exponent,

which are discussed in the following sections.



42 One-dimensional tipping-point techniques

0 2000 4000 6000 8000 10000

t (time)

-4

-2

0

2

4

z(
t)

1 10 100

s (lag)

0.1

1

C
(s

)

red noise
white noise

0.01 0.1

f (frequency)

0.001

0.01

0.1

1

10

100

S
(f

)

10 100 1000

s (segment length)

0.1

1
F

(s
)

b c

a

d

Fig. 2.1 Analysis of artificial red noise with scaling exponents measured using
three different methods. Panel a: Red noise is generated using the method
shown in equation 2.8. Panel b: The ACF of the red noise data is calculated
for different lags and the exponent (negative slope) measured in the range
10 ≤ s ≤ 100 (dashed lines). We note that the ACF1 indicator (C(1)) is 0.84.
The ACF of a white noise series is also plotted for comparison, in this case
C(s) = 0 for s ≥ 1 and the exponent is also zero. Panel c: DFA calculated for
the data and the exponent (slope) measured in the range 10 ≤ s ≤ 100. Panel d:
The power spectrum of the data, and the exponent (negative slope) measured
in the frequency range 10-2 ≤ f ≤ 10-1.

Typically the simple lag-1 ACF, calculated using equation 2.6 with l = 1, is used in

early warning signal contexts [Held and Kleinen, 2004], including in this thesis, rather than

the ACF scaling exponent due to the ACF exponent having large variability in comparison

to the DFA exponent. This and other effects are examined in section 2.2. Other measures

of autocorrelation, such as the Mann-Kendall coefficient, may be used [Yue et al., 2002]

but are not examined here.
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2.1.2 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA), defined by Peng et al. [1994], is used by Livina and

Lenton [2007] as an EWS, similarly to autocorrelation. We therefore find it appropriate to

draw comparisons between the two methods. Detrended Fluctuation Analysis has been

applied successfully in various contexts [Peng et al., 1995; Koscielny-Bunde et al., 1998;

Bunde et al., 2000; Kantelhardt et al., 2001]. Here we describe the method used to find the

DFA exponent α .

Taking time series data z(t) of length N, the DFA method involves calculating the

cumulative sum of z(t), which is called Y . This cumulative series is then split into ⌊N/s⌋
non-overlapping segments Y( j), j = 1, ...,⌊N/s⌋ and, for each segment, a ‘detrended’ series,

Y ( j), is found by subtracting an order-n polynomial fit pn(Y( j)). Equations 2.9 to 2.11 show

this process:

yi =
i

∑
k=0

xk i = 0, . . . ,N , (2.9)

Y( j) = {y js,y js+1, . . . ,y( j+1)s−1} j = 0,1, . . . ,
⌊

N
s

⌋
−1 , (2.10)

Y ( j) = Y( j)− pn(Y( j)) j = 0,1, . . . . (2.11)

Figure 2.2 illustrates the detrending step of the DFA algorithm: the time series z(t) is a

pink-noise series of length 40 generated using equation 2.46 with parameter λ = 1 and the

method shown is order-2 DFA, where a quadratic fit has been used in each segment. The

detrended series Y in each segment is then the difference between Y and the quadratic fit.

Given these detrended segments Y ( j), the equation 2.12 provides the s-dependent

fluctuation coefficient F(n)(s):

F(n)(s) =

√√√√ 1
⌊N/s⌋

⌊N/s⌋−1

∑
j=0

Var(Y ( j)). (2.12)

We define the DFA exponent in relation to the fluctuation coefficient as follows:

Definition 2.1.5 (The DFA scaling exponent) If the order-n fluctuation coefficient F(n),

as a function of segment length s satisfies the power-law scaling relationship

F(n)(s)∼ sαn, (2.13)
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Fig. 2.2 The detrending step in the order-2 DFA algorithm (equation 2.11). The
cumulative sum of a pink-noise time series z(t) is shown with the quadratic
best fit (red line) in each segment of length 20 (marked by dashed vertical
lines).

then we define αn as the DFA scaling exponent.

Practically, F(n)(s) is calculated for many values of s and the value of α is found to be the

slope of the linear best fit line to the logarithmic plot of over s. Figure 2.1c shows the order-

2 DFA coefficient F(2)(s) of the red noise time series in figure 2.1a for s = 1,2, . . . ,100.

The slope of the logarithmic plot in figure 2.1c , obtained using a simple linear fit, is

the DFA exponent α . In this study we consistently use the order-2 DFA method, which

uses a quadratic fit during the detrending step of DFA. Following the approach of Livina

and Lenton [2007], we measure the DFA exponent in the temporal range 10 ≤ s ≤ 100.

This range is chosen by Livina and Lenton [2007] because, after investigation, it is found

to be the range in which an increase in the DFA exponent is most sensitive to critical

slowing down which is a common feature of tipping behaviour. This is discussed further in

section 2.3.4 of this chapter where a similar investigation is carried out in the case of the

power spectrum exponent.

Kantelhardt et al. [2001] also proposes a modified DFA method designed to provide

better results with shorter time series in which long-range correlations can cause an

overestimate of the exponent α . The modified method therefore involves multiplication of

the fluctuation coefficient F(n)(s) by a correction function derived from F(n)(s) but with

the segments Y shuffled in a random order to destroy any long-range correlations in the

data.
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2.1.3 The power spectrum exponent

Many methods of time series analysis involve transforming the series from the time domain,

in which the system state is a function of time, into the frequency domain, in which the

amount of the series lying within a frequency band is a function of frequency [Chatfield,

2016], thereby obtaining the power spectrum for the particular time series, which we define

here:

Definition 2.1.6 (Power Spectrum) The Power Spectrum of a time series x(t) is the

Power Spectral Density (PSD) of x(t) considered as a function of frequency f . We denote

the power spectrum by Sx( f ). For a time series x(t) with Fourier transform

x̂( f ) =
∫

∞

-∞

x(t)e-2πi f tdt, (2.14)

the power spectrum Sx( f ) is given by the modulus squared of the Fourier transform,

Sx( f ) = |x̂( f )|2 , (2.15)

where f ∈ (0,1] and there is symmetry about f = 1/2. That is, Sx( f ) = Sx(1− f ). Alter-

native formulations consider the PSD as a function of angular frequency ω = 2π f .

We are then able to define the power spectrum scaling exponent based on the scaling

behaviour of the power spectrum as a function of frequency:

Definition 2.1.7 (The power spectrum scaling exponent) If the power spectral density

of a process x(t), as a function of frequency f , satisfies the power-law scaling relationship

Sx( f )∼ f−β , (2.16)

then we define β as the power spectrum (PS) scaling exponent.

Thus the PS scaling exponent is the negative gradient of the power spectrum Sx( f )

plotted on logarithmic axes, provided that the plot is linear, implying the existence of power

law scaling. This view is similar to the view that the autocorrelation scaling exponent is

the negative gradient of the autocorrelation Rx as a function of lag τ , also on logarithmic

axes.



46 One-dimensional tipping-point techniques

An alternative definition of the power spectrum, or PSD, is based on the auto-correlation

of the time series via the Wiener-Khinchin theorem which states that the power spectrum

Sx( f ) is equal to the Fourier transform of the auto-correlation function [Chatfield, 2016].

In this way we see that the power spectrum and the auto-correlation function are closely

related, which motivates the introduction of the power spectrum scaling exponent as a tool

for tipping point detection [Prettyman et al., 2018]. In section 2.2 the relationship between

the DFA exponent, the ACF exponent and the power spectrum exponent is discussed

further.

Theorem 2.1.1 (The Wiener-Khinchin Theorem) For a time series x(t) the auto-correlation

function Rx(τ) given by

Rx(τ) = E [x(t)x(t + τ)] (2.17)

may be expressed in terms of the power spectral density thus

Rx(τ) =
∫

∞

-∞

Sx( f )e2πiτ f d f , (2.18)

which is the inverse Fourier transform [Chatfield, 2016].

If the terms R and S in equation 2.18 satisfy the conditions of Fourier inversion, i.e.

that they are absolutely integrable, then we may state the theorem as

Sx( f ) =
∫

∞

-∞

Rx(τ)e-2πiτ f dτ = R̂x( f ). (2.19)

This Fourier transform formulation is often used as the definition of the power spectrum

[Ricker, 2012], and is similarly expressed in the case of a discrete-time process x(n) as

follows:

Sx( f ) =
∞

∑
k=-∞

Rx(k)e-2πi f k, (2.20)

where the discrete time autocorrelation is given by

Rx(k) = E [x(n)x(n− k)] . (2.21)

This discrete time formulation, however, does not provide a useful method for the calcu-

lation of the power spectrum of a process given a finite time series, due to the infinite sum,

even if the sample ACF is used to approximate Rx. Instead, in the experiments presented

in this thesis, the power spectrum as defined by the Fourier transform (definition 2.1.6) is
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approximated directly using the fast Fourier transform (FFT) as implemented in Matlab by

Frigo and Johnson [2005]. This straight-forward approximation of the power spectrum

using a discrete-time FFT is known as a periodogram [Welch, 1967; Oppenheim, 1999].

Definition 2.1.8 (Periodogram) The periodogram P̂( f ′) of a time series xn of length N,

as used throughout this thesis, is defined by the equation

P̂( f ′) =
1
N

∣∣∣∣∣N−1

∑
n=0

xne-2πi f ′n

∣∣∣∣∣
2

, f ′ = 0,
1
N
,

2
N
, ...,1, (2.22)

where f ′ is a discrete variable equivalent to the frequency f in the power spectrum

(definition 2.1.6). The summation term is the fast Fourier transform as implemented

in Matlab [Frigo and Johnson, 1998, 2005]. In this thesis, for the purposes of using

the periodogram as a tool for tipping point detection, we consider only the one-sided

periodogram, that is, the periodogram P̂( f ′) for the frequency range f ′ ∈ (0,1/2], and so

the calculation is performed only for the values

f ′ =
1
N
,

2
N
, ...,

1
N

⌊
N
2

⌋
, (2.23)

since the periodogram, as defined here, is symmetric about f ′ = 1/2 [Fulop and Fitz,

2006].

Having obtained the periodogram from a given discrete time series, an estimation

of the power spectrum scaling exponent β (equation 2.16) is found by measuring the

negative gradient of the periodogram on logarithmic axes, assuming that a power law

scaling relationship exists. This is done by fitting a linear function to the logarithmic plot

in a predetermined range of frequencies. When the power spectrum scaling exponent β

is estimated in this way throughout this thesis, in which β is used as an early warning

indicator, we typically use the frequency range 10-2 ≤ f ≤ 10-1 unless otherwise stated.

This corresponds to the time scale range 10 ≤ s ≤ 100 used in the calculation of the DFA

exponent [Livina and Lenton, 2007] as discussed in section 2.1.2 but the precise reason for

this choice of frequency range is motivated by the phenomenon of critical slowing down

and will be discussed further in section 2.3.4.

We note that the frequencies used in the calculation of the periodogram in equation 2.15

occur linearly between 0 and 1 and therefore the periodogram, when plotted on logarithmic
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Fig. 2.3 PS exponent estimation for red noise and white noise. Panel a: A
simple Gaussian discrete white noise series and a random walk (red noise,
see equation 2.8) are generated, both of length 105. Panels b and c: For the
red noise and white noise series respectively, the periodogram is plotted on
a log-log scale in the frequency range -2 ≤ log f ≤ -1 and a linear best fit
(dashed red line) is used to calculate the gradient. We find the PS exponents to
be 1.998 and 0.000 for red and white noise respectively.

axes, has a greater concentration of points in the higher frequencies. For example, when

N = 104 there are 91 values of f ′ for which -3 ≤ log f ′ ≤ -2 but 901 values of f ′ for which

-2 ≤ log f ′ ≤ -1, although both ranges are of equal length on the logarithmic scale. When

a linear function is fitted to the periodogram using a least squares optimisation in order to

calculate the gradient, more weight will therefore be given to the gradient described by the

points at the higher end of the frequency range. In order to overcome this effect a more

linear distribution of points is first obtained by binning the frequencies logarithmically,

before a linear fit is attempted. The periodogram window, defined by 10-2 ≤ f ′ ≤ 10-1 (or

whichever lower and upper bounds may be used), is split into a number of subwindows

of equal length on the logarithmic scale such that the first subwindow contains m points

where m ≥ 2. All other subwindows after the first are then divided into m partitions and the

new series of binned periodogram data PB( f ) is defined as the means of the periodogram

points P̂( f ′) in each partition. The new series of frequencies f are the midpoints (on the

logarithmic scale) of the partitions.

In figure 2.3 the PS exponent is calculated for a red noise series and a white noise

series (both of length 105) using the linear best fit to estimate the negative gradient of the

periodogram. In this figure the periodogram is plotted after the logarithmic binning step.

By comparison, the demonstration of the same method in figure 2.1d (page 42) does not

use logarithmic binning, we note the higher variability in the higher frequencies.
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Other methods exist to estimate the power spectrum, such as Welch’s method [Welch,

1967] and the multi-taper method [Thomson, 1982], both of which are based on the

periodogram and are designed to reduce noise. Since, in this thesis, we are not concerned

with identifying specific features of the power spectrum, only measuring the gradient to

provide an estimate of the scaling exponent β , the ordinary periodogram, after logarithmic

binning, is usually sufficient. If, however, it is necessary to determine whether power law

scaling exists, it may be useful to reduce the noise using Welch’s method in order to more

easily determine visually whether power spectrum describes a straight line. Other methods

of power spectrum estimation are often developed for specific applications in engineering

[Bingham et al., 1967].

2.2 Relationships between scaling exponents

2.2.1 White noise and red noise

In chapter 1 two examples of a noisy signal are introduced: discrete Gaussian white noise,

in which each term is sampled from an independent, identical Gaussian distribution; and

the discrete random walk which is the cumulative sum of Gaussian white noise. Now that

we have defined the power spectrum (definition 2.1.6) we are able to properly define the

term white noise, which is not necessarily Gaussian:

Definition 2.2.1 (White noise) A white noise process wt is a random signal with equal

power spectral density at all frequencies, that is, the power spectrum of the process is a

constant:

Sw( f ) = |ŵ( f )|2 =
∣∣∣∣∫ ∞

-∞

wte-2πi f tdt
∣∣∣∣2 =C , (2.24)

for positive constant C [Robinson, 2012].

Since this power spectrum Sw( f ) follows the power law scaling relationship

Sw( f ) =C = f 0C , (2.25)

we say it has PS exponent β = 0. Although we note that if a discrete time series is found

to have a PS exponent of zero using the periodogram method presented in section 2.1.3,

this does not necessarily imply that the process is white noise.
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A corollary of the definitions of a white noise series is that

|ŵ( f )|2 =C ⇒ ŵ( f ) =
√

Ceiθ f , (2.26)

for some θ ∈ [-π,π]. In this thesis only Gaussian white noise is considered, in which case

the distribution of the values of wt will be Gaussian, although many other distributions

of values could also result in a constant power spectrum. In computational examples and

experiments throughout this thesis, whenever a white noise series is required, a discrete-

time series of length N is generated simply by using the Matlab random number generator

function randn(1,N), which returns N independent identically distributed values sampled

from a normal distribution with mean zero and variance σ2 = 1.

We are then able to show that the Gaussian noise process ηt , as we have been using it,

actually is a white noise process according to the definition. From the simple observation

that the expected value of the product of two independent random variables with zero mean

is zero, we can express the autocorrelation function of the Gaussian white noise as

Rη(k) = E [η(n)η(n− k)] =

 0, k ̸= 0

1, k = 0
, (2.27)

where, in this case, the variance of the white noise terms η is 1. This result is similar in

appearance to the continuous-time case which can be derived from the Wiener-Khinchin

theorem. The theorem defines the autocorrelation Rx of process x as the inverse Fourier

transform of the power spectrum. Since the power spectrum of white noise is a constant,

we have

Reta(τ) =
∫

∞

-∞

Sη( f )e2πiτ f d f =C
∫

∞

-∞

e2πiτ f d f =Cδ (τ) , (2.28)

since the inverse Fourier transform of the constant function S( f ) = 1 is the Dirac delta

function [Kammler, 2007] which has an infinitely large spike at τ = 0. We note that,

clearly, there does not exist power law scaling for the function Rη . The discrete-time

formulation in equation 2.27 allows us, using the discrete-time Wiener-Khinchin theorem

(equation 2.20), to calculate the power spectrum as follows:

Sη( f ) =
∞

∑
k=-∞

Rη(k)e-2πi f k = Rη(0)e0 = 1 . (2.29)
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The power spectrum of the Gaussian noise is thus constant and is therefore white noise

according to definition 2.2.1. We are also able to compute the power spectrum of the

random walk series, simply the cumulative sum of a Gaussian white noise series. This is

the discrete time analogue of the continuous Wiener process, which is defined as a process

Wt such that the derivative is a Gaussian process:

d
dt

Wt = ηt . (2.30)

Or, conversely, as the integral of a Gaussian process. Using this definition we may compute

the power spectrum of a Wiener process using the Fourier transform identity that if x̂( f ) is

the Fourier transform of x(t), then

d̂
dt

x(t) = (2πi f )x̂( f ). (2.31)

For the Wiener process this identity becomes

d̂
dt

Wt = (2πi f )Ŵt , (2.32)

or

(2πi f )Ŵt = η̂t = eiθ f , (2.33)

for some f ∈ [-π,π], as shown in equation 2.26. Therefore the power spectrum is given by

SW ( f ) =
∣∣Ŵt
∣∣2 = ∣∣∣∣ eiθ f

2πi f

∣∣∣∣2 = 1
4π2 f -2 , (2.34)

and so the Wiener process has power spectrum scaling exponent β = 2. While a stochastic

process with a constant power spectrum is known as white noise, and this has PS exponent

β = 0, the random walk, or Wiener process, with a PS scaling exponent of β = 2 is known

as red noise. Stochastic processes with PS scaling exponent in the range 0 < β < 2 are

known as pink noise (given that a power law scaling relationship exists). It is often a

“reddening” of noise, the increase in the PS exponent from 0 to 2, that we will try to

detect when investigating tipping points. Recalling the changing shape of the generalised

potential “well” in the pitchfork bifurcation example (see figure 1.6, page 12), we are able

to understand intuitively why such reddening of noise, a building up of memory in the
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system, may occur. When the the generalised potential is a steep “well” shape we expect

that any small perturbation from the stable state will return quickly to the mean. However,

as the shape becomes shallower, small perturbations may continue in the direction away

from the mean, resembling a random walk. This increased return time to the stable state is

known as critical slowing down Scheffer [2009] and is a typical feature of tipping points

in dynamical systems, not only the pitchfork bifurcation.

The relationship between β and γ

The Wiener-Khinchin theorem (theorem 2.1.1) states that there is a relationship between

the autocorrelation Rx and the power spectrum Sx of a process x in that the two are a Fourier

transform pair, that is

Rx(τ) =
∫

∞

-∞

Sx( f )e2πiτ f d f . (2.35)

Indeed, this relation is often used to define the power spectrum [Chatfield, 2016]. We now

use this theorem to investigate the relationship between the ACF scaling exponent γ and

the PS scaling exponent β . Say the process x has a power spectrum scaling exponent β ,

then by definition we have Sx(c f ) = c-β Sx( f ) for some constant c, or

Sx( f ) = cβ Sx(c f ) . (2.36)

Now we attempt to find if power law scaling exists for the autocorrelation function by

calculating Rx(cτ) as follows:

Rx(cτ) =
∫

∞

-∞

Sx( f )e2πicτ f d f

=
∫

∞

-∞

cβ Sx(c f )e2πicτ f d f .
(2.37)

Using the substitution g = c f , and so d f/dg = 1/c, we obtain

Rx(cτ) =
∫

∞

-∞

cβ Sx(g)e2πiτg 1
c

dg

= cβ-1
∫

∞

-∞

Sx(g)e2πiτgdg

= c-(1-β )Rx(τ) .

(2.38)
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Then we see that the process x has an ACF scaling exponent γ = 1−β , thus giving a

relationship between the PS and ACF exponents:

β = 1− γ , (2.39)

where scaling exists in both the ACF and the power spectrum. As we have noted above

(equation 2.28) there is not strictly power law scaling in the autocorrelation function of

white noise, even though there is scaling in the power spectrum. The autocorrelation of the

“red noise” Wiener process would be given by the Wiener-Khinchin theorem as

RW (τ) =
∫

∞

-∞

SW ( f )e2πiτ f d f ,

=
∫

∞

-∞

1
|2π f |2

e2πiτ f d f ,
(2.40)

but it is not possible to evaluate the integral because of the singularity at f = 0 [Kamm-

ler, 2007]. Taking a different approach, we look to the definition of the normalised

autocorrelation

RWt (τ) =
1

σWt σWt+τ

E [WtWt+τ ] . (2.41)

where σ2
Wt

is the variance of the Wiener process W at time t. The properties of the Wiener

process lead to the expression

RWt (τ) =

√
t

t + τ
, (2.42)

[Stark and Woods, 2002] where the dependence on t comes from the fact that the Wiener

process is non-stationary. Clearly, for some fixed value t, this is not a power-law scaling

relationship in RWt as a function of τ .

We have shown here that β and γ are related linearly as β = 1− γ , and also that in the

case of a white noise process and also the Wiener process, the autocorrelation function

does not exhibit power-law scaling and so γ does not exist. Table 2.1 shows the results

of attempting to numerically estimate the scaling exponents given a finite, discrete time

series. Two processes are used to generate the time series: a Gaussian white noise process

where each term is sampled independently from a Gaussian distribution; and a random

walk which is simply the cumulative sum of a Gaussian white noise series. The scaling

exponents are estimated using the methods described in section 2.1, where the range of

lags in which γ is estimated by linear fit is 10 ≤ τ ≤ 100 and the range of frequencies in
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Exponent

Signal DFA (α) PS (β ) ACF (γ) lag-1 ACF

White Noise 0.510 0.0110 -0.0163 -0.00371
Random Walk 1.50 2.04 0.473 0.993

Table 2.1 Mean values of three scaling indicators, and lag-1 ACF, applied to
different noise signals.

which β is estimated is 10-2 ≤ f ≤ 10-1. In this case the range is arbitrary since, if power

law scaling exists, then it does not matter in which range the exponent is measured because

the (logarithmic) power spectrum is a straight line over the whole domain 0 ≤ f ≤ 1/2.

However, in other contexts the range does have a significant impact on the method: the

reasons why this particular range 10-2 ≤ f ≤ 10-1 is used consistently throughout this

thesis will be discussed in section 2.3.4. The values of α , β , γ and the lag-1 ACF presented

in table 2.1 are the mean values over 1000 trials of the experiment using, in each experiment,

a Gaussian white noise time series and a random walk time series of length 106.

We note that the PS exponent behaves as predicted with a value β = 0 (constant power

spectrum) for white noise and β = 2 (power spectrum scales as f -2) for the random walk.

However, the linear relation with the ACF exponent, γ = 1−β , which is shown to exist

based on the definitions, does not hold. This is because the relationship is shown to exist

only when power-law scaling is assumed to exist in both the power spectrum and the ACF

and, as we have shown, the ACF does not exhibit power-law scaling for Gaussian white

noise nor the random walk. We are able to note that the value in the case of white noise,

γ = 0, is expected from the analytical calculations, so long as the range of lags in which

the exponent is estimated does not include τ = 0 (which is where the delta function spike

occurs). Since the ACF for the random walk is a function of τ which is not a power law, it

describes a curve, rather than a straight line, in the logarithmic plot and the local gradient

will depend on the range of lags used. In section 2.3.3 we will discuss the relevance of

estimating scaling exponents in series for which power-law scaling does not exist.

The relationship between α and β

The three scaling exponents defined in section 2.1 are illustrated in figure 2.1 where they

are applied to a red noise series. The red noise, in this case, is a random walk, the simple
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cumulative sum of a white noise series (see equation 2.8). Since all three methods give a

measure of scaling, there is a relationship between them.

Table 2.1 shows the results of calculating the value of each exponent for both a white

noise series and a random walk. In each case the value given is the mean value of the

exponent calculated for 1000 series of length 106.

The values of α and β in table 2.1 confirm the linear relationship

α =
1+β

2
(2.43)

noted by Kantelhardt et al. [2001] to apply generally to these exponents. We have shown

already (equation 2.39) that the ACF scaling exponent γ is also linearly related to β as

β = 1− γ where γ and β exist (that is, where a power law scaling relation exists for the

ACF and the power spectrum). All three exponents therefore have the relationship

β = 2α −1 = 1− γ , (2.44)

as noted by Makse et al. [1996]. The relationship between α and β is also noted by

Heneghan and McDarby [2000] to exist only for long-range correlated noise series, al-

though here we have used only uncorrelated white noise and the random walk as a single

example of a correlated series. In a further experiment, the DFA and PS exponents are

calculated for multiple noise series with spectral densities between white and red noise.

In this experiment we use two alternate methods of generating a noise series. The first

method is the an auto-regressive model of order 1, or AR(1) model, given by the equation

zn = µzn−1 +ηn (2.45)

where η is white noise. This noise signal we refer to as being "short-range correlated",

since the correlation is defined by parametrising the lag-1 autocorrelation by the single

parameter µ . We use µ = 0,0.005, . . . ,1 to generate 200 short-range correlated noise series

of length 106 using this AR(1) model.

The second method of generating a noise signal, which we call "long-range correlated",

is to use an AR(63) model, described by Kasdin [1995], since this is implemented in

Matlab’s DSP system toolbox. Simply, the method uses an auto-regressive model of order
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63 with a zero-mean white noise signal η(t):

63

∑
i=0

aiz(t − i) = η(t), (2.46)

where the AR coefficients ai are calculated recursively by

a0 = 1 ak =

(
k−1− λ

2

)
ak−1

k
k = 1,2, . . . . (2.47)

We note that where λ = 2 the coefficients are

a0 = 1 , a1 =−1 , ai = 0 ∀i ≥ 2 , (2.48)

which results in the same process as defined by the AR(1) model for µ = 1, that is, a

random walk. However, for other values of the parameter λ the two methods differ. A

value λ = 1 does not correspond, for example, to the AR(1) process with µ = 1/2, in the

former case parameters are given by

a0 = 1 , a1 =−1
2
, a2 =−1

8
, a3 =

-1
16

, a4 =
-5
128

, . . . , (2.49)

giving us the AR(63) process

zt+1 =
1
2

zt +
1
8

zt−1 +
1

16
zt−2 +

5
128

zt−3 + · · ·+ηt+1 , (2.50)

as opposed to the AR(1) process

zt+1 =
1
2

zt +ηt+1 . (2.51)

The additional coefficients a2, a3, etc., not present in the AR(1) model, introduce additional

long-range correlations into the process. For the experiment we generate 200 series by

this method, with a range of λ between 0 and 2.

The DFA and PS exponents are calculated for each of the 200 short-range correlated

(AR(1)) series and each of the 200 long-range correlated (AR(63)) series. The results are

shown in figure 2.4. We see that although the linear relationship given by equation 2.43 is

confirmed by the long-range correlated noise (panel b), but not exactly by the short-range

(panel a).
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Fig. 2.4 DFA exponent α plotted against the PS exponent β for short-range
correlated (panel a) and long-range correlated (panel b) noise series of length
104 with varying correlation parameters. The result for each noise series is
represented by one marker, the expected linear relationship is shown in red,
see equation 2.43.

An alternative method of producing long range correlated noise was to transform the

power spectrum of white noise in the frequency domain, thus changing the PS exponent β

[Makse et al., 1996]. That is, we first sample from a Gaussian distribution to approximate

white noise, X(t), we then take the fast Fourier transform of this white noise series (denoted

X̂( f )) and then transform this by

Ŷ ( f ) := X̂( f )
√

f−β . (2.52)

Finally, we use the inverse fast Fourier transform to obtain the series Y (t) in the time

domain, which has power spectrum S( f ) proportional to f−β . The result when using this

method of noise generation is quantitatively and qualitatively similar to the result when

using the AR(63) model (figure 2.4 panel b): the DFA and PS exponents are strongly

correlated and obey the linear relationship α = (1+β )/2.

Kantelhardt et al. [2001] notes that a direct calculation of the ACF scaling exponent

γ is often unsuitable due to noise and underlying trends. The DFA method is therefore

introduced as an indirect measure of the exponent. In our own implementations of the two

methods, the ACF exponent is less reliable. Figure 2.5 illustrates this in the case that both

methods are applied to noise series generated using the AR(63) model [Kasdin, 1995] with

varying values of the parameter λ . Fifty noise series of length 104 are generated for each

value λ = 0,0.02,0.04, ...,1, at each value λ the scaling exponent is calculated for each of
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Fig. 2.5 Standard deviation of the ACF and DFA scaling exponents over
50 noise series of length 1000, for each noise correlation parameter λ =
0,0.02,0.04, ...,1. The mean values of the exponents range between 0 and 1.2
(ACF), and between 0.5 and 1 (for DFA).

the 50 series and the standard deviation over these 50 exponents is found. We see that the

DFA exponent is consistent in that the standard deviation of its value is low, and indeed

the standard deviation is, itself, consistently low. The standard deviation is much larger in

the ACF exponent, although the exponents have similar mean values (between 0 and 1).

The relationship between γ and the lag-1 autocorrelation

We also investigate the relationship between the ACF scaling exponent and the simple lag-1

autocorrelation function (ACF1). While the ACF exponent is unreliable and the superior

DFA exponent has been introduced specifically as a more reliable measure [Kantelhardt

et al., 2001], the ACF1 has been widely used in tipping-point research [Held and Kleinen,

2004; Dakos et al., 2008b] and is much less computationally expensive than the calculation

of the scaling exponents detailed in this chapter.

Figure 2.6 shows the ACF scaling exponent and the ACF1 calculated for 200 short-

range correlated noise series (panel a), and 200 long-range correlated noise series (panel

b), with varying correlation parameters. The short-range correlated noise is produced using

an AR(1) model (equation 2.45) and the long-range correlated noise is produced using the

AR(63) model [Kasdin, 1995].

We note that the lag-1 ACF is an estimator of the AR(1) model parameter λ and we

would expect the two values to be approximately equal, which is evident in figure 2.6 panel

a. The ACF scaling exponent, however, does not respond to any increase in the parameter

below the value of λ = 0.7, although it does increase with increasing λ for larger values



2.2 Relationships between scaling exponents 59

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0 0.5 1 1.5 2

ACF exponent

ACF1 value
a b

Fig. 2.6 ACF scaling exponent and the simple lag-1 ACF for 200 short-range
correlated noise series (panel a), and 200 long-range correlated noise series
(panel b), with varying correlation parameters.

when the noise can be said to be "red". For low values of λ the autocorrelation functions

with lag ≥ 2 are approximately zero and so the ACF decays exponentially after lag-1

making it essentially useless. The behaviour is similar in the DFA and PS exponents,

we now note the cluster of points in figure 2.4 panel b for low exponent values, because

a measure of scaling is not suitable for this particular short-range correlation. We note

also that the ACF exponent displays large variability for λ > 0.7, as already noted for

long-range correlated noise (see figure 2.1).

In figure 2.6 panel b we see that the lag-1 ACF increases linearly with the AR(63)

model parameter λ until λ = 1 (red noise) after which it tends to its maximum value 1.

The ACF scaling exponent also increases, apparently linearly, with λ , until λ ≈ 0.7 after

which it decreases to zero. In the case of the AR(1) model with λ < 0.7 the ACF exponent

is zero because the ACF for all lags in the range [10,100] is zero and so the linear fit to

the points in this range has a slope of zero. In contrast, the AR(63) model with λ = 2 also

has an ACF exponent close to zero but because the ACF for all lags in the range [10,100]

is close to 1. Over 1000 noise series were produced using the same AR(63) model, with

λ = 2, in order to evidence the phenomenon. The lag-10 ACF had a mean value of 0.98

and the lag-100 ACF had a mean value of 0.83.
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2.3 Use of scaling exponents for Early Warning Signals

2.3.1 Critical slowing down as an AR(1) process

The phenomenon of critical slowing down is observed in a broad range of dynamical

systems exhibiting tipping behaviour [Scheffer et al., 2001; Lenton et al., 2008; Scheffer

et al., 2009; Scheffer, 2009; Lenton et al., 2012]. The ‘slowing down’ to which the phrase

refers is the longer and longer times taken by the system to return to the equilibrium state,

given a random perturbation, in the time preceding a tipping point. At some critical point,

that is, the tipping point, the return time becomes effectively infinite1 as the system leaves

that equilibrium state forever.

The use of the autocorrelation scaling exponent as an EWS is justified by modelling a

dynamical system using a one-dimensional autoregressive system:

zn+1 = e−κ∆tzn +σηn , (2.53)

[Held and Kleinen, 2004; Scheffer et al., 2009] where σ is a constant and ηn is a white

noise term. The model considers the equilibrium state zn = 0 as the critical mode of a

system undergoing a bifurcation. The system returns to equilibrium exponentially with

rate κ , the decay rate. During a bifurcation a system will undergo critical slowing down,

that is, a decreasing rate κ . The autocorrelation coefficient α ≡ e−κ∆t increases to 1 as κ

decreases to zero. The autoregressive model parameter exp(−κ∆t), and thus the simple

lag-1 autocorrelation function (ACF1), will clearly also increase as κ decreases. The ACF1

is therefore also a possible EWS indicator and is widely used [Held and Kleinen, 2004;

Lenton et al., 2012]. As noted by Scheffer et al. [2009], it is often the case that as the

autocorrelation increases so does the variance, this is true of the AR(1) process described

by equation 2.53 where the expectation is zero and the variance is given by

Var(zn) =
σ2

1−α2 , (2.54)

where α = exp(−κ∆t) is the autocorrelation coefficient. Thus detecting an increase in

variance will provide an additional EWS.

1Of course, a separate tipping event may occur at which time the system returns to that original stable
state.
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As an example of critical slowing down, we consider the bifurcating dynamical system

given by the differential equation

dz
dt

=− ∂

∂ z
U , (2.55)

where U is the generalised potential function given by U = z4+µz2, where µ is a parameter

which may vary with time. If µ is positive and decreases with time, the system is an

example of a pitchfork bifurcation with a decaying stable mode at z = 0. For µ < 0 this

mode becomes unstable and two stable modes are created at z =±
√

−µ/2. The shape

of the generalised potential function U is illustrated in figure 1.6. Differentiating U , we

rewrite equation 2.55 as
dz
dt

=−4z3 −2µz = f (z) . (2.56)

We now consider the µ > 0 system with a small perturbation from the stable mode, that is,

z = ε . Linearising equation 2.56 using the first-order Taylor expansion around the stable

mode z = 0 gives
dz
dt

∣∣∣∣
ε

= f (ε)≈−2µε . (2.57)

So, for µ > 0, the system goes exponentially to zero. When µ = 0 the recovery rate -2µ

is zero and so the system will not recover from the small perturbation ε . When µ < 0 the

mode z = 0, as noted, is unstable and system will go exponentially away from zero. If it is

assumed that a dynamical system possesses a critical mode, that is, a mode that is decaying

as a result of a bifurcation, then the recovery rate of this mode will go to zero as the system

takes longer (eventually infinite time, after the bifurcation) to return to the stable state

after a perturbation. The tendency of the system in one direction can be measured by an

increase in the lag-1 autocorrelation function (ACF1), thus this is a reasonable indicator of

the decreasing decay rate.

The hypothesis is that this critical slowing down will be seen in a wide variety of

dynamical systems approaching a bifurcation. Van Nes and Scheffer [2007] test this

hypothesis with a number of ecological models and find that the intensity of the critical

slowing down effect is linearly, or almost linearly, related to the distance from the tipping

point in all cases.

Held and Kleinen [2004] use a rise in ACF1 as an indicator of a bifurcation in a

model of North Atlantic thermohaline circulation. The measured variables are presumed to
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represent a dynamical system undergoing a bifurcation and therefore possessing a critical

mode. In order to determine the point at which the ACF1 value rises, a method is used

labelled "degenerate fingerprinting" by Held and Kleinen [2004]. The ACF1 of the data, in

this case the Atlantic overturning flux, is calculated in sequential, overlapping windows so

that the ACF1 value can be tracked over time. If the value is expected to rise, or begin to

rise, before the tipping point, the increase in the ACF1 is an early warning signal of the

tipping.

2.3.2 Early warning indicators

Lag-1 autocorrelation as an indicator

By measuring the lag-1 ACF of a time series in a sliding fixed-length time window, the

value of this statistic becomes a function of time and the increase or decrease in the value

over time may act as an indicator of a tipping point. We refer to this time-dependent lag-1

ACF as the ACF1 indicator, giving us the following definition:

Definition 2.3.1 (The ACF1 indicator) For time series data

[xt ] = x1,x2,x3, ...,xN (2.58)

we create a new indicator series [Yt ]:

Yt = ACF1([xt−w+1, ...,xt ]) for t ≥ w, (2.59)

where w is the window size, typically ≤ 10% of the time series length N. The first w−1

values of [Yt ] are omitted.

The resulting signal, that is, the time series of the Yt plotted over time, we refer to as an

Early Warning Signal. This method is used throughout this study and, particularly when

observed physical data is used in chapter 4, careful attention is paid to the choice of the

window size w.

The DFA indicator

Livina and Lenton [2007] modify the ACF1 indicator so that the DFA exponent is calculated

instead of the lag-1 autocorrelation function in each window of data:
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Definition 2.3.2 (The DFA indicator) For time series data [xt ] = x1, ...,xN we calculate

the DFA scaling exponent α (see definition 2.1.5) for consecutive overlapping windows

[xt−w+1, ...,xt ] where w is the ‘window size’ to be determined (typically ≤ 10% of the time

series length N. We then have a sequence of values of α:

αt = DFA([xt−w+1, ...,xt ]) for t ≥ w . (2.60)

The function DFA(·) denotes the calculation of the order DFA exponent α for the truncated

length-w time series. The DFA indicator A(t) is this series of scaling exponent values

expressed as a function of time:

A(t) = αt . (2.61)

In numerical implementations we set A(t) = 0 for t < w.

In this study, we consistently use the order-2 DFA exponent, but the indicator may also

be used with higher orders. Livina and Lenton [2007] test the DFA indicator method on

data from a model of Atlantic overturning circulation [Edwards and Marsh, 2005] and also

Greenland paleotemperature records [Alley, 2000]. The DFA indicator is also compared

to the ACF1 indicator [Lenton et al., 2012] where it is concluded that both methods offer

their own pros and cons. In particular, computing the DFA exponent for every window of

data is computationally expensive.

The PS exponent as an early warning indicator

The possibility of such modification of the fingerprinting method allows us to instead

use the power spectrum (PS) scaling exponent, which is obtained from the periodogram

as in section 2.1.3, [Prettyman et al., 2018]. Kleinen et al. [2003] notes already that

spectral properties of the time series may also be used as tipping point indicators, in

particular when the tipping point is associated with a change in the structure of the noise

or a stationary system becoming non-stationary. A shift from a dominance of short-scale

memory to long-scale memory, seen in the measurement of the PS scaling exponent, will

be associated with a rise in autocorrelation. In this respect, therefore, the PS exponent

and the ACF are related, further justifying the use of the PS exponent as an EWS. There

also exists a relationship between the PS exponent and the DFA exponent [Heneghan

and McDarby, 2000; Kantelhardt et al., 2001] as explained in section 2.2. We note that

although Heneghan and McDarby [2000] advises that there is no difference between the
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DFA and PS exponents, and that therefore it is not necessary to use both, this applies

only for long-range correlated data. The relationship is investigated in section 2.2: while

figure 2.4b shows the linear relationship proposed by Kantelhardt et al. [2001], figure 2.4a

shows a non-linear relationship in the experiment where short-range correlated noise is

used. We thus see that the relationship between the two exponents may vary depending on

the nature of the data. In a system where the correlation in the time series changes over

time, and trends or feedbacks affect the dynamical system, there may not exist an analytic

relationship between the DFA and PS exponents and the use of one may therefore reveal

information that the use of the other cannot.

We therefore propose the use of the power spectrum indicator, alongside the DFA and

ACF1 indicators. The PS exponent is estimated by calculating the negative slope of the

periodogram, produced using a fast Fourier transform, in the frequency range [10-1,10-2].

This is done for in a sliding window according to the fingerprinting method [Held and

Kleinen, 2004; Livina and Lenton, 2007].

Definition 2.3.3 (The PS indicator) For time series data [xt ] = x1, ...,xN we calculate the

PS exponent β (See definition 2.1.7) for consecutive overlapping windows [xt−w+1, ...,xt ],

where w is the window size to be determined. We then have a sequence of β values

βt = PS([xt−w+1, ...,xt ]) for t ≥ w . (2.62)

The function PS(·) denotes, in this instance, the calculation of the power spectrum scaling

exponent β as the negative slope of the periodogram which approximates the power

spectrum Sx( f ). The PS indicator B(t) is this exponent expressed as a function of time,

that is,

B(t) = βt . (2.63)

In numerical implementations we set B(t) = 0 for t < w.

If we consider the AR(1) model, which is used as the prototypical example of the

critical slowing down phenomenon as in equation 2.53 (see section 2.3.1 and Scheffer et al.

[2009]), we can reason that the PS exponent may provide an EWS. In that case, the critical

slowing down in a system is modelled by the AR(1) process

zn+1 = µzn +σηn , (2.64)
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where ηn is a white noise term and where the parameter µ = e−κ∆t is determined by

the decay rate κ which decreases to zero as the tipping point approaches, modelling the

increasing time taken for a system to return to equilibrium after a small perturbation.

For the PS indicator B(t) to provide an EWS, we require that the value of β changes

as µ increases, that is, as the tipping point approaches. The value of β can be obtained

analytically from the power spectrum of the AR(1) process, which is given by

Sx( f ) =
σ2

|1−µe-2πi f |2

=
σ2

1+µ2 −2µ cos(2π f )
,

(2.65)

[von Storch and Zwiers, 2002]. The power spectrum scaling exponent β is then given by the

negative gradient of Sx( f ) on a logarithmic scale, or the logarithm of Sx( f ) differentiated

with respect to log f , which gives,

β f =− d
d(log f )

log [Sx( f )] . (2.66)

We note that here β depends on the frequency f since the AR(1) power spectrum does

not exhibit true power-law scaling; cases such as this are considered more thoroughly

in section 2.3.3. In numerical calculations of the PS indicator series, the linear fit to the

periodogram is taken over the interval 10-2 ≤ f ≤ 10-1 (see definition 2.1.7), the reasons

for this choice of the frequency range are discussed in section 2.3.4 and are based on taking

the AR(1) process as the model of critical slowing down.

In order to obtain a single value for β we integrate equation 2.65 over the entire range

10-2 ≤ f ≤ 10-1, or -2 ≤ log f ≤ -1,

β =
∫ -1

-2
−d log [Sx( f )]

d(log f )
d(log f )

= - log [Sx( f )]|-1
log f=-2

= - log
[

σ2

1+µ2 −2µ cos(2π f )

]∣∣∣∣-1

log f=-2
,

(2.67)

which gives

β = log
[

1+µ2 −2µ cos(0.2π)

1+µ2 −2µ cos(0.02π)

]
. (2.68)
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This value of the PS exponent β , using this equation, is plotted in figure 2.7a for values

of µ between 0 and 1. We note that β increases from 0 to 2 as µ increases, that is, as the

modelled critical slowing down becomes more pronounced. We therefore expect that the PS

indicator B(t), which tracks the value β as a function of time, will provide an early warning

signal of tipping points for which the critical slowing down phenomenon occurs, and we

can expect that the PS exponent value will be ≈ 2 when the decay rate κ has decreased to

zero (µ = 1 in equation 2.64). In order to test the proposed relationship between the PS

exponent β and the AR(1) model parameter µ , as shown in equation 2.68, the results of an

experiment are presented in figure 2.7b: 200 AR(1) processes are modelled as time series

of length 105, each with parameter µ between 0 and 1. For each of the 200 time series X the

PS exponent is estimated numerically in the frequency range -2 ≤ log f ≤ -1 and the lag-1

ACF is also calculated, the numerically-obtained PS exponent PS(X) is plotted against

the lag-1 autocorrelation ACF1(X) in figure 2.7b. We note that the relationship found

analytically in equation 2.68 (plotted in figure 2.7a) is verified by the numerical results,

thus verifying the numerical method of obtaining the PS exponent (see definition 2.1.7).

Given a time series obtained from an AR(1) process with parameter µ , that is,

zn+1 = µzn +ηn, (2.69)

with ηn independent Gaussian white noise terms, we can reconstruct the value µ from the

time series only by calculating the PS exponent β in the frequency range -2 ≤ log f ≤ -1.

We simply solve equation 2.68 for µ to obtain

µ ≈ b−
√

b2 −1 where b =
cos(0.2π)−10β cos(0.02π)

1−10β
. (2.70)

This result may appear counter-intuitive given that the power spectrum of the AR(1) process

does not actually exhibit power-law scaling, but we see clearly in figure 2.7 that the values

obtained using this equation correlate with the lag-1 autocorrelation. This relationship,

and the relevance of the PS indicator in systems where the power spectrum does not have

power-law scaling, are investigated further in sections 2.3.3 and 2.3.4.

The ACF scaling exponent as an early warning indicator

As we have defined the DFA indicator A(t) based on the DFA scaling exponent α , and

the PS indicator B(t) based on the PS scaling exponent β , we have neglected the ACF
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Fig. 2.7 Panel a: The relationship between the PS scaling exponent β and the
parameter µ of the AR(1) process is plotted for 0 ≤ µ ≤ 1 (see equation 2.68).
Panel b: The PS exponent and lag-1 autocorrelation is calculated for 200 AR(1)
time series X of length 105 and the results plotted against each other. The
relationship between these numerically-obtained values confirms the derivation
of equation 2.68 and the accuracy of the numerical methods.

scaling exponent γ (see definition 2.1.4), from which we might define the ACF scaling

indicator Γ(t) in much the same way. However, this is not often used as an early warning

indicator in the literature and the DFA scaling exponent has been developed as a superior

alternative to the ACF scaling exponent [Kantelhardt et al., 2001]: this has since been used

successfully as an early warning indicator [Livina and Lenton, 2007]. When testing the

effectiveness of the novel PS indicator we therefore use the DFA indicator as a benchmark.

Another useful benchmark test for a novel indicator is whether it is effective in detecting

a change in the model parameter of the AR(1) process, since this is used as a model of

critical slowing down (see section 2.3.1). In figure 2.6 we have already demonstrated the

superior performance of the simple lag-1 autocorrelation over the ACF scaling exponent,

and the ACF1 indicator is used throughout this thesis for comparison with the PS indicator.

For these reasons, we do not use what we might call the ‘ACF scaling indicator’ but look

to the ACF1 indicator and the DFA indicator instead.

2.3.3 Early warning indicators in the absence of power-law scaling

The definitions of all scaling exponents, and thus early warning indicators, assume the

existence of power-law scaling. For example, in the case of the PS exponent we assume

the power spectrum S( f ), which is approximated by the periodogram, is of the form

S( f )∼ f−β for some exponent β , and it is this value that we seek to measure. However, it



68 One-dimensional tipping-point techniques

is unlikely that we will find true power-law scaling like this in dynamical systems or data

from real-life processes unless we are dealing with pure white noise or a pure random walk.

Indeed we note that the common stochastic model, the AR(1) process, with which we

model critical slowing down [Scheffer, 2009], does not even have true power-law scaling

in the power spectrum.

In this section we show that it is still a valuable exercise to measure the PS exponent in

cases in which there is no true power-law scaling. In particular, we focus on cases for which

there is crossover in the power spectrum, that is, when the power spectrum follows one

power-law scaling relationship at low frequencies and another at higher frequencies, with

a crossover at some midpoint. In the following section 2.3.4 we concentrate specifically on

the AR(1) model which is of importance to tipping point research, and which also contains

a power spectrum crossover.

Power spectra containing crossovers

To create a time series with a clear crossover in the power spectrum we take the sum of

a Gaussian white noise series ηt and red noise (random walk) series Wt defined by the

relation Wt = Wt−1 + ζt , where ζt are a Gaussian white noise series independent of ηt .

Thus the terms of the series are given by

z(t) =

(
t

∑
τ=0

ζτ

)
+µηt , (2.71)

where µ is a parameter modifying the variance of the white noise terms ηt . Due to the

linearity of the Fourier transform we are able to calculate the power spectrum Sz( f ) of this

series given that we know already

Sµη( f ) = |µη̂( f )|2 = µ
2 (2.72)

since η̂( f ) = 1, and

SW ( f ) =
∣∣Ŵ ( f )

∣∣2 = ∣∣∣∣ 1
2π f

∣∣∣∣2 = 1
4π2 f -2. (2.73)
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Fig. 2.8 Scaling crossover in the power spectrum of the sum of red and
white noise series. Showing the power spectrum of the series z(t) (solid black
line, see equation 2.71) imposed over the periodogram (blue). Also showing
the power spectrum of white and red noise (dashed black lines) and their
periodograms (grey and red respectively). The crossover occurs at f = 10−3/2

(see equation 2.76).

Combining the two series we have

Sz( f ) = |ẑ( f )|2

=
∣∣Ŵ ( f )+µη̂( f )

∣∣2
=

∣∣∣∣ 1
2π f

+µ

∣∣∣∣2
=

1
4π2 f -2 +

µ

2π
f -1 +µ

2 .

(2.74)

In figure 2.8 the power spectra of white noise µηt and red noise Wt , given by equa-

tions 2.72 and 2.73 respectively, are shown (dashed lines) imposed over the periodograms

of computed instances of these series (shown in grey and red respectively). In this case the

value

µ =
103/2

2π
(2.75)
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has been chosen so that the intersection of the two curves, given by equations 2.72 and 2.73

is given by

1
4π2 f -2 = µ

2,

1
2π

f -1 = µ,

1
2π

f -1 =
103/2

2π
,

f = 10-3/2 ,

(2.76)

which is the midpoint of the values f = 0.01 and f = 0.1 on the logarithmic scale. In

figure 2.8 we also see the power spectrum of the function z(t), given by equation 2.74

(solid line), and the periodogram of an instance of the time series (shown in blue). This

time series is simply the sum of the white noise and red noise series. We note that the

periodogram of z entirely overlaps the periodogram of the red noise series W for small

values of f , and overlaps the periodogram of the white noise series η for large values of

f .

Applying the PS indicator

The power spectrum of z(t), given by equation 2.74, does not exhibit simple power-law

scaling, since there is no value ξ for which

Sz(c f ) = cξ Sz( f ) , (2.77)

and so the power spectrum is not simply a straight line in the log-log plot (figure 2.8).

However, this does not mean that there is no value in applying the Power Spectrum

indicator, which simply fits a straight line to the periodogram to obtain a single value ξ .

When applying the PS indicator to dynamical systems with tipping behaviour it is not

the exact value of the indicator that is of interest but the change in the value over time

as the indicator is applied in a sliding window on the time series. In particular we are

concerned with the detection of critical slowing down in the time before a tipping point is

reached which is characterised by an increase in the autocorrelation scaling exponent, or a

“reddening” of the power spectrum as the return time around a stable state increases.
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Fig. 2.9 Power spectrum indicator of the sum of white noise and red noise
series with decreasing white noise component. Panel a: The time series z(t)
(blue, left y-axis) and the standard deviation µ of the white noise component
(red, right y-axis). The dashed black lines show times at which the crossover
point is at the lower end, the centre, and the upper end of the frequency
range in which the PS indicator is measured. Panel b: The PS indicator in
a sliding window 1% of the length of the time series. Panels c: Depictions
of the periodograms of z(t) when the crossover point is at the lower end, the
centre, and the upped end of the measured frequency range (panels c1, c2, c3
respectively). The power spectrum (black) and the linear fit to the periodogram
(red) and also shown.
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In figure 2.9a we have plotted the series z(t) given by equation 2.71, the sum of a red

noise and a white noise series with scaling crossover (blue line, left y-axis). In this case

the value of the parameter µ changes with time and is described by the function

µ(t) = 10−10tanh(t −6), (2.78)

so that µ → 20 as t →−∞ and µ → 0 as t → ∞. This function is plotted alongside the

time series in figure 2.9a (red line, right y-axis). We note that the value of f at which the

crossover occurs in the power spectrum is given by

fc =
1

2πµ
, (2.79)

(see equation 2.76) and therefore varies with the value of µ . For this experiment, when

applying the PS indicator, we have chosen to estimate the slope of the periodogram in the

frequency range 10-2 ≤ f ≤ 10-1. For large values of µ , i.e. µ > 100/2π ≈ 15.9 we have

fc < 0.01 and so the crossover point lies outside of the measurement range, in which case

the PS indicator will have a value similar to that of white noise (zero) since the red noise

aspect of the periodogram is not measured. Similarly, for µ < 10/2π ≈ 1.59 we have

fc > 0.1 and in this case only the red noise aspect of the periodogram is measured. The

times at which these two values of µ occur, which are the times that the crossover point

enters and then leaves the measured frequency range, are marked by vertical dashed lines on

figure 2.9a. The centre dashed line marks the point in time at which µ = 103/2/2π ≈ 5.03,

when the crossover point appears directly in the centre of the measured frequency range in

the logarithmic scale (see equation 2.76).

In figure 2.9b the PS indicator is plotted in a sliding window of length 104 points,

which is 1% of the length of the time series, N = 106. The three dashed vertical lines are

continued from figure 2.9a and show the times at which the crossover point enters, is in

the centre of, and leaves the frequency range in which the PS indicator is measured. We

note that the PS indicator rises correspondingly as the value of µ decreases, that is, as the

variance of the white noise component of the system decreases, leaving only the red noise

component as µ → 0, the “redness” of the data increases. Thus, we are able to detect an

increasing reddening of time series using the PS indicator, even when there is no simple

power-law scaling due to the presence of a crossover.
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In figure 2.9c1, c2 and c3 three periodograms are shown, these are periodograms of a

time series z(t) of length 105 with a constant value of µ . The three values of µ used are

the values marked in figure 2.9a with dashed lines, at which points the crossover is at the

lower end (panel c1), the centre (panel c2), and the upper end (panel c3) of the measured

frequency range. Also shown over the three periodograms are the PS indicator estimation

(red line) and the analytically calculated power spectrum (black curve) in equation 2.74.

This power spectrum in each case is a smooth curve, not the union of two lines depicted in

figure 2.8, and the PS indicator is still influenced by the decreasing “red” part of the power

spectrum a short time before the crossover point enters the range 10-2 ≤ f ≤ 10-1, and

similarly the periodogram is still influenced by the flat “white” part of the spectrum for a

short time after the crossover point leaves this range. In figure 2.9c1 we see the influence

of the red noise when the crossover point is precisely at the lower bound of the range,

although the white noise is still dominant. The PS indicator for this value of µ is 0.36; this

value is closer to zero for even larger values of µ where the red noise has a much smaller

variance than the white noise and has far less influence on the shape of the periodogram.

2.3.4 Determining the frequency range of the PS exponent

The definition of the PS exponent (definition 2.1.7) relies upon measuring the gradient of the

periodogram as a function of frequency plotted on logarithmic axes. The estimation of the

gradient may be done in over the whole domain 0 ≤ f ≤ 1/2, or over some subset. In cases

where true power-law scaling does not exist, the choice of the range of frequencies over

which the gradient is measured may significantly affect the result though, as demonstrated

in section 2.3.3, performing the analysis in such cases may still be worthwhile. It is

necessary, therefore, to choose a range of frequencies most likely to give a visible indicator

in the presence of a tipping point.

Up to this point we have referred to the use of the range 10-2 ≤ f ≤ 10-1 as most

suitable, citing the choice of the time scale 101 ≤ t ≤ 102 used when calculating the ACF

and DFA exponents [Livina and Lenton, 2007] as a model. In this section we calculate

the PS exponent of an AR(1) process, which is of importance in a tipping point context

since it models the critical slowing down phenomenon [Scheffer et al., 2009], and by doing

so show that the optimal range in which to measure the PS exponent is 10-2 ≤ f ≤ 10-1,

provided that detecting a ‘reddening’ of the noise in the AR(1) process is the aim.
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The stochastic process used as an example in the previous section, the sum of a red

noise process and a white noise process, was chosen for its clearly visible power spectrum

crossover. We now look at the discrete AR(1) process xt defined by the equation

xt = µxt−1 +ηt , (2.80)

where ηt is a Gaussian white noise process with variance σ2 and µ is a parameter which,

in this experiment, is in the range 0 ≤ µ ≤ 1. For µ = 0 this is a pure Gaussian white noise

process while for µ = 1 this is a random walk (red noise). As µ increases from 0 to 1 as a

function of time we expect to see this noise process become ‘redder’: developing long-term

memory, which is not present in a white noise signal, and therefore developing properties

similar to those of the random walk. Of course the lag-1 autocorrelation function will

increase with µ , but in this example we inspect the power spectrum, which is given by

Sx( f ) =
σ2

1+µ2 −2µ cos(2π f )
, (2.81)

[von Storch and Zwiers, 2002], a reprinting of equation 2.65 (page 65). The derivation of

this equation assumes that µ is constant over time whereas we are interested in cases where

µ is increasing (or otherwise changing). However, we are only interested in the shape of

the power spectrum in time windows which are short relative to the whole time series, so

that we can track the changing shape, and we assume µ is constant within each window.

That is, we assume µ changes slowly relative to the dynamics of the AR(1) process.

For the purposes of tipping point analysis we are interested in the Power Spectrum

Scaling Exponent which we define as the value β such that the power spectrum satisfies

the scaling relationship

Sx( f )∼ f -β . (2.82)

For power spectra where β exists, that is, where there is a global power-law scaling

relationship, the value can be obtained by taking the negative value of the gradient of the

log-log plot. Given a time series, we can estimate the value β by measuring the negative

gradient of the log-log plot of the periodogram. For time series of processes whose power

spectra do not satisfy a power-law scaling relationship, and therefore no single number

β exists, we are still able to measure the gradient of the power spectrum at a particular

value of f (or averaged over a range of values). We refer to this specific exponent β f as
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the Power Spectrum Exponent, although it is not a scaling exponent in the sense that the

power spectrum actually satisfies a power-law scaling relationship.

In the case of the AR(1) process we calculate the specific PS exponent β f as the

negative gradient of the log-log plot of the power spectrum (where log refers to the base-10

logarithm log10), which we obtain by differentiating log[Sx( f )] with respect to log f :

β f := PS exponent =− d
d(log f )

log[Sx( f )]

=− d
d(log f )

log
[

σ2

1+µ2 −2µ cos(2π f )

]
=− d

du
log
[

σ2

1+µ2 −2µ cos(2π10u)

]
=

d
du

log
[
1+µ

2 −2µ cos(2π10u)
]

=
1

ln(10)
· 4πµ ln(10)10u sin(2π10u)

1+µ2 −2µ cos(2π10u)

=
4πµ f sin(2π f )

1+µ2 −2µ cos(2π f )
,

(2.83)

where we have used the substitution u = log10 f to simplify the calculation. This gradient

may then be evaluated at a particular value of f (or, rather, in the case of the periodogram,

estimated by a linear fit in a particular range of f values). What we refer to as the Power

Spectrum Indicator is the value of this PS exponent as a function of time,

B f (t) := PS indicator =
4πµ f sin(2π f )

1+µ2 −2µ cos(2π f )
, (2.84)

where the t dependence comes from the fact that µ = µ(t) is a function of time. We are

now able to take the t derivative:

d
dt

B f (t) =
4π f sin(2π f )µ̇(1−µ2)

1+µ2 −2µ cos(2π f )
. (2.85)

Equating this to zero, assuming µ(t) is not a constant function (µ̇ ̸= 0), we find the

maximum value of the PS indicator occurs when µ = 1 (when the AR(1) process is a

random walk) at which point the PS indicator B f has a maximal value of 2 which occurs
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Fig. 2.10 Panel a: The power spectrum of the AR(1) process (see equation 2.81)
is plotted on a log-log scale for various values of the parameter µ . Note
the ‘white-noise’ (flat) part of the power spectrum for small f and the ’red-
noise’ (negative gradient) part for large f . Panel b: The PS indicator (see
equation 2.84) is plotted as a function of f for the same µ values.

as f approaches zero, that is,

max[B f ] =
2π f sin(2π f )
1− cos(2π f )

−−−→
f→0

2 . (2.86)

For larger values of f the maximum indicator value is not close to the maximal value

of 2. For f = 0.1 we have max[B0.1] = 1.93, whereas for f = 0.38 already the value is

significantly less: max[B0.38] = 1. In cases where the PS indicator is being estimated using

a noisy periodogram it is essential that the increase in the indicator value as critical slowing

down occurs (that is, as µ increases from 0 to 1) is easily observable. For this reason, when

we estimate the PS scaling exponent, a frequency log( f )≤ -1 should be used in order to

be able to observe the largest increase in the PS indicator.

In figure 2.10 the power spectrum of the AR(1) process is plotted (panel a) for parameter

value µ = 0.9. We note that for small values of f (log f < -2.5) the “white noise” (flat)

aspect of the power spectrum is visible whilst for larger values (log f ≈ -1) we observe a

“red noise” (gradient = -2) feature, and there is a crossover which occurs at approximately

log f = -2. We also note that, similar to the example in figure 2.9, this crossover point

a value of f dependent on the parameter µ: also plotted are the power spectra for µ =

0.7, 0.8, 0.999. In figure 2.10b the PS exponent B f is plotted as a function of log f for the

same (fixed) values of µ . We are able to see the white noise part of the power spectrum

(log f < -2.5) where B f = 0 and the peak (B f ≈ 2), which occurs at log f ≈ -1 for µ = 0.9,

corresponding to the negative-gradient ‘red noise’ aspect of the power spectrum in panel a.
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Fig. 2.11 The PS indicator is plotted as a function of µ for various values of
f . Note that for larger f the PS indicator has a maximum value < 2 while for
smaller f the indicator shows the characteristic increasing (’reddening’) trend
only in the µ > 0.9 range.

This plot also allows us to visualise the observation made in equation 2.86 that for large

values of f (log f > -1) the PS indicator does not reach a value close to the maximum

value of 2, even for µ close to 1.

In figure 2.11 we plot the PS indicator (equation 2.84) as a function of µ rather than

as a function of time, which is equivalent to the assumption µ(t) = t. The PS indicator

increases, as expected, as µ increases from 0 to 1. We note that for very small values of f

(log f < -2) the indicator value is close to zero until the point µ = 0.9 when it increases

very steeply. This effect can also been seen in figure 2.10b where we observe that even at

µ = 0.9 the indicator is zero for small f , whereas for µ = 0.999 the indicator is ≈ 2 over

the whole range -3 < log f < -1. For larger f it is possible to see the increasing trend in

the indicator over the whole series of increasing µ . For this reason, when one wishes to

detect a ‘reddening’ of noise due to critical slowing down, which is modelled as an AR(1)

process [Ashwin et al., 2012], the most obvious trend will be visible when measuring the

PS scaling exponent using a frequency log f ≥ -2. We note, however, that this will not

be true if a relatively high base-level PS indicator (B f > 0.5) is observed for log f = -2,

implying an AR(1) parameter µ > 0.9. In this case it may be more instructive to observe

whether there is a steep increase in the indicator as µ increases between 0.9 and 1; this is

clearly visible for log f = -3 but not for log f = -1.

In practical applications where only short time series are available and the power

spectrum is approximated by the fast Fourier transform periodogram, there may be very
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Frequency range
Number of data in range

N = 104 N = 103 N = 102

-3.5 ≤ log f ≤ -2.5 28 3 0
-3 ≤ log f ≤ -2 91 10 1

-2.5 ≤ log f ≤ -1.5 285 28 3
-2 ≤ log f ≤ -1 901 91 10

-1.5 ≤ log f ≤ -0.5 2846 285 28
Table 2.2 The fast Fourier transform periodogram is obtained for time series of
length 104, 103 and 102 and the number of data in various frequency ranges is
recorded. For time series of length 102 there are not sufficient data to estimate
the PS scaling exponent for log f < -2.

few data available in the lower frequencies due to the logarithmic scale. In these cases it

may not be possible to reasonably estimate the PS exponent for small values of f and so

the frequencies used will be informed by the length of the time series. In table 2.2 we have

enumerated the number of data points in different frequency ranges having obtained the

fast Fourier transform periodogram from a time series of 104, 103 and 102 points. When

using very short time series, say 100 points, it is already impossible to estimate the gradient

of the periodogram for frequencies log f < -2 because there are simply not enough data to

perform a linear fit. However, in the range -2 ≤ log f ≤ -1 it is at least possible, with 10

points available, although we note that this will likely give a very noisy PS indicator and

longer time series or large ensembles would be preferred.

Taking all of these factors into account, we conclude that using a frequency range

-2 ≤ log f ≤ -1 in which to measure the PS scaling exponent will give the most clearly

observable increase in the PS indicator during critical slowing down. At the higher end of

this range we begin to observe the sudden drop in the maximum exponent value; at the

lower end of the range there exist the dual problems of almost no increase for parameter

values below µ = 0.9, and an insufficient number of data for estimation when dealing with

short time series.

2.3.5 Sensitivity of PS indicator to window size

In section 2.3.2, where the PS indicator is introduced, we have remarked that by calculating

the PS exponent β of an AR(1) time series in the frequency range -1 ≤ log10 f ≤ -2 we

can reconstruct the parameter µ of the AR(1) since the two are related via equation 2.70,
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that is,

µ ≈ b−
√

b2 −1 where b =
cos(0.2π)−10β cos(0.02π)

1−10β
. (2.87)

The numerical verification of this derived equation is presented in figure 2.7 (page 67),

where we demonstrate that the analytic relationship between µ and β is approximately the

same as the relationship between the PS exponent and the lag-1 autocorrelation calculated

for a set of AR(1) time series with parameter µ ∈ [0,1]. This verification, however, used

AR(1) time series of length 105, and would only be a valid test of the PS indicator if a

window size of 105 were used. This is clearly not always possible in practical situations

and, if it were, might anyway be computationally expensive.

The selection of the window size when calculating an EWS indicator in a sliding

window is always a compromise which takes into account the nature of the time series data,

the time scale of the tipping event to be detected or predicted, and the error in the EWS.

A very short window size will typically contain more error in the indicator calculation,

whilst a very large window size will smooth out the effect upon the indicator of the tipping

event, or may be prevented by only a short time series being available for analysis. In

order to investigate further the limitations of using a small window size, the numerical

results presented in figure 2.7 are examined in more detail here, this time using a range of

different lengths of the AR(1) time series.

For a range of ‘series lengths’ between 102 and 105, one hundred time series are

produced from an AR(1) process with parameter in the range 0 ≤ µ ≤ 1. For each of these

time series the value of µ is estimated using two different methods: by calculating the

PS exponent and using the formula in equation 2.87, or simply by calculating the lag-1

autocorrelation (ACF1). In each case, the difference between this estimated value and the

real value of µ is found simply as |µ −µest| and the mean of these differences is taken over

the 100 values of µ to give a single-value measure of the error inherent in each method for

each series length.

In fact equation 2.87 is only valid for 0 < µ ≤ 1, or equivalently 0 < β ≤ 1.985. When

estimating the parameter µ we therefore impose the piece-wise condition

µest =


0 if β ≤ 0

b−
√

b2 −1 if 0 < β ≤ 1.985

1 if β > 1.9850

(2.88)
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where b is given as in equation 2.87. In applications of the PS indicator to tipping points

we are interested in the value of the PS indicator itself as a proxy for ‘reddening’ noise in a

time series and we do not literally estimate the AR(1) model parameter in this way. For

the purpose of comparison, however, this is a useful exercise.

The results of this exercise are presented in figure 2.12a whilst the individual results

for the time series of length 102 (the shortest considered) and length 105 (the longest

considered) are shown in figures figure 2.12b,c. We note (in panel a) that the error is

always larger in the power spectrum approach than in the autocorrelation approach and

that whilst the error in each method is larger for short series lengths, so the difference

between the two methods is also larger.

Whilst it is clear that the ACF1 method out-performs the PS method for every time

series length, we note that in both the short series (length N = 102) and the long series

(length N = 105) the PS method is better at estimating the true value of µ for higher

values of µ than it is for lower values. In figure 2.12b (N = 102) we note that whilst the

estimated value is extremely variable for low values of µ it is reasonably close to the

true value for µ > 0.8. In figure 2.13 we replot the same data as figure 2.12a, but only

considering either small values µ ≤ 0.4 (top panel) or large values µ ≥ 0.6 (bottom panel).

We note the improved accuracy of the PS method when considering only large values of µ ,

particularly for series length N > 103. This is to be expected somewhat if we consider the

shape of the function that relates µ and β which has been used in this experiment. The

value of β as a function of µ is shown in figure 2.7, the formula given by equation 2.87

is simply the inverse function. We see in this that for small µ a large change in µ gives

only a small change in β , whereas this is the opposite for large µ . We can therefore expect

that, when µ is small, a small error in the estimation of the PS exponent β will translate

into a much larger error in the estimated value of µ using the formula in equation 2.87.

When using the PS indicator we bear in mind that it is used as a proxy for the ‘reddening’

of noise over time which is caused by critical slowing down, not to provide an accurate

parametrisation of an AR(1) model. Also, the increase in the AR(1) parameter which

is expected in the presence of critical slowing down is not necessarily linear, and so the

non-linear relationship between µ and β (which is here responsible for the error at low

values of µ) may not necessarily be a problem, depending on the application.

In figure 2.14 we show the results of this experiment repeated but instead of a simple

AR(1) model, a parabolic trend has been superimposed onto the resulting times series. For
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Fig. 2.12 Panel a: For 102 ≤ N ≤ 105 time series of length N are created
using an AR(1) model with 100 different values of the parameter µ in the
range [0,1]. The value of the model parameter is then estimated using either
the lag-1 autocorrelation or the PS exponent β (see equation 2.87). The mean
difference between the estimated value and the true value is plotted for the
ACF1 method (red squares) and the PS method (black triangles). Panels b, c:
The estimated values of the parameter µest are plotted against the true values
µ when using a series length N = 102 (the shortest considered) and 105 (the
longest considered).
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Fig. 2.13 For 102 ≤ N ≤ 105 time series of length N are created using an
AR(1) model with 100 different values of the parameter µ . The value of the
model parameter is then estimated using either the lag-1 autocorrelation or the
PS exponent β (see equation 2.87). The mean difference between the estimated
value and the true value is plotted for the ACF1 method (red squares) and the
PS method (black triangles). Panel a shows the result of the experiment for µ

in the range [0,0.4] (small µ) whilst panel b shows the result of the experiment
for µ in the range [0.6,1] (large µ).
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each different value of the series length N, a time series is produced using

X(tn) = µX(tn−1)+ηn +5t2
n , (2.89)

where [t1, . . . , tN ] = [0, . . . ,1] and the ηn are independent Gaussian white noise terms. We

expect that by introducing non-stationarity in this way the auto-correlation of the time

series will increase and tend to make any estimate of the parameter µ an over-estimate. In

figure 2.14b we see that this is indeed the case where the series length is N = 102: both

estimated parameters are much closer to 1 than to the true value, although the estimate

obtained from the PS method (black triangles) appears to be random whilst the values

obtained using the ACF1 method follow a linear pattern, whilst being consistently higher

than the true values. For longer series lengths, however, this is not the case. In figure 2.14c,

where the series length is N = 105, the estimated values obtained using ACF1 follow the

same linear relationship to the true values as they did for smaller N. The values obtained

using the PS method are, however, in agreement with the true values, especially closely for

the larger values of µ . It appears that estimating the AR(1) model parameter using the PS

exponent is not affected by whether there is or is not a trend superimposed on the AR(1)

process time series, at least when the time series is sufficiently long.

In the context of providing early warning signals it is, of course, not the value of

the indicator that is important but the trend in the indicator over time. In light of this, it

is not necessarily a problem that the ACF1 indicator is biased by the trend in the time

series, but in cases where trends in the time series are not predictable this bias could cause

misleading trends to appear in the ACF1 indicator series. This bias may be overcome by

first detrending each segment of the time series in which the indicator value is calculated,

which is similar in principle to the detrending step in the DFA algorithm [Kantelhardt

et al., 2001; Livina and Lenton, 2007]. For long time series, or long window sizes, the PS

indicator calculation may provide the benefit of not requiring the detrending step, which

may in fact introduce new inaccuracies if the detrending is of the wrong order.

2.3.6 Parametrising an AR(1) process with non-constant parameter

All of the results in section 2.3.5 use time series from an AR(1) process x(tn) = µx(tn−1)+

ηn where µ is constant. Indeed, the work in section 2.3.4, where we determine the

frequency range in which to estimate the PS exponent assumes a constant µ and relies
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Fig. 2.14 [Repeat of the experiment in figure 2.12 but the AR(1) model has
a superimposed parabolic trend] Panel a: For 102 ≤ N ≤ 105 time series of
length N are created using an AR(1) model with a parabolic trend with 100
different values of the parameter µ in the range [0,1]. The value of the model
parameter is then estimated using either the lag-1 autocorrelation or the PS
exponent β (see equation 2.87). The mean difference between the estimated
value and the true value is plotted for the ACF1 method (red squares) and
the PS method (black triangles). Panels b, c: The estimated values of the
parameter µest are plotted against the true values µ when using a series length
N = 102 (the shortest considered) and 105 (the longest considered).
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on the equation for the power spectrum of such an AR(1) process (see equation 2.65,

page 65). Of course, in applications of the PS indicator, or any indicator, to obtain an early

warning signal, such stationarity cannot be assumed. Indeed, the very purpose of using

these indicators is to detect an increase in the ‘redness’ due to critical slowing down, for

which the AR(1) parametrisation is a proxy.

In practice we apply the early warning indicators to time series of dynamical systems

with constantly changing parameters, and therefore within each time window the parame-

ters will also be changing. In this case the PS scaling exponent or the lag-1 autocorrelation

is calculated for this window of the time series and the result is provide a single-value

measure representing the shape of the power spectrum in that window. Taking the single-

parameter AR(1) model as an example, we might desire that the estimated value µest

obtained using these methods is equal to the mean value of parameter µ in that window,

which would produce consistent results if the rate of change of µ was non-constant.

We consider a modified AR(1) process

x(tn) = µnx(tn−1)+ηn (2.90)

where the µn increase linearly in some interval [µ0,µN ]. If we calculate the PS exponent

or lag-1 autocorrelation of this process we desire that the result is the same as it would be

for a normal AR(1) process with constant parameter µ = (µ0 +µN)/2 the mean value of

the changing parameter. We test this hypothesis experimentally by partitioning the interval

[0,1] into 30 overlapping segments of length 0.2, so that the first segment is the interval

[0,0.2], etc.. For each segment we construct a length N = 105 time series of an AR(1)

process with µ increasing, as in equation 2.90, within the interval defined by that segment.

The PS exponent β is then calculated for that time series, as is the lag-1 autocorrelation.

The results of this experiment are shown in figure 2.15. The intervals over which µ

increases in each time series is plotted as a horizontal line, with the midpoint marked by a

circle. The grey line shows the expected relationship between an AR(1) parameter and

either the PS exponent (panel a) or the lag-1 autocorrelation (panel b). We note that in

both cases the midpoint of the interval is close to the value that would be expected if using

a constant-parameter AR(1) process with that midpoint as the parameter. We are able to

conclude then that for the modified AR(1) process of equation 2.90, when µ is increasing

linearly, the PS indicator and ACF1 indicator can be expected to provide consistent results.
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Fig. 2.15 30 time series of length 105 are produced from an AR(1) process
with parameter µ increasing linearly within an interval of values of length 0.2.
The PS exponent (panel a) and the lag-1 ACF (panel b) are calculated for each
time series and the interval of µ values is plotted against the result in each
case. The midpoints of the intervals are marked by circles. A grey line shows,
in each case, the true value of β or the lag-1 ACF for an AR(1) process with
parameter µ .

In figure 2.16 we look more closely at this effect for only values of µ greater than 0.6,

this time using a segment size of 0.1 rather than 0.2, and we note that the results are much

the same, although the difference between the calculated value at the midpoints (circles)

and the true values (grey line) is less both for the PS exponent and the lag-1 ACF. This is

to be expected since the segments are shorter and so the parameter varies less over each

time series, and also we know the PS exponent estimation to be more accurate for larger

values of the AR(1) parameter (see section 2.3.5).

2.3.7 Sensitivity of indicators to periodicity

In section 2.3.5 we investigated the relationship between the parameter µ of an AR(1)

process and the PS exponent β as estimated using the periodogram. We find that for a long

enough time series the PS exponent is close to the value predicted by equation 2.70 which

is derived from the equation for the power spectrum of the AR(1) process. We also showed

that for a long enough time series the PS exponent is closer to the predicted value than the

lag-1 autocorrelation if a parabolic trend is superimposed onto the AR(1) process time

series.
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Fig. 2.16 [Repeat of the experiment shown in figure 2.15 but with short
intervals and considering only values of µ greater than 0.6] 30 time series of
length 105 are produced from an AR(1) process with parameter µ increasing
linearly within an interval of values of length 0.1. only values µ ≥ 0.6 are
considered. The PS exponent (panel a) and the lag-1 ACF (panel b) are
calculated for each time series and the interval of µ values is plotted against
the result in each case. The midpoints of the intervals are marked by circles.
A grey line shows, in each case, the true value of β or the lag-1 ACF for an
AR(1) process with parameter µ .
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Fig. 2.17 An AR(1) process of length 104 with parameter µ = 0.9 with a
periodic function superimposed. Panel a: no function. Panel b: a simple sine
wave sin(t). Panel c: a more complicated function 2sin(50t)+3sin(7t).

In this section we perform a similar experiment but impose a periodic function (a sine

wave) onto the time series. We expect that the PS exponent will not be much affected by

this periodicity since adding a sine wave to a time series does not affect the power spectrum

beyond adding a single spike at the frequency of the added wave. The PS exponent is

determined by taking the linear gradient across a range of frequencies and changing one

point will not significantly alter the result. Additionally, if the frequency of the sine wave

is outside of the range used in the estimation of the PS exponent, it will not affect the result

at all.

In this experiment we take 100 time series from AR(1) processes

Zk = µZk−1 +ηk (2.91)

with parameter µ in the range [0,1]. The variance of the Gaussian white noise process ηk

is 1. We use time series of length 104 with the artificial time variable t ∈ [0,20π]. From

each of these time series Z(t) we create three time series which we use in our analysis:

1. The original time series z(t) = Z(t).

2. The original time series plus a simple sine wave z(t) = Z(t)+ sin(t).

3. The original time series plus a more complicated function z(t) = Z(t)+2sin(50t)+

3sin(7t).

Since the time variable is in the range [0,20π], ten periods of the function sin(t) occur

within the time series in each case, whilst 500 and 70 periods of the functions 2sin(50t)
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Fig. 2.18 Panel a: periodogram of an AR(1) process. Panel b: periodogram of
the same AR(1) process with an added periodic function g(t) = 2sin(50t)+
3sin(7t). Panel c: same as b but logarithmic binning has been used. In each
case the value of the PS exponent is printed in the top right corner and the line
of best fit in the frequency range -2 ≤ log f ≤ -1 is plotted in red. The PS
exponent for the simple AR(1) process, when using logarithmic binning, is
also 1.425. The power spectrum ‘spikes’ due to the two periodic components
are circled in red (panel b).

and 3sin(7t) occur respectively. Each of these is illustrated in figure 2.17, which uses

µ = 0.9 to produce the original AR(1) process.

In figure 2.18 we demonstrate the calculation of the PS exponent for the AR(1) process

with µ = 0.9. In panels a and b we compare the periodograms of (respectively) the

simple AR(1) process z(t) = Z(t) and the AR(1) with added periodic function z(t) = Z(t)+

2sin(50t)+3sin(7t). The power spectral ‘spikes’ due to the two periodic components are

circled in red in panel b. We note that one spike lies outside of the frequency range used for

the estimation of the PS exponent and so will not affect the calculation. The stripped-down

periodgram shown in panel c of the figure demonstrates the effect of using logarithmic

binning to gain a more unbiased estimate of the PS exponent, which is how the exponent is

obtained throughout this thesis when using the PS indicator. Once the logarithmic binning

is applied the presence of the spikes in the periodogram is even less noticeable, and we

find that the value of the PS exponent obtained in this way is the same (to 4 significant

figures) as for the simple AR(1) process without the periodic component. We therefore

do not expect that the addition of the periodic series to affect the performance of the PS

indicator.

The lag-1 autocorrelation (ACF1), the DFA exponent α and the PS exponent β are

then calculated for each of these time series and the results are shown in figure 2.19. We
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note that the ACF1 and DFA are significantly affected by the addition of even a single sine

wave with relatively small amplitude (relative to the noise in the AR(1) process, compare

figures 2.17a and b). As with the introduction of the parabolic trend, the ACF1 is simply

scaled up in a consistent way by the introduction of the periodic function, whereas the DFA

exponent is affected differently for different values of the parameter µ . The PS exponent,

however, is not noticeably affected at all by the introduced periodicity.

2.4 Numerical integration of stochastic ODEs

Throughout this thesis, particularly in this chapter and the next (chapter 3), we obtain a

time series by integrating a system of stochastic ODEs (SDEs) and then apply the EWS

techniques to this time series, which typically exhibits a tipping point. Such time series,

the results of numerical integration of SDEs, have already been presented in chapter 1 (see

figures 1.10 & 1.11) without proper explanation of how the integration was performed.

In initial experiments a simple Euler-Maruyama method, a generalisation of the Euler

method to SDEs, was used to integrate one-dimensional systems of the form

d
dt

X = f (X , t)+σηt , (2.92)

where η is a Gaussian white noise process. Or, using Itô calculus notation,

dX = f (X , t)dt +σdWt , (2.93)

where Wt is a Brownian motion process. For systems of dimension p > 1, η is given as a

p×1 vector and σ is a p× p matrix so that, for example, for the two-dimensional systems

of equations

ẋ = y+σ1η(x),

ẏ = α − x2 +σ2η(y),
(2.94)

where η(x) and η(y) are two independent Gaussian white noise processes, we have

f :

x

y

 7→

 y

α − x2

 , (2.95)
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Fig. 2.19 The ACF1 (top row), DFA exponent (middle row) and PS exponent
(bottom row) are calculated for 100 AR(1) time series of length 104 with
µ ∈ [0,1]. The AR(1) time series is super imposed with either no other function
(column a), a simple sine wave (column b), or a more complicated periodic
function (column c). We note that the PS exponent is practically the same in
all three cases. In the case of the ACF1 and PS, the expected value function is
plotted in grey.
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and

η =

η(x)

η(x)

 and σ =

σ1 0

0 σ2

 . (2.96)

The solution X(t) is approximated by the series Yn|Nn=0 (the Euler–Maruyama approxima-

tion), calculated according to

Yn+1 = Yn +∆t f (Yn, tn)+
√

∆tσηn . (2.97)

Here the ηn are independent identically Gaussian distributed random variables. The tn
form a series with tn − tn−1 = ∆t and [t0, tN ] are the lower and upper bounds of integration.

The approximation Yn converges to the true solution X(t) as ∆t → 0.

In several initial experiments in chapter 3, where two-dimensional dynamical systems

are presented, the integration of the system of two SDEs was obtained using Matlab’s

ode45 solver [Shampine and Reichelt, 1997] which is based on the Dormand-Prince

explicit Runge-Kutta (4,5) method [Dormand and Prince, 1980]. This solver is designed

for ODEs and does not explicitly handle stochasticity; when including the white noise term

ση in the solver input, the scaling term
√

∆t was therefore included, as in equation 2.97,

where ∆t is specified in the solver input.

However, Matlab’s ode45 solver uses an adaptive time step, which may be changed

to improve efficiency even if the size of ∆t is specified by the user. This may then affect

the integration of the SDEs since the scaling of the standard deviation of the noise will

not be consistent. The Euler-Maruyama method (equation 2.97) was therefore used as

an alternative, making the method consistent across the thesis, whether dealing with one-

dimensional systems given as a single SDE or ODE, or higher dimensional dynamical

systems involving systems of two or more SDEs. This is equivalent to the Milstein method

for constant σ [Mackevicius, 2013], which is the case in all the two-dimensional systems

presented chapter 3. In this chapter (2) and chapter 4, however, some models are presented

in which the noise scaling factor σ is itself a function of time, σ(t). The Milstein method,

which has superior convergence to the solution [Kloeden and Platen, 1999], is therefore

used in these cases, where the approximation Yn is not obtained by equation 2.97, but

according to

Yn+1 = Yn +∆t f (Yn, tn)+
√

∆tσ(tn)ηn +
1
2

σ(tn)σ ′(tn)∆t
(
(σ(tn)ηn)

2 −1
)
. (2.98)
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where σ ′ is the derivative of σ with respect to X and is estimated using

d
dx

σ =

(
dt
dx

)-1

· ∂σ

∂ t
≈

(
∆t f (Yn, tn)+

√
∆tσ(tn)ηn

∆t

)-1

· σ(tn+1)−σ(tn)
∆t

, (2.99)

or

σ
′(tn)≈

σ(tn+1)−σ(tn)
∆t f (Yn, tn)+

√
∆tσ(tn)ηn

, (2.100)

where we have used the Euler-Maruyama method in the estimation of dx/dt. We note

that the numerator σ(tn+1)− σ(tn) ensures that the whole last term in equation 2.98

is indeed zero where σ is constant, thus ensuring that this is equivalent to the Euler-

Maruyama method in equation 2.97. For systems of dimension p > 1, equation 2.99

becomes problematic since the ‘numerator’ Σ̇ := σ(tn+1)−σ(tn) is a p× p matrix and the

‘denominator’ Ẋ := ∆t f (Yn, tn)+
√

∆tσ(tn)ηn is a p×1 vector. In this case we perform

the element-wise reciprocal operation on Ẋ and then take the matrix product

σ
′(tn) =


(ẋ1)

-1 0
. . .

0 (ẋp)
-1

 Σ̇ where Ẋ =


ẋ1
...

ẋp .

 . (2.101)

Concerning the term (σ(tn)ηn)
2 in equation 2.98, the vector σ(tn)ηn is first calculated and

the square operation is performed element wise before the vector of ones is subtracted.

In this chapter many one-dimensional systems are defined by an SDE in the form

ż(t) =− ∂

∂ z
U(z, t)+σ(t)ηt , (2.102)

where U is the generalised potential function of z which may also change over time. This

formulation is convenient as it allows us to visualise the stable points (troughs or ‘wells’)

and unstable points (peaks) of the state space. In these cases the system is not of the form

in equation 2.92 since we have the negative derivative of U , rather than the function f . The

function f is either obtained analytically by taking the derivative of U with respect to z, in

cases where U is a function of z only; or, if this is complicated due to a time dependence

in U , the function f is estimated at each stage in the Milstein algorithm using

f (Yn, tn) =−U(Yn + ε, tn)−U(Yn − ε, tn)
2ε

, (2.103)
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where the small step ε is chosen as ε = min(∆t,10−5) to reduce error over simply using

ε = ∆t in the case that ∆t is large, although we typically use small values of ∆t anyway.

The Milstein method, given by equation 2.98 (or the equivalent Euler-Maruyama

method where σ is constant), is used consistently throughout this thesis for all numerical

integration of SDEs, including where system equations are given in the generalised poten-

tial form, in which case the function f is estimated using equation 2.103 if it cannot be

obtained analytically.

In cases where Matlab’s ode45 solver had already been used at the stage of experi-

mentation to integrate two-dimensional systems of SDEs presented in chapter 3, the same

systems were integrated again using the Milstein method, in which the scaling of the time

step is handled properly, although the method itself is much simpler than the Runge-Kutta

(4,5) method with inferior convergence for ODEs [Mackevicius, 2013]. In all cases where

both methods were used there was no visible difference between the two, nor any differ-

ence in the calculated early warning signals, suggesting that the error due to the adaptive

time step problem was, in fact, negligible. Similarly, where the simpler Euler-Maruyama

method had been used at the stage of experimentation to integrate one-dimensional SDEs

with non-constant σ , these same systems were integrated again using the Milstein method.

2.5 Early Warning Signals in dynamical systems

In this section we apply the DFA, PS and ACF1 indicators to several examples of time

series containing tipping points. The first system we study is constructed from segments

of generated noise, artificially designed to have a gradually increasing power spectrum

scaling exponent, which is used by Livina et al. [2012] as a test of the DFA indicator

method. We use the same system here to offer a direct comparison between that and the

novel PS indicator [Prettyman et al., 2018]. We then apply the PS indicator and the ACF1

indicator to the three examples presented in chapter 1 (see section 1.2.1) which represent

the three types of tipping point as outlined by Livina et al. [2011], and also a variety of

different bifurcational tipping points occurring in one-dimensional systems. Some of these

we go on to study in more detail and also apply the DFA indicator for comparison. In

no case do we suppose that there is some critical value of the indicator which gives us

special information about a tipping point. Rather, it is the behaviour of the indicator over

time which we expect to precede a tipping point. In the cases of the ACF1, DFA and PS
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indicators used in this chapter, it is an increasing trend that we look for, whatever the

actual values of the indicators themselves.

In this section, and at other points throughout this thesis, a dynamical system is defined

analytically as a stochastic ODE and then integrated numerically in Matlab to produce

a time series of data. The Milstein method of numerical integration, as defined in the

previous section, is used consistently throughout (see section 2.4).

The results of the application to the supercritical pitchfork bifurcation (section 2.5.5)

have previously been presented in Prettyman et al. [2018].

2.5.1 Choice of model parameters

The work presented in this section and, later, in chapter 3 makes heavy use of ‘toy’

dynamical system models in our investigation of EWS techniques. Such toy models,

particularly those exhibiting a bifurcation, have some critical parameter µ which is varied

within a range of values and the bifurcation or other tipping point occurs in the system

when µ is equal to some critical value µcrit. In this case it is necessary to make a choice of

the values of this parameter to be used, as well as how fast to vary this parameter if the

model involves a changing value. We consider several factors affecting the choice of the

parameters:

1. That the different values of the parameter demonstrate a significant qualitative

change in the system, indicative of a tipping point. It is often the case that if values

of the parameter µ are considered over the interval [µcrit −ρ,µcrit +ρ], where ρ

is very small, the real behaviour of the system may not apparently change very

much, despite a bifurcation having occurred. This is quite clearly the case for the

supercritical pitchfork bifurcation which changes smoothly from the pre-tipping

state space to the post-tipping state space, although it may not be so important with

fast-diverging ‘blow up’ systems (e.g. subcritical pitchfork bifurcation).

2. That the rate of change of the parameter is slow relative to the recovery time of the

system. This is an essential consideration since the EWS methods studied here are

based on detecting critical slowing down which is a measure of decreasing recovery

times.

3. That the rate of change of the parameter is slow relative to the numerical time step,

since no EWS will be visible if a very large change from the pre-tipping state space to
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the post-tipping state space occurs in a single step. In any case, such a fast-changing

parameter would also affect the previous point since the system would not have time

to recover.

In general, the choice of model parameters is considered with the aim of facilitating a

useful comparison between the novel PS indicator and the ACF1 and DFA indicators, often

in similar dynamical systems to those in which these existing methods have already been

tested (see Livina and Lenton [2007]), which is the purpose of this study. The problem of

detecting critical slowing down, and therefore detecting tipping points, in systems with

a relatively fast rate of change of critical parameters is a potentially interesting topic for

future work, and may be related to the fast-growing field of rate-induced tipping points

(see Ritchie and Sieber [2016]), but it is not within the scope of the work presented here.

In addition to the choice of tipping-critical model parameters, it is also necessary

to select appropriate values for other system parameters. In particular most of the toy

models used in this section and in the following chapter are stochastic systems in which

the system equations incorporate a white noise process the size of which may greatly affect

the behaviour of the system and the performance of the EWS methods. In all cases, the

variance of the noise must be large enough that the system is ‘perturbed’ significantly

from the stable state, and that there might be some variation within an ensemble of several

integrations of the system (in a purely deterministic system there would be no variation

between members of the ensemble). Yet, the variance must also be small enough that the

noise does not completely mask the deterministic component of the system. In a system

defined by the stochastic differential equation

ż = f (z, t)+ση , (2.104)

where η is a Gaussian white noise process, if σ is very large compared to the value of

f (z, t) for z, t in the range of integration, the integrated time series z(t) will be essentially a

random walk, and incorporate none of the deterministic dynamics of the function f . In

cases where we expect to see noise-induced tipping, and we aim to assess the usefulness of

the early warning indicators in that context, the variance of the noise is of course chosen

that noise-induced tipping may indeed be observed. Where such noise-induced tipping is

brought about by a change the stochastic component of the system, where the variance of

the noise term is a parameter with some critical value at which tipping occurs, the rate of

change of this parameter is chosen, as with deterministic parameters, such that the tipping
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may be observed in the integrated time series and that the rate of change is not on time

scales faster than the deterministic evolution of the system.

2.5.2 Early warning signals in an artificial stochastic signal

Livina et al. [2012] compare the performance of the ACF1 and DFA indicators when

applied to an artificially constructed time series with increasing PS scaling exponent. The

series is created by concatenating many shorter sub-series with specific, incrementally

increasing power spectrum scaling exponents β from white noise (β = 0) in the first

sub-series to red noise (β = 2) in the final series.

Here, we recreate the experiment in order to compare the ACF1, DFA and PS indicators.

We create 50 sub-series each of length 200 points with incrementally increasing PS

exponents. To achieve this, for each sub-series we take a white noise signal X(t), apply a

fast Fourier transform and then multiply the power spectrum X̂( f ) by a factor of
√

f−β

where β is the desired PS exponent (see also equation 2.52). The resulting power spectrum

is then transformed back to the time domain using an inverse fast Fourier transform [Makse

et al., 1996]. The values of β increase linearly in the range [0,2], changing from white

noise to red noise. The 50 series are then joined to create a series of length 104. We

note that this is an example of a time series which experiences a rise in autocorrelation

simultaneously with a decrease in variance.

The ACF1, DFA and PS indicators are applied to the constructed series. Since the

series is specifically constructed to have an increasing PS exponent, we expect to see

an increasing trend in the PS indicator. We also expect the same behaviour in the DFA

indicator because of the relationship between the two exponents (see figure 2.4). We also

know that lag-1 ACF increases with increasing PS exponent in long-range correlated noise

(figure 2.6) and so expect that the ACF1 indicator will also show an increasing trend when

applied to our series.

Figure 2.20 shows the signal (panel a) and the results of applying the three indicators

(panels b, c, d) along with the linear best fit. As in our previous experiment which

calculated the lag-1 ACF for noise series with different values of β (figure 2.6), the lag-1

ACF increases linearly with increasing β only up to a point, approximately β = 1, after

which the rate of increase slows. The DFA and PS increase linearly, as expected, with

increasing β and the relationship between the two indicators obeys the same linear law

connecting to DFA and PS exponents (equations 2.43). The variance in both indicator
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Fig. 2.20 Artificial data with ACF1, DFA and PS indicators. (a) A time series
is constructed by concatenating 50 sub-series of length 200 where the scaling
exponent β within each sub-series is constant and increases over the whole
series from 0 (white noise) to 2. (b,c,d) The ACF1, DFA and PS indicator
methods are applied with window size 100. As the PS-indicator increases
from 0 to 2, the ACF indicator increases from 0 to 1, and the DFA indicator α

increases from 0.5 to 1.5. Lines are added to show the linear trends; note that
the ACF indicator does not increase linearly as it approaches 1.



2.5 Early Warning Signals in dynamical systems 99

series is also similar, and so we have evidence for the assertion that it is not necessary to

use the PS exponent when the DFA exponent is available [Heneghan and McDarby, 2000],

but concerning the sliding-window indicator methods, rather than a simple calculation of

the exponents.



100
O

ne-dim
ensionaltipping-pointtechniques

0 0.2 0.4 0.6 0.8

0

1

2

0

1

2

P
S

 i
n
d
ic

a
to

r

0 0.2 0.4 0.6 0.8

0

0.4

0.8

A
C

F
1
 i

n
d
ic

a
to

r

0 0.2 0.4 0.6 0.8

0

1

0

1

2

0 0.2 0.4 0.6 0.8

0

0.4

0.8

0 0.2 0.4 0.6 0.8

-1

0

1

0

1

2

0 0.2 0.4 0.6 0.8

0

0.4

0.8

a (Forced) b (Pitchfork) c (Noise-induced)

Fig. 2.21 Three systems given by equations 2.105 (forced transition), 2.106 (pitchfork bifurcation), and 2.107 (noise-
induced tipping point) are integrated between t = 0 and t = 1. Each exhibits a tipping point at around t = 0.6: a forced
transition, a pitchfork bifurcation, and a noise-induced transition (panels a, b, c respectively). The PS and ACF1 indicators
are calculated using a sliding window of 100 points and plotted beneath the time series for each system. We note the
similarity in shape between the two indicator signals, although the PS indicator is more noisy.
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2.5.3 Early warning signals for three distinct tipping points

In section 1.3, chapter 1, we presented three examples of dynamical systems each exhibiting

one of the three types of tipping point suggested by Livina et al. [2011]: A forced transition,

a genuine bifurcation, and a noise-induced transition.

We give the equations for each of these three examples again here. In each case the

system equation is in the ‘generalised potential’ form of equation 2.102 and integrated

numerically using the Milstein method (see section 2.4) with time step ∆t = 10-5 and a

sampling rate of 103 per unit time. Thus each integration generates a time series of 1000

points since the time range in each case is t ∈ [0,1].

Type 1: Forced transition

As an example of a ‘forced transition’ we use the system described by the equation

ż(t) =− ∂

∂ z
(z− tanh(10t −6)−1)2 +

1
10

η , (2.105)

where η is a Gaussian white noise process. This system has a quadratic-shape generalised

potential which shifts in position over time. For small t, that is t < 0.5, the stable equilib-

rium, the base of the ‘well’, is at the position z ≈ 0. This shifts to the position z ≈ 2 when

t > 0.7. Thus, a sudden shift occurs around t = 0.6, as we can see in figure 2.21a.

We note that both the PS and ACF1 indicators begin to rise about the same time that

the shift in the stable point becomes visually obvious, and have reached their maximum

values before the system is halfway through the transition.

Type 2: Genuine bifurcation

As an example of a genuine bifurcation we present the familiar pitchfork bifurcation,

already used as an example in this chapter, given by the equation:

ż(t) =− ∂

∂ z

(
z4 +(3−5t)z2)+ 1

10
η , (2.106)

where η is a Gaussian white noise process. In this case the bifurcation occurs at t = 0.6.

We see in figure 2.21b the apparent increase in “white” noise just before t = 0.6 as the base

of the ‘well’ flattens out and allows for longer and longer return times to the equilibrium

point z = 0.
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Again we note that the PS and ACF1 indicators show similar behaviour, although the

PS indicator is more noisy. In both cases the increasing trend in the indicator begins before

the bifurcation occurs at t = 0.6.

Type 3: Noise-induced transition

As an example of a noise-induced transition we take a ‘double-well’ generalised potential

with added noise and allow the standard deviation of the noise to increase with time. At

some critical point the noise is large enough that the system is able to escape from the

‘well’ and switch to the other stable state. The time series in figure 2.21c is described by

the equation:

ż(t) =− ∂

∂ z

(
z4 −3z2)+ 3t

2
η , (2.107)

where η is a Gaussian white noise process and the coefficient σ(t) = 3t/2 modifies the

standard deviation of the noise as a function of t. At around t = 0.6 the noise standard

deviation is close to 1 which is about large enough that state-switching becomes likely

though not frequent. As t increases further, the frequency of the state-switch increases.

Once again we note the correlation between the PS and ACF1 indicators. In this

example the increasing trend in the indicators does not begin until the noise is already large

enough that the system is able to tip into the other stable state. This is due simply to the

shape of the generalised potential function in this particular case. For this type of system

where a Gaussian white noise process is integrated, an increase in the size of the noise

will always cause an increase in the PS exponent, whether it leads to a tipping point or not.

This type of tipping is not characterised by the critical slowing down phenomenon, unlike

the pitchfork bifurcation of the previous example. We don’t therefore expect that the PS

indicator will necessarily provide an EWS, although it will, of course, provide information

about the nature of the noise in the series.
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Fig. 2.22 Three systems given by equations 2.108 (fold bifurcation), 2.109 (transcritical bifurcation), and 2.110 (sub-
critical pitchfork bifurcation) are integrated between t = 0 and t = 1. Each exhibits a bifurcation at around t = 0.9: a fold,
transcritical, and sub-critical pitchfork bifurcation (panels a, b, c respectively). The PS and ACF1 indicators are calculated
using a sliding window of 100 points and plotted beneath the time series for each system. We note the similarity in shape
between the two indicator signals, although the PS indicator is more noisy.
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2.5.4 Early warning signals for three bifurcational tipping points

In section 1.4, chapter 1, we presented three examples of dynamical systems each exhibiting

a different bifurcation implying a tipping point: a fold bifurcation, a transcritical bifurcation

and a sub-critical pitchfork bifurcation.

We give the equations for each of these three examples again here. In each case the

system equation is in the ‘generalised potential’ form of equation 2.102 and integrated

numerically using the Milstein method (see section 2.4, page 90) with time step ∆t = 10-5

and a sampling rate of 103 per unit time. Thus each integration generates a time series

of 1000 points since the time range in each case is t ∈ [0,1]. The results of all three

experiments are shown in figure 2.22

Type 1: Fold bifurcation

The fold bifurcation is a very simple example of a tipping point and has been used to model

a wide variety of phenomena, notably in the field of catastrophe theory [Zeeman, 1977;

Arnold et al., 1999]. We consider a dynamical system given by the equation

ż(t) =− ∂

∂ z

(
z3 +

(10t −9)
3

z
)
, (2.108)

where µ = (10t −9)/3 is the model parameter. The bifurcation occurs at µ = 0, t = 0.9

when the stable equilibrium at z = -
√

µ/3 meets the unstable equilibrium at z =+
√

µ/3.

After this point the system ‘blows up’ since z diverges to infinity. In figure 2.22a we see

that both the PS and ACF1 indicators show an increasing trend before the bifurcation

occurs, but in the PS indicator this is barely noticeable.

Type 2: Transcritical bifurcation

The transcritical bifurcation is so named because the equilibria cross the critical point: they

are not created nor eliminated. Instead, the stable equilibrium becomes unstable and vice

versa. The normal form of the transcritical bifurcation is

ż(t) =− ∂

∂ z

(
z3 −µz2) , (2.109)

which has the same (cubic) shaped generalised potential function as the fold bifurcation

normal form. When µ = 0, this example has a stable equilibrium at z = 2µ/3 and an
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unstable equilibrium at z = 0. At the critical point µ = 0 the equilibria are lost momentarily

but reappear for µ > 0 when the z= 0 state has become unstable and the (positive) z= 2µ/3

state is now stable. Because of the continuity of the equilibrium at z = 0, this type of

equation is used frequently in biology when zero is often a stable state [Nicolis and Nicolis,

2007; Strogatz, 2014], for example in population dynamics (of bacteria, humans, etc.) a

population of zero is a stable population. Indeed, the above equation has the same form as

the logistic equation [Brown, 2018]. In figure 2.22b we see, again, that the ACF1 and PS

indicators have a similar shape but that the PS indicator is more noisy and the increasing

trend is not visible until closer to the tipping point.

Type 3: Sub-critical pitchfork bifurcation

We have seen already the super-critical pitchfork bifurcation, equation 2.106, used as

an example of a genuine bifurcation in comparison to other types of tipping points (see

figure 2.21b). The contrasting sub-critical pitchfork bifurcation has the normal form

ż(t) =− ∂

∂ z

(
-z4 −µz2) , (2.110)

and for µ < 0 has a single stable equilibrium at z = 0 and two unstable equilibria at

z =±
√
-µ/2. At the critical point z = 0 the two unstable equilibria meet the stable point

and develop into a single unstable equilibrium for µ > 0. Thus, a system following the

stable trajectory will abruptly become unstable at the critical point and quickly diverge

to ±∞ given any small perturbation. Of course, in cases with higher order terms in the

equation, the system may in fact converge again to a separate stable point away from z = 0.

As with the fold bifurcation, we see in figure 2.22c that the ACF1 and PS indicators have a

similar shape but that the PS indicator is more noisy and the increasing trend is not visible

until closer to the tipping point.

2.5.5 The supercritical pitchfork bifurcation model

Indicators applied

We have already looked at a dynamical system experiencing a supercritical pitchfork

bifurcation (see figure 2.21b, page 100) in comparison to other types of tipping points, and

we have seen how well the PS indicator provides an EWS for this system in comparison
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with the ACF1 indicator. In this section we look more closely at the result in figure 2.21b

and also calculate the EWS given by the DFA indicator. In addition, we address the

problem of predicting, rather than merely detecting, a tipping point, using this dynamical

system as our example. The dynamical system is, as in section 2.5.3, given by the equation

ż(t) =− ∂

∂ z

(
z4 − (5t −3)z2)+ 1

10
η , (2.111)

where µ = (5t −3) is our model parameter and the bifurcation occurs at µ = 0 ⇒ t = 0.6.

For µ < 0 the system has a single stable equilibrium at z = 0. This becomes unstable for

µ > 0 and two new stable points develop at z =±√
µ .

Equation 2.111 is integrated numerically with a time step of δ t = 10-5, from t = 0

to t = 1, and sampled at a rate of 103 points per unit time to give a time series of length

N = 103. The ACF1, PS and DFA indicators are then applied with a window size of 100

points. This experiment is repeated for 100 such time series and the indicators are applied

to all of them. The means of the indicator series are found and are plotted in figure 2.23

with error bounds of one standard deviation.

We see that the ACF1 and DFA both provide an EWS, beginning to show a clear

increasing trend at around t = 0.4. The PS indicator, however, does not show a convincing

trend (in the mean) until after the bifurcation has occurred, and the trend is not significant

when the error bounds are taken into consideration. We do see that the PS indicator series

shows a similar general shape to the ACF1 indicator: after increasing to a maximum

value, both settle down to a constant value that is closer to that of red noise than white

noise, whereas the DFA indicator settles back to a white-noise value (0.5 for DFA) after

the bifurcation. The reason for the high value of the PS and ACF1 indicators after

the bifurcation, although the system is trapped around a single stable point, much like

before the bifurcation, is that the parabolic trend in the post-bifurcation system biases the

autocorrelation whilst the detrending step in the DFA algorithm removes this and views

both ‘single equilibrium’ stages of the system equally. This is consistent with the findings

presented in figure 2.14 (page 84), where both the PS and ACF1 indicators were biased by

imposing a parabolic trend onto the AR(1) model when using a time series of 100 points.

Since the window size used for our experiment here was also 100 points, we would expect

the same result. For a window size of 105 points we would expect (based on figure 2.14)

that the PS indicator would not show bias. Given the highly variable performance of the
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Fig. 2.23 ACF1, PS and DFA indicators applied to time series of the pitchfork
bifurcation model. Panel a: Data from an ensemble of 100 runs of the model
(see equation 2.111); Panels b, c, d: The mean ACF1, PS and DFA indicators
(all using window size 100) shown with error bars of one standard deviation.
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Fig. 2.24 30 time series of length 105 are created by integrating equation 2.111
using a constant parameter µ . Each time series uses a different constant value
of µ between -1 and 0.5. The PS exponent (panel a) and lag-1 autocorrelation
(panel b) are calculated for each time series.

PS indicator in that previous experiment, it is somewhat surprising that we any trend, even

in the mean over an ensemble of 100.

Further experimentation

In order to further understand the relationship between the PS exponent and the parameter

of the pitchfork model, we perform a more detailed experiment. In this case we use time

series of length 105, in order to see if significantly alters the results of the PS indicator, as

was the case with the AR(1) model (see section 2.3.5).

30 time series of length 105 are created by integrating equation 2.111 using a constant

parameter µ . Each time series uses a different constant value of µ between -1 and 0.5.

The PS exponent and lag-1 autocorrelation are calculated for each time series. The results

are shown in figure 2.24. We see the same shape as in figure 2.23, with the values of the

two indicators were plotted over time. Certainly the PS exponent are similarly related to

the parameter of this pitchfork system just as they are for the AR(1) model, although there

is much lower error involved in using the lag-1 ACF.



2.6 Discussion 109

2.6 Discussion

We have developed a novel indicator of EWS for tipping points in dynamical systems by

estimating the power-law decay rate of the power spectrum in a sliding window [Prettyman

et al., 2018]. The PS exponent has been shown analytically to provide an indication of

critical slowing down (see section 2.3.2) based on the model of critical slowing down as an

AR(1) process, and therefore the PS indicator is expected to provide an EWS of tipping

points in the same way that the ACF1 and DFA indicators have previously been used.

We have applied this PS indicator, along with the ACF1 and DFA indicators, to several

different time series of models of various tipping points, including various bifurcations

and non-bifurcational tipping.

We have found that the PS indicator behaves similarly to the previously used ACF1

and DFA indicators applied to the model data, but with larger variance, which limits its

usefulness in situations where the model has a noisy trajectory or cannot be observed

multiple times.

Of the ACF, DFA and PS scaling exponents, all may be used as EWS indicators,

although Kantelhardt et al. [2001] notes that a direct calculation the ACF exponent γ is

often unsuitable and the DFA method is therefore introduced as an indirect measure. In

our own implementations of the two methods, the ACF exponent is less reliable. The

less computationally expensive lag-1 autocorrelation function is also often used instead of

the ACF exponent since both provide a measure of critical slowing down (see equation

2.53), but it is highly sensitive to trends and periodicity. In contrast, the PS indicator is

relatively insensitive to periodicity, as we have demonstrated in section 2.3.7 (page 86).

The addition of a simple periodic function to an AR1 process does not affect the value of

the PS exponent even whilst the lag-1 autocorrelation and DFA exponent are significantly

affected so as to make the estimation of the model parameter (the critical slowing down

proxy) impossible.

Heneghan and McDarby [2000] notes that the DFA and PS exponents have a predictable

relationship and therefore the use of both is not necessary. However, this is true only

when power-law scaling exists and does not hold when there is a cross-over in the power

spectrum as demonstrated by the comparison in figure 2.4, nor may it be the case in

oscillating systems. The choice between the two techniques may therefore be important

when investigating tipping points, and the study of the behaviour of the PS exponent may

reveal trends in the data which a study using the DFA or ACF exponents may not.





Chapter 3

Extension of tipping point techniques to
multivariate data

Early warning signal techniques generally are applied only to univariate data, often one-

dimensional time series from a single data source or model output. In an effort to study

multidimensional geophysical variables we here consider cases where we have more than

one time series, either because

1. there are multiple measured variables,

2. a variable is measured at multiple spacial locations,

3. both of these simultaneously.

In the first case it may suffice to attempt an EWS detection on each time series individually,

but one can envision a scenario where it is possible to detect an EWS in neither X(t)

nor Y (t) but, considered together in some way, an EWS is detectable. It may therefore

be worthwhile to investigate the possibility of an analogue to existing one-dimensional

tipping point techniques for time series in two or more variables. In the case of gridded

data it is common to use Empirical Orthogonal Functions (EOF), also known as Principal

Component Analysis (PCA), to reduce the dimensionality of a system [von Storch and

Zwiers, 2002; Jolliffe, 1986]. This technique has also been more specifically applied to

EWS methods [Held and Kleinen, 2004; Bathiany et al., 2013a; Kwasniok, 2018]. Principal

interaction and oscillation patterns (PIPs and POPs) can be considered as extensions of the

EOF method and provide additional techniques for the dimension reduction of complex

systems [Hasselmann, 1988].
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It has been suggested that an EWS is detectable in a dynamical system defined over

a two-dimensional field, such as climatological or ecological variable modelled or mea-

sured at multiple geographical points [Guttal and Jayaprakash, 2009; Donangelo et al.,

2010; Dakos et al., 2010]. There has been a large amount of work involving the use of

multiple data sources spread over a geographic area, such as complex network analysis in

climatology [Tsonis et al., 2006; Yamasaki et al., 2008; Gozolchiani et al., 2011] which

has been applied to the El Niño. In these suggested methods, the cross-covariance or

cross-correlation is calculated between points on a grid, rather than the temporal autocorre-

lation (or related properties) being calculated. The assumption here is that the correlation

between neighbouring points will increase close to a tipping point. Similar techniques

calculate the cross-covariance of a variable, at a specific time slice, between points inside

a specified region of interest [Ludescher et al., 2013, 2014] or identify emerging spatial

patterns in the data [Kefi et al., 2014]. It is also possible to identify regions of interest,

or "hotspots": Bathiany et al. [2013a] partition the field into elements and use EOFs to

determine which elements contribute most to the autocorrelation. The method is applied

successfully to a highly idealised model of a vegetation cover.

In this chapter we review and analyse techniques which may be used to calculate an

EWS with an input of two variables, namely the methods presented by Williamson and

Lenton [2015] (in section 3.1), and the use of EOFs for dimension-reduction (in section 3.2).

These two techniques are applied, in section 3.3, to multivariate time series data from

models of three simple dynamical systems: two are examples taken from Williamson and

Lenton [2015], and the results are successfully reproduced; the third example is the Van

der Pol oscillator, which allows us to test the same methods in a novel system. In chapter 4

these same methods will be applied to real measurements of physical variables, alongside

the one-dimensional techniques (see chapter 2).

In section 3.5 the method of using EOF for dimension reduction prior to the application

of an EWS indicator is tested analytically, thus providing a step towards a mathematically

rigorous understanding of the commonly used method. In section 3.6 we present an

alternative formulation of the EOF method for dimension reduction.

In section 3.7 we present a method to visualise early warning signals in a dynamical

system over a 2D field, and apply this method to data from a simple model of a progressing

"front", in which the variable is modelled at discrete grid points. Again, in chapter 4,

this method will be applied to real measured physical variables, that is, the time series of
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geophysical variables measured at geographically separated locations in the vicinity of an

approaching tropical cyclone with monitoring of sea-level pressure.

3.1 Multivariate extension of the autocorrelation function

Williamson and Lenton [2015] introduce a method to anticipate bifurcations in dynamical

systems with more than one variable. The method is a higher-dimensional analogue of the

one-dimensional ACF1 indicator. Indeed, we note the similarities between the equation

used to calculate the lag-1 autocorrelation coefficient a in the one dimensional time series

{xt}:

a =
∑t(xt+1xt)− x2

∑t(x2
t )− x2 , (3.1)

and the equation given by the authors:

A =

[
∑
t
(xt+1x⊤t )−x2

][
∑
t
(xtx⊤t )−x2

]−1

, (3.2)

where {xt} is a multivariate time series. By linearising and discretising, one may approxi-

mate the one-dimensional time series ẋ = f (x)+η(t) as the auto regressive system

xt = axt−1 + c+ηt , (3.3)

where c is a scalar value and ηt is Gaussian noise. An AR(1) model of a system may

therefore be constructed based only on time series data, by calculating the parameter a

using equation 3.1, that is, the lag-1 autocorrelation coefficient. In the same way, the matrix

A may be used to model an N-dimensional system ẋ(i) = f (x(1), ...,x(N))+η(i) using the

analogous form

xt = Axt−1 + c+ηt , (3.4)

where c is a constant vector and ηt is a vector with each element being an independent

Gaussian white noise term. In this linear system a tipping point occurs when an eigenvalue

of A has the value one. It is, therefore, changes in the eigenvalues of A that must be studied

and these are calculated easily once the matrix A has been found from time series data,

according to equation 3.2. However, it is more useful to study the eigenvalues of the

Jacobian of the system equations, since their behaviour is already well studied in many
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contexts. For example, a Hopf bifurcation is characterised by a conjugate pair of Jacobian

eigenvalues crossing the imaginary axis [Strogatz, 2014]. Tracking the changes in the

imaginary part of one of these eigenvalues as it approaches zero therefore gives an early

warning signal of the Hopf bifurcation.

Given a system of equations, for example the two-dimensional system

ẋ = f (t,x,y),

ẏ = g(t,x,y),
(3.5)

which has a stable centre at the point x⋆ = (x⋆,y⋆), we can calculate the Jacobian matrix

explicitly, evaluated at x⋆:

J(x⋆) =


d f
dx

∣∣∣
x⋆

d f
dy

∣∣∣
x⋆

dg
dx

∣∣∣
x⋆

dg
dy

∣∣∣
x⋆

 . (3.6)

This allows us to study the effect of a small perturbation in x or y and, as noted, the

eigenvalues of the Jacobian matrix are well studied in many dynamical systems [Thompson

et al., 2002].

However, we are interested in detecting and anticipating tipping points in time series,

not analytically defined systems. Williamson and Lenton [2015] provide a method for

estimating the eigenvalues λk of the Jacobian, given a time series. Rather than attempting to

calculate the λk from a time series, the authors calculate the matrix A directly using equation

3.2 and then refer to the discretised system (equation 3.4), in which A = I+ J(x⋆)∆t. The

first order approximation

A = I+ J(x⋆)∆t ≈ exp(J(x⋆)∆t) (3.7)

is used to recover the Jacobian eigenvalues λk from the eigenvalues ak = |ak|exp(iϕ) of A,

with the relations

R(λk) =
1
∆t

ln |ak| ,

I(λk) =
1
∆t

ϕk .

(3.8)
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The eigenvalues λk are then, themselves, tipping point indicators. To obtain an EWS, the

method then involves calculating the matrix A from the given time series data in a sliding

window, similarly to the one-dimensional ACF1 indicator, and recovering the Jacobian

eigenvalues using equation 3.8.

We note that this method is only effective as an EWS if the type of expected tipping,

particularly a bifurcation, is known in advance, since it is necessary to know which

eigenvalue to study in order to use that eigenvalue as an indicator. However, an obvious

increase or decrease in either eigenvalue may provide an indication that a critical transition

is happening, and could therefore lend confidence to an EWS derived by another method.

The method, however, would certainly be useful in the detection and classification of

tipping points, when applied retrospectively. In systems of more than two variables the

situation is more acute because of the increased number of eigenvalues. Identifying

conjugate pairs may lead to some insight as to which could be indicators (depending of the

type of bifurcation), and will reduce the number of distinct eigenvalues.

Analysis of a Hopf bifurcation

In order to analyse this method further we take, as an example, the Van der Pol oscillator

ẋ = µ
(
x− 1

3x3)+ y,

ẏ = −x,
(3.9)

which experiences a Hopf bifurcation at µ = 0 if µ varies. That is, the eigenvalues are a

complex conjugate pair whose imaginary parts cross the imaginary axis at µ = 0 [Strogatz,

2014]. In section 3.3 we shall integrate this system numerically with added noise and apply

the EWS method described here to the resulting time series. Here we consider only the

analytic process of the method.

We see that the system has a stable point at x⋆ = (0,0) and the Jacobian is found to be

J(x⋆) =

 µ(1− x2) 1

−1 0

∣∣∣∣∣∣
(0,0)

=

 µ 1

−1 0

 , (3.10)
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with eigenvalues

λ =
1
2

(
µ ±

√
µ2 −4

)
(3.11)

=
µ

2
± i

√
4−µ2

2
where |µ|< 2 . (3.12)

We obtain the matrix A by discretising according to the Euler method: xt+1

yt+1

=

 xt

yt

+∆t

 µ(xt − x3
t /3)+ yt

−xt

 . (3.13)

We use the linearisation x3 = 0 to continue: xt+1

yt+1

=

 xt

yt

+∆t

 µxt + yt

−xtt

 (3.14)

=

 1+∆tµ ∆t

−∆t 1

 xt

yt

 . (3.15)

The matrix in equation 3.15 is the matrix A, with eigenvalues

a =
2+∆tµ

2
± i

∆t
√

4−µ2

2
, where |µ|< 2 . (3.16)

Or a = |a|exp(iϕ), where

|a| =
√

∆t2 +∆tµ +1 ,

ϕ = arctan
(

∆t
√

4−µ2

2+∆t

)
.

(3.17)

These eigenvalues of A can now be used to reconstruct the eigenvalues of the Jacobian.

Referring to equations 3.8, and using the power series expansions arctan(x) = x−x3/3+ ...

and ln(x+1) = x− x2/2+ ... , we find

R(λ ) =
1
∆t

ln |a|= µ

2
+

∆t
2
+∆t

µ2

4
+O(∆t2) , (3.18)

I(λ ) =
1
∆t

ϕ =

√
4−µ2

2+∆t
+O(∆t2) . (3.19)
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If we use the approximation ∆t = 0, which is valid for very small ∆t, these agree exactly

with the Jacobian eigenvalues found in equation 3.12. Thus, from the linearised system

xt+1 = Axt in equation 3.15, we have reconstructed the Jacobian eigenvalues, evaluated at

the stable centre, of the non-linearised system (equation 3.9), with only the assumption

that ∆t is close to zero.

3.2 Dimension reduction using EOFs

In this section we study the technique of dimension reduction using empirical orthogonal

functions (EOFs), also known as principal components analysis. This technique is widely

used in geosciences and meteorology to aid the study of a large, multivariate data set

[Bjornsson and Venegas, 1997; Stephenson and Benestad, 2000]. Held and Kleinen [2004]

use the EOF technique prior to applying the ACF1 indicator to a set of gridded time series,

relying on the observation that an increase in autocorrelation is typically accompanied by

an increase in variance. Held and Kleinen [2004] use this observation to argue that in a

multi-dimensional system one should project onto the first EOF (the basis vector for which

the variance of the system is maximised) as this is the one-dimensional basis in which the

rise in autocorrelation (and also variance) will occur.

We note that the basis in which the variance is maximal may not be the same as

the basis in which the variance is increasing. At least, this is not obvious a priori. In

some dynamical systems it may be that while autocorrelation rises before a tipping point,

variance does not [Livina et al., 2012; Gsell et al., 2016]. This observation is investigated

further in section 3.5.

In this section we explain the EOF method for dimension reduction. In section 3.3

we apply this method to three two-variable time series prior to using the one-dimensional

ACF1, DFA and PS indicators.

3.2.1 Empirical orthogonal functions

The EOF method involves projecting a data matrix Y of N time series onto a different basis

to obtain N new time series. This basis is orthogonal and is constructed so that projecting

Y onto the first basis vector maximises the variance of the projection. The second basis

vector is such that projecting Y onto it will maximise the variance given that it must be
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orthogonal to the first, and so on. Thus, the first one or two EOF scores may capture most

of the variance of the whole data set of hundreds of time series.

We consider N observations x1,x2, ...,xN of a P-dimensional system, collected in the

N ×P matrix X , shown in equation 3.20.

X =


x⊤1
...

x⊤N

=


x11 . . . x1P
... . . . ...

xN1 . . . xNP

 . (3.20)

The method requires a mean-centred series so it is common to replace the series [xn]
N
n=1

with a new set of series [yn]
N
n=1, were the ith element of yn, which we call y(i)n , is given by

y(i)n = x(i)n − 1
N

N

∑
j=1

x(i)j , (3.21)

so that a new matrix Y is created from the N time series y1,y2, ...,yN , similar to the matrix

X in equation 3.20. We then project Y onto a different basis to obtain the matrix T of EOF

scores. The first column of T being the first EOF score. We now calculate the matrix W of

basis vectors, these are the eigenvectors of the covariance matrix

C =
1

N −1
Y⊤Y. (3.22)

The eigenvector corresponding to the largest eigenvalue is the first column of the matrix

W , and so on. Then we are able to calculate T =YW . Often, only the first one or two EOF

scores are required, therefore we may create a smaller matrix W whose columns are the

first one or two eigenvectors of C (those corresponding to the largest eigenvalues).

The method described above may be used to reduce the dimension of a system from

many hundreds or thousands, to ten or fewer, particularly in cases when the multidimen-

sionality arises from a variable having been measured or modelled at discrete points of

a grid. In this study, we are particularly interested in reducing the dimension to just one,

so that the one-dimensional EWS indicators described in chapter 2 may be applied. The

choice of W is therefore simple: the column vector which is the eigenvector of C corre-

sponding to the largest eigenvalue. Having obtained the one-dimensional series T = YW ,

in this case in the form of an N×1 matrix, the sliding-window or "fingerprinting" indicator

methods may be applied with an appropriate window size.
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3.2.2 EOFs and tipping point indicators

Having obtained the principal EOF score we are able to calculate the one-dimensional

tipping point indicators: either the ACF1, DFA or PS indicator, or any other available.

Alternatively, we can say that we obtain the principal EOF eigenvector, the principal

eigenvector of C (equation 3.22), and then project the multi-variate time series onto this

vector prior to the calculation of the tipping point indicator. This allows us to project each

window of data separately, giving rise to the possibility of updating the EOF eigenvector

during the indicator calculation.

There are three available approaches to obtaining the principal EOF eigenvector, we

may use either

1. the entire available time series, or

2. only the current window of data, or

3. the entire available time series up to the end of the current window.

The first option implies using the part of the time series which lies in the "future" of

the current window. This is not comparable to practical prediction problems but is the

most convenient and least computationally expensive. This option is sufficient for the

purposes of this chapter where we are experimenting with the application of these methods

in principle. In chapter 4, where these methods are applied to real geophysical data, it will

be necessary to choose the second or third options, which are more applicable to practical

problems.

The second option restricts the number of available data points more so than the third

option, but it does mean that in each specific window the series is projected onto the vector

which maximises its specific variance. When the first option is used, a principal EOF score

can be obtained, that is, a new one-dimensional time series, and then the one-dimensional

tipping point indicators can be calculated. When using the second or third option, an

individual EOF principal eigenvector is obtained in each window and the current window

is projected onto that vector to obtain a local EOF score for that window. A single value of

the one-dimensional tipping point indicator is then calculated for that individual window.

For a multi-variable time series [Xt ]t=0,...,T , we calculate the ith value of the tipping

point indicator series in the window Y (i) = [Xt ]t=(i−s+1),...,i where s is the window size. To

obtain the one-dimensional time series of length s used in the calculation of the tipping
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point indicator value we must project the window Y (i) onto the direction of the vector

wt1,t2 which is the principal eigenvector obtained from the EOF analysis of the time series

segment [Xt ]t=t1,...,t2 . We are now able to properly describe the alternative choices:

Definition 3.2.1 (Indicator based on a global EOF projection) The entire time series is

projected onto the principal EOF eigenvector obtained from the entire time series of data.

That is, t1 = 0 and t2 = T .

Definition 3.2.2 (Indicator based on a windowed EOF projection) At each stage dur-

ing the calculation of the indicator, the current window of data is projected onto the

principal EOF eigenvector obtained from the current window of data. That is,

t1 = i− s+1,

t2 = i.
(3.23)

Definition 3.2.3 (Indicator based on a moving EOF projection) At each stage during

the calculation of the indicator, the current window of data is projected onto the principal

EOF eigenvector obtained from the the entire time series up to the end of the current

window of data. That is,

t1 = 0,

t2 = i.
(3.24)

The last of these, the ‘moving EOF projection’, will possibly introduce biases since the

length of the time series used to create the EOF projection is different at each time step.

In this chapter, generally, a global EOF projection is used for convenience. However, an

investigation of the other options is presented in section 3.3.3. In chapter 4 the windowed

EOF projection is used for accuracy.

3.3 Application of methods to bifurcating dynamical sys-

tems

In this section we reproduce the results presented by Williamson and Lenton [2015], in

which the method described in section 3.1 is applied to two two-dimensional dynamical

systems: one experiencing a unique bifurcation resembling a saddle-node bifurcation,
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and one experiencing a Hopf bifurcation. The value of the relevant estimated Jacobian

eigenvalue, which is used by Williamson and Lenton [2015] as an early warning indicator to

provide an EWS, we call the eigenvalue indicator, to maintain consistency when referring

also to the ‘ACF1 indicator’, for example. Of course, this concept differs in the respect

that it requires the relevant eigenvalue, and often only the relevant part (real or imaginary).

In two dimensions it is often the case that the eigenvalues are a complex conjugate pair,

in which case it does not matter which one is selected as the ‘indicator’. As remarked in

section 3.1, a knowledge of a particular system, and which variety of bifurcation is to be

anticipated, inform the user as to whether the real or imaginary part will provide an EWS

[Williamson and Lenton, 2015].

We also apply the eigenvalue indicator method to a Van der Pol oscillator which

experiences a Hopf bifurcation, as an independent test of the method. Since we will be

referring to these three systems often (near-homoclinic, Hopf bifurcation, and Van der Pol

oscillator), we will call them systems A, B and C respectively for brevity, wherever the

meaning is obvious.

In addition, we provide a comparison between this method and the method of using

EOFs for dimension reduction [Held and Kleinen, 2004]. We reduce the dimension of

the time series data obtained from the dynamical systems from two to one, using the EOF

method, in order to apply the one-dimensional ACF1, DFA and PS indicators described in

chapter 2.

The dynamical systems studied in this section are presented as systems of stochastic

differential equations. As stated in section 2.4, all SDEs throughout this thesis, where they

have been integrated numerically to produce a time series, have been so using the Milstein

method (see equation 2.98, section 2.4).

3.3.1 Application of the eigenvalue indicator

Here we integrate three two-dimensional dynamical systems and calculate the eigenvalue

indicators for the resulting time series. We also calculate the EOF projection of the

resulting two-dimensional time series and calculate the ACF1 and DFA indicators of the

projection. In section 3.3.2 we also apply the novel PS indicator method. The first two

systems we investigate (systems A and B) have been chosen for study because they are

presented as examples by Williamson and Lenton [2015] when those authors apply their
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Fig. 3.1 A single realisation of the system in equation 3.25 with initial point
(
√

0.2,0.1). The system spirals around the moving centre at (
√

α,0), α is
given in equation 3.33, until t = 100, α = 0, when the bifurcation occurs and
the system tends towards infinity in the negative x and negative y directions.

own technique to each. In this section we attempt to accurately replicate those results, and

also apply our own EWS methods, and so we choose to study the same dynamical systems.

The near-homoclinic orbit (System A)

We consider the system given by equations

ẋ = y+η(x),

ẏ = α − x2 +η(y),
(3.25)

where η(x), η(y) are white noise terms. If we ignore these noise terms, we find that the

system has steady state solutions at (x,y) = (±
√

α,0). The Jacobian of the system is given

by

J(x,y) =

 0 1

−2x 0

 , (3.26)

and has eigenvalues λ =±
√
−2x. The eigenvalues at the stable solutions are:

• at (−
√

α,0): λ =±(4α)1/4, indicating that this is a saddle,

• at (+
√

α,0): λ =±i(4α)1/4, indicating that this is a stable centre.



3.3 Application of methods to bifurcating dynamical systems 123

Williamson and Lenton [2015] allow α to vary and to approach zero from above. At α = 0

the two stable points collide resulting in a bifurcation and there are no stable solutions for

α < 0. Before the bifurcation, the evolution of the system resembles a near-homoclinic

orbit around the stable centre. This orbit becomes more and more pointed as the bifurcation

approaches as the system spends more and more time close to the saddle point on each

period. This looks like a system approaching a homoclinic bifurcation, in which the orbit

eventually joins with the saddle and becomes homoclinic, and then disconnects from the

saddle with further change in the system parameter (see equation 1.38, page 28 for an

example of such a system). In this system, however, the orbit shrinks around the stable

centre and, at the point of bifurcation, the centre meets with the saddle at the same time

at which the orbit shrinks down to zero-radius, so the orbit does not actually become

homoclinic.

If we consider the system equations without the stochastic component, that is,

ẋ = y,

ẏ = α − x2,
(3.27)

we note this is equivalent to the second order differential equation

ẍ = α − x2, (3.28)

which has potential function

V (x) =
x3

3
−αx, (3.29)

since this results in

ẍ =− ∂

∂x
V (x) . (3.30)

Since the energy

E(x) =
ẋ2

2
+V (x) =

y2

2
+

x3

3
−αx , (3.31)

is a conserved quantity, that is, Ė(x) = 0, E(x) = c for some constant c, then we have that

the solutions to the ODE are given by

y2

2
+

x3

3
−αx = c . (3.32)
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Fig. 3.2 The solutions for System A (see equation 3.32) are plotted for α = 1
with 10 values of c in the range −1 ≤ c ≤ 1. A single stable point occurs at
(1,0) while a saddle exists at (-1,0).

This set of solutions is represented in figure 3.2 where the solution is plotted for 10 values

of c in the range −1 ≤ c ≤ 1, with α = 1. We note the stable point at x =
√

α = 1, y = 0

surrounded by concentric egg-shape ‘circles’. Thus, the system is not spiralling inwards

toward the stable point, nor outwards.

Williamson and Lenton [2015] consider a point at or close to the stable centre (+
√

α,0),

with noise terms η(x), η(y) in equation 3.25 having standard deviation of 0.01. At this

centre the eigenvalues of the Jacobian have zero real part but imaginary part of ±(4α)1/4.

If we take the eigenvalue with positive imaginary part we expect to see it decrease as α

decreases to zero. This is the early warning signal of the bifurcation.

We integrate the system in equations 3.25 from t = 0 to t = 100, using a varying

parameter

α(t) = 0.2−0.002t, (3.33)

so that the bifurcation when α = 0 will occur at t = 100. Noise terms η(x), η(y) are

independent with zero mean and standard deviation 0.01 and the solution is sampled at

intervals of ∆t = 0.5. The result of one such integration is plotted in figure 3.1.

We now attempt to provide an early warning signal of the impending bifurcation. The

autocorrelation matrix A is calculated using equation 3.4 in a sliding window of 100 points.

The Jacobian eigenvalues are recovered using equations 3.8 and the real and imaginary

parts of the first eigenvalue (the eigenvalue with positive imaginary part) are calculated.

This procedure is applied to ten realisations of the system, and the mean is shown in
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Fig. 3.3 Tipping point indicators applied to System A (equation 3.25) which
experiences a bifurcation at t = 100. Panels a and b show the real and imagi-
nary parts of the first reconstructed eigenvalue of the Jacobian matrix, as in
equation 3.8. Panels c and d show the ACF1 and DFA indicators calculated
with a window size of 100 points, applied to the one-dimensional time series
obtained by applying EOF dimension reduction to the data. The system was
integrated ten times and the mean over ten data sets is plotted, along with error
of one standard deviation (dashed lines).
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Fig. 3.4 A single realisation of the system in equation 3.39 with initial point
(0,0). The system oscillates about the stable point (0,0) until t = 58 when the
bifurcation occurs and the stability is lost.

figure 3.3a,b with error bars of one standard deviation. The figure shows a successful

reproduction of the results of Williamson and Lenton [2015]: the real part of the eigenvalue

is ≈ 0 with little variability, as expected for µ > 0, and the decreasing imaginary part of

the eigenvalue predicates the bifurcation as α → 0, as predicted by the analysis.

As a comparison, the ACF1 and DFA indicators are applied to the same data using a

100 point window size and after reducing the dimension of the system using EOFs. The

results are shown in figure 3.3c,d. Both indicators show a general upwards trend prior to

the bifurcation at t = 100, but the ACF1 indicator contains more variability.

System experiencing a Hopf bifurcation (System B)

We now consider the second example given by Williamson and Lenton [2015], the system

given by the polar equations

ṙ = µr− r3,

θ̇ = 1+ r2.
(3.34)

The system is a classic example of a supercritical Hopf bifurcation. The normal form of

the Hopf bifurcation is

ż = z
(
(λ + i)+b|z|2

)
, (3.35)
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where z and b = α + iβ are complex numbers. If we rewrite the system in equation 3.34

according to z = exp(iθ), we get

ż = ṙeiθ + irθ̇eiθ

= reiθ
(

ṙ
r
+ iθ̇

)
= reiθ ((µ − r2)+ i(1+ r2)

)
= z
(
(µ + i)+(i−1)|z|2

)
.

(3.36)

The system has stable solution at r = 0 for µ < 0. At µ = 0 a bifurcation occurs and

r = 0 becomes unstable, whilst two stable solutions for r are created at r =±√
µ . Since

θ increases at a constant rate θ̇ = 1+µ , or almost constant if an additional noise term is

introduced into equation 3.34, this results in a stable limit cycle with radius r =
√

µ .

We may also investigate the nature of the bifurcation by studying the eigenvalues of

the Jacobian of the system equations. In Cartesian rather than polar coordinates we have

J(x,y) =

 µ − (x+ y)2 −2x2 −1− (x+ y)2 −2y2

1+(x− y)2 +2x2 µ − (x− y)2 −2y2

 . (3.37)

At the stable point r = 0 (i.e. (x,y) = (0,0)), the matrix J(x,y) has complex conjugate

eigenvalues λ = µ ± i. The system therefore experiences a Hopf bifurcation as µ ap-

proaches zero from below, characterised by the Jacobian eigenvalues moving from the

negative-real to the positive-real half of the complex plane.

We reproduce the numerical results of Williamson and Lenton [2015] using a varying

parameter

µ(t) = 0.05t −2.9 , (3.38)

and integrate the system from t = 0 to t = 60 with the solution given at intervals ∆t = 0.2.

The bifurcation at µ = 0 will occur at t = 58. Gaussian noise terms η(r) and η(θ) are also

added to the system equations for r and θ respectively:

ṙ = µr− r3 +ηr ,

θ̇ = 1+ r2 +ηθ ,
(3.39)
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where ηr, ηθ both have zero mean and standard deviation 0.01. The result is shown in

figure 3.4.

As in the previous example, the autocorrelation matrix A is calculated using equa-

tion 3.4 in a sliding window of 100 points. The Jacobian eigenvalues are recovered

using equation 3.8 and the real and imaginary parts of the first eigenvalue are plotted in

figure 3.5a,b.

In this example, as in the previous, we are able to successfully reproduce the results of

Williamson and Lenton [2015].

The Van der Pol oscillator (System C)

Here, we consider another example of a Hopf bifurcation, allowing us to apply the method

introduced by Williamson and Lenton [2015] to a novel system. We consider the Van der

Pol oscillator [Van der Pol, 1926] given by

ẍ−µ(1− x2)ẋ+ x = η , (3.40)

where the stochastic forcing term η is white noise with standard deviation 0.01. We may

also write equation 3.40 as a coupled system of first order ODEs:

ẋ = µ
(
x− 1

3x3)+ y,

ẏ = −x+η .
(3.41)

The system has a stable equilibrium point (ẋ = ẏ = 0) at (x,y) = (0,0) for µ < 0 which

becomes the centre of a stable limit cycle for µ > 0. The Jacobian of this system is

calculated:

J(x,y) =

 µ(1− x2) 1

−1 0

 . (3.42)

Evaluated at the stable point (0,0), the two complex-conjugate eigenvalues of the Jacobian

are λ = 1
2(µ ±

√
µ2 −4). We therefore expect that the real part of both of the eigenvalues,

equal to µ/2, will approach zero as µ approaches zero from below, i.e. as the system

approaches the bifurcation.
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Fig. 3.5 Tipping point indicators applied to System B (equation 3.39) which
experiences a Hopf bifurcation at t = 58. Panels a and b show the real and
imaginary parts of the first reconstructed eigenvalue of the Jacobian matrix, as
in equation 3.8. Panels c and d show the ACF1 and DFA indicators calculated
with a window size of 100 points, applied to the one-dimensional time series
obtained by applying EOF dimension reduction to the data. The system was
integrated 100 times and the mean over the 100 data sets is plotted, along with
error of one standard deviation (dashed lines).
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Fig. 3.6 A single realisation of the Van der Pol system in equation 3.41 with
initial point (0,0). The system oscillates about the centre at (0,0) until t = 380,
µ = 0, when the Hopf bifurcation occurs and stability is lost.

We integrate the system in equations 3.41 from t = 0 to t = 400 using a time dependent

parameter

µ(t) =−0.38+0.001t, (3.43)

so that the bifurcation µ = 0 will occur at t = 380. Using the method described, we

estimate the first eigenvalue of the Jacobian in a sliding window of 100 points. The mean

(with error bars of one standard deviation) of 10 such experiments is shown in figure 3.7.

We note that the real part of the eigenvalue increases as expected and provides an early

warning signal of the impending Hopf bifurcation.

3.3.2 Application of the novel PS indicator

We also calculate the PS indicator in the three systems described in this section, in addition

to the ACF1 and DFA indicators and the Jacobian eigenvalues as shown in figures 3.3-3.7.

Systems A, B and C (see equations 3.25, 3.39 and 3.41) are integrated and the PS indicator

is calculated, in all three cases, using a sliding window of 100 points, similarly to the other

indicator methods. This is done ten times for each system and the mean of the PS indicator

is found, as shown in figure 3.8. We see that the PS indicator does not provide an EWS for

the bifurcation in systems A and C, and the signal is very weak, obscured by its variability,

in system B. In all three cases the DFA indicator, as presented in figures 3.3-3.7, provides

a clearer EWS.
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Fig. 3.7 Tipping point indicators applied to System C, the Van de Pol oscillator
(equation 3.41), which experiences a Hopf bifurcation at t = 380. Panels a
and b show the real and imaginary parts of the first reconstructed eigenvalue
of the Jacobian matrix, as in equation 3.8. Panels c and d show the ACF1 and
DFA indicators calculated with a window size of 100 points, applied to the
one-dimensional time series obtained by applying EOF dimension reduction
to the data. The system was integrated ten times and the mean over ten data
sets is plotted, along with error of one standard deviation (dashed lines).
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Fig. 3.8 PS indicator applied to the three systems described in this section after
reducing each system to one dimension using the EOF method. The results
for systems A, B and C are shown in panels a, b and c respectively. In each
plot the bifurcation occurs at the last point on the t-axis: t = 100, t = 58 and
t = 380 respectively. Each system was integrated ten times and the mean over
ten data sets is plotted, along with error of one standard deviation (dashed
lines).
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Fig. 3.9 ACF1 indicator applied to System B in conjunction with EOF dimen-
sion reduction. Three different options for the EOF calculation are used: the
global, windowed and moving EOF projections (red, blue and green respec-
tively). For each of the three options, the system was integrated ten times
and the mean over ten data sets is plotted, along with error of one standard
deviation (dashed lines).

3.3.3 Investigation of updated EOF projection with the ACF1 indica-
tor

In section 3.2.2 it is remarked that in a practical prediction problem one cannot obtain a

single EOF score with which to calculate a tipping point indicator. More sensibly, the EOF

eigenvector, onto which the multi-variable time series is projected, would be updated at

each iteration of the indicator calculation. Here we once again apply the ACF1 indicator to

system B (see figure 3.5b) but present the other available options. Figure 3.9 shows the

result of using the global EOF projection (as in figure 3.5b) alongside the windowed EOF

projection, in which only the current window of data is considered, and the moving EOF

projection, in which the EOF eigenvector is updated using new data as time progresses

without disregarding any previous data.

We note that the three options do not differ significantly. In particular, the fact that the

global and windowed approaches yield very similar results demonstrates that the principal

EOF eigenvector does not change significantly over time. In systems where the EOF

eigenvector is likely to change over time, it would be best to use the windowed projection

approach for practical problems so that the optimal variance-maximising projection is



134 Multivariate tipping point techniques

always used. However, this may introduce noise-induced error, particularly when the

window size is short.

3.3.4 Discussion of results

In this section we have calculated the ACF1, DFA and PS indicators for three different

dynamical systems in order to provide an early warning signal. Unlike in chapter 2 (see

section 2.5) we did not have a one-dimensional time series to which these methods might

be applied, the EOF projections of the two-dimensional time series were therefore used.

In addition we have obtained an additional early warning signal, from the ‘eigenvalue

indicator’, using the method of Williamson and Lenton [2015] (see section 3.1).

In the cases of Systems A and B the results of Williamson and Lenton [2015] are

faithfully reproduced. The imaginary part of the first eigenvalue decreases as an EWS

of the bifurcation in System A, and the real part of the first eigenvalue increases as an

EWS of the Hopf bifurcation in System B. When applied to System C, the Van der Pol

oscillator, the real part of the first eigenvalue increases, which is to be expected since the

tipping point in this case is also a Hopf bifurcation. We therefore verify the method in a

new system, where the same indicator predicts the same variety of bifurcation (Hopf).

The one-dimensional EWS methods introduced in chapter 2 were applied to the EOF

projection of the time series in each case. We find that for Systems A and B these methods

do provide an EWS in the sense that the indicators increase prior to the tipping point.

That is, the indicators are higher in each case when the system parameter is closer to the

critical value. This increase is clearer in the ACF1 and DFA indicators than in the PS

indicator, and we note that the PS indicator also showed the least significant increase in all

the one-dimensional systems studied in chapter 2, so this is not surprising. In the case of

System A, all three indicators suffer from large fluctuations which disguise any increase

due to the presence of the tipping point itself. These fluctuations are likely due to the

oscillations in System A, which orbits around the stable centre until it crosses the saddle

node and diverges. This oscillation will be investigated further, and solutions proposed, in

section 3.4.

In the case of System C, the Van der Pol oscillator, none of these three indicators

provided an EWS. The ACF1 and PS indicators remained approximately constant as the

bifurcation approached, whilst the DFA indicator apparently decreased significantly. In

this case the eigenvalue indicator performed much better than the combination of the
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EOF projection and the one-dimensional indicators. The problem may lie, again, with the

oscillations in the system.

3.4 Dealing with periodicity in an orbiting system

The poor performance of the early warning indicators, and the DFA indicator in particular,

when applied to System A (equation 3.25), may be in part attributable to the periodicity in

the system since the methods are not designed with this aspect in mind [Williamson et al.,

2016]. The data may appear highly correlated even far from the bifurcation due to the fact

that the system is following an orbit, although each orbit is in fact simply a noisy variation

of the last. The DFA method removes trends only by subtracting a quadratic or cubic fit to

the data and will not necessarily eliminate the correlation due to an orbit, particularly if

more than one periods of the orbit occur within a single DFA window.

In this section we investigate the effect of the presence of the orbit on the performance

of the early warning indicators and attempt to improve performance by replacing the time

series with its Poincaré map. As an example we again use System A:

ẋ = y+η(x),

ẏ = α − x2 +η(y),
(3.44)

(reprinting of equation 3.25) where η(x) and η(y) are Gaussian white noise terms and α

is a parameter affecting the nature of the stable states. For α > 0 the system has a stable

centre at (x,y) = (
√

α,0) and a saddle point at (-
√

α,0), at α = 0 the two points meet

and there are no stable solutions for α < 0. If the system is initially close to the stable

centre (
√

α,0) it will orbit around this point, eventually either converging towards the

centre or spiralling outwards until it leaves the orbit and diverges to infinity once it reaches

the saddle node. Experimentally we find that for α = 1 the system diverges if the initial

radius (with (
√

α,0) as the centre) is greater than ≈ 0.24. As α decreases toward zero this

limiting radius also decreases so than an initially convergent system becomes divergent

close to the bifurcation.
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Fig. 3.10 System A is integrated numerically with ∆t = 0.01 and α(t) =
1− 10-4t. The Poincaré return points for each orbit are also plotted (black
circles).

3.4.1 Methods

In the original study of System A (see figure 3.3, page 125) the periodicity was ignored

and the early warning signals calculated using the raw data as an output of the numerical

integration of the system equations. Here we present two alternative approaches to dealing

with the periodicity.

An approach based on the Poincaré map

For a deterministic system z(t) which orbits about a central point, the Poincaré map (see

Strogatz [2014]) of a point z(t0) is the point z(t0 + τ) = P(z(t0)) such that the system

has completed one periodic orbit during the time τ . If P(z(t0)) = z(t0) then the system

has returned to exactly the same point after one period and therefore, if the system is

deterministic, will continually repeat the same trajectory.

In order to obtain a time series without oscillating behaviour, we consider the series of

iterated Poincaré maps zn = P(zn−1) staring with an initial point z0. In the case of System

A (equation 3.44) we take z0 to be the first point on the half line y = 0, x <
√

α , so that

the series [zn] is the series of all the points which cross this half line as the system orbits

around the point (
√

α,0). We record only the x coordinates since y = 0 always, giving a

one-dimensional time series.
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Fig. 3.11 Three separate interpretations of the System A time series in x and y.
Panel a: the time series are combined using the EOF method to obtain a time
series in a single variable. Panel b: the radius R (red) and also the Poincaré
map of return points (black circles). Panel c: a smoothing applied to the radius
where the radius is averaged over each orbit.

A periodic smoothing approach

A potential drawback of the above Poincaré map method is that it reduces the length of the

original time series by recording only one point per orbit. Alternatively, we may adopt a

smoothing approach by taking the moving-mean of the data in a sliding window the length

of which is the period of the orbit.

In practice, for a two-dimensional time series in x and y, we translate into polar

coordinates (r,θ) centred on the sable point (x1,y1) about which the system orbits. That is,

x = x1 + r cos(θ) ,

y = x2 + r sin(θ) .
(3.45)

Then from the original time series (r(t),θ(t)) we have the new series (r̄(t),θ(t)) where

r̄(tk) =
1
n

tk

∑
t=tk−n+1

r(t) , (3.46)

and n is the smallest integer > 0 such that θ(tk) = θ(tk−n). That is, tk − tk−n is the period

of the orbit. We note that this period is not necessarily constant and so n is itself a function

of time. We take the mean of r(t) over all times between the current time t and the previous

time t0 at which θ was last equal to the current value of θ .

Then, when studying the system, we are able to use the one dimensional time series r̄.
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3.4.2 Results

In figure 3.10 one integration of System A is presented. We use system equations 3.44 with

the standard deviation of both noise terms η(x) and η(y) set as 0.1. In order to simplify the

calculations involved in the two methods described above, we make a simple change of

coordinates so that the stable centre is at the origin and the saddle point at (−2
√

α,0) is

moving towards it as α goes towards zero. Also marked in figure 3.10 are the Poincaré

return points, where the system crosses the negative x axis once on each orbit.

The system is integrated (using the Milstein method) with a time step ∆t = 0.01 in

the range t ∈ [0,104], a significantly longer time period than was used in the analysis in

section 3.3 (see figures 3.1, 3.3). Accordingly, the parameter α is varied more slowly,

according to the formula

α(t) = 1−10-4t, (3.47)

so that the bifurcation does not occur until t = 104. The initial value of α is therefore

1, and we use an initial point (x,y) = (−0.1,0) so that the system begins by orbiting the

centre at a radius ≈ 0.1. The observed tipping point therefore occurs earlier than t = 104

since the system will cross the saddle node and ‘blow up’ before the two stable points

meet. We disregard any part of the time series after r > 5. In this particular integration, the

system began to diverge at around t = 1400.

In figure 3.11 three separate interpretations of the system time series are presented. In

panel a the time series in x and y are combined using the EOF method to obtain a time

series in a single variable. In panel b we plot the radius R over time and also the Poincaré

map where the radius is recorded only at the return points. In panel c, then, the smoothing

method, as described above, has been applied to the data.

The resulting time series from all three methods were subject to the PS, DFA and

ACF1 indicators, as shown in figure 3.12. The ACF1 indicator appears to provide the

expected EWS when applied to the dimension-reduced, EOF time series, but no clear EWS

is observable in any of the indicators applied to the time series produced by either the

Poincaré map method or the periodic smoothing technique.
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Fig. 3.12 The ACF1 (top row), DFA (middle row) and PS (bottom row) indicators are calculated for the one dimensional
time series resulting from each of the three methods illustrated in figure 3.11: The EOF method (column a), the Poincaré
map approach (column b) and the smoothing applied to the radius (column c). We note that neither the Poincaré map nor
the smoothing approaches result in any distinguishable EWS in any of the indicators.
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3.5 Justification of EOF dimension reduction

In this section we attempt to justify the use of EOF for dimension reduction in an early

warning signal context, as presented in section 3.2. By taking the first EOF score of a set

of time series, one is projecting on the basis such that the variance is maximised. However,

one may favour a dimension which happens to be noisy, having a large variance but no

interesting features indicative of a tipping point, whereas viewing the data set along another

dimension, which contains lower variability, may yield a useful early warning signal. It is

clear that including a single time series composed of white noise with very large variance

will make the first EOF score useless. It should be hoped that such cases can be removed

before applying the EOF method. However, even in less artificial cases, it is not obvious

that viewing a system along a dimension such that the variance is maximised will provide

the best EWS in a tipping points context. It may be the case that, in one projection, the

variance in the system is large, but constant. In another projection the variance may be

small, but increasing. The EOF method will give the former projection, since it finds the

projection such as to maximise the variance. However, in the context of tipping points, one

would of course prefer the latter since it is only the increase in variance which can be a

useful EWS. The same argument may be made for autocorrelation, if an alternative EOF

method sought to maximise autocorrelation rather than variance.

The analysis and results presented in this section have previously been presented in

Prettyman et al. [2019].

The hypothesis

The essential hypothesis relied upon when using EOF for dimension reduction prior to

detecting an EWS, is that the basis in which the variance is maximised (using the EOF

method) is similar to the basis in which the increase in the variance is maximised. To

investigate this hypothesis we consider the P-dimensional discrete-time dynamical system

xn described by

xn = Bxn−1 +Sηn, (3.48)

where B, S are symmetric P×P matrices and the ηn are column vectors with each element

being independent Gaussian white noise. If x is one-dimensional (P = 1), then the system

is an AR(1) model. If P > 1, one may want to study only the first EOF score in the hope

that this captures most of the interesting behaviour of the system [Held and Kleinen, 2004].
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In the simple case where S is the zero matrix, we observe that, as n goes to infinity, for

each eigenvalue λk of B such that |λk|< 1, the system goes to zero in the direction of the

corresponding eigenvector. Similarly, for each eigenvalue λk of B such that |λk|> 1, the

system goes to infinity in the direction of the corresponding eigenvector.

In this section we consider contracting systems, where all eigenvalues have magnitude

less than one. In this case, we have a system which spirals towards zero, and approaches

zero fastest in the direction of the eigenvector corresponding to the smallest eigenvalue.

We then consider a matrix B constructed such that one of its eigenvalues λ1 increases over

time, so that there is a tipping point at λ1 = 1 when the system diverges to infinity in the

direction of the eigenvector corresponding to λ1. It is in the direction of this eigenvector

that the tipping point will be most visible and, therefore, projecting the system onto this

eigenvector will give the one-dimensional system in which detecting the tipping point will

be easiest. If dimension reduction using the EOF method is to be used prior to using one-

dimensional EWS methods, one would expect the vector onto which we project the system

(the first column of W , see section 3.2), to be in the same direction as the eigenvector of B

corresponding to the eigenvalue which is approaching the value one.

This becomes more obvious if we say that B is diagonal, which is equivalent to saying

that B is diagonalisable, and S = 0. Say B = diag(b1,b2, ...,bn), then b1, b2, ..., bn are the

eigenvalues of B and the system becomes P separate one-dimensional systems,

x(i)n = bn
i x(i)n−1 , i = 1,2, ...,P. (3.49)

If bm = mini |bi| the system will go to zero fastest in the direction of the standard basis

vector em, and we note that em is also the eigenvector of the diagonal B corresponding to

the eigenvalue bm.

3.5.1 Analytic calculation of eigenvectors

In order to test the hypothesis of the EOF method, we calculate the EOF eigenvectors

analytically. First, we calculate the empirical mean x of the time series {xk}N−1
k=0 , defined

by equation 3.48, before applying the mean-centring step of the EOF method. We note

that the system equation can be rewritten explicitly as

xk = Bkx0 +
k−1

∑
j=0

B jSηk−s, (3.50)
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and this can then be further rewritten to remove the dependence on k from the sum:

xk = Bkx0 +

[
∞

∑
j=0

B jSηk− j −
∞

∑
j=k

B jSηk− j

]

= Bkx0 +

[
∞

∑
j=0

B jSηk− j −
∞

∑
j=0

B j+kSη− j

]

=
∞

∑
j=0

B jSηk− j −Bk

(
∞

∑
j=0

B jSη− j −x0

)
.

(3.51)

There remains a dependence on k inside the first sum in equation 3.51, but this only

affects the noise term and is easier to deal with. We also replace k with N0 + k, effectively

beginning our analysis of the system after N0 steps, which will allow us to consider the

long-term influence of the initial point x0. Now to find the empirical mean x, that is, we

take the sum over k in equation 3.51:

x =
1
N

N−1

∑
k=0

xN0+k

=
∞

∑
j=0

B jS
1
N

N−1

∑
k=0

ηN0+k− j −BN0
1
N

N−1

∑
k=0

Bk

(
∞

∑
j=0

B jSη− j −x0

)
.

(3.52)

Note that 1
n ∑

n−1
k=0 ηN0+k− j → E(η0) since it is the empirical mean of independent noise

terms, in this case the noise is Gaussian with mean zero, so we can ignore the first term.

Also note that
N−1

∑
k=0

Bk = (I −B)−1(I −BN), (3.53)

where I is the identity matrix, thus we can write

1
N

N−1

∑
k=0

xN0+k = BN0
1
N
(I −B)−1(I −BN)

(
x0 −

∞

∑
j=0

B jSη− j

)
. (3.54)

Taking the L2-norm of each side and noting that ∥I −BN∥ ≤ 1, we obtain∥∥∥∥∥ 1
N

N−1

∑
k=0

xN0+k

∥∥∥∥∥≤ ∥B∥N0

N

(
∥(I −B)−1∥ ·

∥∥∥∥∥x0 −
∞

∑
j=0

B jSη− j

∥∥∥∥∥
)
, (3.55)
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and we note that the part in brackets does not depend on N, N0 or k. We take the expectation

of both sides and define

K := E

[
∥(I −B)−1∥

∥∥∥∥∥x0 −
∞

∑
j=0

B jSη− j

∥∥∥∥∥
]

(3.56)

to say that for any value c > 0 there is a choice of N and N0 such that

E [x]≤ K
∥B∥N0

N
≤ c. (3.57)

With this choice of N and N0, we continue to use x = 0. In effect, there exists a number N0

such that after this number of iterations, the influence of the initial point x0 is no longer

significant.

The covariance C, given by

C = E
[(

xk+N0 −E(x)
)(

xk+N0 −E(x)
)⊤]

, (3.58)

is calculated using the empirical mean to approximate the expected value as part of the

EOF method by taking the sum over k. We also use the result x = 0 to leave

C =
1
N

N−1

∑
k=0

[
(xk+N0)(xk+N0)

⊤
]
. (3.59)

Expanding this using equation 3.51, most of the terms are essentially similar to the

expression for x and are similarly approximately zero for the same choice of N and N0.

This is easily noticed if we simplify the expanded expression using

pk :=
∞

∑
s=0

BsSηk−s , (3.60)

q :=
∞

∑
s=0

BsSη−s −x0 , (3.61)

which allows us to write xk = pk −Bkq. The terms inside the sum in equation 3.59 are then

(pk+N0)(pk+N0)
⊤+Bk+N0q(Bk+N0q)⊤−Bk+N0q(pk+N0)

⊤− (pk+N0)(B
k+N0q)⊤. (3.62)
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All terms except for the first involve multiplication by the matrix Bk+N0q, or its transpose.

Taking the sum over k gives the same expression for the mean x as in equation 3.54, and

we have chosen N0 such that x = 0. We now expand the remaining term inside the sum,

that is, expand

(pk+N0)(pk+N0)
⊤ =

∞

∑
s=0

∞

∑
r=0

BsS(ηk+N0−s)(ηk+N0−r)
⊤S⊤(B⊤)r. (3.63)

The expected value of the matrix (ηk+N0−s)(ηk+N0−r)
⊤ is the zero matrix for r ̸= s and the

identity matrix for r = s. Therefore

E [C] = E

[
N−1

∑
k=0

(pk+N0)(pk+N0)
⊤

]
(3.64)

=
N−1

∑
k=0

E
[
(pk+N0)(pk+N0)

⊤
]

(3.65)

=
N−1

∑
k=0

∞

∑
s=0

BsSS⊤(B⊤)s (3.66)

=
∞

∑
s=0

BsSS⊤(B⊤)s. (3.67)

In the special case that B = diag(b1,b2, ...) and S = diag(s1,s2, ...), we are able to

calculate the entire matrix component-wise to get

E([C]ii) = s2
i

1
N −1

N

∑
r=1

r

∑
t=1

b2(t−r)
i (3.68)

= s2
i

1
N −1

N−1

∑
r=0

(N − r)b2r
i (3.69)

= s2
i

N

∑
r=0

b2r
i − s2

i

N

∑
r=0

r−1
N −1

b2r
i (3.70)

= s2
i

∞

∑
r=0

b2r
i − s2

i

∞

∑
r=0

r−1− (r+1)b2(N+1)

N −1
b2r

i . (3.71)
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However, when substituting these diagonal matrices into our expression for the covariance

matrix in equation 3.67 we get simply

E([C]ii) = s2
i

∞

∑
r=0

b2r
i . (3.72)

This is because our working introduced the N0 term in order to ignore the first terms of the

series and approximate the mean as zero. It should be noted that equation 3.67 is therefore

only a first approximation to the covariance.

We also note that the same calculation can be done with a time lag so that we are

finding the covariance of xk and xk+l . In this case the equation 3.63 becomes

(pk+N0)(pk+l+N0)
⊤ =

∞

∑
s=0

∞

∑
r=0

BsS(ηk+N0−s)(ηk+l+N0−r)
⊤S⊤(B⊤)r, (3.73)

and the expected value of the matrix (ηk+N0−s)(ηk+l+N0−r)
⊤ is equal to the identity matrix

when r = s+ l, rather than r = s, and zero otherwise. So we have simply

E(Clag-l) = E
[
(pk+N0)(pk+l+N0)

⊤
]
=

∞

∑
s=0

BsSS⊤(B⊤)s+l, (3.74)

which is the same matrix as the regular (lag-0) covariance given in equation 3.67 but

right-multiplied by (Bl)⊤. For simplicity, we call this matrix D:

D := E(C) =
∞

∑
s=0

BsSS⊤(B⊤)s. (3.75)

This equation allows us to define D intrinsically as

D = SS⊤+BDB⊤, (3.76)

which we can then solve component-wise. In the fairly trivial one-dimension case d =

s2 +b2d we have

d =
s2

1−b2 . (3.77)
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In two-dimensions we restrict our study to the case where B is diagonal, which is equivalent

to asking that B is diagonalisable. We obtain

D =

 s2
12+s2

11
1−b2

11

s12s22+s11s21
1−b11b22

s12s22+s11s21
1−b11b22

s2
22+s2

21
1−b2

22

 , (3.78)

and are able to examine the eigenvalues easily because of its symmetry. The eigenvalues

of a general symmetric 2×2 matrix  a b

b c

 (3.79)

are
1
2

(
a+ c±

√
(a− c)2 +4b2

)
, (3.80)

and we can see that, when matrix D is substituted into this, the positive square root will

give the largest (principal) eigenvalue. Note that for b = 0 (i.e. the matrix is diagonal)

the difference between the two eigenvalues is |a− c|, but for non-zero b this difference

increases, i.e. the eigenvalues become more distinct. Matrix D is diagonal when two entries

of S are zero, not in the same column, in which case the system (equation 3.48) is simply

two separate AR(1) models. The eigenvector corresponding to the largest eigenvalue

(taking the positive root) is
s2

12+s2
11

1−b2
11

− s2
22+s2

21
1−b2

22
+

√(
s2

12+s2
11

1−b2
11

− s2
22+s2

21
1−b2

22

)2
+4
(

s12s22+s11s21
1−b11b22

)2

2
(

s12s22+s11s21
1−b11b22

)
 . (3.81)

This is the principal eigenvector used in the EOF method; the assumption is that projecting

onto this eigenvector, which maximises variance, captures the interesting behaviour of

the system. For the purpose of tipping point analysis, we would therefore expect that

this eigenvector has something to do with the eigenvector corresponding to the largest

eigenvalue of B (closest to one), since this is the direction in which the system travels

slowest to zero. A bifurcation occurs when one eigenvalue approaches one.
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Without loss of generality, we assume that the first eigenvalue of B is approaching

one; since B is diagonal this is equal to the first entry of B, b11, and the corresponding

eigenvector is the standard basis vector e1 = [1,0]⊤. We make the choice that b11 ≈ 1

(from below), then 1−b11 is very small. We are therefore inclined to expand the terms in

the principal eigenvector (equation 3.81) in leading order terms of (1−b11), allowing us

simplify the expression by ignoring negligible terms. The objective is to expand the square

root

Q :=

√√√√(s2
12 + s2

11
1−b2

11
−

s2
22 + s2

21
1−b2

22

)2

+4
(

s12s22 + s11s21

1−b11b22

)2

. (3.82)

To simplify the working we make the following substitutions:

ε := 1−b11,

p := s2
11 + s2

12,

q := s2
21 + s2

22,

r := s12s22 + s11s21.

(3.83)

The expression then becomes

Q =

√(
p

ε(1+b11)
− q

1−b2
22

)2

+4
(

r
1− (1− ε)b22

)2

=
1
ε

√
p2

(1+b11)2 − ε
2pq

(1+b11)(1−b2
22)

− ε2 q2

(1−b2
22)

2 + ε2 4r2

(1− (1− ε)b22)2 .

(3.84)

Concentrating on the final term inside the square root, we use the Taylor expansion of

1/(1+ x) to obtain

1
1− (1− ε)b22

= 1+(1− ε)b22 +(1− ε)2b2
22 + ...

=
1

1−b22
− ε

∞

∑
k=1

kbk
22 + ε

2
∞

∑
k=2

 k

2

bk
22 +O(ε3) ,

(3.85)

and therefore

ε
2 4r2

(1− (1− ε)b22)2 = ε
2 4r2

(1−b22)2 +O(ε3) . (3.86)
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Then we can return to our square root:

Q =
1
ε

√
p2

(1+b11)2 − ε
2pq

(1+b11)(1−b2
22)

+ ε2

[
4r2(1+b22)2 −q2

(1−b2
22)

2

]
+O(ε3)

=
p

ε(1+b11)

√
1+ ε

−2q(1+b11)

p(1−b2
22)

+ ε2(1+b11)2

[
4r2(1+b22)2 −q2

p2(1−b2
22)

2

]
+O(ε3)

=
p

ε(1+b11)

[
1+ ε

−q(1+b11)

p(1−b2
22)

+ ε
2 (1+b11)

2

2

[
4r2(1+b22)

2 −q2

p2(1−b2
22)

2

]
−

−1
8

(
ε
−2q(1+b11)

p(1−b2
22)

)2

+O(ε3)

]

=
p

ε(1+b11)

[
1+ ε

−q(1+b11)

p(1−b2
22)

+ ε
2
[

4r2(1+b22)
2(1+b11)

2 −q2(1+b11)
2

2p2(1−b2
22)

2

]
−ε

2
[

q2(1+b11)
2

2p2(1−b2
22)

2

]
+O(ε3)

]
=

p
ε(1+b11)

[
1+ ε

−q(1+b11)

p(1−b2
22)

+ ε
2(1+b11)

2
[

4r2(1+b22)
2 −2q2

2p2(1−b2
22)

2

]
+O(ε3)

]
=

p
ε(1+b11)

+
−q

(1−b2
22)

+ ε(1+b11)

[
2r2(1+b22)

2 −q2

p(1−b2
22)

2

]
+O(ε2)

=
p

(1−b2
11)

+
−q

(1−b2
22)

+(1−b2
11)

[
2r2(1+b22)

2 −q2

p(1−b2
22)

2

]
+O(ε2).

(3.87)

We can now substitute this expansion of Q for the square root term in the first component

of the principal eigenvector (equation 3.81), which becomes

2p
(1−b2

11)
+

−2q
(1−b2

22)
+(1−b2

11)

[
2r2(1+b22)

2 −q2

p(1−b2
22)

2

]
+O((1−b11)

2), (3.88)

or simply
2p

(1−b2
11)

+
−2q

(1−b2
22)

+O((1−b11)). (3.89)
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A similar treatment of the second eigenvector component yields

2r
1−b11b22

= 2r

 1
1−b22

− ε

∞

∑
k=1

kbk
22 + ε

2
∞

∑
k=2

 k

2

bk
22 +O(ε3)

 (3.90)

= 2r
[

1
1−b22

− ε
b22

(1−b22)2

]
+O(ε2) (3.91)

=
2r(1−2b22 +b11b22)

(1−b22)2 +O((1−b11)
2) (3.92)

=
2r

1−b22
+O((1−b11)). (3.93)

Thus, if we ignore terms in O(1−b11), the principal eigenvector in equation 3.81 becomes

[
s2

12 + s2
11

1−b2
11

−
s2

22 + s2
21

1−b2
22

,
s12s22 + s11s21

1−b22

]⊤
, (3.94)

which, since 1/(1−b2
11) is very large, is approximately equivalent to [1,0]⊤ as expected.

If S is diagonal (s12 = s21 = 0) then the vector is actually equivalent to [1,0]⊤, in this

situation the two system variables are actually separate one-dimensional AR(1) models,

since B is also diagonal. However, if s11,s12 are very small and s21,s22 are very large, it

may not be true that the eigenvector is approximately in the direction [1,0]⊤. This implies

that there is very large variability in the second component of the system (in the direction

of [0,1]⊤), and so this exception is predicted by our knowledge of the EOF method.

We have considered the expected value of the covariance matrix, since the noise will

cause every realisation of the system to be different. This analysis is also intended to

tell us something general about the validity of using dimension reduction by the EOF

method prior to using tipping point analysis techniques. The method must be valid where

the entries of S are large, giving large variability due to noise, or in situation when given

time series data of unknown origin which resembles the output of the general system in

equation 3.48. In these situations the covariance matrix C obtained from the data by the

EOF method may be significantly different to the expectation D = E(C), in which case it

may be uncertain which is truly the principal eigenvalue, especially when the eigenvalues

are very similar. Equation 3.80 tells us that the difference between the eigenvalues is

smallest when the covariance matrix is diagonal, i.e. when the system is reducible to
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separate AR(1) models, and that the difference increases as the off-diagonal entries of S

increase, i.e. as the system becomes more strongly coupled.

3.5.2 Numerical verification

The analysis in section 3.5.1 makes some assumptions to aid the calculations. In particular,

only two-dimensional systems are considered when calculating the eigenvectors of the

covariance matrix. In this section we provide numerical experiments to further validate

the conclusions of section 3.5.1 and also to provide some insight into three- and four-

dimensional systems.

Two-dimensional system

We first consider the two-dimensional system

xk = Λxk−1 +Sηk, (3.95)

where ηk is a white noise vector and Λ = diag(λ1,λ2) is diagonal. λ2 = 0.9 and λ1 is made

to approach one from below:

λ1(k) = 0.9+10−6k, (3.96)

so that λ1 = λ2 at k = 0, and at k = 105 a bifurcation occurs as the system tips from

convergence to divergence, diverging to infinity in the x-direction, i.e. in the direction of

(±1,0)⊤. In the previous section we concluded that the nature of the matrix S, specifically

the values on the off-diagonal, determines the effectiveness of the EOF method in this

context. As an illustration, we initially consider two extreme cases:

1. The two variables are entirely uncoupled:

S1 =
1

20

 1 0

0 1

 . (3.97)

2. The two variables are coupled:

S2 =
1

20
· 1√

2

 1 1

1 1

 . (3.98)
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The factor 1/
√

2 in S2 is to ensure that the standard deviation of the noise is the same

in both cases. Naïvely, we may expect that the leading EOF eigenvector will be similar

to (±1,0)⊤ since this is the direction in which the divergence happens, or, before the

bifurcation, the direction in which the convergence is weakest and therefore the direction

with the longest recovery time after a perturbation from the equilibrium. This may be

true eventually but not when λ1 and λ2 are very close. According to equation 3.81, the

eigenvector, when using the identity matrix S1, will be 1
1−λ 2

1
− 1

1−0.92

0

 , (3.99)

which is in the direction (±1,0)⊤ for λ1 ̸= 0.9, but is the zero vector when λ1 = 0.9. At

this point, the EOF eigenvector is determined only by the noise, and therefore the angle

of that vector will be random in the range [−π/2,π/2], with mean zero. The angle will

tend to zero (i.e. the EOF eigenvector will approach (1,0)⊤) as the difference |λ1 −0.9|
is sufficiently large that the EOF method is able to distinguish the effect upon the system

from the noise.

When using the matrix S2 we will have the vector
1

1−λ 2
1
− 1

0.19 +

√(
1

1−λ 2
1
− 1

0.19

)2
+
(

2
1−0.9λ1

)2

2
1−0.9λ1

 , (3.100)

which is in the direction (1,1)⊤ for λ1 = 0.9 and approaches (1,0)⊤ as λ1 → 1 as the

1/(1− λ 2
1 ) term becomes very large. The angle of this vector will therefore start as

θeig = π/4 when k = 0 (i.e. λ1 = 0.9) and tends towards zero as k increases.

Using both of these matrices S1 and S2 we calculate the terms xk up to the point of the

bifurcation (k = 105). For each of the resulting series we perform the EOF analysis on 200

half-overlapping segments of length 103, in order to see how the EOF eigenvectors change

as k increases. In each segment the angle variable of the EOF eigenvector is calculated.

Figure 3.13 shows the result when using S1 (panel a) and S2 (panel b). We see that the

nature of the matrix S does affect the EOF projection. When the two systems are uncoupled

(i.e. the two variables are two separate AR(1) models) the angle of the eigenvector is



152 Multivariate tipping point techniques

Fig. 3.13 The angle variable of the EOF eigenvector calculated in 200 over-
lapping segments of length 103. Two cases of the system in equation 3.95
are considered: using S1 (panel a) and using S2 (panel b), see equations 3.97
and 3.98. The series itself is plotted, in each case, in the insert at the top-right
of the panel, both x and y axes range from −2 to 2.
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Fig. 3.14 The absolute value of the angle variable of the EOF eigenvector
calculated in three segments of the series xk (start, middle and end) using a
range of matrices S(φ). The series is calculated 10 times for each matrix S(φ),
showing the range of angles, particularly for low values of φ where the system
variables are uncoupled.

apparently random at first when λ1 is close to the value 0.9 but the angle converges towards

zero as λ1 goes to 1, as predicted. When the two variables are coupled, the angle variable of

the EOF eigenvector starts at π/2 (for λ1 = 0.9) and tends towards zero, also as predicted.

We now perform the same analysis using a range of 30 intermediate symmetric matrices

S(φ) =
1

20

 cos(φ) sin(φ)

sin(φ) cos(φ)

 , (3.101)

where φ varies from zero (giving the identity matrix S1) to π/4 (giving the ones matrix

S2). For each of the 30 matrices S(φ) the series xk is calculated and the EOF eigenvector

angle is found in three segments: one at the start of the series where λ1 is close to 0.9

(k ∈ [1× 104,2× 104]); one in the middle of the series (k ∈ [4.5× 104,5.5× 104]); and

one close to the bifurcation (k ∈ [8×104,9×104]). This is repeated ten times to overcome

the effect of noise, and only the absolute value of the angle variable is recorded. The

result is shown in figure 3.14. We see that the results at φ = 0 (matrix S1) and φ = π/4
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(matrix S2) are similar to the results shown in figure 3.13, bearing in mind that, this time,

the absolute angle is recorded. However, in the case of the uncoupled system (small φ )

there is less variability here at the start of the series than seen in figure 3.13. Rather than

being distributed in the range [0,π/2], the ‘start of series’ points, which correspond to the

same values of k as segments numbered 20 to 40 in figure 3.13, do not exceed 0.8. This

is because of the larger sample used: 104 points rather than 103 points. Repeating the

figure 3.13 analysis with a larger segment size, we note that this results in a more accurate

EOF projection since, with a larger sample, the effect of the system eigenvalues of the

convergence or divergence is more easily distinguishable from the noise.

We note that after about half way along the horizontal axis (φ > π/8) there is almost

no change in any of the segments. Most of the qualitative change occurs over the first six

values of φ used, that is φ < π/20, which leads us to consider the matrix

S(π/20) =
1
20

 0.988 0.156

0.156 0.988

 . (3.102)

At this level of noise (standard deviation = 1/20) the degree to which the system variables

are coupled does not qualitatively affect the EOF method beyond this point.

Three-dimensional system

We now perform the same analysis as above with equation 3.95 being a three dimensional

system, that is, Λ = diag(λ1,λ2,λ2). In this system λ2 = 0.9, and λ1 is made to approach

one from below:

λ1(k) = 0.9+10−6k . (3.103)

We use the matrices S1 = σ I and S2 = σ(1/
√

3)J where I is the identity matrix, J is the

ones matrix and σ = 1/20 is the standard deviation. Again, the series xk is calculated up

to k = 105 and the EOF eigenvector is found in overlapping sections of length 1000. This

time the angle recorded is necessarily the absolute angle between the EOF eigenvector

and (1,0,0)⊤, since a negative angle does not make sense in three dimensional space. The

result is shown in figure 3.15. We note the obvious similarity to figure 3.13, bearing in

mind (looking at panel a) that the absolute value of the angle is now considered, so that

the random angle will be distributed in the range [0,π/2], and (looking at panel b) that the

angle made by the vector (1,1,1)⊤ is arccos(1/
√

3) = 0.9553... which is the angle of the
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Fig. 3.15 The angle variable of the EOF eigenvector calculated in 200 overlap-
ping segments of length 103. Two cases of the three-dimensional system in
equation 3.95 are considered: using S1 (panel a) and using S2 (panel b).

EOF eigenvector when λ1 = 0.9. It appears that there is greater variability in the S2 case

close to the end of the series, but the general pattern is the same.

As a further confirmation we also repeat the analysis behind figure 3.14 using a three-

dimensional system. We use the general 3×3 matrix S(φ) which has cos(φ) on the diagonal

and sin(φ)/
√

2 everywhere else:

S(φ) =
1

20


cos(φ) 1√

2
sin(φ) 1√

2
sin(φ)

1√
2

sin(φ) cos(φ) 1√
2

sin(φ)

1√
2

sin(φ) 1√
2

sin(φ) cos(φ)

 . (3.104)

Similarly to the two-dimensional case, as φ increases from zero to arctan(
√

2) the matrix

S(φ) changes from S1, which gives an uncoupled system of separate AR(1) models, to

S2, which gives a system with an identical noise term in all three variables. The same

steps to produce figure 3.14 are followed in the three-dimensional case and the result is

shown in figure 3.16. We note, as with the two-dimensional case, that the EOF method is

more accurate at the start of the more uncoupled system series in this figure, where the
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Fig. 3.16 The absolute value of the angle variable of the EOF eigenvector
calculated in three segments of the three-dimensional series xk (start, middle
and end) using a range of 3×3 matrices S(φ). The series is calculated 10 times
for each matrix S(φ), showing the range of angles.

segment sampled is 104 points, than in figure 3.15 where the segment size is 103 points. We

also note again that the EOF eigenvector at the start of the coupled system series is in the

direction (1,1,1)⊤ with an angle arccos(1/
√

3) = 0.9553 rather than arccos(1/
√

2) = π/4

as in the two-dimensional case (from the direction (1,1)⊤). Again, there is very little

change after about half way along the horizontal axis (φ > arctan(
√

2)/2) and most of the

qualitative change occurs over the first five or six values of φ used here (φ < 0.2).

Higher dimensions

This same analysis is applied to higher dimensional systems where the matrix S is given

by the general formula

S(φ) =
1
20

(
Ip cos(φ)+(Jp − Ip)

sin(φ)√
p−1

)
, (3.105)

where I is the identity matrix, J is the ones matrix, and p is the dimension of the system. In

this way, the system changes from an uncoupled system of separate AR(1) models (S = σ I)
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to a coupled system (S = σJ) as φ increases from zero to φmax, given by

φmax = arctan
(√

p−1
)
. (3.106)

The results, presented similarly to the p = 3 results in figure 3.16, are shown for p = 4

and p = 5 in figure 3.17. We note that there is little qualitative difference as the dimension

increases.

3.6 An alternative EOF method for dimension reduction

Although the EOF method is widely used in ecology and geosciences [Hasselmann, 1988;

Dommenget and Latif, 2002; Bathiany et al., 2013a] occasionally, even, in the process of

detecting EWSs [Held and Kleinen, 2004], it is not ideally suited for this purpose because

it does not take into account the internal dynamics of the system. Dommenget and Latif

[2002] note:

... EOF analyses have problems in identifying the dominant centres of action

or the teleconnections between these centres of action in multivariate datasets.

We therefore have to be very careful in interpreting the EOF modes as potential

physical modes.

Hasselmann [1988] proposes that the use of principal interaction patterns and principal

oscillation patters (PIPs and POPs) [Von Storch et al., 1995; Kwasniok, 1996] is much

better suited to applications where the evolution of a system over time is relevant, including

EWS applications. The PIP technique is introduced by Hasselmann [1988] as an alternative

to EOF analysis for reducing the dimension of a system to “a few dominant patterns”, with

the benefit that the system dynamics are modelled, similarly to an ARMA parametrisation.

The use of PIPs and POPs may therefore be used to reduce the dimension of a system prior

to applying one-dimensional tipping point indicators, as an alternative to EOFs.

Besides these shortcomings, which lead one to favour PIPs and POPs as an alternative,

we have noted (section 3.5) that it may not necessarily be the case that the EOF modes

of a system will capture the largest changes in variance, which would be relevant to a

variance-based EWS indicator. They are constructed so as to maximise the value of the

variance. It is also not necessarily the case that the EOF modes will be relevant to an

autocorrelation-based indicator. In this section we present an alternative to the EOF method



158 Multivariate tipping point techniques

Fig. 3.17 For four-dimensional (panel a) and five-dimensional (panel b) sys-
tems, the absolute value of the angle variable of the EOF eigenvector calculated
in three segments of the series xk (start, middle and end) using a range of n×n
matrices S(φ). In both cases, the series is calculated 10 times for each matrix
S(φ), showing the range of angles.
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where, rather than projecting the system onto a set of vectors such that the variance of

the first mode is maximal (as in the typical EOF method), we do so such that the lag-1

autocorrelation is maximal. We investigate the result of using this alternative in the case of

System A, described in section 3.3 (see equation 3.25).

An autocorrelation-based EOF method

First, we consider the typical EOF method, this involves taking multiple time series and

projecting onto the vector that maximises the variance. As an illustration, consider the two

time series [xi]
N
i=1 and [yi]

N
i=1, which we assume to be mean-centred, i.e.

1
N ∑

i
xi =

1
N ∑

i
yi = 0 , (3.107)

and non-dimensionalised. We then construct the matrix

X =


x1 y1

x2 y2
...

...

xN yN

 , (3.108)

and note that, in general, we may have any number of time series and, correspondingly,

any number of columns of X . We now find the unit vector u, and hence the time series

p = [pi]
N
i=1 which is the projection of the matrix X onto this vector,

p = Xu, (3.109)

such that the variance of p is maximal given all possible unit vectors u. The variance is

expressed as

Var(p) =
1
N

p2 =
1
N
(Xu)⊤(Xu) = u⊤C0u , (3.110)

where C0 is the lag-zero auto-covariance matrix of X :

C0 =
1
N

N

∑
i=1

x⊤i xi =
1
N

X⊤X . (3.111)
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To maximise the variance, with the constraint ||u||= 1, we use Lagrange multipliers with

the Lagrange function

L(u,λ ) = u⊤C0u−λ

[(
∑

i
u2

i

)
−1

]
. (3.112)

Calculating the gradient gives

∇L= 0 , (3.113)

∂

∂uk

(
u⊤C0u

)
−λ

∂

∂uk

(
∑u2

k
)
= 0 , (3.114)

2C0u−2λu = 0 , (3.115)

since C0 is symmetric, which implies u is an eigenvector of C0. Say the corresponding

eigenvalue is λu, then

Var(p) = u⊤C0u = u⊤λuu = λu , (3.116)

because u⊤u = 1. Thus to maximise Var(p) we must choose u such that λu is largest, i.e.

u is the eigenvector corresponding to the largest eigenvalue of C0.

Now, we may also calculate the lag-1 auto-covariance

C1 =
1

N −1

N

∑
i=2

x⊤i xi−1 =
1

N −1
X⊤SX , (3.117)

where S is the matrix such that

SX =



0

x1

x2
...

xN−1


, (3.118)
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and we have the autocorrelation function

ACF1(p) =
1

N−1 ∑i pi pi−1

Var(p)

=

(
1

N −1
(Xu)⊤(SXu)

)(
1
N
(Xu)⊤(Xu)

)−1

=
(

u⊤C1u
)(

u⊤C0u
)−1

.

(3.119)

Now, instead of choosing a one-dimensional projection p=Xu such that Var(p) is maximal,

we may want to find the projection such that ACF1(p) is maximal. That is, we wish to find

umax such that

ACF1(Xumax) = max
||u||=1

[ACF1(Xu)]

= max
||u||=1

[(
u⊤C1u

)(
u⊤C0u

)−1
]
.

(3.120)

Attempting to maximise this expression in u using Lagrange multipliers, as for the simpler

EOF problem (equation 3.115), we obtain

∇L= 0 ,

∂

∂uk

(
u⊤C1u

)(
u⊤C0u

) = λ
∂

∂uk

(
∑u2

k
)
,(

u⊤C0u
)

∂

∂uk

(
u⊤C1u

)
−
(

u⊤C1u
)

∂

∂uk

(
u⊤C0u

)
= 2λ

(
u⊤C0u

)2
u ,(

u⊤C0u
)(

C1 +C⊤
1

)
u−2

(
u⊤C1u

)
C0u = 2λ

(
u⊤C0u

)2
u ,

(3.121)

which will not result in such an elegant solution and will require a tedious element-wise

calculation. However, the maximisation problem can be solved using a computer, either by

numerical solution of equation 3.121 or by other numerical optimisation methods applied

to equation 3.120, once C0 and C1 have been calculated. A simple method to obtain

a numerical solution, for problems with a low number of dimensions, is to project the

time series onto many unit vectors u in a systematic way and select the umax where the

autocorrelation of p is largest.



162 Multivariate tipping point techniques

Fig. 3.18 DFA indicator with a window of 100 points calculated for the one-
dimensional time series obtained using the variance-based EOF technique
(panel a) and the autocorrelation-based EOF technique (panel b) applied to
the system described by equation 3.122, which experiences a bifurcation at
t = 100. In each panel the plot shows the mean over ten realisations of the
dynamical system, with error bounds of one standard deviation. One example
of a common feature is circled in red.

Application to bifurcating dynamical systems

The method described above is applied to System A, which experiences a bifurcation when

a series of stable orbits shrinks to a point and meets with a saddle node (see section 3.3).

The system is given by equations

ẋ = y+η(x),

ẏ = α − x2 +η(y),
(3.122)

where η(x), η(y) are white noise terms. The system is integrated and sampled with a time

step of ∆t = 0.5 to produce a time series of 200 points (in each variable). The ACF-based

EOF method is then applied to the two variables to reduce the dimension, yielding a one

dimensional time series. To do this, the maximisation problem in equation 3.120 is solved

element-wise using Matlab’s standard fmincon interior-point optimisation algorithm

[Dennis Jr and Schnabel, 1996; Byrd et al., 1999, 2000] to find umax, and the one-dimension

projection Xumax is calculated, where X is the mean-centred data matrix.

Having obtained the one-dimensional time series Xumax via this autocorrelation-based

EOF technique, the DFA indicator is calculated with a window size of 100 points: fig-
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ure 3.18b shows the result and, for comparison, the same process is also performed using

the regular variance-based EOF technique (panel a). We see that there is little difference

in the DFA indicator whichever EOF technique is used, the same features appear in both

signals. However, the features appear earlier when the regular, variance-based EOF tech-

nique is used (panel a). An example of a shared feature (a peak in the oscillating DFA

indicator signal) is circled in red in figure 3.18: this feature occurs before t = 85 in panel a
but slightly after t = 85 in panel b. This is not an artefact of the alternative EOF technique

producing a lagged time series due to the lag in the autocorrelation, since only the lag-1

ACF is used and a single time step is of length ∆t = 0.5, whereas the apparent shift in the

features of the DFA indicator signal is ≈ 1.5. Rather, this is simply due to the different

projection used to obtain the one-dimensional time series to which the DFA indicator is

applied.

To investigate the alternative EOF technique further, we also apply it to the other

two-variable dynamical systems described in section 3.3: the system experiencing a

Hopf bifurcation (equation 3.39), to which we refer as "system B"; and the Van der Pol

oscillator (equation 3.41), or "system C". The system described in equation 3.122 is

referred to as "system A". Each of the three systems is integrated 100 times and both EOF

techniques are applied to each resulting two-variable time series. In each case we record

the eigenvector onto which the system is projected to obtain the one-dimensional time

series. A multivariate time series has, for this purpose, two vectors vV ,vA, characterised

by their angles θV ,θA ∈ (−π,π], associated with it, and onto which we may chose to

project it. The vector vV is the unit vector which maximises the variance, as the vector u in

equation 3.114, used in the regular variance-based EOF technique. The vector vA is the unit

vector which maximises the autocorrelation, used in the alternative autocorrelation-based

EOF technique. These vectors, for the three dynamical systems, are represented graphically

on the half-circle in figure 3.19. We see that in all three systems there is little variability in

the variance-maximising vector (displayed in blue) but the autocorrelation-maximising

vector is more sensitive to differences between different realisations of the system. This

effect is visible, in particular, in System A, which is the subject of the study with the DFA

indicator in figure 3.18. For each realisation of each system the angle difference |θV −θA|
is calculated and the mean is found to be 0.510 (29.2o) in system A; 0.184 (10.6o) in

system B; and 0.162 (9.30o) in system C. That is, in all three systems, the vector vA is
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Fig. 3.19 Eigenvectors on the unit half-circle used to obtain the projection
involved in the EOF technique (blue) and the alternative autocorrelation-based
EOF technique (red) applied to 100 realisations of each dynamical system.
Panel a: system A (equation 3.122). Panel b: system B (equation 3.39).
Panel c: system C (equation 3.41). The mean difference (in degrees) in the
angles, |θV −θA|, is displayed in black font beneath the identifying panel letter.
The mean angles θV and θA are displayed in their respective colours.

closer to vV than the perpendicular. Particularly in systems B and C there will be little

observable difference between the two projected time series.

3.7 EWS in spatial data

Besides techniques which allow one to detect or predict a tipping point in a multivariate

system, we are also interested in dynamical systems evaluated over a data field. In a

scenario where one has, for example, many time series associated with locations over a

2D field, one may reduce the dimension of the system using the EOF method to condense

all of the available information. This can be refined if a specific region of interest is

identified in advance: Ludescher et al. [2013, 2014] calculate the cross-covariance of

a variable, at a specific time slice, between points inside the El Niño basin and points

outside. In contrast, simply using the EOF method to reduce the dimension of such a

system will not give specific spatial information such as the location of the tipping point

or the direction of its progression in the case that a tipping at one location precipitates

a tipping at other locations. However, one may also wish to use the spatial locations of

the data, for example, to predict the location of the disturbance (a "hotspot") which is
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causing the tipping point: that is, locations where critical slowing down, and therefore

loss of stability, is most apparent. Bathiany et al. [2013a] present a method to detect these

hotspots: the method involves partitioning the locations ("elements") and, within each

partition, discovering which elements contribute the most to the autocorrelation. This

is done by combining the elements in different permutations, projecting onto the EOFs,

and calculating the lag-1 autocorrelation of the resulting signal. Elements in each part

are removed according to system-specific selection criteria and the remaining elements

are re-partitioned. The process is repeated until only one partition remains, which is the

slowing down hotspot where susceptibility to perturbations is large. The method is applied

successfully to a highly idealised model of a vegetation cover. A similar method, also in

the context of vegetation and aridity, is used by Kefi et al. [2014] who calculate the spatial

correlation of the points across a two-dimensional field — the spatial variance and spatial

frequency (where emerging spatially-repeating patterns are a symptom of the tipping) are

also considered.

In this section we present a method to visualise the behaviour of the one-dimensional

tipping point indicators introduced in chapter 2 evaluated at multiple locations, at a specific

time slice, thus allowing one to observe locations, or hotspots, where a tipping point is

likely to occur.

A 2D visualisation of indicator behaviour

In figure 3.20 we illustrate an example of a propagating front over a 2D field. The time

series zxy(t) is evaluated at each point (x,y) on the field, and a tipping point occurs at the

front (double line) which propagates from top-right to bottom-left. If we take the time

series at points A and B and perform an EWS analysis, for example calculating the ACF1

indicator in a sliding window, we expect that the EWS will be stronger at point B than at

point A because the tipping is closer (in time) to B. Given some knowledge of the nature

of the system one could conclude that the front is approaching from the right (from the

positive x direction) and, performing the analysis for more points in a grid over the field,

one could determine more precisely the shape of the front and its direction.

It will be difficult to visualise an ACF1 indicator series at every point on the grid

(assuming the grid is larger than 3-by-3) in order to determine at which points the EWS is

strongest. It is therefore useful to measure the increase in the indicator value at a specified

point in time and to create a contour plot of this value over the grid.



166 Multivariate tipping point techniques

x

y

A B

Fig. 3.20 Propagating front. The time series zxy(t) is evaluated at each point on
the field, and a tipping point occurs at the front (double line) which propagates
from top-right to bottom-left. We expect that an EWS of the tipping point will
be stronger at point B than at point A because the tipping is closer (in time) to
B.

As an example, we consider a system with a pitchfork bifurcation, which was used as

an example in section 2.5. In this example, many similar dynamical systems are defined

over the discrete xy plane Z2, by the equation

dzxy

dt
=− ∂

∂ zxy

(
z4

xy +
µ − x− y

10
z2

xy

)
+σηxy, (3.123)

where the ηxy are independently distributed Gaussian noise series. The line y =−x+µ

defines the front: if x+ y < µ the z2 coefficient is positive and the system zxy(t) has a

double-well generalised potential function; if x+ y ≥ µ then the system has a single-well

potential.

We create a 10-by-10 grid and integrate equation 3.123 at each point (x,y) from t = 0

to t = 1000 with time step ∆t = 0.05. Parameter µ is made to decrease linearly at each

time step so that at t = 0, µ = 20 and at t = 1000, µ = 10. The series is sampled, after

the integration, at intervals of one time unit to give a series of length 1000 points. For

each time series zxy, the ACF1 indicator is calculated in a sliding window of 100 points. In

order to determine the location of the moving front at time t, one must determine whether

the ACF1 indicator is increasing at each point (x,y). We use the Mann-Kendall coefficient
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given by the equation

c(X) =
2

N(N −1)

N−1

∑
i=1

N

∑
j=i+1

sign(X j −Xi), (3.124)

for a time series X . This coefficient c is calculated for each indicator series in the range

[t −100, t], thus showing whether the indicator series is increasing (positive coefficient) or

decreasing (negative) in the 100-point window prior to time t. Figure 3.21 shows the result

when t = 1000, that is, the time when µ = 10 and the pitchfork bifurcation is occurring

in systems zxy on the line x+ y = 10. To the top-right of this line, the bifurcation has

already occurred and the lag-1 ACF is decreasing (negative Mann-Kendall coefficient). To

the bottom-left of this line, the systems have not yet bifurcated and the ACF1 indicator

is increasing (positive Mann-Kendall coefficient) as an EWS of the approaching tipping

point. As demonstrated in the simple application of the ACF1 indicator to the pitchfork

bifurcating system in section 2.5, there is some variability in the indicator series and we

cannot expect a completely smooth gradient to appear in the contour plot. However, the

figure 3.21 does accurately represent the existence of a front. We note that a clear line

between positive and negative appears to exist along the line x+ y = 11, because of the

lag effect caused by the window size of 100 points used in the calculation of both the

ACF1 indicator and the Mann-Kendall coefficient. This effect can be taken into account to

conclude that the bifurcation is actually occurring some way in before the front apparent

in the figure. The speed at which the front is advancing can be ascertained by taking

snapshots of the system at intervals, that is, using a varying values of t when calculating

the Mann-Kendall coefficient in the preparation of the contour plot.

If the experiment is repeated several times and the Mann-Kendall coefficient is cal-

culated for the mean over all ACF1 indicator series at each point, the variability in the

indicator will be smoothed and the line representing the front will be clearer. This may be

necessary for systems where the indicator series contain greater variability, but impractical

for applications where the experiment occurs only once.

3.8 Discussion

In this chapter we have presented techniques for detecting early warning signals in time

series of more than one variable. The first technique, introduced by Williamson and
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Fig. 3.21 A 2D bifurcation caused by an approaching front. At each point (x,y)
a system is described by equation 3.123 where the value of µ is decreasing.
The figure shows the Mann-Kendall coefficient of the ACF1 indicator of the
series when µ = 10, when the bifurcation is occurring at points on the line
y+ x = 10. To the top-right of this line, the bifurcation has already occurred
and the lag-1 ACF is decreasing (negative Mann-Kendall coefficient). To the
bottom-left of this line, the systems have not yet bifurcated and the ACF1
indicator is increasing (positive Mann-Kendall coefficient) as an EWS of the
tipping point.
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Lenton [2015], reconstructs the eigenvalues of the system’s Jacobian matrix using the

relationship to the autocorrelation matrix. These eigenvalues are then used as indicators

of a tipping point based on assumptions about the nature of the tipping. For example, a

Hopf bifurcation in a two-variable system occurs when the Jacobian eigenvalues cross the

imaginary axis, so calculating the behaviour of the imaginary part over time will provide a

useful indicator which predicts a bifurcation as it approaches zero. The other technique

presented uses EOFs to reduce the dimension of the system, before applying a familiar

one-dimensional indicator to the resulting one-dimensional time series. We have applied

both of these techniques to time series data from three known two-variable dynamical

systems. In all cases the DFA indicator applied to the first EOF series provided a clear

EWS in the mean. The ACF and PS indicators applied to the first EOF series did not give

such a clear signal. The reconstructed Jacobian eigenvalues did provide an EWS in some

cases, but it is necessary to know which eigenvalue to use.

We noted that the use of EOFs to reduce the dimension of a system, in an EWS context,

assumes that the relevant signal will not be lost in the process. The EOF method projects

a time series in such a way as to maximise the variance, which may not maximise the

increase in the relevant tipping point indicator. We calculated the EOF scores analytically

of a general linear dynamical system. We found that, except in contrived cases with very

large variance in one variable, the EOF projection vector is similar to the direction in

which the system diverges at a tipping point. We also devised an alternative EOF method

which maximises the lag-1 autocorrelation of the projection rather than the variance. When

applied to three dynamical systems we found that the projection vector was similar to that

for the regular, variance-based, EOF method, but there was greater variability.

In addition to this work, which concentrates on time series in several variables, with

examples of two-variable systems, we have also studied dynamical systems defined over a

discrete two-dimensional field. This type of data are particularly common in meteorology

where data is collected at discrete locations over a geographic area (including the entire

globe). We have proposed a simple method which may be used to visualise tipping

point indicators over a field, and have applied this to an example based on a simple

pitchfork bifurcation for which a reliable EWS can be obtained. This is a method to aid

the visualisation of the tipping point indicator and it works as expected.
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Future work

In the chapter we have used three dynamical systems as examples. It is always possible to

apply the techniques presented here to more systems with different types of tipping. This

work has been done with an aim of demonstrating the validity of using various techniques,

rather than with a view to studying early warning signals in a comprehensive collection of

dynamical systems. Indeed, when meteorological data is presented the type of tipping is

often unknown: that is, it is not known whether or not the tipping is caused by, for example,

a Hopf bifurcation in the underlying system. It is therefore useful to have a variety of

techniques available that could be compared to infer the possible nature of the critical

transition.

When calculating the EOF eigenvectors analytically for the general linear system,

we did not calculate an error term by considering the variance in the system, we have

only considered the mean. This does not appear to be possible without making further

simplifications to the equations, but it may be possible to provide an estimate in future

work.

It would be particularly interesting to use a general, simple system which is relevant

to a meteorological event. In the next chapter, a specific model of a tropical cyclone is

presented as a further test of the technique.



Chapter 4

Application of tipping point techniques
to tropical cyclones

In this chapter, we apply the techniques described previously to the real geophysical

problem of providing an early warning signal for the approach of a moving tropical

cyclone1. Typically, a steep drop in sea-level pressure is observed at the arrival of a

cyclone, as shown in figure 4.1. This sudden, or ‘abrupt’, change in the state of the

system is not bifurcational in the sense that there are multiple stable system states, but it

is nonetheless a tipping event in the general sense as defined by Kuehn [2011], and we

note that non-bifurcational tipping points (e.g. rate-induced tipping, noise-induced tipping,

etc.) have previously been analysed using techniques similar to the ones used in this thesis

[Livina et al., 2011; Ashwin et al., 2012]. Similarly, there is a steep rise in wind speed at

the same time (the same tipping point) and the early warning indicators we have developed

may also be applied to the wind speed time series beside the sea-level pressure.

The hypothesis is that it is possible to detect or predict this observed tipping point (the

abrupt change in pressure and wind speed) using the same methods previously used to

analyse examples of noise-induced, transitional or bifurcational tipping points.

A large tropical cyclone may extend hundreds of kilometres from its centre and a

location on the future trajectory of such a storm experiences high winds several hours

or days before the arrival of 200km/h winds. We expect, therefore, that the study of the

1A tropical cyclone is referred to as a ‘hurricane’ when it occurs in the Atlantic Ocean and north-eastern
Pacific Ocean and a ‘typhoon’ when in the north-western Pacific Ocean. In the south Pacific or Indian Ocean,
comparable storms are referred to simply as ‘tropical cyclones’ or ‘cyclones’ [NOAA, 2018b]. These naming
conventions are not always abided by (e.g. Australian ‘hurricanes’) and do not denote any differences in the
physical properties of the storms other than geographic location.
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weather variable at a fixed location will provide an early warning signal for the arrival of

a tropical cyclone. The rise in wind speed itself acts as such a signal in a short (12 hour)

period, but we are interested in the possibility that the tipping point techniques described

in chapters 2 and 3 will provide an early warning signal when applied in this context.

We have no specific reason to expect that these EWS methods will be effective in this

particular application but, in general, the sudden qualitative change in the system and the

fact the a cyclone can be felt some way off make this a good candidate for investigation

and experimentation.

In section 4.1 we give a description of the data used throughout this chapter, which

has been obtained from the NOAA HURDAT2 database [HURDAT2, 2018] and the Met

Office HadISD database [HadISD, 2017]. In section 4.2 we apply the ACF1, DFA and PS

indicators (see chapter 2) to the sea-level pressure time series data from locations on the

paths of fourteen tropical cyclones. In section 4.3 the same fourteen data sets are used but

both the sea-level pressure and the wind speed variables are considered and the techniques

described in chapter 3 are applied to the two variables.

In section 4.4 we use sea-level pressure time series from several locations in a region

through which a tropical cyclone passes. We apply the techniques introduced in section 3.7

to visualise the rise of a tipping point indicator over the area as the tropical cyclone

approaches. This idea is further developed in section 4.5 where a model of the approaching

cyclone is parametrised using the observed values of the tipping point indicators. The

model is developed in order to verify the use of these indicators in the study of the tropical

cyclone system.

4.1 Description of data

4.1.1 The HURDAT2 database

During this study it was necessary to have track data of several Atlantic hurricanes, this

was obtained from the NOAA national hurricane centre’s HURDAT2 database [Landsea

and Franklin, 2013; HURDAT2, 2018]. This dataset is presented as a comma-delimited,

text format with six-hourly information on the location, maximum winds, central pressure,

and size of all known tropical cyclones and subtropical cyclones. We have only used

the location data (given as latitude-longitude coordinates) and have not performed any

additional processing of this data.
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4.1.2 The HadISD database

For the purposes of our study we use sea-level pressure (SLP) and wind speed data from

weather stations. These data are obtained from the HadISD 2017 data set [Smith et al.,

2011; Dunn et al., 2012, 2014, 2016; HadISD, 2017] maintained by, and available from,

the UK Met Office. The sea-level pressure and wind speed data provided by HadISD are

raw data given at one-hour intervals, the Met Office applies a filter so that weather stations

which provide very sparse data are disregarded [Dunn et al., 2012], no other processing is

applied.

The weather stations used in this study are selected for proximity to the landfall

locations of tropical cyclones, and data are considered in a fifteen-day (360 hour) period

before the time when the cyclone passes closest to the station. However, some of the

weather stations provide very sparse data even after the Met Office’s filtering, this is

common at times when a tropical cyclone passes close to a station (presumably due to

infrastructural damage). If fewer than 80% of the time points have associated data, the

time series is disregarded. Otherwise the data are interpolated linearly onto the entire

hourly time series. We notice that weather stations on the United States mainland are

more numerous than in other regions affected by tropical cyclones and also provide more

consistent data. The examples used in this chapter are therefore dominated by Atlantic

hurricanes making landfall in the USA.

In sections 4.2 and 4.3 we consider a single weather station associated with each

cyclone, as close as possible to the landfall location, and we look at the single sea-level

pressure and wind speed time series given at these stations. We consider 14 tropical

cyclones selected for proximity of a weather station to the landfall location with reasonable

data. Most of the cyclones selected, with the exceptions of Hurricane Jeanne and Hurricane

Ernesto, are ranked category 4 or 5, using the SSHWS2, at the time of landfall. These

exceptions were included to broaden the scope of the study and because, although with

a lower maximum wind speed, they exhibit a pronounced drop in pressure similar to the

stronger cyclones. All 14 tropical cyclones are listed in table 4.1, and the sea-level pressure

time series are shown in figure 4.1. Many more than these 14 were considered initially,

but in many cases a HadISD weather station did not exist close to the landfall location or,

when it did, the data were sparse.

2The Saffir-Simpson hurricane wind scale (SSHWS) ranks cyclones based only on maximum one-minute
sustained wind speeds. A cyclone with a wind speed of 209km/h or more is Category 4, with 251km/h or
over is Category 5 [NOAA, 2018a].
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Name Year Location
Min pressure Max speed Osc. amp.

(hPa) (km/h) (hPa)

Flo 1990 Shionomisaki (Japan) 890 270 0.91
Andrew 1992 Florida Keys (USA) 922 280 1.09
Opal 1995 Pensacola (USA) 916 240 1.22
Zeb 1998 Tuguegarao (Philippines) 900 285 1.15
Floyd 1999 Florida Keys (USA) 921 250 1.15
Charley 2004 Fort Myers (USA) 941 240 1.17
Frances 2004 Florida Keys (USA) 935 230 1.15
Jeanne 2004 Florida Keys (USA) 950 195 1.21
Katrina 2005 New Orleans (USA) 902 280 1.24
Rita 2005 Lake Charles (USA) 895 285 1.29
Ivan 2006 Mobile (USA) 910 270 1.18
Ernesto 2006 Florida Keys (USA) 985 120 1.05
Megi 2010 Tuguegarao (Philippines) 885 295 1.31
Hudhud 2014 Vishakhapatnam (India) 950 260 1.29

Table 4.1 The dates and locations of each of the 14 tropical cyclones considered.
The "Location" column data is the identifying location recorded on the HadISD
database for the weather station used in this study. The "Max speed" column
gives the highest one-minute sustained wind speed (a value over 209 km/h
puts the cyclone into SSHWS category 4 or higher). The data in the pressure
and wind speed columns is not used in this study and is given for information
only. It is obtained from the NOAA archive [NOAA, 2019] in the cases of the
Atlantic hurricanes (those in the USA), and from www.wikipedia.org otherwise.
The column "Osc. amp." gives the amplitudes of the 12-hourly oscillations in
the sea level pressure data from that weather station but in a period 50 to 15
days before the cyclone event (this is discussed in section 4.1.3).

www.wikipedia.org
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Fig. 4.1 Sea-level pressure time series for the fourteen tropical cyclones se-
lected in table 4.1. The minimum point in the data is presumed to be the point
closest to the time at which the cyclone was closest to the station and is set as
time zero.

In section 4.4 we consider the data given by several weather stations in a region

surrounding the path of the cyclone. Because of better availability of data, all the cyclones

in this case are Atlantic hurricanes making landfall on the Caribbean or Florida coastlines

of the United States. The eight hurricanes considered are listed in table 4.2, Hurricane

Andrew appears twice (labelled Andrew 1 and Andrew 2) because it made landfall twice:

over Florida and then, two days later, over Louisiana. We therefore have a total of nine

hurricanes. Again, we use the HadISD 2017 data set [Dunn et al., 2012, 2014, 2016; Smith

et al., 2011]. We take data from stations within 200 km of the landfall of each hurricane

and a region is formed by the minimal rectangle containing all of the weather stations

used, which amounts to 65 stations at separate locations. In some cases the stations did not

provide ‘good’ time series data and so the number used in the analysis of each hurricane is

lower than 65 in each case and is between 21 and 48 stations depending on the hurricane

(see column “# stations” in table 4.2). We use the HURDAT2 track data [Landsea and

Franklin, 2013] (see section 4.1.1) in each case to find the point at which the hurricane

entered this region.

4.1.3 Filtering sea-level pressure oscillations

Upon inspection of the sea-level pressure data we see that there is a small, regular oscillation

superimposed on the longer term fluctuations, figure 4.2a shows this phenomenon at the

Florida Keys station prior to Hurricane Andrew. An inspection of the power spectrum

shows that the oscillations have a period of 12 hours (see figure 4.2b) and are due to the
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Name Date Region Entry point # stations

Andrew 1 24 August 1992 Florida [25.4N, -79.0E] 21
Andrew 2 26 August 1992 Louisiana [29.8N, -91.6E] 34
Katrina 29 August 2005 Louisiana [29.3N, -89.6E] 45
Wilma 24 October 2005 Florida [25.3N, -82.7E] 34
Gustav 1 September 2008 Louisiana [29.3N, -90.8E] 46
Matthew 7 October 2016 Florida [26.7N, -79.0E] 32
Harvey 25 August 2017 Texas [25.2N, -94.6E] 29
Irma 10 September 2017 Florida [24.5N, -81.5E] 34
Nate 8 October 2017 Louisiana [29.3N, -89.2E] 48

Table 4.2 The dates and locations of each of the nine hurricanes selected. The
entry point column gives the coordinates at which each hurricane entered the
region, calculated using the HURDAT2 track data. Hurricane Andrew appears
twice (labeled Andrew 1 and Andrew 2) because it made landfall twice: over
Florida and then, two days later, over Louisiana. The column ‘# stations’ gives
the number of weather stations in the region from which data was used when
analysing each hurricane.

daily tidal cycle. We calculate the mean amplitude of the oscillations over a given time

period by subtracting the minimum pressure from the maximum pressure in a 12-hour

sliding window and taking the mean. The "Osc. amp." column in table 4.1 records the

mean amplitude found in the sea-level pressure data at each station in a period from 50

days before to 15 days before each of the tropical cyclone events: despite being recorded

at different locations around the world over a period of 20 years, there is little variation in

the size of these oscillations (mean: 1.17, variance: 0.011, range: [0.91,1.31]). Because of

this regularity, the possibility of removing the oscillations was proposed, and the effects

of doing this were studied in the context of early warning signals, that is, we asked how

the autocorrelation of the time series would be affected by the removal of the oscillations.

Two approaches were employed. First, a filtering approach where, given a time series [Z]k
a deseasonalised series [ZD]k is created according to the formula

ZD(k) = Z(k)− mean
i=k mod12

(Z(i)) . (4.1)
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Fig. 4.2 Sea-level pressure periodic oscillations. Panel a: A 240 hour segment
of the sea-level pressure data preceding the Hurricane Andrew event, we
note the 12-hour oscillations on the longer term fluctuations. Panel b: The
periodogram obtained from a 35 day segment of the same time series (between
15 and 50 days before the event), we note the spike at 12 hours.

The other approach is to subtract a sine wave with 12 hour period, that is, a new series

[ZS]k is given according to

ZS(k) = Z(k)−Asin
(

2π

12
(k−φ)

)
(4.2)

where A is the mean amplitude found over the entire series, as described above, and φ is

required to align the series Z with the sine wave. In practice, the phase φ was found in

each case by minimising the variance of ZS over values of φ ∈ [0,12).

Both of these approaches are applied to pressure data from the Florida Keys station in

the period of 50 to 15 days before the appearance of Hurricane Andrew, and for both of

the new series, as well as the original raw series, the ACF1, DFA and PS indicators are

calculated and the results are shown in figure 4.3. In the calculation of the indicators, the

sliding window used is 90 points for ACF1, 90 points for DFA, and 102 points for PS;

these window sizes are chosen according to the sensitivity analysis (see section 4.2.3) and

are consistent with those used throughout this chapter.

We note that both methods of removing oscillations give almost identical results, both

qualitatively and when considering the autocorrelation of the resulting series.
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The effect on the ACF1 indicator is, effectively, of smoothing out the larger fluctuations

but it does not appear to change the general shape of the indicator series (that is, longer

scale increases or decreases). The same is true of the DFA and PS indicators, although in

the case of the DFA indicator there is apparently some extra detail visible when using the

filtered series (red and blue lines) which is not visible when using the original, oscillating

data: specifically, there appears an increase in the DFA indicator (both red and blue lines)

starting after -600 hours, which cannot be seen in the grey line.

We suggest it may be beneficial, especially when using the DFA indicator, to first

filter the tidal oscillations in the sea-level pressure data before attempting to produce an

early warning signal. However, it is not apparently important whether the deseasonalising

approach or sine-wave approach is used. For the remainder of this chapter, the deseasonal-

ising approach (see equation 4.1) is used whenever oscillations are removed from data in

this way.

4.1.4 Evidence of scaling in the sea level pressure series

In figure 4.2 (page 177) we presented the periodogram of the sea level pressure time series

from the weather station chosen for its proximity to the landfall location of Hurricane

Andrew. Now, in figure 4.4, we present the periodograms from all fourteen stations chosen

for each of the fourteen tropical cyclones detailed in table 4.1. In each case we use a time

series of length 2400 hours which terminates 96 hours before the cyclone event, so that

this is not included. Additionally, the spike at the 12-hour period has been removed by

removing the oscillations, as discussed in the previous section. The periodograms are

plotted on a log-log scale so that a linear trend, which is evidence of power-law scaling,

may be apparent. The periodograms are plotted in the frequency range -2 ≤ log f ≤ -1

since this is the range used for the estimation of the PS exponent.

We note that in some cases there appears to be definite power-law scaling, such as in the

example of Flo (top left panel), whereas other periodograms appear to contain crossovers

in the given frequency range, or show little evidence of any correlation. In general the

periodograms show a negative linear gradient as expected in correlated (red noise) signals.

As we have remarked in section 2.3.3, the estimation of the PS exponent for use as the

PS indicator does not assume power-law scaling and merely seeks to detect a ‘reddening’

of the signal, which is present even in systems such as the AR(1) process which do not

exhibit true power-law scaling in the asymptotic.
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Fig. 4.3 Sea-level pressure deviation from the mean at the Florida Keys station
in a period from 15 to 50 days before Hurricane Andrew. Three time series are
considered: the original raw data (grey line); the same data with oscillations
removed by filtering (red, see equation 4.1); and the data with oscillations
removed by subtracting a sine wave (blue, see equation 4.2). Panel a shows
the sea-level pressure deviation from the mean whilst panels b, c and d show
the ACF1, DFA and PS indicators (respectively) of the three series.
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Fig. 4.4 The periodogram for each of the sea level pressure series from weather stations chosen for each of the fourteen
tropical cyclones detailed in table 4.1. In each case we use a time series of length 2400 hours which terminates 96 hours
before the cyclone event, and the 12-hour period oscillations have been removed.
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4.2 Application of one-dimensional tipping point techniques

In this section we consider the time series of the sea-level pressure variable at a fixed

location in the time immediately before the arrival of a tropical cyclone in that location.

We use the fourteen tropical cyclones that are detailed in table 4.1 (see section 4.1.2).

In the case of each of the fourteen cyclones, the sea-level pressure time series is centred

on the minimum pressure value which is labelled t = 0. This cannot be called analogous

to the bifurcation point in the pitchfork bifurcation example of chapter 2 (figure 2.23,

page 107) but is a common feature of all time series which is convenient to use for

the purpose of comparison. The results presented in this section have previously been

published in Prettyman et al. [2018].

4.2.1 Method

The same methods are applied to the sea-level pressure time series here as are applied to

the model examples in section 2.5. The ACF1, DFA and PS indicators (definitions 2.3.1,

2.3.2 and 2.3.3 respectively, see section 2.3, page 60) are applied to the times series with

a sliding window of approximately 100 points, equivalent to 100 hours in this data. The

exact window sizes used, for each indicator, are: ACF1: 90 points; DFA: 90 points; PS:

102 points. These values are determined by the sensitivity analysis which will be explained

in section 4.2.3. Each of the three indicator series is calculated for each of the fourteen

time series and then the mean over these fourteen series is calculated.

4.2.2 Results

Figure 4.5 shows the fourteen sea-level pressure time series centred at the point of minimum

pressure (panel a) and the mean of the three indicator series (ACF1, DFA and PS indicators

in panels a, b and c). The mean indicator series are shown with error bars of one standard

deviation.

We note that the ACF1 indicator is consistently high (greater than 0.9) over the entire

series and does not apparently rise as a precursor of the cyclone event. The mean of the

DFA indicator increases within the time period that the drop in pressure is obvious in

the time series (24 hours before the event), and so the increase cannot be said to be an

early warning signal. The PS indicator, however, does show an increasing trend starting at
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Fig. 4.5 ACF1, DFA and PS indicators applied to sea-level pressure data. Panel
a: Data from the 14 tropical cyclones, mean shown in black. Panels b, c,
d: The mean ACF1, DFA and PS indicators, with error bars of 1 standard
deviation. The ACF1 indicator does not provide a clear EWS in this case. The
DFA indicator shows a small, sudden increase just before the event. The PS
indicator begins to rise around 48 hours before the cyclone event.
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around 50 hours before the minimum pressure, although it is not significant at the level of

one standard deviation.

We note that the consistently high value of the ACF1 indicator may be due simply to

the one-hourly sampling rate of the data points. By using a different autocorrelation lag

we can compensate for this effect by simulating different sampling rates, in which case an

EWS may be visible. In figure 4.6 we repeat the same experiment as before but instead of

using the ACF1, DFA and PS indicators, we use the ACF1, ACF2, ACF3, etc. indicators

corresponding to using a higher-lagged autocorrelation function. The results are presented

for lags 1, 2, 3, 4, 5, 6, 8, 10 and 12. We see that a better EWS is visible in the lag-4

autocorrelation indicator than in the previously-used ACF1. In figure 4.7 we present the

same results again but, in this case, the oscillations have been removed from the sea-level

pressure data as explained in section 4.1.3. Again, we see that removing the oscillations

does not appear to improve performance of the EWS indicators in this example, even when

using lag-4 autocorrelation.
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Fig. 4.6 The ACF indicator is applied to the sea-level pressure time series of the fourteen tropical cyclones using an
autocorrelation function with lags 1, 2, 3, 4, 5, 6, 8, 10 and 12 (in panels a-i respectively). The best EWS is visible when
using a lag-4 ACF.
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Fig. 4.7 A repeat of the method presented in figure 4.6, but the oscillations have been removed from the sea-level pressure
data as explained in section 4.1.3. Again, the ACF indicator is applied to the sea-level pressure time series of the fourteen
tropical cyclones using an autocorrelation function with lags 1, 2, 3, 4, 5, 6, 8, 10 and 12 (in panels a-i respectively).
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4.2.3 Sensitivity analysis

In order to calculate the indicator series shown in figure 4.5, it is necessary to select

an appropriate window size. The calculation of each of the indicator series requires an

appropriately large window size in order to yield an accurate calculation of the scaling

exponent. The calculation of the power spectrum scaling exponent from the periodogram

obtained using the fast Fourier transform is particularly inaccurate when only a small

number of points are available.

Besides the error due to the noise in the periodogram, the actual periodic spikes in the

periodogram, such as the spike representing the 12-hour oscillations, have a greater influ-

ence on the calculation of the scaling exponent when fewer points are used. Furthermore,

the calculation of the DFA exponent requires a minimum number of points depending on

the parameters selected. The lag-1 autocorrelation could reasonably be calculated for a

series of only three points, but the ACF1 indicator exhibits large variability, as with the PS

and DFA indicators, for small window sizes.

It is therefore desirable to use a sufficiently large number of points to give an accurate

estimate of the scaling exponent with less noisy temporal variability. However, one

must attain a compromise against the competing requirement for a short time window

corresponding to the time scale of the phenomenon under investigation. For example,

when we consider the sea-level pressure time series in figure 4.5 we note that the visible

influence of the cyclone on the pressure begins only around 24 hours before the minimum.

When attempting to detect an early warning signal, using an indicator series calculated

with a window of several weeks would clearly not be useful: the large number of points

relative to the actual period of interest will smooth out any significant increase or decrease.

There is also a limit imposed by the length of the time series data. We require a window

size such that the indicator variance is significantly small that we can see the EWS, but

that the rise in the indicator value before the tipping event is large enough so that we can

recognise it as an EWS.

Here we analyse the sensitivity of each indicator to the window size used, in order to

ascertain the optimal window size in this particular example of a physical phenomenon, if

such a universal optimum exists.

We expect that the EWS apparently becomes stronger with decreasing window size,

above a certain size where the variability becomes so large that it is not possible to detect

an EWS. In this way, we make a subjective choice as to the optimum window size to use
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in this context. The hypothesis is that all cases considered here (all fourteen cyclones

and their corresponding sea-level pressure time series) are sufficiently similar in the way

that the scaling exponents behave that a general optimum (or near-optimum) window size

exists. In this case, it will be possible to apply these indicator methods to new data from

similar sources.

It is useful to produce a contour plot of the mean value of the indicator over time, with

window-size on the y-axis. In this way we are able to visualise hundreds of indicator series

simultaneously. In figure 4.8 we present the PS indicator series calculated for window

sizes from 40 points to 160 points. We see that there is an increasing trend in the PS

indicator towards the end of the time series with almost all window sizes. The exceptions

occur periodically where the window size is a multiple of twelve: using these window

sizes the indicator has a high value (≈ 1.5) over the entire series. The most obvious early

warning signals occur with window sizes which are an odd multiple of 6, that is, 90, 102,

114, etc.. Using larger values (e.g. 174) the useful variability in the indicator is smoothed

out so that the trend towards the end of the series is less obvious. We hypothesise that

this 12-hour pattern is created by the 12-hour oscillations present in the sea-level pressure

data, which particularly influences the power spectrum (the pattern is not observed in the

ACF1 and DFA indicators, see figures 4.11 and 4.13). We also observe that there is a

qualitative change in the nature of the pattern as the window size is increased from 99

points to 100 points, at which point, on the y-axis, all of the contour lines are lined up

horizontally. This observation has been mentioned to the team behind the HadISD dataset,

namely the authors of Dunn et al. [2016], and it has been ruled out that this is an artefact of

the data collection or filtering. The investigation of the cause of this effect may be a topic

for future work involving the PS indicator applied to sea-level pressure data. The 12-hour

pattern serves to highlight the necessity of considering such sensitivity of the method to

the window size parameter.

We hypothesise that a time scale of about 100 hours, or four days, is a cut-off for

the study of tropical cyclone in the context of early warning signals. A longer window

encompasses too much of the time series before any forewarning signal is created, that

is, before the cyclone has any influence on the autocorrelation of the sea-level pressure.

Since the data available is hourly, this promotes an unfortunately short window of 100

points or fewer, which introduces a large amount of variability into the indicator series

due to noise-sensitivity in the scaling exponent calculations. For this reason we proceed,
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Fig. 4.8 Mean over 14 tropical cyclones of PS indicator of the SLP data (see
fig. 4.5) calculated using window sizes from 40 to 160. The PS indicator
appears to rise around 40 hours before the cyclone event in almost all cases,
the exceptions occur when the window size is a multiple of 12, in these cases
the indicator is high (greater than 1) over the entire series.
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in sections 4.3 and 4.4, to incorporate more data into the calculation of a tipping point

indicator series.

In keeping with the decision to select a window size of about 100 points, we selected a

window size of 102 points when calculating the PS indicator in figure 4.5. At 90 points, the

indication does not provide such an obvious early warning signal. In figure 4.9 we present

the PS indicator, as in figure 4.5d, but using window sizes of 54, 90, 102 and 150 points (in

panels a, b, c and d respectively). Since the fast Fourier transform periodogram is a less

accurate approximation of the power spectrum when using fewer points, we might expect

there to be greater variability when using a short window: both less agreement between

the fourteen time series, and more variability within each individual time series along the

time scale. We observe, in figure 4.9, that the former is not apparently the case: the size of

the error bars, which is one standard deviation over the fourteen sea-level pressure series,

is largest when using a window size of 102 points, which is our chosen value based on the

more obvious early warning signal in the mean.

In figure 4.10 we investigate in what way the variance in the indicator series is effected

by the window size. We expect, since the estimation of the DFA and PS scaling exponents

is less accurate for shorter time series, that using a shorter window would result in a

noisier indicator series, regardless of the nature of the input data. For each window size

we calculate the standard deviation in the indicator series for each of the fourteen tropical

cyclones, then take the mean of the fourteen values of standard deviations. The indicator

series is calculated between 300 hours and 48 hours before the event, so that any anticipated

increase prior to the event (in the 48 to 0 hours range) is not confused with noise. The

hypothesis proves correct for the DFA indicator, shown in red, until the window size

reaches around 100 points, after which the standard deviation remains constant. For the PS

indicator, the standard deviation also decreases with increasing window size, as expected,

but jumps up again for window size 100 points, after which it continues to decrease steadily.

This jump is presumably related to the qualitative change in the mean which also occurs at

window size 100 points (see figure 4.8). As we have remarked above, it is not know why

this occurs but the investigation of the effect is an interesting topic of future work.

The PS indicator series is less noisy for window size 90 points, and also has less

variability across the fourteen cyclones, than for 102 points. However, this must be

balanced by the consideration that the early warning signal, if present at all, is more

obvious in the 102 point window series.



190 Application of tipping point techniques to tropical cyclones

Fig. 4.9 The PS indicator is calculated for the fourteen tropical cyclone sea-
level pressure series and the mean, with error bars of one standard deviation, is
shown. The method is the same as in figure 4.5d, but using window sizes 54,
90, 102 and 150 points (in panels a, b, c and d respectively).
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Fig. 4.10 Sensitivity of the variance in the tipping point indicators to window
size. For each window size the standard deviation in the indicator series is
calculated for each of the fourteen tropical cyclones and the mean over the
fourteen values is plotted.
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Figure 4.11 is produced by the same method as figure 4.8 but uses the ACF1 indicator.

The range of window sizes is also smaller: from 40 to 120, because for sizes over 120 the

indicator was consistently above 0.95 and showed no change over the time period. In this

case, we notice that the indicator rises, for all window sizes, to a maximum value at around

16 hours before the event, before decreasing sharply. Unfortunately there is something just

before -100 hours which causes the ACF1 indicator, particularly with a window size above

60, to be very high –higher than the highest value immediately preceding the cyclone

event– which is not visible in the PS and DFA indicators (figures 4.8 and 4.13). The same

pattern is evident in figure 4.12 where the ACF4 indicator has been used rather than the

ACF1 indicator (that is, the lag-4 autocorrelation function is used in the calculation) since

the results presented in figure 4.6 (see page 184) show that a better EWS is visible when

lag-4 ACF is used. We note that in this case the value of the indicator is lower (<0.9) over

most of the time series and so the increase just before the tipping event is more visible.

Additionally, the sharp decrease at the end of the ACF1 indicator signals is not present in

the ACF4 indicator signals.

Figure 4.13 is produced using the DFA indicator, again with a range of window sizes

from 40 to 120. The calculation of the DFA scaling exponent is not possible for very short

series, depending on how the series is segmented before each segment is detrended by

subtracting a polynomial3. So as to be able to estimate the scaling exponent, we use eight

different segment sizes increasing logarithmically from the smallest to the largest, the

smallest being ten points and the largest being ⌊N/4⌋ where N is the length of the series.

In this way it is always possible to get at least four segments from the series. Using this

method it does not make sense to calculate the DFA exponent with a series shorter than 44

points because only one distinct segment size is used, 10, and therefore the relationship

between the segment size and the fluctuations coefficient is estimated from a single point.

Table 4.3 shows the eight segment sizes used for series lengths 40, 54, 100 and 400.

A series length of at least 400 would be ideal, giving a range of segment sizes between

10 and 100 with which to be able to calculate the correlation between the segment size

and fluctuations coefficient (see section 2.1.2). With the available data for the sea-level

pressure, a window size of 400 points cannot be used. We use a window size of 90 points

because there appears to be a slightly stronger early warning signal (an increase in the

3In this study we consistently use quadratic detrending to address non-linear effects.
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Fig. 4.11 Mean over 14 tropical cyclones of the ACF1 indicator of the SLP
data (see fig. 4.5) calculated using window sizes from 40 to 120. The ACF1
indicator appears to rise around 30 hours before the cyclone event in almost all
cases. The increase is more pronounced when using a larger window size.
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Fig. 4.12 Mean over 14 tropical cyclones of the ACF4 indicator (using lag-4
autocorrelation) of the SLP data (see fig. 4.5) calculated using window sizes
from 40 to 120. The ACF1 indicator appears to rise around 30 hours before
the cyclone event in almost all cases. The increase is more pronounced when
using a larger window size. We note a similar pattern to the ACF1 indicator in
figure 4.11, but the picture is clearer and a clear increase in the indicator can
be observed before the tipping event even using very short window sizes.
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Series length Segment sizes
40 10
54 10, 11, 12

100 10, 11, 12, 14, 16, 19, 21, 25
400 10, 13, 19, 26, 37, 51, 71, 100

Table 4.3 During the calculation of the DFA scaling exponent, a series of length
N is segmented eight times, the sizes of the non-overlapping segments increase
logarithmically from 10 to ⌊N/4⌋. The segment sizes used for four example
series lengths are shown. For very short series, fewer than eight different
segment sizes may be used.

indicator prior to the event) than with other window sizes. However, the DFA indicator is

practically useless when applied to this data.

A series length of 54 is considered in table 4.3 because there appears to be interesting

oscillating behaviour in figure 4.13 with a window size of 54. The oscillation has a period

of six hours, which suggests a connection with the 12-hour oscillations present in the

sea-level pressure data. We also note that there is a qualitative change in the behaviour

of the DFA indicator as the window size reaches 80, 91 and (more weakly) 100 points,

similar to the change observed in the PS indicator at 100 points (see figure 4.8). Again, it

is not known why this occurs and should be the subject of further investigation.

4.3 Application of multi-variable tipping point techniques

In this section we consider the same fourteen tropical cyclones detailed in table 4.1. In

section 4.2, tipping point indicators were applied to the one-dimensional time series of

the sea-level pressure variable at each station. Here, both the wind speed and sea-level

pressure are considered together. We first calculate the ACF1, DFA and PS indicator

series for the wind speed variable. Using the exact same process by which figure 4.5 was

produced, showing the indicator series for the sea-level pressure variable, we produce

figure 4.14, showing the indicator series for the wind speed variable. The same window

sizes were used for the ACF1, DFA and PS indicators (90, 90, 102 respectively) as for

the sea-level pressure. We note that the mean ACF1 and PS indicators rise with the rising

wind speed, and that the DFA indicator performs similarly as in the sea-level pressure case.

None of the indicators appear to provide an early warning signal, so we do not expect that
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Fig. 4.13 Mean over 14 tropical cyclones of DFA indicator of the SLP data
(see fig. 4.5) calculated using window sizes from 40 to 120. There is a very
small apparent rise in the DFA indicator at -12 hours for window sizes greater
than 80 hours.
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combining the wind speed and sea-level pressure variables will yield a signal stronger than

already present in the sea-level pressure. However, we proceed to investigate the results of

the multi-variable tipping point analysis in comparison to the analysis of the individual

variables.

Throughout this section, including in figure 4.14, the time series are aligned so that

t = 0 occurs at the point where the sea-level pressure is minimum, for consistency when

comparing to the results in the previous section. This may not be the same point at

which wind speed is maximum. The results presented in this section have previously been

published in Prettyman et al. [2019].

4.3.1 Method

Having considered the sea-level pressure and wind speed variables separately (figures 4.5

and 4.14) we now combine the two variables so that more data is available from which

to produce a single tipping point indicator series. We use the the methods introduced

in sections 3.1 and 3.2, that is, the analysis of the eigenvalues of the Jacobian matrix of

a linearised system, and the use of EOFs to reduce the dimension before applying the

one-dimensional indicator techniques.

Jacobian eigenvalues analysis

For the Jacobian eigenvalues analysis we repeat the method described in section 3.1 using

a window size of 102 points in order to provide a comparison with the PS indicator applied

to the one-dimensional sea-level pressure time series, for which this window size is used.

In section 4.3.3 we will perform a sensitivity analysis to determine whether a different

window size is preferable. Besides the window size, it is necessary to choose whether

to study the real part, the imaginary part, or the complete complex eigenvalue. Since we

do not know in advance the nature of the tipping, we record both the real and imaginary

parts. Thus, in a sliding window of 102 points, the Jacobian matrix of the linearised system

is estimated from the two system variables (sea-level pressure and wind speed) and the

principal eigenvalue is recorded. The method of approximating Jacobian eigenvalues has

previously been applied to dynamical systems where the governing equations and the type

of bifurcation are known [Williamson and Lenton, 2015], and so we know in advance what

type of signal we should expect, such as with the example of the Van der Pol oscillator in

the previous chapter (figure 3.7). However, we have noted that the method was intentioned
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Fig. 4.14 Wind speed data from fourteen tropical cyclones and the mean ACF1,
DFA and PS indicators. (a) Wind speed data from the 14 tropical cyclones,
mean shown in black. (b,c,d) The mean ACF1, DFA and PS indicators, with
error bars of 1 standard deviation.
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as a two-dimensional analogue to the lag-1 autocorrelation, so it is reasonable to apply

it to systems in which the one-dimensional ACF1 indicator, and the related PS and DFA

indicators, increase prior to a tipping point. We are particularly interested to note the

extent to which this indicator is an improvement, if at all, over simply considering the

one-dimensional indicators individually, and whether any additional artefacts arise as a

consequence of considering the two variables together.

Dimension reduction using EOFs

The other technique we use here is to first obtain the the leading EOF score of the two

time series (sea-level pressure and wind speed) in order to reduce the dimension to one.

The time series in both variables are first mean-centred, as per the EOF method, and also

normalised in order to non-dimensionalise. We are then able to apply the one-dimensional

EWS techniques, the ACF1 and PS indicators, and take the mean over all cyclones. We use

a window size of 102 for the PS indicator and 90 for the ACF1 indicator, since these were

found to be useful when considering the sea-level pressure alone in the previous section.

As noted in section 3.2.2, there are three available approaches to obtaining the principal

EOF score, that is, there are three approaches to obtaining the vector onto which we project

the two-variable series. The vector is the principal eigenvector of the covariance matrix of

two time series, we may use either

1. the entire available time series (global projection), or

2. only the segment of the time series in each window (windowed projection), or

3. the entire available time series up to the end of the current window (moving projec-

tion).

The first option in this case implies using the part of the time series which lies in the

"future" of the current window. This is not comparable to practical prediction problems

and so we avoid it here. It is also not sensible to obtain the projection vector using the part

of the time series which includes the tipping point when considering the rest of the series,

because the dynamics are not representative.

The second and third options are distinguished in section 3.3.3. The windowed projec-

tion most accurately captures the maximum variance in each window, but may be unsuitable

if the principal EOF eigenvector is highly variable due to noise. In this system we want to
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avoid considering signals from meteorological events prior to the tropical cyclone being

studied and want to, as much as possible, consider a relatively stationary system prior to the

tipping event. To this end, we generally truncate the time series at around 300 hours before

the tipping point and so the total length of the series is not much longer than the window

size used in the indicator calculation (approximately 100 hours). Therefore, the difference

between using the windowed or moving projection will be negligible. Throughout this

section, we use the windowed projection.

Since the two variables have different units, it is not meaningful to consider them

together without first non-dimensionalising. To satisfy this requirement, as part of the EOF

technique, each time series is mean-centred and normalised by its own standard deviation.

In section 4.3.3 we explain the investigation into the effect of weighting the two variables

differently, as a result of which we choose to weight the sea-level pressure and wind speed

variables in the ration 40 : 60 when using the ACF1 indicator, and to weight the variables

equally when using the PS indicator.

4.3.2 Results

The Jacobian eigenvalue analysis is performed separately for each cyclone and both the

real and imaginary parts of the principal eigenvalue are recorded. The mean of the fourteen

resulting indicator series is shown in figure 4.15a,b, with error bars of one standard

deviation over the fourteen indicators. We note that there is a slight increasing trend in

the real part of the eigenvalue starting at around 48 hours before the minimum pressure,

similarly to the PS indicator applied to the sea-level pressure series (figure 4.5). The

imaginary part also exhibits a spike as the event occurs.

The results of applying the ACF1 and PS indicators to the windowed EOF projection

are shown in figure 4.15c,d. We note that the rise in the ACF1 indicator is more noticeable

than when using only the sea-level pressure (figure 4.5b), but is not so noticeable as when

using only the wind speed (figure 4.14b). The combination of the two variables using EOF

has given an indicator series which appears to be somewhere between the two separate

indicator series, although it is not equivalent to simply taking the mean of the two. The

PS indicator series is more similar to the PS indicator series using only sea-level pressure

(figure 4.5d). We quantify the gradient of the indicator by evaluating the Mann-Kendall

coefficient of the mean indicator series in the 30-hour window before time zero, using the



4.3 Application of multi-variable tipping point techniques 201

Indicator
Data ACF1 PS
Sea-level pressure -0.20 0.79
Wind speed 0.91 0.70
EOF 0.45 0.72

Table 4.4 Comparison of the Mann-Kendall coefficient of the ACF1 and PS
indicators of the time series data in a 30-hour window before the tropical
cyclone event. We compare sea-level pressure and wind speed data alone
(as presented in figures 4.5 and 4.14) to the EOF score of the two series
(figure 4.15c,d). In the case of each indicator, the EOF result has a gradient
somewhere between the two considered alone.

equation

c(X) =
2

N(N −1)

N−1

∑
i=1

N

∑
j=i+1

sign(X j −Xi) , (4.3)

where X is the time series of the indicator. The result is summarised in table 4.4.

4.3.3 Weighting sensitivity in EOF techniques

The Jacobian eigenvalues technique takes into account only the covariance between the

two variables and is not sensitive to the relative weights of the variables. That is, if the

data in one column were changed to different units resulting in values many times larger,

the eigenvalues (but not the eigenvectors, which are not studied) would not change. The

calculation of EOFs, however, is sensitive to different weighting schemes. By multiplying

each variable (each column of the data matrix) by different scalar values, we are able to

assign greater or lesser importance to each variable.

We are therefore able, by visualising the indicator series for a variety of different

weighting schemes, to select an optimum weighting in each case. For the data matrix X ,

where the columns of X are the time series variables, we instead use the weighted matrix

Xw = XW, (4.4)

where, in our case,

W =

p 0

0 1− p

 , p ∈ [0,1]. (4.5)
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Fig. 4.15 Multivariate indicator methods applied to sea-level pressure and
wind speed data in fourteen tropical cyclones. Mean value shown in black with
error bars of one standard deviation over the fourteen series. Panels a and b:
the real and imaginary parts of the principal Jacobian eigenvalue calculated
in a sliding window of 90 hours. Panels c and d: the ACF1 and PS indicators
calculated for the windowed EOF projection using window sizes 90 and 102
hours respectively. For the ACF1 indicator, the sea-level pressure and wind
speed variables are weighted 40 : 60.
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For p = 0 the first column of X , in our case the sea-level pressure variable, is given no

weight and the indicator series is identical to the one-dimensional indicator applied to wind

speed alone. Conversely, when p = 1, only the sea-level pressure is considered.

The EOF projection is found for a range of values from p = 0 to p = 1 and the PS and

ACF1 indicators are calculated. The results for the ACF1 indicator and the PS indicator are

both shown as contour plots in figure 4.16. We note that, when using the ACF1 indicator,

there is a clear difference between p < 0.5 and p > 0.5. Weighting the sea-level pressure

variable at 0.4 is effectively equivalent to weighting it zero. Likewise, weighting the SLP

variable at 0.6 is effectively equivalent to weighting it 1. When SLP is weighted more

heavily than wind speed (p > 0.5) the ACF1 indicator is consistently high and does not

provide an EWS, which is already apparent from the ACF1 indicator applied to SLP alone

(see figure 4.5b). Using p < 0.5 there is an increase in the indicator prior to the event,

as in figure 4.14b, and this rise appears earlier as the relative weight of the SLP variable

increases, up to the complete qualitative change at p = 0.5. It appears that choosing a

value p = 0.4 would provide the best EWS in this case.

For the PS indicator, the picture is more similar for different weighting schemes. The

contour plot is complicated by a few unexplained spikes with much higher indicator values

than the surrounding points. For example, for the specific weighting p = 0.15 there occurs

a non-periodic spike at -12 hours where the PS indicator is greater than 3, this spike is

circled in red in figure 4.16. It is possible that this approach could be used to determine

specific weightings to avoid, based on the presence of spikes, but this would not be practical

without prior knowledge of the spikes’ distribution.

4.4 Early warning signals for tropical cyclones using spa-

tially distributed data

Here we make an attempt to use the one-dimensional EWS indicators applied to multiple

time series data distributed over a geographic area. We investigate the spatial variation

in the indicator series, potentially with a view towards detecting a spatial pattern which

may provide a warning of the arrival of the tropical cyclone. The results presented in this

section have previously been published in Prettyman et al. [2019].
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Fig. 4.16 Sensitivity of the ACF1 and PS indicators to different EOF weighting
schemes. The widowed EOF projection is found for a range of SLP weighting
values from p= 0 (only wind speed considered) to p= 1 (only SLP considered)
and the ACF1 and PS indicators are calculated (panels a and b respectively).
A non-periodic spike in the PS indicator is circled in red.
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4.4.1 Method

For this analysis nine separate tropical cyclone events were selected (see section 4.1.2)

which are described in table 4.2. These events were selected due to an availability of

data at several stations within 200 km of the landfall location of the hurricane, which

gives between 21 and 48 stations depending on the hurricane (see column “# stations” in

table 4.2, page 176). The sea-level pressure data were obtained from each station within

this radius in a period of twenty days before landfall, and stations were disregarded where

more than ten points were missing during this period. The data from the remaining stations

were linearly interpolated onto the entire one-hourly time series.

For each of the nine hurricanes, we take the sea level pressure data from all available

stations in the region supplied by the HadISD 2017 dataset. We then calculate the PS

indicator series for each pressure dataset and asses the slope of that indicator series, using

the Mann-Kendall coefficient (see equation 4.3), in a window of approximately 30 hours

before the hurricane enters the region. If the behaviour here is similar to the behaviour of

the mean of the PS indicator applied to the individual sea level pressure series (figure 4.5d),

we would expect that an upward trend in the indicator (i.e. a high positive value of the

Mann-Kendall coefficient) will be detectable for each location within 30-hours travelling

time of the hurricane. We expect that the slope of the PS indicator series would be high at

points where the hurricane is very close and lower at points further from the point where

the hurricane enters the region.

The window size used in the calculation of the PS indicator series, and the length of

the window in which the Mann-Kendall coefficient is evaluated, are determined for each

hurricane through a sensitivity analysis similarly to the process described in section 4.2.3,

which is presented in figure 4.17. In these contour plots, the mean is not taken over the

indicator series for all tropical cyclones, as in section 4.2.3, but rather an individual contour

plot is presented for each cyclone in which the mean is taken over all the stations in that

region. We see that there is again a significant qualitative change as the window size

increases over 100 hours. We note that the increase in the indicator is usually seen in a

30-50 hour window before the event, which is consistent with our expectations based on

previous analysis.

As a result of the sensitivity analysis in figure 4.17 we take the decision to measure the

Mann-Kendall coefficient of the indicator series (for the time series at each spatial location,

separately) in a 30-50 hour window before a time Tentry, which is when the cyclone enters
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the region under study: that is the time at which the minimum pressure is attained at the

first spatial location on the cyclone’s path. We expect to see a high coefficient value (i.e.

a large increase in the indicator) at locations close to the entry point. Also, according to

the sensitivity analysis, we note that the PS indicator is most useful when using a window

size which is an odd multiple of six, consistent with the result of the previous sensitivity

analysis in section 4.2.3. This is likely due to the 12-hour tidal oscillations in the data. For

each cyclone we have chosen an indicator window size of either 90 or 102 points.

4.4.2 Results

The value of the Mann-Kendall coefficient of the PS indicator is plotted as a filled contour

plot over the geographic area. In figure 4.18 we present a summary of the results: in each

case, the contour map is rotated so that the forward path of the Hurricane is moving from

the bottom to the top of the image. Hurricane tracks, obtained from the NOAA HURDAT2

dataset (see section 4.1.1) are shown by the black line. We are generally able to see a

movement of the hurricane from areas with a high value of the Mann-Kendall coefficient,

towards areas with lower value, as we expect. Whilst this doesn’t provide a useful EWS,

it is clear that the PS indicator provides a more robust EWS when applied to many time

series in a region than when applied to individual series, as in figure 4.5d.

4.5 A model of sea-level pressure in tropical cyclones

In this section we develop a model of the pressure profile of an approaching tropical

cyclone, based on the simple deterministic model developed by Holland [1980]. We aim to

add a stochastic component to the model which we will parametrise using the early warning

signals from the PS and ACF1 indicators obtained in section 4.2. It is expected that by

using the values of the PS and ACF1 indicators, obtained from our study of actual sea-level

pressure data, we will be able to recreate the stochastic component of the sea-level pressure

as observed in the actual data and, by adding this into the model, obtain something that

looks like a genuine sea level pressure signal. If we are able to parametrise our stochastic

model in this way it will be a verification of effectiveness of the PS indicator in obtaining

useful information about the system. This model has been presented in Prettyman et al.

[2019].
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Fig. 4.17 Contour plots showing the sensitivity of the PS indicator to the
window size. Reading left to right the plots show the results for: Andrew
(Florida); Andrew (Louisiana); Katrina; Wilma; Gustav; Matthew; Harvey;
Irma; Nate. In each case, for each window size, the PS indicator is calculated
for the sea-level pressure time series given at each station in the landfall region
and the mean taken over all of these stations.
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Fig. 4.18 Contour plots of PS indicator gradient for nine Atlantic hurricanes
on the Caribbean and Florida coastlines of the USA. left to right: Andrew
(Florida); Andrew (Louisiana); Katrina; Wilma; Gustav; Matthew; Harvey;
Irma; Nate. In each case, the slope of the PS indicator is evaluated using
the Mann-Kendall coefficient and the value of this coefficient is plotted over
the geographic area. Each plot has been rotated so that the hurricane track
is moving from the bottom to the top of the image (shown by the black line,
direction indicated by thick black arrow). The locations of the weather stations
are shown by crosses; the grey areas fall outside of the polygon enclosing the
weather stations and are therefore not interpolated onto.
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We emphasise that it is with this goal of verifying the effectiveness of our techniques

in mind that we proceed to develop the model of a tropical cyclone including a stochastic

component. It is not with a view towards using the model for practical modelling or

forecasting purposes, although this may be interesting subject for future work to be

achieved by further developing the model presented here.

The deterministic model

Holland [1980] presents a simple analytic model of the pressure profile p of a hurricane:

p(r) = pc +(pn − pc)exp
(
−A
rB

)
, (4.6)

where r is the radial distance from the centre of the hurricane, pc and pn are the central

and ambient pressures, A and B are parameters to be determined by fitting to observed

data. Holland [1980] fits the model to three Australian hurricanes: Tracy (December 1974),

Joan (December 1975) and Kerry (February 1979). The values of parameters A and B are

obtained by fitting to sparse observations, particularly the observations of maximum wind

speed Vm given by

Vm =

(
B(pn − pc)

ρe

)1/2

, (4.7)

and occurring at a radius Rw = A1/B.

Here we present a similar model modified so that the pressure is modelled at a fixed

point in space as a function of time, rather than a profile modelled at a fixed time as a

function of the distance from the hurricane centre. We are therefore able to model the

effect on sea level pressure (at a weather station, for example) of an approaching hurricane.

We use the values A = 40 and B = 1 which are obtained by fitting to Hurricane Katrina

(2005) at peak intensity. We consider a fixed point at distance d(t) from the hurricane

centre at time t. In equation 4.6, we replace r by d(t) to introduce a time dependence.

We assume the hurricane moves in a straight line towards the fixed point with a speed of

v(t) kmph, in which case we have d(t) =
∫ t

0 v(s)ds. For this model, a constant velocity

will suffice: 18 kmph is obtained by taking a mean of the nine tropical cyclones studied in

section 4.4 using the HURDAT2 data (see section 4.1.1). We in fact use a constant velocity

sampled uniformly from the range [16,20] so that not all implementations of the model are
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identical. The ambient pressure, pn, is given by

pn(t) = 1016+5η1 +1.6sin
(

2πt
12

+K
)
, (4.8)

where the sine wave models the 12-hourly tidal oscillations and K is a random offset

chosen uniformly in the range [0,2π]. The central pressure is given by pc = 950+10η2.

Values η1 and η2 are sampled from a standard normal distribution. The reason for the

inclusion of η1, η2 and the random offset K is that we may wish to run the model multiple

times and take the mean of statistics over those simulations to obtain an ensemble estimate.

For this purpose, we would not want all of the sine wave components to be aligned, nor for

all the models to have exactly the same initial parameters.

The stochastic component

We observe, in the HURDAT2 sea-level pressure data, that fast-scale noisy fluctuations

occur in the times series on top of the large-scale dynamics and the 12-hour tidal oscillations.

These fast-scale fluctuations are not included in equation 4.6, but we wish to model them

as an additional stochastic component.

There is also a need to model the increasing memory in the pressure signal, shown

to exist using the PS indicator. We therefore add a noise signal to the output in which

the power spectrum scaling exponent α increases over time. The maximum value of α is

greater for points closer to the cyclone track, and the time at which the maximum value

is reached is the time at which the closest approach occurs, which we call Tmin. We have

used values such that α = 0.4 for t < tmin −50 (more than fifty hours before the minimum

approach distance is reached). In the 50-hour window, the value of α increases linearly

from the background value of 0.4 to a higher value α0. α0 takes the value 2 in cases where

the hurricane path passes directly over the grid-point in question (an approach distance of

zero) and decreases linearly with increasing distance from the cyclone track, to a minimum

value of 0.4 for grid-points more than 200km distant.

The part of the noise signal with increasing α value is made by concatenating 10

sub-series, each of length 1000 and with a higher α value than the last (covering the range

[0.4,α0]), then sampling with an interval size chosen to give a series of the desired length.

All of the noise signals in the model are generated by the method detailed by Kasdin

[1995].
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We therefore have the model:

p(d(t)) = pc +(pn(t)− pc)exp
(

−A
d(t)B

)
+ηt , (4.9)

where d(t) is the distance to the centre of the hurricane at time t, pc is the central pressure,

pn(t) is the ambient pressure at time t given by equation 4.8, A = 40 and B = 1 are fitted

parameters, and ηt is a noise term with changing power spectrum scaling exponent as

described above. For every point on a spatial grid we are able to calculate the distance d(t)

using simple geometry (we model the hurricane as moving in a straight line for simplicity),

generate the noise series η and then calculate the pressure at that point using equation 4.9.

We model sea-level pressure at a single point in space which is approached by a

hurricane passing by at a distance of 20km, the model uses a time-step of 0.05 hours and

100 implementations are evaluated. We then calculate the ACF1 and PS indicators in a

100-hour sliding window in order to compare them with the results in figure 4.5. The

result is shown in figure 4.19. We see that the ACF1 and PS indicators behave similarly

to the result from the real sea-level pressure data, and the pressure series itself also looks

reasonable.

The model is then evaluated with a time-step of 0.05 hours at 100 points in a ten-by-ten

grid with 40km spatial separation between points (giving a square of side 360km). The

hurricane is modelled as travelling from ‘south’ to ‘north’ from 400 hours before reaching

the bottom of the grid up to the point where it reaches the top of grid. The PS indicator

of the pressure signal for each grid-point is calculated in a 100-hour sliding window (of

20,000 points). We then calculate the PS indicator slope, evaluated using the Mann-Kendall

coefficient, in the exact same way as shown in the previous section (figure 4.18), in the

30-hour window before the hurricane reaches the bottom of the grid. Figure 4.20 shows

the mean over ten such evaluations for ten separate runs of the model. We see that the

pattern is consistent with our expectations and also with the general pattern of the analysis

of real data in figure 4.18. This confirms our understanding of the hurricane statistics.

4.6 Discussion

We have applied the tipping point indicators introduced in chapters 2 and 3 to the mete-

orological variables measured in the vicinity on an approaching tropical cyclone. When

applied to the sea-level pressure data, the ACF1 and DFA indicators do not appear to pro-
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Fig. 4.19 Model data (see equation 4.9) and its EWS indicators. Top panel:
100 instances of the tropical cyclone model. Middle panel: the mean ACF1
indicator. Bottom panel: the mean PS indicator, shown with error bars of one
standard deviation.
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Fig. 4.20 The mean of the PS indicator slope (evaluated using the Mann-
Kendall coefficient) over ten realisations of the hurricane model. The slope
is evaluated for the PS indicator of the pressure signal at each of 100 grid
points with 20km spacing, in a 30-hour window before the modelled hurricane
reaches the bottom of the image. The motion of the hurricane is shown by the
black arrow.
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vide an EWS. However, looking at the mean over the ensemble of fourteen cases, the PS

indicator appears to begin to increase around 48 hours before the lowest pressure, although

this increase is not significant when considering the error in the signal. This is about the

same point (−48 hours) that the decreasing trend in pressure becomes visible, suggesting

that it may be able to provide a detectable EWS in this context, if longer time series and

larger ensembles were available. The methods used to incorporate wind speed data into

the analysis besides sea-level pressure have not appeared to yield any improvement, this is

possibly due to the two variables being closely correlated.

We have also attempted to increase the robustness of the results provided by the PS

indicator by including data from many points in a close geographical region. This has not

produced a reliable early warning signal but it has allowed us to visualise an approaching

storm by plotting the strength of the increasing trend in the PS indicator over the region. We

have therefore confirmed that in this specific system the PS indicator increases consistently

prior to and during the tipping event, which is not a bifurcational tipping, whilst the DFA

indicator shows no change (see section 4.2). This is not unexpected since claims that the

DFA and PS scaling exponents are linearly related [Heneghan and McDarby, 2000] are

assuming power-law scaling of the power spectrum and DFA segment sizes, whereas we

are estimating the PS exponent even in the absence of power-law scaling, as justified by

the analysis in section 2.3.3 (page 67).

We note that the tropical cyclone example was chosen because it appears to exhibit

tipping behaviour whilst not being described, according to our current knowledge, by

a bifurcating or state-switching dynamical system often associated with tipping point

analysis, therefore presenting the opportunity to apply known methods in a novel system.

In future work it will be interesting to apply the PS indicator in other applications where

it may be compared to the existing ACF1 and DFA indicators. In particular, the methods

applied in section 4.4 to sea-level pressure data over a geographic area could usefully be

applied to the greening and desertification of the Sahara, similarly to the methods presented

by Bathiany et al. [2013a] (discussed in section 3.7). At the time of writing, model data

with sufficient temporal resolution are not available.

Another interesting system worth studying with these methods is the formation, rather

than the approach, of a tropical cyclone (cyclogenesis) since this is closer to the idea of a

complex system undergoing a critical transition [Scheffer et al., 2009] and therefore a better

candidate for tipping point analysis. However, real-life data, at a resolution suitable for
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tipping point analysis, is not available to our knowledge: it is unlikely that measurements

would be taken at the precise location of cyclogenesis. Moreover, there are many different

conditions under which cyclogenesis occurs [Graf et al., 2017; Kilroy et al., 2017] and

many influencing external factors [Schreck III, 2015]. Since the original aim of this

study was to investigate the behaviour of tipping point indicators in a novel system, not

necessarily to produce a result useful to practical prediction problems, it was not necessary

to select a system with typical bifurcational tipping point dynamics. Rather, the availability

of data was the primary concern. A future project, however, could apply tipping point

indicators to data from cyclogenesis models, such as the model presented in Schecter and

Dunkerton [2009] which shows an ordered hurricane forming from a turbulent initial state,

producing an image resembling models of tipping points in vegetation coverage [Dakos

et al., 2011; Kefi et al., 2014] in which early warning signals have been detected.

We have also presented a simple model of an approaching tropical cyclone parametrised

using observed trends in tipping point indicators. We suggest that the nature of the noise

present in this model is similar to the noise found in a real sea-level pressure signal since

we have used our analyses of real sea level pressure time series in the vicinities of tropical

cyclones to parametrise the stochastic component of the model.





Chapter 5

Conclusions

In this thesis we have presented and examined a number of methods related to finding Early

Warning Signals for tipping points in dynamical systems. The methods we have chosen for

study are mostly extensions of the “fingerprinting” technique of Held and Kleinen [2004]

in which the value of a certain ‘indicator’ is tracked over time and a change in this value is

supposed to be a warning of a tipping point. Thus, the indicator value, plotted as a function

of time, is the early warning signal. In general, it is not the actual value that matters but

the change in the value.

In chapter 2 we have studied the uses of the ACF1 indicator which is common in the

literature, the DFA indicator which was developed by Livina and Lenton [2007], and the

PS indicator which is a result of this work [Prettyman et al., 2018, 2019]. All of these

indicators have been found, in certain systems containing tipping points, to provide useful

early warning signals, although in these cases the data from which the EWS is obtained

is a one-dimension time series. A pressing problem in the field of early warning signals

is, therefore, to find methods which can be applied to higher-dimensional systems such

as those presented by Williamson and Lenton [2015] and Williamson et al. [2016] and

the analysis of spatial correlations by Bathiany et al. [2013b] or Kefi et al. [2014]. In the

climate science in particular the dynamical systems under investigation are often extremely

high-dimensional. The methods presented in chapter 3 are intended as an important step in

this direction, although we restrict our study to two-dimensional systems. The example

in chapter 4, that of a tropical cyclone, is likewise studied in the context of one- or two-

dimensional early warning signal techniques, with the one-dimensional time series of

sea-level pressure data being studied either alone or in conjunction with a second variable:

wind speed.
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In the remainder of this chapter we conclude this thesis by providing comments on the

work we have done and extending it, hypothetically, into the future by considering lines of

research which may take this thesis as a starting point. We do not attempt to summarise the

entire thesis here but concentrate on the most significant results from each of the different

paths we have travelled along our journey.

5.1 Comments on the PS indicator

The power spectrum scaling exponent seems an obvious candidate for an early warning

indicator since it is closely related to the lag-1 autocorrelation and the DFA exponent

which are already used as indicators. In chapter 2 we have introduced the idea of using the

periodogram for the estimation of the PS exponent, first binning the fast Fourier transform

periodogram to give an even distribution of points on the logarithmic scale.

We base our understanding of tipping point detection and prediction on the idea of

critical slowing down (see section 2.3.1, page 60), which is assumed to precede a tipping

point, and which we have modelled as an AR(1) process. This assumption is used in

section 2.3.4 (page 73) to determine a suitable range of frequencies in which to estimate

the exponent.

As with the development of the DFA exponent for use as an EWS indicator, the

question arises that the PS exponent method may not be suitable when the power spectrum

of a particular time series does not exhibit genuine power-law scaling. This objection is

dealt with in section 2.3.3 where we investigate the analytic relationship between the PS

exponent and the parameter µ of the AR(1) process for which no real power-law scaling

exists for 0 < µ < 1. We find that by estimating the PS exponent β anyway, finding a linear

best fit to the non-linear power spectrum ‘crossover’ function, the result is a consistent,

monotonically increasing value of β which can be used as a proxy for increasing critical

slowing down, similar to the DFA exponent and the lag-1 autocorrelation. In addition, we

find the same thing when we assume the AR(1) parameter µ is non constant over the time

series used to estimate the PS exponent (see section 2.3.6, page 83), in this case the value

of β we estimate numerically is consistent with what we predict analytically by integrating

the power spectrum of the AR(1) process over the range of µ values.

Although this analysis confirms that the PS indicator may, in theory, provide an EWS

for tipping points which are characterised by critical slowing down, it does not comment
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on the suitability of the indicator for tipping points which are not so characterised, nor in

cases when the critical slowing down cannot be modelled as an AR(1) process (the latter

case has not been considered in this thesis). Experimentally, we find that the PS indicator

does not provide an EWS for noise-induced tipping, consistent with established results for

the ACF1 and DFA indicators. Transitional tipping points may or may not be characterised

in this way. A future study may be designed to investigate these transitional tipping points

further, and also to apply the PS indicator to examples of rate-induced tipping, which has

not been studied here.

Finally, we find that the estimation of the PS exponent requires a relatively long time

series, in comparison to the accurate estimation of the lag-1 autocorrelation, for use as

an EWS indicator. Where we consider examples of dynamical systems with genuine

bifurcations, particularly the super-critical pitchfork bifurcation which is studied in more

depth in section 2.5.5, we use a window size of only 100 points for the PS indicator, which

is not expected to produce a noticeable EWS, but a slight increasing trend can be often be

observed nonetheless in the mean of a large enough ensemble.

We can conclude that the use of the power spectrum scaling exponent as an EWS

indicator is, in most cases, inferior to the well-established use of the simple lag-1 autocor-

relation. There are, however, some aspects of this new method which may provide benefits

and which could be exploited in future work. In particular, the PS exponent is insensitive to

certain trends (although we note that the DFA exponent has already been exploited for this

reason) and periodicities, particularly when the frequency of the periodicity lies outside

the range of frequencies used for the PS exponent estimation.

The application of the PS indicator to a two-variable system in chapter 3, and to the

tropical cyclone problem in chapter 4, did not give much more insight into the PS indicator

than the one-dimensional ‘toy model’ examples in chapter 2: once again we find that

where the ACF1 indicator provides an EWS, so does the PS indicator, although not as

strong nor as clear. When the ACF1 indicator fails to provide an EWS, so does the PS

indicator. The exception to this is the application to sea-level pressure in the vicinity of

tropical cyclones. In this case we discover that the PS indicator rises slightly before the

tipping event, while the ACF1 indicator decreases. This inconsistency is possibly due

to the 12-hour periodicity in the data due to tidal fluctuations, which is destroyed by the

sudden large drop in pressure at the event time. When this periodicity was removed, using

either a sine-wave subtraction or a deseasonalising approach, all EWS indicators became
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more variable and no clear signal was visible in any — it is likely that by subtracting a

periodic function from the entire time series we are actually introducing a periodicity into

that part of the time series which is not obviously fluctuating originally. In these situations,

where attempting to remove periodicities or trends artificially might introduce biases, it

may be useful to further explore the potential of the PS indicator which is insensitive to

such artefacts.

5.2 Comments on the use of EOFs for dimension reduc-

tion

In chapter 3 we have explored the idea of reducing the dimension of time series data

using empirical orthogonal functions, thus allowing the use of established one-dimensional

EWS techniques when higher-dimensional data is given. This idea is not original to this

thesis and we take for granted that using EOFs to reduce dimensionality will give a better

result than arbitrarily choosing to analyse, say, only x coordinates. However, the question

arises as to whether the EOF projection is optimal for use with EWS techniques. When

attempting to find an EWS in a time series, one is interested in looking for an increase

in variance or an increase in autocorrelation, etc.. But the EOF projection finds the time

series with the largest variance, not the largest increase in variance or the largest increase

in autocorrelation.

We have taken a simple, general, discrete-time, two-dimensional system as an example

and attempted to discover whether the EOF method is optimal, or even appropriate, for

use with EWS techniques. What we have discovered is that the EOF projection (which

has maximal variance) is the same as, or very close to, the projection which has maximal

increase in variance, unless there is very large variance in a stationary part of the system.

This result is, we believe, not trivial and serves to justify the use of EOFs in a range of

EWS applications.

An alternative EOF-like method for dimension reduction was also proposed, in which

the lag-1 autocorrelation is maximised rather than the variance. We found that there was

not a significant benefit to using this approach, even when the EWS indicator used on

the resulting one-dimensional time series was the lag-1 autocorrelation itself. This result

further justifies the use of the standard EOF method in EWS applications.
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We can conclude, therefore, that the EOF method is well-suited to reducing dimension

prior to applying EWS techniques and the previously (to our knowledge) unexamined

hypothesis that the maximal variance projection will be useful in an application which

seeks to find an increase in variance, is true in the cases we have considered. In future

work it may be instructive to consider systems in dimensions higher than two and to

consider other examples of systems which are generalisable to a wider variety of systems

experiencing tipping points.

5.3 Comments on other two-dimensional methods

In this thesis we have been particularly concerned with the method presented by Williamson

and Lenton [2015] (see section 3.1, page 113) which estimates numerically the eigenvalues

of the system Jacobian matrix in order to obtain a precursor signal of a bifurcation (for

example, the negative-real eigenvalues moving towards a positive-real value). Because

of the assumptions made on the dynamical system we view this method as similar to

using lag-1 autocorrelation as an EWS based on the assumption of the presence of critical

slowing down. We have used this method, therefore, as an example against which we

compare the performance of the PS indicator in chapter 3, in a natural extension of the work

in chapter 2 where the PS and ACF1 indicators were compared directly in one-dimensional

time series.

Our results accurately recreated those of Williamson and Lenton [2015] and we found

that the EWS is as good as that produced by the ACF1 indicator coupled with the EOF

method for dimension reduction, if one knows which eigenvalue to study and has some

prior knowledge of how the EWS will look in the case of each specific system.

In addition, we investigated a number of techniques for detecting tipping points in

multiple time series over a 2D field. We presented a simple technique whereby an EWS

indicator is evaluated in every time series over the field simultaneously to build up a heat

map of a measure of increase in that indicator over a window of time. We find that the

resulting picture of the propagation of a bifurcation point across the field is very clear

when using the ACF1 indicator and accurately represents the state of the system at each

point in time.

Many other, similar methods exist in the literature (see Bathiany et al. [2013b], Kefi

et al. [2014]) but these were not studied further here, partly because the geophysical



222 Conclusions

example chosen as a test-bed in chapter 3, that of the approach of a tropical cyclone, did

not present a good opportunity for studying these methods due to limited data. A future

study which aims to test the PS indicator in other systems could, if the data existed in the

correct form, use some of these other methods for a comparison.

5.4 Comments on applications to tropical cyclones

The study of sea-level pressure data obtained from ground-based weather stations on the

trajectory of a tropical cyclone is problematic due to sparse data sources and short time

series. We were able to identify fourteen weather stations meeting the criteria of being

in the path of a large tropical cyclone and having uninterrupted data at the time of the

cyclone1. In each of these fourteen cases we obtained hourly data, giving us only around

100 relevant data points (often fewer) since a cyclone will often have progressed from

first detection (from a given coastal location) to making landfall within a period of 100

hours. This is just about the lower limit at which the PS and DFA indicators can be applied

to a time series. When attempting to detect an effect which may only be detectable in a

period of maybe 48 hours, but the indicator is calculated in a window of 100 hours, there

will necessarily be a watering-down of the effect on the indicators. For this reason, we

have not expected to discover any useful early warning signals, and it surprising that any

change in the DFA and PS indicators is observed at all. It is not clear from the plots made

of the single-value indicators applied to the sea-level pressure series, but when assessing

the sensitivity of the indicators to window size we have presented contour plots, or heat

maps, of the indicator value at different times before the cyclone event using different

window sizes. In these plots we are able to see that the PS and DFA indicators do show

a rising trend around 24 hours before the tipping point when using larger window sizes

(>80 points). This is maybe more noticeable in comparison to the same methods applied

using shorter window sizes. It is somewhat surprising that there is any noticeable trend

at all, no matter how slight, since the analysis of the PS exponent of the AR(1) process

(see section 2.3.5, page 78) does not suggest that the estimation of the PS exponent from

just 100 points would be at all consistent. It will be necessary, in future work, to apply the

PS exponent to a real-life system with much more detailed datasets available, preferably

1Weather stations are often damaged during unusually powerful storms.
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a system which has previously been analysed using other EWS methods [Lenton et al.,

2012].

The particular problem of approaching tropical cyclones was chosen as an example of

a system with an obvious tipping point, in the sense of a sudden qualitative change, but for

which the type of tipping was unknown. It is unlikely that this example is representative

of a genuine bifurcation and it is more likely to be a forced transition. Indeed, the model

developed in section 4.5 models the tipping event as a forced transition. Given this situation

it was not known in advance whether the tipping point indicator methods would, in theory,

provide an EWS. Nevertheless, we have shown that the PS exponent and DFA exponent

are very slightly sensitive to the change in sea-level pressure in the presence of a tropical

cyclone. A future study should be designed to establish in which situations a forced

transition might be expected to exhibit critical slowing down or other effects to which

established EWS methods are sensitive.

Another issue with this particular choice of system is the 12-hourly tidal oscillations in

the sea-level pressure data which may affect the ACF1 and DFA indicators. When these

oscillations were removed, either by deseasonalising or by subtracting a sine wave, the

signals from the indicators became even less clear than was the case when using the raw,

oscillating time series. Although this periodicity in the data might provide a useful test of

the potential benefits of the PS indicator which we have shown to be insensitive to trends

and periodicities, the necessarily short time series and small ensemble sizes involved when

studying this particular system make the PS exponent a poor choice for an EWS indicator

and outweigh the benefits. It would be interesting in further studies of the PS indicator

to use additional examples of dynamical systems with periodic components, where better

time series data is available than in this cyclone example, in order to establish whether the

PS indicator could out-perform the simple ACF1 indicator in these situations.

In addition, this choice of geophysical system did not provide a particularly good

opportunity for testing EWS techniques which require multiple time series datasets spread

over a 2D field (see section 4.4, page 203). Few locations were identified where multiple

weather stations with good data were available in the same geographic region when a

tropical cyclone was also present. A coastal area of the Gulf of Mexico was selected,

encompassing the coasts of Florida, Louisiana and Texas, where nine large hurricanes2

made landfall in the time period of the available data. This area contained 65 weather

2Tropical cyclones occurring in the North Atlantic ocean are known as hurricanes.
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stations with available data, although due to the variable quality of the data only between

21 and 48 stations were used in each case depending on the hurricane (see column “#

stations” in table 4.2, page 176). In a future study the same methods could be applied

to a system for which many hundreds of time series datasets are available at regular,

gridded locations over a 2D field — possibly model data or satellite reanalysis data. One

interesting subject which was explored preliminarily in this thesis is the dynamics of the

greening of the Sahara. We have looked into the work of, for example, Bathiany et al.

[2013a] which uses model data with high spacial density to detect spacial correlations

between geographic areas at discrete points in time. The same model with a higher time

resolution is being developed [Bathiany et al., 2013b], which would allow the application

of our higher-dimensional EWS indicator methods and therefore allow us to compare these

methods to the spacial-correlation methods used previously. The data from this model

is unavailable at the time of writing but this will make an interesting further study along

the same lines as this thesis, possibly giving a better example than the tropical cyclone

problem used here.

In summary we can conclude that the tropical cyclone problem has some interest-

ing aspects, for example it is a tipping point of unknown (probably non-bifurcational)

mechanism, thus allowing to test our EWS techniques ‘blind’, and the time series contain

periodic oscillations which potentially allow the assessment of certain benefits of the PS

indicator. However, the data we have used in our analysis does not allow for sufficiently

long time series nor sufficiently large ensembles to properly compare our EWS techniques,

nor does it allow for very in-depth study of the higher-dimensional techniques introduced

in chapter 3.

5.5 Suggestions for future work

One of the most pressing problems in the study of tipping points is that of predicting the

time until the tipping occurs. Any method for predicting tipping points in this way would

have to be informed by the nature of the dynamical system in question, and the type of

tipping that is expected. It would be necessary, in advance, to classify a range of different

varieties of tipping points in a range of different varieties of dynamical systems so that

the precursors of the tipping points would be well-known. Our study of the various toy

models used as examples throughout this thesis, in particular the super-critical pitchfork
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bifurcation and the general, discrete-time two-dimensional system in section 3.5, goes

some way towards this. However, we find that, for continuous-time systems, changing the

time-step for integration even slightly can significantly change the values of the various

EWS indicators.

In all of our examples we do not consider the actual values of the EWS indicators, nor

a quantitative measure of their change over time (which will also be affected by the length

of the sliding window), but only ‘whether it is increasing or not’. We are a long way from

being able to say “For a system that looks like this, if the indicator is increasing like this,

then the tipping point will occur in x time steps.” And it seems this must be a long-term

research goal.

However, we have identified, throughout this thesis and this concluding chapter, a

number of suggestions for future work which may build upon the work of this thesis and

strengthen the field of tipping point research.

1. Rate of change of parameters. In chapter 2 we have explained our reasons for

the choice of the parameters in each of the toy models we study using the EWS

techniques (see section 2.5.1, page 95). We note that in this thesis we have considered

changes in model parameters such that the change is ‘slow’ relative to the system

dynamics. The problem of detecting critical slowing down, and therefore detecting

tipping points, in systems with a relatively fast rate of change of critical parameters is

a potentially interesting topic for future work, and may be related to the fast-growing

field of rate-induced tipping points.

2. Application of methods to other toy models. In chapter 3 we have used three dy-

namical systems as examples. It is, however, always possible to apply the techniques

presented here to more systems with different types of tipping. Indeed, when meteo-

rological data is presented the type of tipping is often unknown and it is therefore

useful to have a variety of techniques available that could be compared to infer the

possible nature of the critical transition. In future work the experiments here may be

repeated in a variety of different systems and this work may go some way towards

the log-term goal of classifying tipping points based on EWS indicator behaviour.

3. Systems of more than two variables. The work presented in chapter 3 considered

only systems of two variables. We consider it would be an interesting project to

extend this to systems of a greater number of variables. In particular, the justification
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of the EOF method in section 3.5 (page 140) used a general two-dimensional system

as the basis for the analysis. This analysis could be extended to arbitrary dimensions,

although we hypothesise that this will have little effect on the general conclusion.

4. Estimation of the error in EOF eigenvectors. In section 3.5 (page 140) where the

effectiveness of EOF method is analysed in a tipping-points context, a number of

simplifications and generalisations are made. In particular, we did not calculate an

error term by considering the variance in the EOF eigenvectors since only the mean

value was considered. It does not appear possible to provide this error term without

making further simplifications to the equations, but it may be possible to provide

an estimate of the error and this will be an important improvement if it results from

future work on these equations.

5. Further investigation of the PS indicator in periodic systems. In this thesis we

have shown that the PS indicator is insensitive to added periodicity in time series

when that would cause only a small number of spikes in the power spectrum within

the measured frequency range, and possibly none if the frequency of the periodic

function lies outside this range. In the application to tropical cyclones (chapter 4)

the PS indicator, whilst it did not provide a convincing EWS due to the short time

series, did appear insensitive to the removal of the 12-hourly oscillations. However,

the study of the near-homoclinic system in chapter 3 did not provide convincing

results. We believe there is scope for further investigation of these effects.

6. A better choice of application for the PS indicator. The tropical cyclone example

of chapter 4 is presented as an example of a system with periodicity on similar

timescales to the tipping point. This, in theory, provides a good test of the PS

indicator properties as mentioned in the previous point. However, as has already been

noted, the short time series and small ensembles available made for unconvincing

results. A future study involving another periodic time series, but with better

available data, would be an interesting project.

7. A more suitable choice of application for EWS techniques on a 2D field. We

have commented already that the choice of the tropical cyclone problem did not

provide a particularly good opportunity for testing EWS techniques which require

multiple time series datasets spread over a 2D field (see section 4.4, page 203). Few

locations were identified where multiple weather stations were available in the same
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geographic region. A coastal area was selected where nine large hurricanes made

landfall in the time period of the available data. This area contained 65 weather

stations with available data, although only between 21 and 48 stations were used in

each case depending on the hurricane. In a future study the same methods could be

applied to a system for which many hundreds of time series datasets are available

at regular, gridded locations over a 2D field — possibly model data or satellite

reanalysis data. One interesting subject which was explored preliminarily in this

thesis is the dynamics of the greening of the Sahara. We have looked into the work

of, for example, Bathiany et al. [2013a] which uses model data with high spacial

density to detect spacial correlations between geographic areas at discrete points in

time. The same model with a higher time resolution is being developed, which would

allow the application of our higher-dimensional EWS methods and therefore allow

us to compare these methods to the spacial-correlation methods used previously.

The data from this model is unavailable at the time of writing but this will make an

interesting further study along the same lines as this thesis, possibly giving a better

example than the tropical cyclone problem used here.
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Appendix A

Further working for section 3.5

In this appendix we present an extension to the work in section 3.5 where the use of EOFs

was justified by considering a simple, general dynamical system. Here we consider the

cases where the transform matrix B is not diagonal.
If S is diagonal but B is not, then we have many more terms. We find that

d11 =− 1
k

[
(b11b2

12b22 −b3
12b21 +b2

12)s
2
22 +(b11b3
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11
]
,
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1
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11
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1
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where
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11 −1 .

If neither S nor B is diagonal then it is very hard to fit on the page. The denominator k is

the same but there are even more terms in the numerator.

Extra working for the B diagonal case: We would like to expand the square root√√√√(s2
12 + s2

11
1−b2

11
−

s2
22 + s2

21
1−b2

22

)2

+4
(

s12s22 + s11s21

1−b11b22

)2
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For clarity, say ε := 1− b11, p := s2
11 + s2

12, q := s2
21 + s2

22 and r := s12s22 + s11s21, then

we have√(
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We need to express ε2 4r2

(1−(1−ε)b22)2 in leading order terms of ε:
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Then we can return to our square root:
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Returning to our eigenvector, we can now replace the square root term in the first compo-

nent with its expansion to find
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where we also know that the second vector component is
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Appendix B

Extracts of Matlab codes

Here we present some of the Matlab code used in the experiments presented in this thesis.

In all cases we give only a minimum working example: all error messages, experimental

features and help comments have been stripped back to make the extracts easier to follow.

B.1 Power spectrum exponent estimation

1 function [pse_value] = PSE(X)

2 N = length(X);

3 xdft = fft(X);

4 xdft = xdft (1: floor(N/2)+1);

5 psdx = (1/N)*abs(xdft ).^2;

6 psdx (2:end -1) = 2*psdx (2:end -1);

7 freq = linspace (0,1/2, length(psdx))’;

8 logf = log10(freq); logp = log10(psdx);

9 pfit = polyfit(logf , logp , 1);

10 pse_value = -pfit (1);

The function PSE takes a one-dimensional array X, presumed to be a time series, and

returns a single value which is an estimate on the power spectrum scaling exponent β . The

majority of the computation is the calculation of the fast Fourier transform on line 3 which

refers to Matlab’s inbuilt algorithm. The one-sided FFT is then obtained by truncation

(line 4) and an estimate of the power spectral density (psdx) is found (lines 5-7). We then
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take the logarithm of the PSD and fit a linear function to the result, the coefficient of which

provides the output pse_value.

In most of our experiments, particularly whenever this function is being used as part

of the calculation of the PS indicator, to be used as an EWS, an additional line is added

between lines 8 and 9 in this extract: [logf, logp]=logbin(logf,logp,[-2,-1]);,

which simply bins the logarithmic PSD (logp) in the interval -2 ≤ logf ≤ -1so that it

does not have a higher density of points at the higher frequencies.

B.2 PS exponent in a sliding window

1 function slidingPSE = PSE_sliding(X, windowSize)

2 slidingPSE = zeros(size(X));

3 for i = (1+ windowSize ):size(X,1)

4 window = X((i - windowSize ):i);

5 slidingPSE(i) = PSE(window );

6 end

With the function PSE_sliding we calculate the PS exponent of successive overlapping

windows of a time series X, each of length windowSize. The resulting series, which is the

output of this function, is what we call the early warning signal of the PS indicator (see

section 2.3.2). The function PSE on line 5 is the calculation of the PS exponent, as shown

in the previous section.

A function very similar to this is used to return the ACF1 and DFA indicators, but

instead of the function PSE on line 5 we use functions which return the lag-1 autocorrelation

or the DFA exponent.

B.3 The Milstein method

1 function [t,Y] = milstein(f, sigma , x0, tBounds , delta_t)

2

3 N =floor(( tBounds (2) - tBounds (1))/ delta_t );

4 dt=( tBounds (2)- tBounds (1))/N;

5 t=linspace(tBounds (1), tBounds (2), N)’;
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6 m=size(x0 ,1); Y=zeros(m, N);

7 Y(:,1)=x0; % set inital condition

8 if all(size(sigma(t(1)))==[m,m]); S=sigma;

9 else; S=@(t)(diag(sigma(t))); end

10

11 for i = 2:N

12 dW=randn(m,1); s0 = S(t(i-1));

13 A1=dt*f(Y(:,i-1), t(i -1))+ sqrt(dt)*s0*dW;

14 Sdash=diag (1./A1)*(S(t(i))-s0);

15 Y(:,i)=Y(:,i-1)+A1+...

16 0.5*dt*s0*Sdash *((s0*dW).^2- ones(m,1));

17 end

All the dynamical systems integrated numerically throughout the thesis have been inte-

grated using the Milstein method (see section 2.4, page 90) as written in this Matlab

function script. The function is designed to return a time series Y corresponding to the

integration of a system
dX
dt

= f (X , t)+σηt , (B.1)

where each element of ηt is an independent Gaussian white noise process and, if the system

is higher than one-dimensional, σ may be a matrix. The Matlab function takes as inputs

the function handle f = @(X,t)(...), which corresponds to the function f ; the matrix

or vector sigma corresponding to σ ; and the initial condition x0. The input tBounds is a

2-element array giving the lower and upper limits of integration, and delta_t gives the

time step.
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