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ABSTRACT

Skillful forecasts of the Indian summermonsoon rainfall (ISMR) at long lead times (4–5months in advance)

pose great challenges due to strong internal variability of the monsoon system and nonstationarity of climatic

drivers. Here, we use an advanced causal discovery algorithm coupled with a response-guided detection step

to detect low-frequency, remote processes that provide sources of predictability for the ISMR. The algorithm

identifies causal precursors without any a priori assumptions, apart from the selected variables and lead times.

Using these causal precursors, a statistical hindcast model is formulated to predict seasonal ISMR that yields

valuable skill with correlation coefficient (CC);0.8 at a 4-month lead time. The causal precursors identified are

generally in agreement with statistical predictors conventionally used by the India Meteorological Department

(IMD); however, ourmethodology provides precursors that are automatically updated, providing emerging new

patterns. Analyzing ENSO-positive and ENSO-negative years separately helps to identify the different mech-

anisms at play during different years andmay help to understand the strong nonstationarity of ISMR precursors

over time. We construct operational forecasts for both shorter (2-month) and longer (4-month) lead times and

show significant skill over the 1981–2004 period (CC ;0.4) for both lead times, comparable with that of IMD

predictions (CC;0.3). Ourmethod is objective and automatized and can be trained for specific regions and time

scales that are of interest to stakeholders, providing the potential to improve seasonal ISMR forecasts.

1. Introduction

The Indian summer monsoon (ISM) is a key climate

feature critical for Indian society, economy, and eco-

systems. The Indian summer monsoon rainfall (ISMR),

that is, all-India rainfall averaged over the summer

season [June–September (JJAS)], provides about 75%

of the total annual rainfall. Thus, enhanced or reduced

ISMR strongly affects agriculture output and Indian

economy (Gadgil and Rupa Kumar 2006). Moreover,

extremes such as droughts or floods, can seriously affect

society and everyday life. Improving ISMR forecasts at

sufficiently long lead times would help to plan effective

water management strategies, improve flood or drought

protection programs, and prevent humanitarian crises.

The complexity and strong internal variability of the

ISM circulation system make skillful seasonal forecast

challenging (Goswami and Xavier 2005). At seasonal

scale, both tropical and northern midlatitude drivers of

the ISMR have been identified (Krishna Kumar et al.

1999; Robock et al. 2003; Fasullo 2004; Rajeevan et al.

2007). El Niño–Southern Oscillation (ENSO)

affects the ISM strength via the horizontal displace-

ment of the Walker circulation. During El Niño years,

the convection is shifted toward the eastern central

Pacific, weakening the ISM (Krishna Kumar et al. 1999)

and making severe droughts more likely. However, the
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correlation between ENSO and ISMR is nonstationary

(Robock et al. 2003), and the exact physical mechanisms

are not well understood (Kripalani et al. 2001). The in-

trinsic decadal variability of ISMRcan further enhance the

impact of ENSO on the occurrence of dry and wet spells,

that is, El Niño’s drying effect is stronger during drier

decades (Kripalani et al. 2001). The correlation between

ENSO and the ISMR has weakened over recent decades

(Krishna Kumar et al. 1999; Cherchi and Navarra 2013),

nevertheless, statistical seasonal prediction models for the

ISMR demonstrate some predictability originating from

ENSO (Mujumdar et al. 2007; Shukla et al. 2011).

The snow–monsoon mechanism proposes that altered

snow cover conditions over Eurasia can modify surface

variable characteristics and the radiative balance via

snow-albedo and soil moisture effects. Increased snow

cover might decrease the land–ocean temperature gra-

dient, reducing the ISMR (Bhanu Kumar 1988; Bamzai

and Shukla 1999; Kripalani et al. 2001; Dash et al. 2004)

and cause large-scale circulation changes in the midlat-

itude in winter and spring, which in turn affect the ISMR

(Dash et al. 2005, 2006). This relationship is neither

stationary nor spatially homogeneous (Bamzai and

Shukla 1999; Kripalani et al. 2001; Robock et al. 2003)

and depends on ENSO (Fasullo 2004). However,

model experiments show that snow conditions alone

can significantly affect the ISM circulation (Ferranti

and Molteni 1999; Peings and Douville 2010; Turner

and Slingo 2011).

Seasonal forecasts of ISMR from atmospheric general

circulation models (AGCM) are usually initialized on

1 May and their skill is fairly modest (Weisheimer and

Palmer 2014). Dynamical models show that prescribing

tropical sea surface temperature (SST) patterns leads to

erroneous correlation patterns between the SST and the

rainfall, while coupling AGCM to oceanic models

helps to improve the represented teleconnections

(Wang et al. 2005). Seasonal forecasts from the Cli-

mate Historical Forecast Project show an improvement

in forecasts skill both for single models and multimodel

ensembles, with correlations between the observed and

forecasted rainfall that go up to;0.4 over the land-only

Indian region, although large model biases remain (Jain

et al. 2019).

To complement dynamical forecasts, the India Mete-

orological Department (IMD) uses a long-range statisti-

cal forecasting model for the ISMRbased on correlations

between different precursors of the atmosphere–ocean

system (Rajeevan et al. 2004, 2007; Kumar 2012). The

IMD operational forecasting system provides ISMR

forecasts in April, June, and July, based on three sets of

6–9 precursors (Kumar 2012). This system has under-

gone major changes in 2003 (Rajeevan et al. 2004), 2007

(Rajeevan et al. 2007), and 2012 (Kumar 2012), follow-

ing its failure in forecasting critical years such as 2002

and 2004. Different techniques have been applied, from

multilinear regression models (Rajeevan et al. 2004), to

multimodel ensembles (Rajeevan et al. 2007) and neu-

ral networks (Kumar 2012). The most recent version of

IMDprecursors (in 2019) features five precursors, which

require data till March and forecasts are provided in

April, with an update in June.1 The correlation between

precursors and the ISMR is nonstationary, and therefore

the precursors require frequent updates (Rajeevan et al.

2002, 2004).

Anomalies in boundary conditions like snow cover,

SST, and soil moisture from both midlatitudes and

tropical regions are critical to determine the ISMR

(Shukla and Mooley 1987). In addition to the influence

of ENSO, other atmospheric and surface conditions

from mid- and high latitudes are used. Several pre-

cursors, that is, atmospheric and surface fields averaged

on a certain spatial domain and usually determined by

correlation relationships with the ISMR at a certain lead

time, have been used to forecast the ISMR with statis-

tical models (Rajeevan et al. 1998, 2005, 2007). Here,

we briefly summarize some of the precursors used by

IMD for their statistical forecasts. Some predictabil-

ity comes from the Eurasian and European regions

(Rajeevan et al. 2005). An enhanced pressure gradient

between northern and southern Europe in January is

linked to stronger ISMR: the North Atlantic Oscillation

(NAO) may affect the Eurasian westerly flow and

therefore snow cover anomalies over Eurasia (Rajeevan

2002; Goswami et al. 2006). IMD also uses temperature

anomalies over the Scandinavian region (Rajeevan et al.

2005), while warm temperature anomalies over the

Northern Hemisphere in January have been linked to

enhanced ISMR (Sikka 1980; Verma et al. 1985). Posi-

tive surface temperature anomalies over Eurasia, north

of 608N, show significant positive correlation with excess

ISMR years, while central Asia, around 408N, sees a

reversed relationship (Rajeevan et al. 1998). Negative

February–March pressure anomalies over East Asia due

to awestward shift of theAleutian lowmight alter typhoon

tracks during the monsoon season and are linked to de-

ficient ISMR (Saha et al. 1981; Rajeevan et al. 2005). IMD

identifies some predictability for the ISMR also from

SST in the North Atlantic east of the Gulf of Mexico and

sea level pressure (SLP) from the Azores High region

(likely linked to the NAO) (Rajeevan et al. 2005, 2007).

1 Further details regarding the latest version of the IMD forecast

model are available at the following link: http://www.imd.gov.in/

pages/monsoon_main.php?adta5PDF&adtb52.
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Another IMD precursor is represented by SST over

the southeast IndianOcean during February andMarch.

Here, higher SSTmay induce enhanced evaporation and

thus fuel stronger ISMR (Rajeevan et al. 2002; Terray

et al. 2003). Surface winds and warm water volume over

the Niño-3.4 region also enter the set of IMD precursors

(Rajeevan et al. 2005).

Next to the nonstationary nature of ISMR precursors

(Krishna Kumar et al. 1999; Rajeevan 2001), ‘‘spurious’’

correlations overshadowing the actual physical links,

overfitting, and decadal variability in the correlation

structure also represent challenges for statistical ISMR

forecasts (Hastenrath and Greischar 1993). Selection

of precursors purely on their correlation with the ISM

introduces a significant risk of including noncausal re-

lationships and of overfitting the model (DelSole and

Shukla 2009).

Machine learning techniques such as artificial neural

networks (ANN) have also been applied to the ISMR

forecasting problem, showing promising results for both

monthly and seasonal ISMR at 1-month lead time (Sahai

et al. 2000; Singh and Borah 2013; Singh 2018). Singh

(2018) trains ANN with past values of monthly ISMR

time series for the period 1871–1960 and provides fore-

casts for the period 1961–2014: to forecast all-India rainfall

amount for June, monthly all-India rainfall values for the

months from January to May are used. The promising

results obtained with ANN show the potential of machine

learning techniques in improving ISMR forecasts.

Recently, a novel statistical forecast method based on

a causal discovery algorithm was introduced, designed

to identify causal precursors of a variable of interest,

thereby limiting the risk of overfitting (Kretschmer et al.

2017). This Response-Guided Causal Precursors De-

tection (RG-CPD) algorithm combines spatial cluster-

ing (Bello et al. 2015) with causal discovery (Runge et al.

2014, 2015a,b). Without requiring an a priori definition

of the possible precursors, RG-CPD searches for cor-

related precursor regions of a variable of interest in

multivariate gridded data and then detects causal pre-

cursors by filtering out spurious links due to common

drivers, autocorrelation effects, or indirect links. This

approach was shown to be able to extract known phys-

ical pathways affecting the stratospheric polar vortex

and thereby deliver skillful forecasts of the vortex’s

strength at lead times up to two months (Kretschmer

et al. 2017).

Here, we apply the RG-CPD scheme to detect causal

precursors of ISMR and show that the method can

provide skillful hindcasts at 4-month lead time. We an-

alyze the influence of the ENSO background state on

casual precursors. The sensitivity of the results to the

choice of the observational data is tested by using two

different rainfall datasets. We also test the robustness

of our methodology given the nonstationarity of the

precursors. Finally, we construct an operational fore-

cast model based on causal precursors and compare

the results with existing operational forecasts from

IMD, showing that causal discovery techniques have

the potential to improve seasonal forecast of ISMR

over India.

2. Data and methods

a. Data

We analyze all-India summer (JJAS averaged) mon-

soon rainfall (ISMR) from the Climate Prediction

Center–National Centers for Environmental Prediction

(CPC–NCEP) observational gridded (0.258 3 0.258)
global rainfall dataset (in the following briefly referred

to as CPC) for the period 1979–2016 (Chen et al. 2008)

and from the Rajeevan (18 3 18) observational gridded
rainfall dataset (RAJ) over India for the period 1901–

2004 (Rajeevan et al. 2008). Precursor variables are taken

from monthly averaged gridded (1.58 3 1.58) SLP and

2-m surface temperature (T2m) fields from the ERA-

Interim (Dee et al. 2011) for the period 1979–2016 and

ERA20C reanalyses for the period 1901–2004 (Poli et al.

2016). We choose T2m and SLP because they provide

fairly reliable data over the twentieth century and his-

torically have been used by IMD for their statistical

forecast (Rajeevan et al. 2005, 2007).

Figure 1 shows the summer (JJAS) 1979–2016 clima-

tology for CPC (Fig. 1a) and 1979–2004 climatology for

RAJ (Fig. 1b), the time series of summer mean CPC

over the 1979–2016 period and RAJ over the 1951–2004

period (Fig. 1c). IMD operational forecasts2 compared

with IMD observed ISMR are shown in Fig. 1d. The

correlation coefficient between CPC and RAJ over the

common period (1979–2004) is CC 5 0.58, highlighting

some uncertainty in the data. For CPC and RAJ time

series, anomalies relative to the mean seasonal clima-

tology are calculated and the data are detrended.

b. The response-guided causal precursor detection
algorithm

RG-CPD is a recently developed algorithm that iden-

tifies the causal precursors of a response variable based

on multivariate gridded observational data (Kretschmer

et al. 2017). RG-CPD combines a response-guided de-

tection step (Bello et al. 2015) with a causal discovery

step (Spirtes et al. 2000; Runge et al. 2012, 2014,

2 IMD seasonal forecasts can be found at http://imdpune.gov.in/

Clim_Pred_LRF_New/Home/LRF_Perform_89-2017.html.
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2015a,b). Using correlation maps, an initial set of pre-

cursor regions is identified in relevant meteorological

fields by finding regions that precede changes in the

response variable at some lead time (response-guided

detection step). In the second step, an adapted version

(Runge et al. 2014) of the Peter and Clark (PC) causal

discovery algorithm (Spirtes et al. 2000) iteratively tests

whether the correlation of a precursor with the response

variable can be explained by the influence of any other

precursor or combination of precursors. Noncausal pre-

cursors due to spurious correlations caused by indirect

links, common drivers, or autocorrelation effects are re-

moved andonly the causal precursors remain.Note that the

term causal rests on several assumptions (Spirtes et al. 2000;

Runge 2018) and in this context should be understood as

causal relative to the set of analyzed precursors.

Here, we apply the RG-CPD scheme to identify causal

precursors of observed ISMR anomalies (Fig. 1c). We

search for causal precursors in the global fields of SLP

and T2m at 4- and 5-month lead times (i.e., signatures in

February and January respectively). In the first RG-CPD

step, the ISMRtime series is correlatedwithmonthly SLP

or T2mfields in February (F) (4-month lead) and January

(J) (5-month lead), see Fig. 2a. In all correlation maps,

adjacent grid points with a significant correlation of the

same sign at a level of a 5 0.05 (accounting for a two-

tailed Student’s t test ignoring autocorrelation effects

and field significance) are spatially averaged to create

single time series: each region is reduced to one single

one-dimensional time series, called precursor region

(Willink et al. 2017). The set of precursor regions (PR) is

defined as

PR5 fT2m1
t524, . . . , T2m

m
t525, . . . ,

SLP1
t524, . . . , SLP

n
t525g ,

where t is the lag at which the correlation is detected

expressed in months and m and n represent the total

number of identified precursor regions for T2m and SLP,

respectively. By design, each element in PR is signifi-

cantly correlated with the response variable (ISMRt50),

forming a dense correlation network [Fig. 2a(I)]. As an

FIG. 1. Rainfall datasets. ISMR (JJAS averaged) climatology over India for (a) CPC–NCEP (CPC) covering 1979–

2016 and (b) Rajeevan (RAJ) covering 1951–2004. (c) Detrended JJAS-mean time series for all India rainfall (ISMR)

for CPC (red) and RAJ (purple). ENSO-positive (ENSO-negative) years are highlighted by red (blue) background

shading. (d) ISMR for 1988–2016 for observed IMD ISMR (black solid line) and the IMD operational forecast (solid

blue line), expressed in percent anomaly from the long period (50 years) average (LPA). Correlation and RMSE

values are reported for both the 1988–2016 period and for the comparison period 1988–2004 (in parentheses).
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example, we report the correlation for the regions

T2m58
t525 and T2m

56
t525 (green and yellow stars in Fig. 2a)

and their p values:

r5 r(ISMR
t50

, T2m56
t525)520:48, p5 0:0004,

r5 r(ISMR
t50

, T2m58
t525)5 0:54, p5 0:002.

In the second step, the PR set is searched for causal

precursors (causal discovery step). The (adapted) PC

algorithm (Tigramite version 2.0, https://github.com/

jakobrunge/tigramite) tests whether the lagged corre-

lation between each precursor and the response variable

can be explained by the influence of other precursors,

by calculating partial correlations iterating through

different combinations of precursors. In the first itera-

tion, the partial correlation between ISMR and each

element of the PR set is calculated conditioning on each

of the remaining elements of the PR. Hence, the partial

correlation between the variables x and y conditioned on

variable z is computed by first performing a linear re-

gression of x on z and of y on z and then calculating the

correlation between the residuals:

r5 r(x, yjz)5 r[Res(x), Res(y)].

If the partial correlation between x and y is still sig-

nificant at a certain significance threshold a, x, and y

are said to be conditionally dependent given variable

z, that is, the correlation between x and y cannot be

FIG. 2. Causal precursors over the 1979–2016 period. [a(I)],[b(II)] A schematic figure of the RG-CPD algorithm. (a) (left) Correlation

maps of T2m and SLP with ISMR at 4- and 5-month lead times. In [a(I)] the first step of RG-CPD that identifies a large number of spatial

regions (gray dots) that correlate (black solid lines) with ISMR is shown schematically. (b) (left) The subset of causal precursors, with

name and lead time, detected with the second step of RG-CPD algorithm. In [b(II)] this second step is illustrated schematically: causal

links are shown by solid green arrows (conditionally dependent with ISMR), while spurious links are shown by dashed green arrows

(conditionally independent with ISMR). The green and yellow stars in [a(I)] and [b(II)] identify the causal precursor T2mArctic
t525 and the

spuriously correlated T2mCAsia
t525 regions, respectively.
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(exclusively) explained by the influence of variable z.

This process is continued by conditioning on one further

condition in each iteration step. After each iteration,

precursors whose partial correlation with the ISMR is

not significant given a threshold a 5 0.05 are removed.

The algorithm converges when there are no further

variables to condition on.

Continuing with our example and conditioning on

T2m26
t525 (precursors are ordered by the strength of the

correlation), we have that

r5 r(ISMR
t50

, T2m56
t525jT2m26

t525)520:61,

p5 0:000 01.

The partial correlation between ISMRt50 and T2m56
t525

conditioned on T2m26
t525 is still significant (p value ,

0.05), thus ISMRt50 and T2m56
t525 are conditionally

dependent given the variable T2m26
t525. T2m

56
t525 is ulti-

mately filtered out by a combination of two precursors,

as follows:

r5 r(ISMR
t50

, T2m56
t525jT2m26

t525, T2m
2
t524)520:30,

p5 0:05.

Thus, the correlation between ISMRt50 and T2m56
t525

can be eventually explained by the combined effect of

T2m26
t525 and T2m2

t524. Hence, ISMRt50 and T2m56
t525

are conditionally independent, the correlation with the

response variable is spurious and therefore T2m56
t525 is

filtered out. Figure 2a(II) shows a schematic of this step.

Contrarily, the partial correlation of T2m58
t525 with

ISMR is significant even after conditioning on the in-

fluence of a range of different combinations of pre-

cursors in PR. Thus, T2m58
t525 and ISMR are found to be

conditionally dependent and T2m58
t525 is interpreted as a

causal precursor of ISMR (see Kretschmer et al. 2016,

2017 for a more detailed description).

c. Statistical hindcasting and forecasting models

We test the hindcast skill of the causal precursors

(identified by applying RG-CPD over the full time pe-

riod) by performing a multivariate linear regression of

the 4- and 5-month lead time causal precursors of ISMR.

To assess the performance of the regression model, we

divide the time series into training and testing periods

containing 25 and 13 years, respectively. To avoid using

any information from the predicted year in the regres-

sion model, all data processing (i.e., calculating anom-

alies and detrending the data) is based on the training

period only. However, although the training of the re-

gression model is independent of the testing period, it

still contains some information from the testing period

as the causal precursors are detected on the full period

(training plus testing, see Fig. 3a). We refer to this pre-

diction method as ‘‘hindcast.’’

When testing for the influence of ENSO, we hind-

cast ISMR using leave-one-out cross validation in-

stead of the training–testing period approach. In this

case, the regression model is trained by leaving out

all data from the year of the summer to be hindcasted,

and thus the length of the training period is always

equal to the total length of the time series minus 1.

For example to predict 1979 ISMR, we train the model

with data from the 1980–2016 period and so on. We

use the leave-one-out method because the time series

for ENSO-positive and ENSO-negative years alone

are too short (;20 years each) to be divided into

training and testing period.

Next, we build an operational forecast model. For this

purpose we apply RG-CPD on a moving window of

30 years (training period), and then forecast the year 31

(testing period), as would be the case in an operational

forecast system. This way, no information (including the

detection of the causal precursors) from the year to be

forecasted enters the forecast model. We refer to this

prediction method as an (operational) forecast (see

Fig. 3b for schematic visualization).

To identify robust causal precursors, we first calculate

the correlation maps (first RG-CPD step) over the 30-yr

window (Fig. 3c). The choice of using a 30-yr window is

motivated by the need to balance the nonstationarity of

the precursors (which thus requires a shorter time se-

ries) and the need to satisfy the statistical requirements

of the causal discovery algorithm (with longer time se-

ries preferred). Next, we divide this 30-yr window into

five subsets of 24 years by excluding a moving interval of

6 years and then apply the causal discovery step (second

RG-CPD step) to each of these five subsets (Fig. 3c). For

each 30-yr window, we obtain five sets of causal pre-

cursors. To predict year 31, we use all identified causal

precursors of the five subsets (using overlapping causal

precursors just once).

To assess the skill we calculate the receiver operating

characteristic (ROC) curve, a common metric to eval-

uate the skill in predicting predefined observed events,

illustrated by the true and false positive rates for dif-

ferent threshold settings of the predicted time series

(Wilks 2006). For a given set of observed events, the true

positive rate is the number of correctly predicted events

(i.e., the number of events in the predicted time series

that exceeds a certain threshold), normalized by the

number of observed events. Likewise, the false positive

rate is the rate of wrongly predicted events. An area un-

der the ROC curve (AUC) of 1.0 means perfect hindcast

(or forecast) skill while an AUC of 0.5 means no skill.
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3. Results

a. Causal precursors of ISMR

Correlation maps of CPC and SLP/T2m respectively

at 4- and 5-month lead times (Fig. 2a), give a set of 112

possible precursor regions in T2m and 28 in SLP (see

Table S1 in the online supplemental material). A few

features arise from the correlation maps: in general,

SLP patterns tend to be larger and smoother than T2m

patterns. Here, a negative correlation means that low

FIG. 3. Summary of employed hind- and forecasting strategies. (a) A schematic of the

hindcasting method whereby the causal precursors are identified using all 38 years (1979–

2016) and the regression model is trained over the first 25 years (1979–2003) and tested over

the last 13 years (2004–16). (b) A schematic of the forecasting method whereby the causal

precursors are identified and the regression model is trained using 30 years of data to forecast

year 31. (c) A schematic of how a robust set of causal precursors are identified for the fore-

casting method shown in (b).

OCTOBER 2019 D I CAPUA ET AL . 1383

Unauthenticated | Downloaded 06/04/21 10:10 AM UTC



pressure anomalies over a certain area during January

(5-month lead) or February (4-month lead) are fol-

lowed by enhanced ISMR. SLP patterns show a large

region of negative correlation over the tropical belt

at both lead times, centered in the western tropical

Atlantic at 4-month lead and over central tropical Pacific

at 5-month lead. In general, northern mid- to high

latitudes positively correlate with ISMR, with higher-

pressure anomalies over the Arctic and midlatitude re-

gions during boreal winter being followed by enhanced

ISMR. Relevant T2m patterns are spatially more con-

fined and scattered than SLP precursors. Notably, the

T2m correlation maps in the midlatitude show a dipole

extending from a positively correlated region over

the Arctic toward a negatively correlated region over

Eurasia. The tropical belt shows a general tendency to-

ward positive correlations with T2m, with larger centers

over the western central Atlantic and central Pacific

(partly reflecting the SLP patterns).

After applying the PC algorithm, only five causal

precursors remain (Fig. 2b): two T2m regions in the

Arctic, T2mArctic
t525 at 5-month lead time and T2mArctic

t524 at

4-month lead time, a tropical SLP band over the cen-

tral Pacific at 5-month lead time (SLPPacific
t525 ), a small

T2m region north of Indonesia at 4-month lead time

(T2mIndonesia
t524 ) and T2m over the southern Atlantic at

4-month lead time (T2mSAtlantic
t524 ). Thus, more than 95%

of strongly correlated regions are removed, showing

how pervasive spurious correlations are and how im-

portant it is to account for this effect. Causal precursors

for 2- and 3-month lead times are shown in Fig. S1.

Next, we test the hypothesis that the causal precur-

sors of CPC depend on the ENSO background state.

To study the influence of ENSO on CPC, we divide

the 1979–2016 period into two subsets corresponding to

positive and negative Niño-3.4 index averaged over the

January–April period (here briefly referred to as ENSO-

positive and ENSO-negative years, respectively,3 see

Fig. 1c) and rerun RG-CPD for each of these subsets

separately. Due to the shortness of the time series, it is

not feasible to differentiate between neutral, positive,

and negative ENSO phases. In total, we define 21

ENSO-positive and 17 ENSO-negative years (Fig. 1c).

The correlation patterns forENSO-positive andENSO-

negative years are very different from those shown above

(Fig. 4), illustrating that the causal precursors shown

before (Fig. 2b) are linked to either positive or negative

ENSO conditions. This does not need to imply that the

causal precursors resemble classical El Niño or La Niña

patterns. In fact they do not. Rather, the different causal

precursors suggest that the ENSO cycle redistributes

the background state and thereby creates possibilities

for different far-away precursors to dominate. During

ENSO-negative years, the Arctic is not a precursor,

while during ENSO-positive years its positive T2m

correlation with CPC strengthens (from ;0.5 to ;0.7).

The negatively correlated SLP region over the Pacific

shifts from the tropical Atlantic/Indian Ocean during

ENSO-positive years to the Central Pacific/tropical

Atlantic during ENSO-negative years. The signal from

the tropical North Atlantic intensifies during ENSO-

negative years and disappears for ENSO-positive years.

During ENSO-positive years, three regions are detected

as causal precursors of CPC: T2mArctic
t524 , a negatively

correlated T2m region over Central Asia (T2mCAsia
t525)

and a positively correlated T2m region close to west

Antarctica (T2mWAntarctica
t524 ) [Fig. 4a(II)]. Two regions are

found to be causal precursors of CPC during ENSO-

negative years: T2m over the southwest Indian Ocean

(T2mSWIndianOc
t525 ), and T2m over the tropical North

Atlantic (T2mNAtlantic
t525 ) [Fig. 4b(II)].

b. Hindcast based on causal precursors

Wenow test the predictive skill of the identified causal

precursors over the full 1979–2016 period. The five

precursor regions identified in Fig. 2b are used to build

a multiple linear regression hindcast model, using

25 years to train the model and 13 years to test it

(Fig. 3a). Figure 5a shows the results for the training

(blue line) and testing period (green line), together with

the correlation with observed ISMR over the training

period (CC 5 0.88) and over the testing period (CC 5
0.85). Table S2 reports the regression coefficients for

each region of the linear regression hindcast model.

The ROC curves for hindcasting dry events (i.e., values

below the empirical 30th percentile of all ISMR values)

and for wet events (above the 70th percentile) are shown

in Figs.5c and 5d, respectively. The resulting AUC

values are 0.94 for dry events and 0.96 for wet events

(Figs. 5c,d, p values, 0.05), meaning that the model has

good skill in hindcasting CPC at 4-month lead time.

Here, the significance of the AUC score has been cal-

culated via shuffling techniques.

The hindcast performed separately for ENSO-positive

and ENSO-negative years along with leave-one-out

cross-validation is shown in Fig. 5b, together with cor-

relation values for the regression model compared to

observations. To hindcast ISMR during ENSO-positive

years (shaded in red in Fig. 5b), we use only the causal

precursors identified over the ENSO-positive years

(shown in Fig. 4a). In the same way, to hindcast ISMR

during ENSO-negative years (shaded in blue in Fig. 5b),

3 This does not imply that a given year exhibited someEl Niño or

La Niña according to their standard definitions.
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we use the causal precursors shown in Fig. 4b. The AUC

values obtained for ENSO-positive and ENSO-negative

years separately improve slightly with AUC 5 0.96 for

dry events during ENSO-positive years andAUC5 0.97

for wet events during ENSO-negative years (Figs. 5c,d),

showing that considering the ENSO phase might help to

improve hindcast skill. Combining the specific hindcast

models for ENSO-positive and ENSO-negative into a

single hindcast time series (Fig. 5b), we obtain AUC

values of 0.93 for dry and 0.92 for wet events. Table S2

reports the regression coefficients for the hindcast model

for ENSO-positive and ENSO-negative years.

In addition to ROC analysis, we performed model

selection with respect to the given set of precursors by

calculating the Akaike information criterion (AIC) for

the full 1979–2016 period and for different ENSO pha-

ses. AIC is a criterion for selecting the most appropriate

among a finite set of models; the model with the lowest

AIC is generally preferred. AIC values are calculated

for different combinations of one, four, and five causal

precursors identified over the 1979–2016 period. In all

three cases, the combination of all five causal precursors

exhibits the lowest AIC value with respect to all indi-

vidual precursors or any combination of four precursors

(Table 1). Hence, AIC demonstrates that adding causal

precursors leads to better hindcasts without running into

overfitting problems, and supports the idea that each

of our limited number of causal precursors adds inde-

pendent information to the forecast. Calculating the

Bayesian information criterion (BIC), a metric similar

to AIC, gives consistent results (see Table S3).

Moreover, we use the Niño-3.4 index to predict ISMR

based on a simple linear regression model at 4-month

lead time (see Figs. S2 and S3). For the same training

and testing periods as for the CPC 1979–2016 dataset,

this index does not provide any significant skill (see

FIG. 4. ENSO influence on causal precursors. [a(I)] Correlation maps between JJAS-mean CPC and (left) T2m or (right) SLP from the

ERA-Interim reanalysis during ENSO-positive years. The top row shows the 4-month lead (February) and the bottom row the 5-month

lead (January). Regions that are significantly correlated (p value, 0.05) are contoured in solid black lines. [a(II)] The detected subset of

causal precursors, identified by name and lead time. [b(I)],[b(II)] As in [a(I)] and [a(II)], but for ENSO-negative years.
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Figs. S2 and S3). Calculating the AIC for the combina-

tion of all five causal precursors and the Niño-3.4 index

shows that the combination that gives the lowest AIC is

the one that excludes the Niño-3.4 index (see Table S4).

c. Forecast based on causal precursors

The causal precursors used to provide hindcasts in

Fig. 5 are detected over the full period, implying that

some information from the to-be-hindcasted year might

enter the model. Therefore, we apply RG-CPD to pro-

vide an actual forecasting model that does not contain

any information on the future. For this purpose, we use

RAJ together with ERA20C T2m and SLP fields for

the 1901–2004 period and apply RG-CPD on a mov-

ing window of 30 years, and then forecast year 31, as

would be the case in an operational forecast system (see

Figs. 3b,c). We do not use CPC because of the shortness

of the time series. A comparison between causal pre-

cursors obtained from CPC and RAJ datasets over the

common period (1979–2004) and from the RAJ over the

1951–2004 period is shown in Fig. S4. Related hindcasts

time series are shown in Fig. S5.

For each to-be-forecasted year, one forecast model

is built based on all causal precursors identified in the

FIG. 5. Hindcasting ISMR. (a) CPC observations (solid black line) and hindcasts for training (1979–2003; solid

blue lines) and testing (2004–16; solid green line) periods. Correlations between observed and hindcasted time

series are also shown. (b) CPC observations (solid black line) and hindcasts for ENSO-positive (ENSO1; solid red

line) and ENSO-negative (ENSO2; solid light blue line) years separately, with the resulting correlation values.

(c) ROC curves for hindcasted events below the 30th percentile for the full 1979–2016 period (dashed blue line), for

ENSO-positive years only (dashed red line), ENSO-negative years only (dashed light blue line), and for all years

reconstructed using ENSO-positive and ENSO-negative years (dashed yellow line). (d) As in (c), but for events

exceeding the 70th percentile. Double asterisks denote AUC values with p value , 0.05.
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five sets (see section 2 and Fig. 3c). Note that since the

period 1901–1930 is used as a training period for the

first 30-yr moving window, the first forecasted year

is 1931.

Analyzing IMD predictions for the period 1988–2004

(3-month lead time) reveals low nonsignificant correla-

tion with IMD observed ISMR (CC;0.22, p value. 0.1;

Fig. 1d), while AUC values for dry and wet events show

no skill (AUC ;0.5; Figs. 6c,d).

Here we show that building a forecast system based on

causal precursors identified via RG-CPD provides some

significant skill at different lead times. Forecasts obtained

with forecast model at 4-month lead time (Fig. 6a) and

2-month lead time (Fig. 6b) for the period 1981–2004

are shown together with correlations and root mean

squared errors relative to observations. Figures 6c and

6d showROC curves and associated AUC values for dry

events and wet events. The full forecast period 1931–

2004 is shown in Fig. S6.

The forecasting skill shown in Fig. 6 drops as com-

pared to the previously reported hindcast skill (Fig. 5

and Fig. S4), however, it remains significant. Correlation

values between the observed and forecasted ISMR over

the 1981–2004 period are CC5 0.37 (4-month lead time,

p value , 0.1) and CC 5 0.41 (2-month lead time,

p value , 0.05, see Figs. 6a,b). Our method shows sig-

nificant, thoughmodest, AUCvalues for bothwet and dry

events, and at both 4- and 2-month lead times. Specifi-

cally, the AUC values for 4-month lead time show signif-

icant skill with AUC5 0.73 for dry events (p value, 0.1)

and AUC 5 0.75 for wet events (p value , 0.05). AUC

values for 2-month lead time show significant skill only

for wet events, with AUC 5 0.76 (p value , 0.05).

Forecasting skills are summarized in Table 2.

Over the full 1931–2004 period (see Fig. S6), both

AUC and correlation values are smaller in magnitude,

nevertheless still significant at least for 2-month lead

time with CC5 0.2 (p value, 0.1) and AUC5 0.64 for

wet events (p value , 0.05). The drop in AUC and cor-

relation scores is mainly due to the fact that the presented

forecasting method fails in predicting ISMR amounts for

the period 1957–80 (see Fig. S6). Contrarily, for the pe-

riods 1931–56 and 1981–2004 correlation values are about

0.4 and AUC values reach ;0.8 (see Tables S5 and S6).

A reason for this behavior may lie in the influence of the

Pacific decadal oscillation (PDO) phase on the fore-

cast performance: periods of good predictability corre-

spond to positive PDO phases, while the 1957–80 period

showing no predictability corresponds to a negative PDO

phase (see Fig. S7).

TABLE 1. Akaike information criterion (AIC). For the period 1979–2016, AIC values for the hindcast model are reported for individual

causal precursors, combinations of four causal precursors, and for all five causal precursors in the first column. For ENSO-positive years,

AIC values for the hindcast model are reported for individual causal precursors, all possible combinations of two causal precursors, and

for all three causal precursors together in the second column. The third column is the same as the second column, but for ENSO-

negative years.

1979–2016 ENSO-positive ENSO-negative

1 precursor T2mIndones24 58.7 1 precursor T2mCAsia25 42.7 1 precursor T2mIndianOc25 20.1

T2mArctic24 58.0 T2mAntarctic24 42.6 T2mNAtl25 14.1

T2mArctic25 56.7 T2mArctic24 33.8 2 precursors T2mIndianOc25,

T2mNAtl25

12.1

SLPPac25 54.3 2 precursors T2mCAsia25,

T2mAntarctic24

38.9

T2mSAtl24 54.2 T2mArctic24,

T2mCAsia25

27.0

4 precursors SLPPac25, T2mArctic24,

T2mIndones24,

T2mArctic25

51.8 T2mArctic24,

T2mAntarctic24

24.0

T2mSAtl25, T2mArctic24,

T2mIndones24

T2mArctic25

43.5 3 precursors T2mArctic24,

T2mCAsia25,

T2mAntarctic24

21.9

SLPPac25, T2mArctic24,

T2mArctic25, T2mSAtl24

36.2

SLPPac25, T2mArctic24,

T2mIndones24, T2mSAtl24

34.6

T2mIndones24, T2mArctic25,

SLPPac25, T2mSAtl24

32.7

5 precursors SLPPac25, T2mArctic24,

T2mIndones24,

T2mArctic25,

T2mSAtl24

32.5
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To compare our method with IMD predictions, we

also calculate AUC and correlation coefficients over the

common period 1988–2004 (see Figs. 6c,d, values in

parentheses). Forecasts at 2-month lead time obtained

with our forecasting method show similar correlation

values with observed values for the period 1988–2004

of CC;0.35 for both lags. AUC values are higher than

for IMD predictions, with significant values at 4-month

lead time for wet events (AUC 5 0.85, p value , 0.05)

and AUC ;0.7 for dry events (though nonsignificant

due to the shortness of the time series). Therefore, we

show that providing forecasts of seasonal ISMR at 4–2-

month lead times based on causal precursors gives fairly

good and significant forecast skill and also outperforms

the forecast provided by IMD over the comparison

period for both wet and dry events, with best AUC

scores for wet events.

Moreover, applying the same forecasting method also

to ENSO-positive and ENSO-negative years separately

for the period 1901–2004, we identify 55 ENSO-positive

and 49 ENSO-negative years, respectively (see Fig. S8).

The resulting forecasts show that different ENSO pha-

ses have specific patterns and may help to improve the

forecast of anomalous dry years.

Finally, it should be noted here, that for each year and

for each lag (2- and 4-month lead times) a specific set of

causal precursors is identified. Thus, a total of 74 causal

precursor sets is identified over the 1931–2004 period.

The causal precursors used to train the actual fore-

casting model for both 2- and 4-month lead times are

FIG. 6. Operational forecasting. (a) ISMR as observed from RAJ (dashed black line) and forecast models (solid

magenta line, all detected causal precursors). IMD forecasts are also shown for the period 1988–2014 (solid blue line).

Correlation coefficients and root-mean-squared errors between observed and forecasted values are also given. (b)As in

(a), but for a lead time of 2months. (c)ROCcurves for events below the 30th percentile for 1981–2004: 4-month lead, all

causal precursors (dashed magenta line) and 2-month lead, all causal precursors (dashed green line). AUC values for

the period 1988–2004 are shown in parentheses. AUC values for IMD are reported in blue. (d) As in (c), but for events

higher than the 70th percentile. Single (double) asterisk(s) denote AUC values with p value , 0.1 (0.05).
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shown in the form of frequency plots in Figs. S9 and

S10, respectively. In these plots, the color indicates how

many times a region has been used as an ISMR predic-

tor. Frequency plots for different time periods (1933–56,

1957–80, and 1981–2004) underscore the nonstationarity

of the precursors. Physical mechanisms that underlie the

identified causal precursors are further discussed in the

discussion section.

4. Discussion

a. Hindcast and forecast skill and potential

Our study shows that a multiple linear regression

model based on causal precursors from monthly SLP

and T2m fields over the 1979–2016 period, provides a

good hindcast of ISMR from CPC with a 4-month lead

time (CC ;0.8, AUC ;0.95). Considering the ENSO

background state only slightly increases hindcast skills,

nevertheless, it provides insightful information on the

different mechanisms that are at play during different

ENSO phases.

RG-CPD detects ISMR causal precursors, avoiding

spurious correlations and identifying a small set of pre-

cursors: our precursor set (2–5 variables) is smaller than

that used in the IMD model (5–9 variables), helping to

limit overfitting of statistical regressionmodels (DelSole

and Shukla 2002; Wilks 2006). AIC values (Table 1)

show that the combination of causal precursors cho-

sen via RG-CPD is optimal when compared to smaller

combinations of the same precursors. Thus, using all

the detected precursors together actually improves the

model, showing that higher correlation values are not an

artifact of overfitting. Moreover, causal precursors de-

tected with RG-CPD show a strong similarity with the

set of precursors used for IMD operational forecasts

(Rajeevan et al. 2007). Specifically, the IMDoperational

forecasts use, among others, precursors from the cen-

tral Pacific, western Indian Ocean, Scandinavia, eastern

Eurasia, the Gulf of Mexico, and the North Atlantic, as

described in the introduction section (Rajeevan et al.

2005). Our set of regions largely overlaps with IMD

precursors: the most robust precursors across different

time periods and datasets are the central/western Pacific

causal precursors and the Arctic and Eurasian causal

precursors, while the North Atlantic seems to be im-

portant in particular during ENSO-negative phases.

This is encouraging, given that RG-CPD does not use

any a priori preselection of the possible causal drivers

and the causal precursors are detected among a set of

more than one hundred precursor regions, all signifi-

cantly correlated with ISMR. However, RG-CPD also

detects new patterns such as causal precursors over the

Southern Oceans and the set of precursors can easily be

updated with new data becoming available (see Figs. S9

and S10).

Actual forecasts skill, that is, with no information

from the future entering the RG-CPD process, de-

creases with respect to hindcasts, likely due to the strong

nonstationarity of the precursors. Still, our method

produces significant correlation (CC;0.4, p value, 0.05)

and AUC ;0.7–0.8 (p value , 0.05) values at both 2-

and 4-month lead time over the 1981–2004 period, out-

performing IMD forecasts when compared over the

same period (Fig. 6).

RG-CPD provides a complementary method to ANN

(Singh and Borah 2013; Singh 2018).While both methods

provide objective and automatized forecasts, causal pre-

cursors detected via RG-CPD can be interpreted from a

physical point of view, while ANN extracts the predict-

ability from the ISMR time series itself. RG-CPD pro-

vides forecasts with lower skill when compared to Singh

(2018), but at 2-month lead time (instead of 1 month).

TABLE 2. Summary of results. The correlation coefficients (CC) andAUC scores for actual forecasts obtained on different time periods

and datasets are reported. IMD forecasting skill is also presented for comparison. AUC1 denotes AUC scores for events higher than the

70th percentile, andAUC2 denotesAUC scores for events lower than the 30th percentile. Single (double) asterisk(s) denoteAUC values

with p value , 0.1 (0.05).

RG-CPD based—4-month lead time RG-CPD based—2-month lead time

CC AUC2 AUC1 CC AUC2 AUC1

1988–2004 0.35 0.68 0.85** 1988–2004 0.36 0.68 0.54

1981–2004 0.37* 0.73** 0.75** 1981–2004 0.41** 0.61 0.76**

1931–2004 0.15 0.54 0.62* 1931–2004 0.20* 0.55 0.64**

ENSO–RG-CPD based—4-month lead time ENSO–RG-CPD based—2-month lead time

1981–2004 0.03 0.55 0.63 1981–2004 0.36* 0.76** 0.69*

IMD

CC AUC2 AUC1

1988–2004 0.22 0.53 0.50
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Moreover, with RG-CPD it is possible to trace back all

calculation that lead to discard or retain any of the

causal precursors. Finally, RG-CPD makes it straight-

forward to develop forecasts for specific regions and

time scales of interest and can be easily applied to pro-

vide real-time seasonal ISMR forecasts.

b. Physical interpretation of causal precursors

Causal precursors need to be considered together with

theoretical understanding of the physical mechanisms

which lie behind statistical causality. In general, many of

the detected causal precursors show similar patterns as

IMD (Rajeevan et al. 2005) and as Saha et al. (2016), in

particular when a 2-month lead time is considered (see

Figs. S1 and S9). The physical interpretation of these

patterns has been very difficult (Rajeevan 2001; Gadgil

et al. 2005; Rajeevan et al. 2007). While a detailed

analysis into that is outside the scope of this paper, here

we discuss previously proposed physical hypotheses that

help explaining the detected precursor regions.

To propagate into summer, winter and early spring

phenomena need to be governed by slowly changing

components of the land–ocean system with a long mem-

ory, such as SST, snow cover, or soil moisture. Tropical

SSTs are crucial in modulating the intensity of the ISMR

(Wang et al. 2005). Accordingly, most of the detected

causal precursors are located over the oceans. SLPPacific
t525

is the largest detected region in the SLP field over

the equatorial Pacific and Indian Ocean. Despite inter-

decadal oscillation, both models and observations show

that the location and intensity of the Walker circulation

and ENSO are essential in shaping the ISMR (Krishnan

et al. 1998; Krishna Kumar et al. 1999; Krishnamurthy

and Goswami 2000; Mujumdar et al. 2007). Depending

on the specific period, the shape and geographical po-

sition of the causal precursors coming from the Pacific

Ocean can change. Still, a central Pacific precursor is

almost always present in the set of causal precursors and

is also used by IMD forecasts (Rajeevan et al. 2007).

While soil moisture does not seem to have a strong

direct influence on the ISMR (Shinoda 2001), the snow–

monsoonmechanism supports the hypothesis thatEurasian

snow cover conditions in winter to early spring might

influence the onset and the intensity of the ISMR (Hahn

and Shukla 1976; Bamzai and Shukla 1999; Dash et al.

2005, 2006) and have been often used by IMD forecasts

(Rajeevan et al. 2004). T2mCAsia
t525 is negatively correlated

with ISMR, and corresponds to the East Asia SLP re-

gion also used by IMD for their operational forecasts

(Rajeevan et al. 2007; Kumar 2012). Colder tempera-

tures are positively correlated with higher snow cover

(Bamzai and Shukla 1999). Although the signal we find

is shifted further westward, T2mCAsia
t525 supports prior

evidence that the strongest snow cover–ISMR link orig-

inates from eastern Eurasia (Peings and Douville 2010).

T2mArctic
t525 and T2mArctic

t524 show a positive correlation be-

tween ISMRandArctic temperatures in particular during

ENSO-positive years supporting prior studies that link

higher temperatures over the Northern Hemisphere

during January with enhanced ISMR (Sikka 1980;

Verma et al. 1985). Similarly, temperature over Eurasia

in February–March is linked with enhanced ISMR

(Rajeevan et al. 1998). In our study, T2m anomalies

over Eurasia, north of 608N, show significant positive

correlation with ISMR (T2mArctic
t525), while central Asia

around 408N (T2mCAsia
t525) sees a reversed relationship

(Rajeevan et al. 1998). Similarly, IMD uses temperature

anomalies from stations over Scandinavia (Rajeevan

et al. 2007). The land–ocean temperature contrast is a

well-known driver of the ISM circulation. Thus, the re-

lationship between higher temperatures over the Arctic

in winter and enhanced ISMR could be linked to the en-

hanced thermal contrast between the Eurasian land mass

and the Indian Ocean in summer. The snow-monsoon

mechanisms may further support these findings: positive

temperature anomalies in the Arctic during winter could

be linked to negative snow cover anomalies and thus to

increased ISMR.Additionally, some studies show that the

correlation between the ISMRandEurasian snow cover is

particularly strong in the northernmost regions (Mamgain

et al. 2010). A second option could be that the Arctic re-

gion responds to signals coming from the tropical belt and

is linked to ENSO, which is stronger in winter. The de-

tected causal relationship with the ISMR might be an

artifact of missing relevant variables or time scales in our

analysis. Note again that the causal precursors identified

are only causal relative to the set of analyzed precursors.

T2mNAtlantic
t524 is also used as a precursor by IMD

(Rajeevan et al. 2007). In this case, the physical link-

age is less clear (Rajeevan et al. 2005), nevertheless IMD

identifies some predictability for the ISMR from SST in

the tropical North Atlantic and SLP over the Azores

High region (likely linked to the NAO) (Rajeevan et al.

2007, 2005). Previous evidence suggests that the ISMR

and the Atlantic Niño share an inverse relationship

during summer months (Wang et al. 2009; Yadav et al.

2018). The Atlantic Niño significantly influences a di-

pole pattern of rainfall in the northern parts of India and

the positive phase of the Atlantic Niño results in a local

tropospheric warming, which intensifies the intertropical

convergence zone over the equatorial east Atlantic and

west Africa and excites an anticyclonic anomaly over

India (Wang et al. 2009; Kucharski and Joshi 2017; Yadav

et al. 2018). During March and April, a positive correla-

tion is found between Atlantic tropical SST and the

ISMR, as shown in our study (Varikoden and Babu 2015).
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Moreover, models show that temperatures over the

North Atlantic give useful skill in predicting tempera-

tures over eastern Eurasia in summer at yearly time

scale (Monerie et al. 2017). Keeping in mind the link

between temperatures over Eurasia and the ISMR, this

could further explain the link between North Atlantic

T2m in winter and the ISMR.

Additional evidence for a link between the North

Atlantic and the ISMR is provided also by the relation-

ship detected between the Atlantic multidecadal oscilla-

tion (AMO) and multidecadal variability of the Indian

summer monsoon rainfall (Goswami et al. 2006). The

AMO weakens the meridional gradient of tropospheric

temperature by setting up some negative temperature

anomaly over Eurasia during boreal late summer/autumn,

which results in an early withdrawal of the south west

monsoon and decreased ISMR (Goswami et al. 2006). In

May, OLR in the North Atlantic negatively correlates

with the ISMR, further supporting the link between

the NAO and the ISMR (Srivastava et al. 2002). The

T2mSWIndianOc
t525 might be linked to higher SST over the

southern Indian Ocean, also used by IMD, which

during February and March enhance evaporation and

fuel stronger ISMR (Rajeevan et al. 2002; Terray et al.

2003; Thapliyal and Rajeevan 2003).

Robust causal precursors are identified in the southern

ocean, in particular in the SouthAtlantic (see Fig. S4). The

SouthAtlantic anticyclone is a characteristic feature of the

austral winter climatology and has been linked to theWest

African and Asian summer monsoon circulations during

summer (Richter et al. 2008). In this study, the monsoon

influences the South Atlantic anticyclone: the conver-

gence centers associated with monsoon activity in the

Northern Hemisphere affect large-scale subsidence over

the South Atlantic (Richter et al. 2008; Sun et al. 2017).

Here, we hypothesize that the opposite link holds as well.

The dependence of ISM precursors on the ENSO

background state can help to better understand these

underlying physical mechanisms. During ENSO-positive

years, the predictability of ISMR originates from high

latitudes (in both hemispheres), while during ENSO-

negative years the predictability predominantly origi-

nates from the tropical belt. A possible explanation

is that during ENSO-positive years the weakening of

easterly trades over the tropical Pacific is accompanied

by a pronounced extratropical circulation response to

tropical convective anomalies. This creates patterns of

alternating anomalous low- and high-pressure systems

in an area extending from the tropics to midlatitudes

(Lau and Lim 1984). This is consistent with a Rossby

wave dispersion mechanism arising from interactions

between anomalies of tropical convection and large-scale

circulation (Hoskins and Karoly 1981). This situation is

reversed during ENSO-negative periods, when the at-

mospheric circulation response is confined to a much

narrower tropical belt due to strong easterlies.

The ENSO phase might also affect the ISMR via its

effect on the winter European climate (Brönnimann

2007). The ENSO-positive effect on the European cli-

mate is similar to that of a negative NAO phase and as

previously discussed, NAO affects the ISMR via changes

in the atmospheric circulation over Eurasia and related

snow cover patterns (Dugam et al. 1997; Rajeevan 2002;

Goswami et al. 2006).

5. Conclusions

Our study shows that a novel causal discovery algo-

rithm coupled with a response-guided detection step can

identify causal precursors of global atmospheric fields

for seasonal all-India summermonsoon rainfall (ISMR).

The Response-Guided Causal Precursor Detection (RG-

CPD) algorithm identifies causal precursors without a

priori assumptions, except for the selection of variables

and prediction lead times. The global sea level pressure

and 2-m temperatures are used in this study for the in-

ferences of causal precursors, and a statistical hindcast-

ing model is developed for predicting the seasonal

ISMR at long (4-month) lead times using these pre-

cursors. The detected causal precursors provide appre-

ciable hindcast skills with CC ;0.8 and AUC scores

;0.9, and also are generally consistent with the variables

used by the India Meteorological Department (IMD)

for operational forecasting. Further accounting for the

El Niño–Southern Oscillation (ENSO) background

state in the analysis sheds additional insight into physical

pathways during different ENSO phases.

Using causal precursors in a true operational mode

without knowledge of any future years gives significant

forecast skill at both shorter (2-month) and longer

(4-month) lead times. While the forecast skill in an

operational mode is higher than IMD skill, it is sub-

stantially lower than that of the hindcasts. Our forecast

model yields significant CC;0.4 and AUC;0.7 for the

period 1981–2004 and CC;0.2 and AUC;0.6 over the

longer period 1931–2004. One of the advantages of using

the RG-CPD procedure is that it detects a smaller set of

variables which reduces the risk of overfitting, as con-

firmed with the Akaike Information Criterion analysis.

In addition, since the precursors are nonstationary, this

objective methodology provides a fast and automatized

procedure to update precursors by itself in association

with changing or emerging new patterns.

This study clearly provides evidences that causal dis-

covery tools such as RG-CPD can significantly improve

the physical understanding of far-away or remote drivers

OCTOBER 2019 D I CAPUA ET AL . 1391

Unauthenticated | Downloaded 06/04/21 10:10 AM UTC



influencing the ISMR at different time scales and also

under different background conditions.We also conclude

that this promising automatized technique can provide

superior skill in seasonal ISMR forecasts at 2–4-month

lead time, allowing for better strategic socioeconomic

planning for the Indian subcontinent.
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