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Abstract  

Many studies investigated the impact of COVID-19 lockdown on urban air quality, but their 

adopted approaches have varied and there is no consensus as to which approach should be used. 

In this paper we compare three of the main approaches and assess their performance using both 

estimated and measured data from several air quality monitoring stations (AQMS) in Reading, 

Berkshire UK. The approaches are: (1) Sequential approach - comparing pre-lockdown and 

lockdown periods 2020; (2) Parallel approach - comparing 2019 and 2020 for the equivalent 

time of the lockdown period; and (3) Machine learning modelling approach - predicting 

pollution levels for the lockdown period using business as usual (BAU) scenario and comparing 

with the observations. The parallel and machine learning approaches resulted in relative higher 

reductions and both showed strong correlation (0.97) and less error with each other. The 

sequential approach showed less reduction in NO and NOx, showed positive gain in PM10 and 

NO2 at most of the sites and demonstrated weak correlation with the other two approaches, and 

is not recommended for such analysis. Overall, the sequential approach showed -14, +4, -32, 

and +56 % change, the parallel approach showed -46, -43, -43 and +7 % change, and the 

machine learning approach showed -47, -44, -38 and +5 % change in NOx, NO2, NO and PM10 

concentrations, respectively. The pollution roses demonstrated that the UK received easterly 

polluted winds from the central and eastern Europe, promoting secondary particulates and O3 

formation during the lockdown. Changes in pollutant concentrations vary both in space and 

time according to the approach used, environment type of the monitoring site and the data type 

(e.g., deweathered vs. raw data). Therefore, the reported results (here or elsewhere) should be 

viewed in light of these factors before making any conclusion.  

 

Keywords: air quality, COVID-19, deweathering, lockdown, intervention, generalised 

additive model.  

1. Introduction   

Following the COVID-19 pandemic over 4 million people were infected and more than 120 

thousand people died in the UK (GOV_UK, 2021). The first case of COVID-19 in the UK was 

confirmed in January 2020 and the number of cases increased rapidly to March 2020. As a 

result the UK Government had no option but to declare a national lockdown in the country on 

23rd March 2020 (Air Quality Expert Group (AQEG), 2020). Educational institutes were shut 

down, people were asked to work from home where possible and to stay indoors, except for 

certain reasons, and, as a result, the economy slowed down and energy consumption decreased, 

particularly from reduced road traffic, rail services and aviation (Jephcote et al., 2021). These 

‘lockdown’ measures also reduced air pollutants and greenhouse gas emissions significantly, 

which was also highlighted widely in a variety of media channels (e.g., Dixon, 2020; Quinio 

and Enenkel, 2020), which reported a reduction in atmospheric pollutant concentrations. 

COVID-19 lockdown therefore acted as a natural country- or even global-scale intervention on 

air quality conditions.     
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Numerous studies (e.g., Dacre et al., 2020; Solberg et al., 2021; Jephcote et al., 2021) were 

published investigating the impact of COVID-19 lockdown on air quality in different countries 

around the world. Jephcote et al. (2021) analysed data from  129 air quality monitoring stations 

(AQMS), which are part of the UK Automatic Urban and Rural Network (AURN) operated by 

DEFRA. This is probably one of the most comprehensive analyses in the UK which quantified 

changes in air quality during the lockdown period. This study found there was a mean reduction 

of 38.3 % in NO2 concentrations and a 16.5 % reduction in PM2.5 concentrations in the UK. 

The reduction in pollutant concentrations was greater at urban traffic sites but more modest at 

background sites. In contrast, mean O3 levels increased by 7.6 % with the largest increase at 

urban traffic (roadside) sites due to reduction in the emissions of NO, which act as a ‘scavenger’ 

for O3. 

 

Dacre et al., (2020) and Solberg et al. (2021) focused only on NO2 concentrations during the 

lockdown period using statistical modelling approaches. Dacre et al. (2020) limited their study 

to the UK and analysed NO2 data from 142 AURN sites, whereas Solberg et al. (2021) used 

NO2 data from over 2000 AQMS from across the Europe including UK. Dacre et al. (2020) 

reported relatively less reductions in NO2 concentrations: a 27% mean reduction at urban traffic 

and 14 % at urban background sites. In contrast, Solberg et al. (2021) estimated 60 %, 51 %, 

51 %, 47 % and 43 % reduction in NO2 concentrations in Spain, Italy, France, Portugal and 

United Kingdom, respectively. The study reported relatively moderate reduction in NO2 in the 

eastern European countries, e.g., 22% and 23 % in Poland and Hungary. Moreover, Shi et al. 

(2020) analysed the data of NO2, O3 and PM2.5 from selected cities around the world, including 

London, to investigate the effect of lockdown measures on these pollutants. According to their 

findings, NO2 concentrations showed a  52 % reduction in raw data and an 18 % reduction in 

deweathered data in London. Due to prevailing weather conditions an episode of PM2.5 was 

experienced in London during the lockdown period. PM2.5 concentrations showed significant 

gains at the roadside (+107.6 %), in an urban background context (+152.9 %) and in more rural 

sites (+164.5%) in London during the lockdown period (Shi et al., 2020). However, 

deweathered PM2.5 concentrations demonstrated much gentler change while O3 concentrations 

showed positive gain at all monitoring sites including London (Shi et al., 2021).   

 

Researchers have employed different approaches for quantifying the effect of COVID-19 

lockdown on air pollution. The most common approaches are:  

1. Comparing pre-lockdown with the lockdown period. This approach compares observed 

concentrations of pollutants for the pre-lockdown period with the lockdown period 

(e.g., Rodríguez-Urrego and Rodríguez-Urrego, 2020; Tobias et al., 2020). We have 

referred to this technique as a ‘sequential approach’ in this study.  

2. Comparing the lockdown period in 2020 with the equivalent period in previous years 

(Sicard et al., 2020; Sharma et al., 2020; Shi et al., 2021). This technique has been 

referred to as the ‘parallel approach’ in this study. This and the previous method are 

probably the most common and simple techniques used for this type of analysis.  

3. Comparing measured and estimated concentrations for the lockdown period. The 

estimated concentrations are predicted using different machine learning approaches, 

such as multiple linear regression, random forest, boosted regression trees and 

generalised additive model (e.g., Lovric et al., 2020; Solberg et al., 2021; Liu et al., 

2021; Jephcote et al., 2021, Ropkins and Tate, 2021).  

4. Estimations of chemical transport modelling (CTM) are compared with measured 

concentrations for the lockdown period. Examples of CTM are the Community Multi-

scale Air Quality Model (Wang et al., 2020), NASA GEOS-CF Model (Keller et al., 
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2020), WRF-CHIMERE Model (Dumka et al., 2020), and GEOS–Chem Model (Wang 

et al., 2021).   

5. Using air pollutant data derived from satellite maps (e.g., Solberg et al., 2021; Venter 

et al., 2020; Liu et al., 2020). The last two approaches i.e. chemical transport modelling 

and using satellite data have not been explored further in this paper.  

 

The techniques using  ground-based observations (e.g., NO2, O3, PM10 and PM2.5) are generally 

considered more reliable and accurate than the techniques using either model estimated or 

satellite retrieved data. However, the air quality monitoring sites are sparse and machine 

learning techniques are necessary to support the measured data in terms of spatiotemporal 

coverage and resolution The statistical and machine learning approaches do not need emission 

data and models can be trained specifically for each monitoring site using the measured air 

quality data (e.g., Solberg et al., 2021; Dacre et al., 2020). However, the pollutants data need 

to be normalised for the effect of meteorology. CTM models require detailed emission, 

meteorology and geographical information. The changes in emission during the lockdown vary 

from city to city and country to country and are difficult to obtain with good accuracy (Solberg 

et al., 2021).  

 

Employing different techniques could result in the amount of change in pollutant 

concentrations recorded during the lockdown period varying significantly from one study to 

another even within the same area. For example, authors using different methods analysed the 

same NO2 data from the UK AURN  and arrived at different results during the lockdown period. 

Dacre et al. (2020) using multiple linear regression  estimated -19, -14 and +20 % change, 

whereas Jephcote et al. (2021) using boosted regression tree method estimated -38, -36 and -

44 % change in NO2 at urban traffic, urban background and rural sites, respectively across the 

UK. Similarly, Lee (2020) using parallel method estimated -45 and -38 % change, whereas 

Murrells (2020) using deweather package estimated -37 and -25 % reduction in NO2 at urban 

traffic and urban background sites, respectively across the UK.  

 

This comparison of previous studies shows that different approaches lead to different results. 

Therefore, here we intend to compare three of these approaches (sequential, parallel and 

machine-learning modelling), which are the most widely used for determining the impacts of 

lockdown on air quality. The purpose is to analyse how and why the results of these approaches 

often vary and which approach could potentially provide more ‘realistic’ results. The 

performance of the three approaches are compared using both measured (raw) and deweathered 

data in a case study urban area (Reading, UK) and the results are discussed in the light of the 

prevailing weather conditions and emissions changes. 

 

2. Methodology  

This study quantifies the effect of COVID-19 lockdown intervention on air quality (AQ) in 

Reading, Berkshire, United Kingdom. In this paper, the focus is on the first lockdown period 

(23 March to 10 May 2020). AQ data came  from four air quality monitoring stations (AQMS) 

in Reading, which are described in section 2.1. The  measurements of several meteorological 

parameters are used for deweathering AQ data and estimating pollutant levels using a Business 

As Usual (BAU) scenario for the lockdown period. Meteorological data are described in section 

2.2. Deweathering and modelling techniques are described in section 2.3. This study compares 

three approaches for quantifying the effect of COVID-19 lockdown on AQ. Statistical software 

and the three research approaches used in this study are described in section 2.4. 
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2.1 Air quality monitoring network  

Data were obtained from four reference AQMS (Figure 1) in the Reading area. Two of the 

AQMS (London Rd and Newtown) are part of the UK Automatic Urban and Rural Network 

(AURN) operated by DEFRA, and the other two AQMS (Oxford Rd and Caversham Rd) are 

operated by Reading Borough Council (RBC) (Table 1). Pollutant concentrations measured 

by all four AQMS are NO, NO2, NOx and PM10. In addition, PM2.5 and O3 are monitored at 

the Newtown AQMS only. Data for these pollutants were available for the study period. 

According to DEFRA classification London Rd, Oxford Rd and Caversham Rd are classified 

as urban traffic (roadside), whereas Newtown site is classified as urban background site. Air 

quality England has classified London Rd as a rural AQMS. In the light of this difference, we 

will see in later sections that London Rd site behaves differently from the other two roadside 

sites.   

 

Figure 1. Air Quality Monitoring Network (AQMN) in Reading, where Newtown and 

London Rd are AURN sites run by DEFRA, whereas Oxford Rd and Caversham Rd sites are 

run by Reading Borough Council (RBC).   
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Table 1. Air quality monitoring stations and mean concentrations of pollutants during the 

lockdown period. RBC = Reading Borough Council, and AURN = automatic urban and rural 

network.  

Site Site type Operated by 
Pollutants 

measured 

London Rd Rural/Urban Traffic* AURN 

NO, NO2, NOx, 

PM10 
Oxford Rd Urban Traffic RBC 

Caversham Rd Urban Traffic RBC 

Newtown Urban Background AURN 
NO, NO2, NOx, 

PM10, PM2.5, O3 

*DEFRA has classified this site as an urban traffic site, whereas Air Quality England has 

classified it as a rural site (Air Quality England, 2021; DEFRA, 2021). 

2.2 Meteorological data 

Meteorological data from the Met Office high-resolution weather prediction model are 

available at all AURN sites. However, the meteorological data are not available at the AQMS 

run by the local authorities, for example RBC. Therefore, estimated meteorological data were 

not available at Caversham and Oxford Rd sites. As an alternative source, meteorological data 

were available at the University of Reading Atmospheric Observatory (URAO) for the study 

period. The Met office weather prediction available at the two AURN sites and the URAO 

measured weather data were analysed and compared to decide which dataset should be used in 

the deweathering and machine learning modelling analysis. Correlation analysis and machine 

learning analysis showed that meteorological data from URAO had a stronger association with 

measured pollutant concentrations. Therefore, it was decided that the  meteorological data from 

the URAO should be used in this study for two reasons: (a) the measured parameters at URAO 

had generally stronger correlation with the air pollutants, (b) data for more meteorological 

parameters e.g., relative humidity and atmospheric pressure were also available at the URAO. 

Meteorological parameters used were temperature, wind speed, wind direction, atmospheric 

pressure and relative humidity. In this paper we used relative humidity and not absolute 

humidity because relative humidity is preferred by most of the researchers (e.g., Jephcote et 

al., 2021; Solberg et al., 2021, Shi et al., 2021; Collivignarelli et al., 2020) who analysed the 

relationship between air quality and meteorological conditions during the lockdown period.    

2.3 Generalised Additive Model development and deweathering of air quality data 

Changes in weather conditions can mask the association between pollutant emissions and 

atmospheric concentrations, so it is vital to remove the effect of meteorology on AQ to 

understand the reduction or gain in air pollution concentrations caused by changes in emissions. 

Removing the effect of variation in weather conditions on air pollutant concentration is referred 

to as ‘deweathering’ AQ data, ‘weather normalisation’, ‘weather decoupling’ or  ‘adjusting for  

meteorological conditions’. To deweather AQ data, researchers have preferred to use different 

interpretable machine learning techniques such as Boosted Regression Trees (TRB) (e.g., 

Carslaw, 2018; Jephcote et al., 2021), random forest (Grange et al., 2018; Shi et al., 2021), and 
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generalised additive modelling (Solberg et al., 2021; Ropkins and Tate, 2021; Carslaw et al., 

2007). In this paper, a generalised additive model (GAM) was employed, which is considered 

to be an interpretable supervised machine learning technique that can provide functional 

association between each predictor and the predictand variables. This is in contrast to the other 

uninterpretable or less interpretable machine learning techniques that tend to produce ‘black-

box’ results (Solberg et al., 2021). GAM has already been described in detail by several authors 

(e.g., Solberg et al., 2021; Carslaw et al., 2007 and the relevant references therein).     

To deweather the AQ data using GAM, we used temperature, wind speed, wind direction, 

atmospheric pressure and relative humidity data provided by URAO. In addition, hour of the 

day, day of the month and week of the year were used as predictors to account for temporal 

variations. Models were fitted on an 80 % training dataset and cross-validated on  a 20% testing 

dataset, both randomly selected. Models demonstrating satisfactory performance on cross-

validation were then applied to deweather the whole datasets. Separate models were developed 

for 2018-2019 and 2020. For predicting BAU scenario, the GAM model was trained and 

validated using 2018 and 2019 data and then used to predict the lockdown period from 24 

March to 10 May 2020.  

For evaluating the models performance, predicted and measured concentrations were compared 

and several statistical metrics were calculated. The metrics used in this study were: correlation 

coefficients (r), factor of two (Fac2), root mean squared error (RMSE), mean absolute error 

(MAE) and mean biased error (MBE). MAE and RMSE show the size of the average error, 

however they do not provide information whether the model is over predicting or under 

predicting as these are based on absolute value of the difference. On the other hand, MBE 

describes the direction of the error bias, where a negative value of MBE shows that predicted 

values are smaller than the observed values i.e model is under predicting. FAC2 is the 

percentage of the predictions within a factor of two of the observed values, and correlation 

coefficient shows the linear association between predicted and observed values. The GAM 

model is presented in equations 1 and 2 and the values of these metrics for both fitted (using 

training dataset) and cross-validated (using testing dataset) models are provided in Table 2. 

  

Y = s1 (X1) + s2 (X2) + … + sn (Xn)                                              (1) 

 

Where Y is the predictand (response variable) and si is the smoothing parameter associated 

with the predictors or explanatory variables (Xi) of the model. According to equation 1, the 

GAM model, using NO2 as an example of the predictands , can be written as shown in equation 

2:  

 

[NO2] = s1 (rh) + s2 (ws) + s3 (wd) + s4 (p) + s5 (temp) + s6 (hr) + s7 (day) + s8 (wk)          (2)   

 

Where rh, ws, wd, p, temp, hr, day, wk are relative humidity, wind speed, wind direction, 

atmospheric pressure, temperature, hour of the day, day of the month and week of the year, 

respectively.  
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Table 2. GAM validation in terms of statistical metrics calculated by comparing the predictions 

of both fitted and cross-validated models with observed concentrations.  

 

Site 
Modelled 

pollutant 
Model r Fac2 RMSE MAE MBE n 

L
o

n
d

o
n

 R
d

 

NO2 
FM 0.79 0.84 11.64 8.81 1.72e-13 13416 

CV 0.79 0.84 11.50 8.75 0.53 3351 

NO 
FM 0.68 0.44 22.81 14.14 -.178e-13 13416 

CV 0.67 0.44 21.13 13.67 1.17 3351 

NOx 
FM 0.73 0.64 42.78 28.21 -4.08e-13 13416 

CV 0.73 0.65 40.36 27.42 2.32 3351 

PM10 
FM 0.55 0.78 9.60 6.98 -6.01e-13 12854 

CV 0.54 0.78 9.29 6.84 0.28 3220 

O
x

fo
rd

 R
d

 

NO2 
FM 0.75 0.84 11.43 8.55 -2.41e-12 13638 

CV 0.74 0.83 11.32 8.46 0.17 3394 

NO 
FM 0.65 0.51 23.46 14.15 -2.29e-12 13638 

CV 0.65 0.50 23.39 13.90 0.26 3394 

NOx 
FM 0.69 0.70 43.14 27.67 -6.16e-12 13638 

CV 0.69 0.70 42.77 27.06 0.57 3394 

PM10 
FM 0.54 0.88 10.84 7.47 3.73e-12 13662 

CV 0.54 0.87 10.84 7.50 -0.01 3414 

C
av

er
sh

am
 R

d
 

NO2 
FM 0.73 0.84 17.54 12.42 -1.22e-11 13507 

CV 0.73 0.85 17.63 12.15 -0.22 3387 

NO 
FM 0.69 0.55 22.66 15.34 -2.29e-12 13528 

CV 0.69 0.56 22.85 15.37 -0.11 3393 

NOx 
FM 0.73 0.75 45.52 32.32 -6.92e-12 13507 

CV 0.74 0.75 45.83 32.33 -0.42 3387 

PM10 
FM 0.49 0.87 12.35 8.01 9.53e-13 13229 

CV 0.45 0.87 13.34 8.25 -0.10 3316 

N
ew

to
w

n
 

NO2 
FM 0.80 0.93 9.04 6.67 -1.43e-11 10911 

CV 0.80 0.93 9.00 6.65 0.17 2705 

NO 
FM 0.62 0.30 14.52 7.32 -5.55e-12 10911 

CV 0.66 0.30 13.30 7.30 0.02 2705 

NOx 
FM 0.73 0.79 26.08 14.72 -2.87e11 10911 

CV 0.75 0.78 24.31 14.63 0.21 2705 

PM10 
FM 0.58 0.73 7.73 5.65 1.09e-12 9052 

CV 0.56 0.74 7.81 5.62 0.02 2231 

PM2.5 
FM 0.64 0.65 6.48 4.59 -2.94e-12 9119 

CV 0.64 0.69 6.26 4.44 0.13 2246 

O3 
FM 0.88 0.84 12.56 9.77 1.54e-11 11209 

CV 0.88 0.84 12.77 9.95 0.02 2772 

 
Note: FM, CV, r, Fac2, RMSE, MAE, MBE and n are fitted model, cross validated model, correlation coefficient, 

factor of two, root mean squared error, mean absolute error, mean biased error and the number of observations, 

respectively.  

 

2.4 Three approaches to estimate the impact of lockdown on air quality 

The novelty of this study is that it applies and compares three different approaches for 

extracting the effect of COVID-19 lockdown intervention on air pollutant concentrations. 

Furthermore, in this study both raw and deweathered data were used. The three approaches are:  
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1. Sequential approach - Comparing pre-lockdown and lockdown periods in 2020. The 

period from 1 February to 23 March was considered as pre-lockdown, the period from 

24 March to 10 May was considered as lockdown, and the period from 11 May to 30 

June was considered as post lockdown period. 

2. Parallel approach - Comparing 2019 and 2020 for equivalent months of the lockdown 

period. In this case, the lockdown period (24 March to 10 May) of 2020 was compared 

with the equivalent time period in 2019. Air pollutant levels have a decreasing trend 

over the last decade or so in the UK, as a result pollutant levels were significantly  

higher in 2010 than in 2019. Therefore, averaging air quality data over a longer period 

of time have the issue of long term trend which needs to be removed before comparing 

it with 2020, which will make the analysis more complicated. In contrast, difference 

between two consecutive years will be much lower and can be ignored. Therefore, in 

this study we did not consider average of the past several years (e.g., 2010 to 2019) and 

simply compared 2019 with 2020.    

3. Machine learning modelling approach - Predicting pollution levels for the lockdown 

period using business as usual (BAU) scenario and comparing predicted and observed 

concentrations for the same period. Models were trained and validated on 2018 and 

2019 and applied to predict pollutant levels for the lockdown period (24 March to 10 

May 2020). The difference between the predicted and observed concentrations was 

considered as the change (reduction/gain) in pollutant levels due the lockdown 

measures.  

R programming language (R Core Team, 2020) and several of its packages were used for data 

analysis, mainly ‘openair’ (Carslaw, 2019) and ‘mgcv’ (Wood, 2020). Openair – package was 

used for general data analysis and producing various visualisations, whereas mgcv-package 

was used for training/fitting, cross-validating and evaluating the goodness-of-fit of GAM. The 

‘mgcv-package’ was also used for deweathering the AQ data.   

3 Results and discussion  

Here, we first present a general picture of the pollutant levels during the pre-lockdown and 

lockdown period for both year 2019 and 2020 using both raw and adjusted data. Figure 2 

presents the daily concentrations of NO, NO2 and PM10 for the pre-lockdown and lockdown 

periods for both 2019 and 2020 at Caversham site, used as an example. The black vertical line 

(23rd March) is a separation line between the pre-lockdown and lockdown periods. Figure 2 

shows how the levels of pollutants change during these periods including the transition period. 

Levels of both deweathered and raw NO and NO2 have increased during the equivalent 

lockdown period in 2019, whereas they have decreased in the lockdown period 2020. The 

difference in NO2 concentrations between 2019 and 2020 during the lockdown period is 

evident. However, in contrast the levels of PM10 seem to have increased during the mid of April 

for both years and there seem to be no impact of the lockdown on PM10 levels. Increase in 

PM10 levels during the lockdown period has been discussed later.  

The changes in air pollutant levels during the lockdown period are presented in three sections 

(3.1, 3.2 and 3.3) according to the three approaches used for analysing the effect of lockdown 

measures on air quality.    
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Figure 2. Comparing the levels of raw and deweathered NO, NO2 and PM10 for the pre-

lockdown and lockdown periods for both year 2019 and 2020 at Caversham Rd site. The 

black vertical line (23rd March) separate pre-lockdown and lockdown period.  

3.1 Sequential approach  

Data from all four AQMS were downloaded and deweathered using the GAM supervised 

machine learning technique. Both raw and deweathered concentrations of different pollutants 

were compared for the pre-lockdown and lockdown periods.  

Both raw and deweathered concentrations of NOx and NO have decreased, whereas that of 

PM10 have increased at all four sites during the lockdown period. Concentrations of NO2 have 

increased at three out of four sites. However, O3 and PM2.5 were only monitored at Newtown 

site, where both have shown positive gain in their concentrations (Table 3). Figure 3 shows 

that the reduction in pollutant concentrations is different during different days of the week. 

Interestingly, at weekends there has been a greater reduction in pollutants  than during 

weekdays. Both raw and deweathered data show the same weekly pattern. However, reductions 

in deweathered data are relatively less than in the raw data. Figure 4 shows how the change in 

NO2 and O3 varied on different days of the week, confirming the opposite trend in NO2 and O3 

concentrations. O3 concentrations have shown the highest gain at the weekend due to the O3 

weekend effect, whereas NO2 concentrations have shown the largest reduction. The inverse 

correlation between O3 and NOx is a well-known fact (Jenkins, 2004; Munir et al., 2013). It 

should be noted that Newtown is an urban background site, therefore it is not as affected by a  

reduction in road traffic as much as roadside monitoring stations. The temporal changes in 

pollutant concentrations also varied at different sites (Figure 3 vs. Figure 4).    

It should be noted that air pollutant emissions change substantially from one season to another 

in the UK (Shi et al., 2021), therefore comparison of pollutant concentrations during different 
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months of the year may lead to biased results. As a result, the sequential approach, which 

directly compares the pre-lockdown and lockdown period, may produce unreliable results. This 

is the reason that although road traffic flows have experienced significant reductions (up to 70 

%), the concentrations of some pollutants (e.g., PM10 and NO2) have increased. This method, 

therefore, is not recommended for extracting the effect of lockdown on air pollutant 

concentrations. When the differences were averaged for all AQMS, the percentage (%) 

averaged changes in raw and deweathered concentrations of NOx, NO2, NO and PM10 were -

17.82, 4.17, -38.99, 61.14 and  -9.18, -4.56, -27.42, 55.84, respectively.    

 

Table 3. Comparing pre-lockdown and lockdown concentrations of different pollutants at all four sites. 

Pollutants with ‘dw’ show deweathered concentrations and ‘diff’ stands for difference.  

Site Pollutant Lockdown Pre-lockdown Diff %Diff 

L
o

n
d

o
n

 R
d

 

NOx 33.49 43.29 -9.80 -22.64 

NO2 20.59 20.97 -0.38 -1.80 

NO 8.41 14.56 -6.15 -42.22 

PM10 27.86 17.98 9.87 54.90 

NOx_dw 34.53 42.09 -7.56 -17.96 

NO2_dw 20.82 20.85 -0.02 -0.11 

NO_dw 8.94 13.87 -4.93 -35.54 

PM10_dw 26.96 18.26 8.70 47.66 

N
ew

to
w

n
  

NOx 24.65 25.80 -1.15 -4.47 

NO2 17.58 16.29 1.30 7.95 

NO 4.60 6.20 -1.60 -25.76 

O3 65.21 54.04 11.17 20.67 

PM10 23.42 13.05 10.37 79.48 

PM2.5 14.91 7.52 7.39 98.31 

NOx_dw 24.35 25.20 -0.85 -3.37 

NO2_dw 17.29 16.54 0.76 4.57 

NO_dw 4.58 5.66 -1.07 -18.95 

O3_dw 63.93 53.01 10.92 20.60 

PM10_dw 22.57 13.38 9.19 68.67 

PM2.5_dw 14.16 8.00 6.16 77.07 

O
x

fo
rd

 R
d

 

NOx  31.79 46.74 -14.95 -31.99 

NO2  20.15 19.42 0.74 3.80 

NO 7.59 17.82 -10.23 -57.42 

PM10  24.76 16.56 8.21 49.56 

NOx_dw 33.19 45.34 -12.15 -26.80 

NO2_dw 20.33 19.28 1.05 5.44 

NO_dw 8.30 17.06 -8.75 -51.31 

PM10_dw 23.93 16.50 7.43 45.05 

C
av

er
sh

am
 R

d
 

NOx  36.07 41.07 -5.00 -12.18 

NO2  21.74 20.37 1.37 6.71 

NO 9.37 13.50 -4.13 -30.56 

PM10  26.43 16.45 9.97 60.60 

NOx_dw 37.96 40.58 -2.62 -6.46 

NO2_dw 21.99 20.50 1.49 7.27 

NO_dw 10.35 13.18 -2.83 -21.48 

PM10_dw 26.10 16.12 9.99 61.97 
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Figure 3. Showing difference in pollutant concentrations between lockdown and pre-lockdown 

period at London Rd monitoring site. Upper-panel shows raw and bottom-panel shows 

deweathered concentrations.  
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Figure 4. Difference in O3 and NO2 concentrations between lockdown and pre-lockdown period 

at Newtown monitoring site. ‘Diff’ and ‘dw’ stand for difference and deweathered, 

respectively.  

 

3.2  Parallel approach   

The differences in pollutant concentrations between 2020 and 2019 for both raw and 

deweathered data for the lockdown period are shown in Table 4. According to this approach, 

NOx, NO and NO2 concentrations showed reductions in both raw and deweathered data at all 

four sites. However, PM10 concentration showed reduction only at Oxford Rd and Caversham 

Rd site. O3 and PM2.5 demonstrated positive gain at Newtown site. The change in pollutant 

concentrations during different days of the week at London Rd site is shown in Figure 5. NOx, 

NO2 and NO showed the lowest change on Tuesday and the highest on Sunday for the raw 

data, whereas the results showed the highest change on Saturday and the lowest on Monday for 

the deweathered data. PM10 showed no reduction on any day, except on Monday and Tuesday 

for the raw data at the London Rd site. Newtown is an urban background site, where pollutant 

levels are not directly affected by the traffic flow, therefore pollutants have shown less 

reductions compared to the urban traffic sites. Figure 6 depicts changes in the levels of NOx, 

NO2, O3 and PM2.5 and demonstrates as to how changes in pollutant levels vary during different 

hours of day at Newtown and Oxford Rd sites. The highest changes in NOx, NO2 and O3 levels 

are shown just after the evening peak hours (6 pm) and the lowest just before midday. The O3 

data demonstrated opposite diurnal trend to NOx, which is expected because of their mutual 

chemical reaction. At oxford Rd site highest differences are shown just after 6 pm, similar to 

the Newtown site (Figure 6).      

  



14 
 

Table 4. Comparing the concentrations of different pollutants during 2020 and 2019 for the 

lockdown period (24 March to 10 May) at all four sites. Pollutants with ‘dw’ show deweathered 

concentrations. ‘Diff’ and ‘%Diff’ stand for difference and percent difference, respectively.   

Sites Pollutant 2020 2019 Diff %Diff 

L
o

n
d

o
n

 R
d
 

NOx  33.49 62.67 -29.18 -46.56 

NO2  20.59 34.81 -14.22 -40.84 

NO 8.41 18.17 -9.76 -53.71 

PM10 27.86 25.91 1.94 7.50 

NOx_dw 34.53 66.68 -32.15 -48.21 

NO2_dw 20.82 34.96 -14.14 -40.44 

NO_dw 8.94 20.70 -11.77 -56.83 

PM10_dw 26.96 23.60 3.36 14.24 

N
ew

to
w

n
 

NOx 24.65 36.64 -12.00 -32.74 

NO2 17.58 30.45 -12.86 -42.25 

NO 4.04 4.60 -0.57 -14.04 

O3 65.21 56.28 8.93 15.86 

PM10 23.42 14.75 8.67 58.78 

PM2.5 14.91 11.35 3.56 31.37 

NOx_dw 24.35 38.93 -14.58 -37.45 

NO2_dw 17.29 31.91 -14.62 -45.81 

NO_dw 4.53 4.58 -0.06 -1.25 

O3_dw 63.93 55.10 8.83 16.03 

PM10_dw 22.57 17.27 5.31 30.73 

PM2.5_dw 14.16 13.13 1.03 7.85 

O
x
fo

rd
 R

d
 

NOx  31.79 56.88 -25.09 -44.12 

NO2  20.15 31.71 -11.56 -36.45 

NO 7.59 16.42 -8.83 -53.78 

PM10  24.76 28.81 -4.05 -14.05 

NOx_dw 33.19 60.82 -27.63 -45.44 

NO2_dw 20.33 32.46 -12.13 -37.37 

NO_dw 8.30 18.49 -10.18 -55.07 

PM10_dw 23.93 27.62 -3.69 -13.36 

C
av

er
sh

am
 R

d
 

NOx  77.73 36.07 -41.66 -53.60 

NO2  39.83 21.74 -18.09 -45.41 

NO   24.72 9.37 -15.35 -62.08 

PM10 29.62 26.43 -3.19 -10.78 

NOx_dw 81.53 37.96 -43.58 -53.45 

NO2_dw 43.95 21.99 -21.97 -49.98 

NO_dw 24.47 10.35 -14.12 -57.71 

PM10_dw 27.33 26.10 -1.23 -4.49 
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Figure 5. Difference in pollutant concentrations between 2020 and 2019 for the lockdown (24 

March to 10 May) period at London Rd monitoring site. Upper-panel shows raw and bottom-
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panel shows deweathered concentrations. Pollutant with ‘diff’ and ‘dw’ stand for difference 

and deweathered concentrations, respectively.  

 

 

Figure 6. Diurnal cycles of change in pollutant concentrations between 2020 and 2019 for the 

lockdown period at Newtown (upper-panel) and Oxford Rd (lower-panel) sites. Pollutant with 

‘diff’ and ‘dw’ stand for difference and deweathered concentrations, respectively. 
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3.3 Machine learning modelling Approach  

In this section GAM was used to predict the concentrations of air pollutants for the lockdown 

period 2020 using the BAU scenario. Basically, the model predictions show the concentrations 

which would have been experienced if there had been no lockdown. The model was trained 

using 2018 and 2019 air pollutants and meteorological data and then used to make a prediction 

at each site for the lockdown period of 2020. The difference in observed and predicted 

concentrations is regarded as the reduction/gain due to the lockdown intervention.  

At London Rd the difference between modelled BAU scenario and observed concentration is 

shown in Table 5, where NOx, NO2 and NO concentrations demonstrated reductions whereas 

PM10 demonstrated gain during the lockdown period. The highest reduction was shown by NO 

(-58.55 %), followed by NOx (-49.81 %). The reduction shown by BAU scenario is relatively 

greater than the other approaches. The difference between the BAU scenario and observed 

concentrations is also shown in Figure 7. At the Newtown site only NOx and NO2 showed a 

reduction, while all other pollutants showed gains in their concentrations during the lockdown 

period. The highest gain was shown by PM10 (32.47 %) and the highest reduction by NO2 (-

43.56 %) (Table 5). At other sites, NO demonstrated the highest reduction, although, at the 

Newtown site, which is a background site, NO demonstrated a positive gain. The difference 

between BAU and observed concentrations are depicted in Figure 7. At the Oxford Rd site all 

pollutants demonstrated reductions during the lockdown period according to BAU scenario. 

Highest reduction is shown by NO (-56.50%), followed by NOx (-46.62 %) (Table 5). The 

lowest reduction is shown by PM10 (-14.97 %). Figure 7 shows the difference between BAU 

and observed concentrations in all four pollutants in the form of boxplot. At the Caversham 

site all four pollutants showed a reduction (Table 5) during the lockdown period. The highest 

reduction is shown by NO (-63.49 %) and lowest by PM10 (-8.99 %).  

Table 5. Observed and BAU concentrations and their difference (diff) and percent difference 

(% Diff) for the lockdown period 2020 at all four sites.  

Site  Pollutant Observed BAU Diff %Diff 

L
o
n
d
o
n
 

R
d

 

NOx 33.49 66.73 -33.24 -49.81 

NO2 20.59 35.64 -15.05 -42.22 

NO 8.41 20.29 -11.88 -58.55 

PM10 27.86 24.64 3.21 13.03 

N
ew

to
w

n
 

NOx 24.65 36.88 -12.23 -33.16 

NO2 17.58 31.15 -13.57 -43.56 

NO 4.60 3.69 0.92 24.93 

O3 65.21 63.44 1.77 2.79 

PM10 23.42 17.68 5.74 32.47 

PM2.5 14.91 13.20 1.71 12.95 

O
x

fo
rd

 

R
d

 

NOx 31.79 59.55 -27.76 -46.62 

NO2 20.15 32.75 -12.59 -38.44 

NO 7.59 17.45 -9.86 -56.50 

PM10 24.76 29.12 -4.36 -14.97 

C
av

er
sh

a

m
 R

d
 

NOx 36.07 83.49 -47.42 -56.80 

NO2 21.74 44.05 -22.31 -50.65 

NO 9.37 25.69 -16.31 -63.49 

PM10 26.43 29.04 -2.61 -8.99 
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Figure 7. Boxplot showing the difference between observed and BAU scenario for the 

lockdown period 2020 at all four sites.  

3.4 Discussion  

 

3.4.1 Comparison among different approaches  

Overall, the sequential approach detected less reductions in pollutant concentrations compared 

with the other two approaches. Furthermore, the sequential approach calculated positive gains 

in several pollutants which showed a reduction using the other two approaches. For example, 

the sequential approach showed gains in NO2 and PM10 concentrations, in contrast to the other 

approaches that showed a significant reduction. Furthermore, all three approaches 

demonstrated positive gains in O3, PM2.5 and PM10 at the Newtown site, although the gain 

calculated by the sequential approach was considerably higher than the other two approaches. 

The difference between the results of the sequential and other approaches is clearly shown in 

Figure 8. The parallel and modelling approaches demonstrated little differences between them, 

with generally the modelling approach resulting in slightly larger changes. When correlation 

coefficients were calculated between the changes estimated by the different approaches for all 

pollutants and all sites, parallel vs. modelling approaches showed the strongest correlation 

(0.97), followed by sequential vs. parallel (0.79), whereas the weakest correlation was found 

between sequential vs modelling (0.72). RMSE values were 7.44, 41.63 and 43.48, and MBE 
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were 0.02, -35.24 and -35.22 for parallel vs. modelling, parallel vs. sequential and modelling 

vs. sequential, respectively. Parallel vs. modelling demonstrated stronger correlation and less 

error, compared to the sequential vs. any of the other two approaches. Therefore, it can be 

concluded from this research that the parallel and modelling approaches are more suitable for 

extracting the effect of lockdown or any other traffic management intervention on air pollutant 

levels.   

 

  

  
 

Figure 8. Comparing change in the concentrations of air pollutants at the four monitoring 

sites calculated by the three approaches: Modelling, Parallel and Sequential.  

 

Air pollutant levels demonstrate a typical annual cycle in the UK and experience significant 

changes from one month to another, therefore seasonal variations could have affected the 

results of the sequential approach. Furthermore, it is reported that during the pre-lockdown 

period the wind direction was predominantly south-westerly, advecting clean Atlantic air over 

the UK, whereas during the lockdown period the wind was predominantly easterly and north-

easterly resulting in the advection of air laden with emissions from Europe over the UK (Dacre 

et al., 2020), which resulted in high concentrations of PM10, PM2.5, NO2 and O3 during the 

lockdown period. Using meteorology data from URAO our analysis showed similar results 

(Figure 9), which reconfirms that wind direction, temperature and relative humidity were 

considerably different during pre-lockdown and lockdown periods. The effect of meteorology 
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was more prominent in the sequential approach. To minimise this effect, we used parallel and 

modelling approaches and deweathered the pollutant data. Deweathered and raw 

concentrations generally demonstrated a similar pattern, although the magnitude in change 

varied. Deweathered concentrations of NO2, NO and NOx decreased at all sites, however, PM10 

levels only decreased at the roadside sites and increased at the urban background site according 

to parallel and modelling approaches. The sequential approach demonstrated a gain in PM10 

concentrations at all sites, most probably due to the meteorological conditions favourable for 

secondary particulate formations and advection of polluted airmasses from the central and 

eastern Europe during the lockdown period. Shi et al. (2021) reported that in several megacities 

around the world (e.g., Beijing, Paris, and London) pollution events of particulate matter were 

observed after the lockdowns began. This shows that short-term variabilities in pollutant 

concentrations are more controlled by meteorological variations rather than by changes in 

emissions (Shi et al., 2021). Therefore, it is vital to consider changes in pollutant concentrations 

in the light of changes in meteorological conditions. 

  

 

 
Figure 9. Pollution rose showing wind speed and wind direction for pre-lockdown and during 

lockdown. The levels of relative humidity and temperature are shown in upper and lower 

panels, respectively.   
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There is a considerable site to site variability in the change in pollutant concentrations during 

the lockdown period. If we disregard the sequential approach generally NO, NO2 and NOx have 

decreased at all sites, whereas PM10 have increased at London Rd and Newtown sites and 

decreased at Oxford Rd and Caversham Rd sites. The spatial differences are due to the nature 

of the sites in terms of their distance to roads and other emission sources. Newtown is an urban 

background site, whereas Oxford Rd and Caversham Rd are urban traffic sites, and London Rd 

is classified as a rural site by the air quality England (Air Quality England, 2021) and as an 

urban traffic by DEFRA (DEFRA, 2021). The setting of the site are more like a rural site, this 

is perhaps the reason that London Rd site has behaved differently from the other two urban 

traffic sites. London Rd site demonstrated less reduction compared to Oxford Rd and 

Caversham Rd sites, where all pollutants have demonstrated a reduction according to the 

parallel and modelling approaches. At the rural and urban background sites measurements are 

more representative of large areas, and hence pollutant  concentrations are dominated by the 

regional advection of pollutants. In contrast, urban traffic sites are more representative of the 

local emissions and therefore are directly influenced by reduction in local emissions (e.g., Shi 

et al., 2021; Dacre et al., 2020). The regional advection of pollutants has affected the sequential 

approach more as it compares different seasons of the same year.     

 

3.4.2 Comparison with previous studies  

 

Other studies have showed similar findings to the current research. For example,  Jephcote et 

al. (2021) reported reductions in NO2, NOx and PM2.5 concentrations, and positive gains in O3 

concentrations during the lockdown period. Jephcote et al. (2021) reported greater reductions 

at urban traffic than at background and rural sites. On average, according to the same study 

NO2 demonstrated 47.9, 36.7 and 23.9 % reductions, NOx showed 57.3, 37.8 and 18.6 % 

reductions, PM2.5 demonstrated 18.1, 17.3 and 2.6  % reductions, and O3 demonstrated 34.1, 

7.4 and 0.1 % gains at urban traffic, urban background and rural sites, respectively. However, 

in addition to the environmental type of the sites, the changes varied spatially in the UK, 

depending on whether the site was situated in the north, south, east or west of the country. It is 

worth mentioning that Jephcote et al. (2021) used only wind speed, wind direction and 

temperature data to train their model, whereas in this study in addition, we also used relative 

humidity and atmospheric pressure data. Furthermore, the current study also had the benefit of 

using measured meteorological data in contrast to the modelled meteorology used by Jephcote 

et al. (2021) and Dacre et al. (2020). In further support for the current findings, Shi et al., 

(2021), Lovric et al. (2020) and Dacre et al. (2020) also reported reductions in NO2 and PM2.5 

concentrations and positive gains in O3 concentrations during the lockdown period. Using a 

GAM model, Solberg et al. (2021) evaluated the impact of lockdown on NO2 concentration in 

Europe and reported significant differences in NO2 reduction between different European 

countries. According to their analysis Spain, France, Italy, UK and Portugal experienced 

significantly more reductions in NO2 concentrations than the eastern European countries, for 

example Poland and Hungary. 

  

According to all previous studies and this current study O3 demonstrated gains during the 

lockdown periods. O3 concentrations in the atmosphere are controlled by several processes 

(Munir et al., 2014), mainly: (1) O3 titration by NOx species, especially on the roadside sites; 

(2) Local photochemical O3 formation; (3) O3 rich-air advection either horizontally (regional 

O3 transportation) or vertically (stratospheric-tropospheric O3 exchange); and (4) dry 

deposition. NOx is invariably negatively correlated with O3, therefore any reduction in NOx 

concentrations will lead to increase in atmospheric O3 (Jenkin, 2004; Munir et al., 2013). 

During the lockdown period reductions in road traffic caused reductions in NOx 
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concentrations, which in turn decreased titration of O3 and its concentrations went up. 

Secondly, the UK experienced warm sunny weather conditions during the lockdown period 

(Dacre et al., 2020; Jephcote et al., 2021), leading to enhanced photochemical O3 formation. 

Furthermore, easterly wind during the lockdown period advected air rich in O3 and its 

precursors from central and eastern Europe, which increased O3 levels in the UK. Furthermore, 

dry warm conditions encourage the release of biogenic volatile organic compounds (BVOC) 

from the vegetations, which act as precursors for O3 formations and might have contributed in 

the positive gain of O3 concentrations during the lockdown period (Fitzkyet al., 2019). As a 

result, in such conditions, plants close their stomata resulting in reduction of O3 dry deposition 

(Fitzkyet al., 2019).  

 

During the lockdown period road traffic counts on A-roads and motorways were reduced by 

69% compared with the equivalent period in 2019 (Jephcote et al., 2021).  There was 74% 

reduction in light vehicles and a 35% reduction in heavy goods vehicles and mostly the same 

pattern existed across all the UK regions (Jephcote et al., 2021). This resulted in a reduction of 

the emissions of primary pollutants, leading to reductions in atmospheric concentrations, as 

expected. However, the reduction in pollutant concentration is not linear to the reduction in 

emissions. In other words, the reduction in traffic flow is much greater than the reduction in 

pollutant concentrations. This is mainly due the effect of meteorological conditions that 

sometimes mask the variations due to reduction in emissions (discussed in section 3.4.1).  

 

Although this study considers only a limited area and analyses data from only four air quality 

monitoring stations we believe that this case study highlights the importance of comparing the 

three approaches in a single urban area: readers interested in a UK wide analysis are referred 

to Jephcote et al. (2021) and Dacre et al. (2020). Our aim was to present a methodological 

approach, rather than covering a wide range of AQMS. We provided a detailed discussion of 

the main reasons behind the changes in pollution concentrations so that the readers understand 

why pollutants have behaved in a certain manner.  

 

It is important to mention that a number of local authorities (LAs) around the UK (including 

Leeds, Bristol, Sheffield and Greater Manchester) have announced delays or have abandoned 

the implementation of Clean Air Zones (CAZs), thinking perhaps that CAZs are not required 

immediately because COVID-19 lockdown has done the job and the fact that LAs are stretched 

financially and resources wise during the pandemic (Air Quality News, 2020; Quinio and 

Enenkel, 2020). But this might not be the case and pollutants levels might get back to the pre-

lockdown levels quickly when the lockdown measures are removed (Quinio and Enenkel, 

2020). Therefore, the following suggestion might be useful:  

(a) Policy interventions are required to make people change their behaviour as they did 

during the lockdown period.  

(b) CAZs should be implemented in all large cities as were planned before the COVID-19 

pandemic.  

(c) Reducing road traffic will cause reduction in NO2 pollution but perhaps this will not 

address the issue of particulate matter such as PM2.5, which is predominantly emitted 

by other emission sources, e.g., point sources and residential sources. More work and 

policy interventions are required to manage PM2.5 emissions. 

(d) More work is required to understand the effect of COVID-19 lockdown on indoor air 

pollution, especially as more people are working from home now. 

(e) International policies and collaborations are required to address the issue of 

transboundary air pollutants, e.g., ground level O3.     
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4 Conclusion  

Air quality improved (at least in the ‘short term) as a result of COVID-19 lockdown, especially 

the improvement is more prominent in NOx, NO and NO2 concentrations. In the Reading case 

study PM10 levels have decreased at roadside and increased at background sites according to 

parallel and modelling approaches. PM10, PM2.5 and O3 levels have increased at background 

site, most probably due to polluted air advection from the central and eastern Europe and due 

to warmer weather conditions conducive to photochemical formation of the secondary 

particulate matter and O3.      

In this study three approaches were compared for quantifying the impact of lockdown measures 

on air pollution levels, which resulted in different amounts of changes in pollution levels:  

1. Sequential approach - comparing pre-lockdown and lockdown period showed less 

reduction in pollutant concentrations and showed positive gain in PM10 at all sites.  

2. Parallel approach - comparing 2019 and 2020 for the equivalent period showed more 

reduction than the sequential approach and slightly less reduction than the modelling 

BAU scenario, showing strong correlation with the modelling approach (r-value 0.97).   

3. Machine learning modelling - comparing BAU scenario and measured values showed 

more reduction than the other two approaches.  

 

Different approaches result in different changes for the lockdown period so it is important to 

understand which approach has been used for quantifying the impact of an intervention and 

whether the data have been normalised for changes in meteorology or not. The sequential 

approach compared different months of the same year, which differ in terms of emissions and 

therefore probably resulted in less change as compared to the other approaches. Therefore, 

parallel and modelling approaches are recommended for such intervention analysis, which 

resulted in realistic reduction in air pollution levels and showed strong correlation with each 

other. On average, road traffic decreased by about 70 %, however, reductions in pollutant 

concentrations are much less (ranging from 30 to 55 %). This probably shows the complexity 

of the atmospheric system and the role of weather conditions in controlling the air quality 

dynamic.  

The uniqueness of this study is that using air quality and meteorology data from four sites in 

Reading, it compares three approaches for analysing the effect of COVID-19 on air quality. 

These approaches can also be used for evaluating the effect of any short-term intervention (e.g., 

smart traffic management interventions) on air quality. This study uses measured meteorology 

data, in contrast to some other studies which used estimated meteorological data. Furthermore, 

in addition to average change, it is shown how the changes vary across different days of the 

week and hours of the day. Finally, after the COVID-19 pandemic air pollution levels will 

probably increase again and reach the levels observed before the lockdown period, therefore 

efforts at local, national and international levels are required to manage behaviour, introduce 

policy interventions and reduce emissions to address the issue of air pollution effectively and 

more sustainably.   
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