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ABSTRACT

Motivated by mixture of probabilistic principal component analysis (PCA), which is time-consuming
due to expectation maximization, this paper investigates a novel mixture of probabilistic PCA with
clusterings for process monitoring. The significant features are extracted by singular vector decom-
position (SVD) or kernel PCA, and k-means is subsequently utilized as a clustering algorithm. Then,
parameters of local PCA models are determined under each clustering model. Compared with PCA
clustering, SVD based clustering only utilizes the nature basis for the components of the data instead
of principal components of the data. Three clustering approaches are adopted and the effectiveness
of the proposed approach is demonstrated by a practical coal pulverizing system.

1. Introduction
Recently, industrial operating safety and reliability have

attracted increasing attention [1, 2, 3]. Thus, numerous re-
searchers devote themselves to the study of process monitor-
ing and remarkable achievements have been obtained [4, 5].

Since principal component analysis (PCA) is powerful
to extract critical information within abundant process data,
it is widely applied for data-driven process monitoring [6].
Variants of PCA have been proposed to tackle different lim-
itations, including nonlinearity and dynamics. Kernel PCA
(KPCA) is an effective technique for nonlinear applications
[7, 8], where the data are projected to high-dimensional space.
KPCA is not appropriate for large data owing to high com-
puting complexity. For dynamics, recursive PCA, adaptive
PCA and dynamic PCA have been proposed [9, 10]. How-
ever, aforementioned extensions of PCA are hard to com-
bine. Then, probabilistic PCA (PPCA) was presented within
themaximum likelihood framework, whichmeasures the ‘de-
gree of novelty’ of new data points by probability density
function [11, 12]. This makes it convenient to establish mix-
ture of PCA models. Thus, mixture of PPCA has been pro-
posed to tackle the nonlinear constraint of PPCA [13, 14].
Generally, maximum likelihood is utilized to estimate the
critical parameters, followed by expectation-maximum (EM)
to obtain the optimal values [15]. Zhang et al presented an
improved mixture of PPCA (IMPPCA) for nonlinear process
monitoring with missing data, where the number of local
models were determined automatically and a novel monitor-
ing statistic was designed to improve performance [16].

Based on IMPPCA, data sets are effectively partitioned
into local models [16], however this is via a joint probabilis-
tic estimation process of computationally expensive EM es-
timation process. Intuitively it is desirable to consider local
models via data clustering algorithms, enabling fast and flex-
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ible implementation. There are additional advantages asso-
ciated with this general idea since there exist various cluster-
ing approaches focusing onmultiplemodality of data spaces.
This work investigates three types of clustering combined
with PCA for comparative studies, and introduces novel clus-
tering approach based statistics for fault detection.

Traditional clustering methods utilize the raw data di-
rectly or remove abundant information beforehand [17, 18,
19]. For instance, the PCA projected data are separated into
several clusters via on-line fuzzy clustering, where PCA can
handle ill-conditioned issue of covariance matrix [20]. This
is not effective for large and less informative data. Besides,
important feature PCA was proposed for high dimensional
clustering, where a small fraction of features are extracted
by Kolmogorov-Smirnov scores [21]. In our proposed clus-
tering approaches, important features are extracted by singu-
lar vector decomposition (SVD) or KPCA, and then sparse
score vectors are adopted for clustering. Besides, three clus-
tering approaches are compared to gain more insights.

The rest of this paper is organized below. Section 2 re-
views concepts and mathematical formulations of the prob-
abilistic PCA and lays the foundation of our proposed ap-
proach. Mixture of PPCA with clusterings is proposed in
Section 3, in which k-means, clustering based on SVD and
KPCA clustering are described in detail, respectively. Sec-
tion IV details the procedure of nonlinear process monitor-
ing using the proposed approach and analyzes the algorithm
complexity. The effectiveness of the proposed approaches is
illustrated by a practical coal pulverizing system in Section
5. Concluding remarks are presented in Section 6.

2. Preliminaries
2.1. Latent variable models and PCA

Consider the following model

t = f (x;w) + � (1)

where t ∈ Rd is the observational data, x ∈ Rq is the latent
variable, w is the corresponding model parameter and � is
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Figure 1: PCA and SVD dimensionality reduction

the independent noise. f (x;w) is the unknown function of
the system. For instance, it can be represented by a linear
model as follows:

t = W x + � + � (2)

Assume that process variables follow Gaussian distri-
bution, namely, x ∼ N(0, I), � ∼ N(0,	). 0 and I de-
note the vector of all zeros and identity matrix with appro-
priate dimensions respectively. 	 ∈ Rd×d is a diagonal
matrix, � ∈ Rd is the mean vector, W ∈ Rd×q is the
loading matrix. Thus, we can obtain t ∼ N(�,C) with
C = 	 +WW T ∈ Rd×d based on (2).

As the detailed information of PPCA and IMPPCA has
already been introduced in [15, 16], we just review the basic
theory briefly in Appendix A and Section 2.2, respectively.

2.2. The mixture of probabilistic PCA
For the sake of modeling more complex data, mixture of

PPCA (MPPCA) has been introduced [15] and adopted for
nonlinear process monitoring [16], which utilizes an ensem-
ble of local PCAmodels via defining amixture of probabilis-
tic densities [15]. According to probability rules, a mixture
of K local PCA models is employed to describe the system
(1) as below, rather than a single model of (2)

p(t) =
K
∑

i=1
p(i)p(t|i)

=
K
∑

i=1
�ip(t|i)) (3)

where the mixing coefficients �i ≥ 0 and
K
∑

i=1
�i = 1. p(i)

represents the probability of selecting the ith local model.
Each of p(t|i) is the local PCA model given by

t = W ix + �i + �i, i = 1, ..., K (4)

which is similar to (2), and has individual projection matrix
W i, mean vector �i, as well as �i ∼ N(0, �2i I).

For a mixture model, the log-likelihood of observation
data based on (3) is described as:

L =
N
∑

n=1
ln
{

p
(

tn
)}

=
N
∑

n=1
ln

{ K
∑

i=1
�ip

(

tn|i
)

}

The formulation of minimizing L has been summarized
in Appendix B. Traditionally, an iterative EM algorithm was
employed to jointly optimize the model parameters �i, �i,
W i and �2i . Detailed information can be found in [16, 22].

2.3. PCA-based and SVD-based clusterings
Given the measured data T =

[

t1,… , tN
]T ∈ RN×d ,

PCA reduces the dimensionality by SVD as follows:

T = U�V T

whereU ∈ RN×d , V ∈ Rd×d andUUT = IN , V TV = Id .
� is the diagonal matrix and the elements are eigenvalues of
covariance matrix T with descending order. The number
of principal components is q via cross validation, then the
extracted data are expressed by

Y PCA = U�q
where �q is the first q columns of �. Then, clustering ap-
proaches are conducted to classify the compressed data Y
into several sorts subsequently.

To our best knowledge, SVD is essentially a low rank ap-
proximation technique. Therefore, we can adopt SVD to ex-
tract effective information. The extracted features Y SV D =
U q are employed for clustering. When two clustering ap-
proaches share the same dimensionality of extracted data,
the input data of PCA-based clustering are actually theweighted
inputs of SVD-based clustering, where the weights are the
first q largest singular values of T . It indicates that the clus-
tering results of SVD-based clustering are less affected by
the singular values once important features are selected.

To understand the difference intuitively, we generate nu-
merical data and use PCA and SVD for dimensionality re-
duction, as shown in Figure 1. The original data areGaussian-
distributed and belong to 3 sorts. It is obviously that data
by SVD processing are more dense and different classes are
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separated relatively farther than PCA. It indicates that SVD
is more suitable for clustering than PCA in some cases.

3. Identification of the mixture of
probabilistic PCA with clustering
IMPPCA is eventually transformed into the optimal so-

lution of (22) in Appendix B. The traditional solution is EM
technique. The EM algorithm is known for its slow conver-
gence, hence in practice it is often unavoidable to speed up
by using a few iterations which hinders the performance. In
this work we propose a two stage procedure: (i) each local
models’ parameters �i, W i and �2i , are identified based on
a number of data clustering schemes; (ii) we estimate mix-
ing coefficients �i using maximum likelihood based on the
resultant local models. The basic idea is that assuming that
local PCA models can be found beforehand, we may reduce
the burden of EM algorithm for more accurate estimation of
the mixing parameters.

3.1. Identification of local models using data
partition

We propose to obtain local models based on a subset of
data. To this end we start with clustering Dn asM disjoint
data subset D(i)

n , i = 1, ..., K , with each datum tn belongs to
only one data subset. For convenience, denote the number of
data samples in D(i)

n , as N (i), and we have
∑K
i=1N

(i) = N .
For each local model, the PCA as described in Section 2.1 is
directly applicable. We propose three clustering algorithms
for data set partitioning.

3.1.1. k-means clustering
Clustering algorithms can be used to find a set of centers,

which accurately reflect the distribution of the data points.
From N data points tj , j = 1,⋯ , N , the k-means algo-
rithm [23] seeks to partition the data points in K disjoint
subset D(i)

n , each containing N (i) data points, to minimize
the sum-of-squares clustering function given by

J =
K
∑

i=1

∑

tj∈D
(i)
n

‖tj − ci‖2 (5)

where ∈ denotes belongs to. J is minimized when

ci =
1
N (i)

∑

tj∈D
(i)
n

tj (6)

The k-means clustering algorithm is applied as a baseline
approach, which also forms as parts of the other two new
approaches presented below. Besides, the number of clus-
tering centers K is determined by gap statistic [24].

3.1.2. SVD clustering
The above k-means clustering algorithm is operated on

d-dimensional original data space, which could be high di-
mensional. If the data is sparse in comparison to high in-
put dimension, then clustering results may be not good. It

is possible to perform a dimension reduction stage to map
the data into most significant eigenvectors, on whose space
the k-means clustering is applied. First we consider a rank-
2 approximation of T ≈ T SVDDSV DV T

SVD, whereD
SV D =

diag{dSV D1 , dSV D2 }. dSV D1 > dSV D2 are two largest singular
values of T . V T

SVD comprises first two right singular vectors.
T SVD = [tSVD1 , ..., tSVDN ]T ∈ RN×2 comprises the first two
left singular vectors of T , where each row tSVDj , j = 1, ...N ,
can be regarded as a result of mapping original data tj into
eigenvector space induced by SVD on data matrix T . The
proposed SVDclustering is simply by applying k-means clus-
tering algorithm to tSVDj , rather than the original data tj , fol-
lowed by identifying the correspondingM disjoint data sub-
set Di

n, i = 1, ..., K in the original data space.

3.1.3. Kernel PCA Clustering
KPCA [25] is one of the kernel methods that is based

on the so-called “kernel trick”. Briefly speaking, it is ini-
tially assumed that there exists a unknown nonlinear feature
mapping �(t), whose dimension is generally unknown and
could even be indefinite. In KPCA, only the inner product is
specified, so that

k(ti, tj) = �(ti)T�(tj) (7)

KPCA implicitly finds the leading eigenvectors and eigen-
values of the covariance of the data in feature space �(tn).
Given Dn and a kernel function k(ti, tj), e.g. k(ti, tj) =

exp(− (ti−tj )2

2�2 ), � is the bandwidth. The centered kernel ma-
trix is given by

K̃ = K− 1
N
1N×NK− 1

N
K1N×N+ 1

N2
1N×NK1N×N (8)

whereK = {ki,j} = {k(ti, tj)} is the uncentered kernel ma-
trix. 1N×N ∈ RN×N is the matrix of all ones.

We propose a new KPCA clustering scheme based on
rank-2 approximation of K̃ ≈ T KPCADKPCAT T

KPCA, where
DKPCA = diag{dKPCA

1 , dKPCA
2 }. dKPCA

1 > dKPCA
2 are two

largest eigenvalues K̃ . T KPCA = [tKPCA
1 , ..., tKPCA

N ]T ∈ RN×2

comprises the two largest eigenvectors of K̃ , where each
row tKPCA

j , j = 1, ...N , can be regarded as a result of map-
ping original data tj into a nonlinear feature’s eigenvector
space. The proposed KPCA clustering is simply by applying
k-means algorithm to tKPCA

j , rather than the original data tj ,
followed by identifying the corresponding M disjoint data
subset Di

n, i = 1, ..., K in the original data space.

3.2. Specific parameter estimation of local models
With any of the clustering algorithms, PCA of Section

2.1 can be applied to obtain �i, W i and �2i of each local
model as summarized below.

Clearly themean vector�i =
1
N (i)

∑N (i)

n=1 t
(i)
n . Let the sam-

ple covariance matrices of each local models be denoted by
S(i) = 1

N (i)

(

T (i) − ui1T
)(

T (i) − ui1T
)T. We obtain the eigen-

value decomposition of S(i) = W̃ (i)�(i)W̃ (i)T, where �(i) =

JX Zhang et al.: Preprint submitted to Elsevier Page 3 of 9
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diag{�(i)1 , ..., �
(i)
q , �

(i)
q+1, ..., �

(i)
d }, with W (i) being the first q

columns of W̃ (i). We can also obtain �2i as

�2i = 1
d − q

d
∑

j=q+1
�(i)j (9)

Then, we need to estimate the mixing coefficients �i and
posterior probability Rni. Suppose that Rni = p

(

i|tn
)

is the
posterior probability of the ith local model for generating
data tn, it can be estimated by the following formula:

Rni =
p
(

tn|i
)

�i
p
(

tn
) (10)

For given �i, W i and �2i , the solution of mixing coeffi-
cients �i can be significantly simplified as the optimization
problem

⎧

⎪

⎨

⎪

⎩

max ⟨Lc⟩ + �

(

K
∑

i=1
�i − 1

)

s.t.
∑

�i = 1
(11)

so we have
N
∑

n=1

Rni
�i

+ � = 0 (12)

Since
∑K
i=1

Rni
�i

= 1, we have � = −N , and

�i =
1
N

N
∑

n=1
Rni (13)

Initialize �i = 1∕K , ∀i, Rni can simply be iteratively calcu-
lated by (10), in which p

(

tn|i
)

is evaluated only once with-
out iteration via

p(tn|i) = (2�)−d∕2|
|

C i||
−1∕2

exp
{

−1
2
(tn − �i)TC−1

i (tn − �i)
}

(14)

where C i = �2i I +W iW T
i .

4. Summary and discussion
The procedure of a mixture of PPCA with clusterings

is summarized as follows. First, the model framework and
corresponding parameters can be acquired by three steps: 1)
identification of local models is obtained using data parti-
tion, where k-means, SVD clustering, KPCA clustering are
adopted, respectively; 2) critical parameters of each local
model can be computed just by PCA, which is fast and sim-
ple; 3) the weights of samples belong to each local model
can be calculated by maximum likelihood, where the con-
vergence of iterative process is acceptable and fast. Then,
with regard to each local model, two monitoring statistics,
namely, T -squared (T 2) and squared prediction error (SPE),
are established. Next, global monitoring statistics are con-
structed based on the statistics of local models and weights.
To this end, the procedure of on-line process monitoring is
developed for nonlinear processes.

Historical data

Off-line training phase

Identify of local models using 
clustering in Section 3.1

Obtain parameters of each 
local model in Section 3.2 

Estimate  mixing coefficients 
by (13) and posterior 
probability by (14)

Calculate global monitoring 
statistics  by (15-17)

Calculate corresponding 
thresholds by KDE 

On-line monitoring phase

A new sample

Calculate global 
monitoring 
statistics  by 

(15-17)

satisfy the 
detection logic  

faulty

yes

no

Figure 2: Flowchart of a mixture of PPCA with clusterings for
nonlinear process monitoring

4.1. Establishing monitoring statistics
The number of local models is determined by the clus-

tering approaches mentioned in Section 3.1. With respect to
ith local model, let T 2

i and SPEi be the monitoring statistics
for principal component subspace and residual component
subspace, respectively. The monitoring statistics of the nth
sample are computed below

T 2
i = ‖

‖

‖

M iW T
i tn

‖

‖

‖

2
(15)

SPEi =
‖

‖

‖

�−1i (I −W iM iW T
i )tn

‖

‖

‖

2
(16)

As for the proposed approach, if the posterior probabil-
ity of the sample belonging to kth local model is the largest
among these local models, then the global outcome is the
statistic indice of the kth model. Briefly speaking, the global
monitoring statistics can be computed by:

{

T 2 = T 2
i

SPE = SPEi
, i = argmax

j=1,…,K
Rnj (17)

For process monitoring task, the relationship between
monitoring statistics and the corresponding thresholds is the
reference standard of operating condition, faulty or normal.
The thresholds are calculated by kernel density estimation
(KDE), labeled as Jtℎ,T 2 and Jtℎ,SPE, respectively. Thus, the
corresponding detection logic satisfies

T 2 ≤ Jtℎ,T 2 and SPE ≤ Jtℎ,SPE ⇒ fault free, otherwise
faulty.

The procedure of a mixture of PPCAwith clusterings for
nonlinear process monitoring is summarized in Figure 2.

4.2. Algorithm complexity analysis
In this paper, time complexity is discussed specifically

and space complexity is briefly compared. We use the term

JX Zhang et al.: Preprint submitted to Elsevier Page 4 of 9
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Table 1
Computational complexity of three clustering approaches

Algorithm kernel matrix SVD k-means PCA
PCA based on k-means - - O(NKdt) 1

2
Nd2 + 9

2
Kd3

PCA based on SVD clustering - O(N2d +Nd2 + d3) O(NKqt) 1
2
Nd2 + 9

2
Kd3

PCA based on KPCA clustering O(N2d) O(N3) O(NKqt) 1
2
Nd2 + 9

2
Kd3

flam to count, a compound operation consisting of one ad-
dition and one multiplication [26].

For k-means, the computational complexity mainly fo-
cuses on the iteration of clustering centers. The time com-
putational complexity is O(NKdt), where t is the number
of iterations. For SVD, assume thatX = U�V T. Specially,
calculating the XTX needs 1

2Nd
2 flam. Then, calculating

the eigenvectors of XTX requires 9
2d

3 flam. Thus, recov-
ering U from V needs N2d flam under the assumption that
X is of full rank. As calculating the eigenvectors of XXT

directly requires 9
2N

3 flam, this indirect mode of calculation
can achieve a significant saving especially for large data. For
SVD clustering, only the first two largest singular values and
corresponding singular vectors are required, thus the compu-
tational complexity is O(N2d +Nd2 + d3).

For KPCA, computing kernel matrix requires O(N2d).
Eig-decomposition of kernel matrix needs 9

2N
3 flam. Com-

putational complexity of three clustering approaches is con-
cluded in Table 1. For KPCA-based fault detection method,
all singular values are required and utilized to calculate q.
Then, the corresponding q eigenvectors are calculated there-
after. For the proposedKPCA-based clustering, only the first
two largest singular values and the corresponding left and
right singular vectors are required. For large-scale dataset,
q ≫ 2. Thus, KPCA-based fault detection method is more
computational complicated thanKPCA-based clustering. The
computational cost of IMPPCA [16] mainly focuses on the
solution of model parameters iteratively, and the time com-
plexity is at least O(KNtd3). IMPPCA is a joint optimiza-
tion issue and may converge after considerable iterations.
Besides, matrix inversion should be calculated many times
and may be ill-conditioned.

As for space complexity, among the approaches afore-
mentioned, kernel methods cost the most memory due to the
construction of kernel matrix. Besides, KPCA clustering al-
gorithm needs less storage space than KPCA as only two
largest singular values and corresponding singular vectors
are preserved. IMPPCA occupies the most storage memory
because the parameters during iteration process need to be
stored. Besides, PCA based on k-means may cost the least
memory among these methods.

5. Case study
The 1000-MW ultra-supercritical thermal power plant is

increasingly popular and highly complex. In this paper, one
important unit of boiler is investigated, namely, the coal pul-

verizing system. It is expected to provide the proper pulver-
ized coal, where the coal fineness and the temperature should
range within the prescribed limits. The coal pulverizing sys-
tem includes coal feeder, coal mill, rotary separator, raw coal
hopper and stone coal scuttle, as shown in Figure 3. Raw
coal is ground by a coal mill and fed into a rotary separator.
Then, the pulverized coal with desired fineness is sent to the
boiler for combustion through the rotary separator.

We select two typical cases to demonstrate the effective-
ness of the proposed approach, namely abnormality from
outlet temperature and rotary separator. In this case study,
the sampling interval is 1 minute. Data information is sum-
marized in Table 2. The numbers of training and testing
samples are denoted as NoTrS and NoTeS, respectively. To
reduce false alarms, the critical variables are different for
various types of faults. In this paper, the variables are se-
lected based on prior knowledge from experts and basic the-
ory. For the coal pulverizing system, the instantaneous coal
supply varies with plant’s load and is not invariably station-
ary. Besides, the other parameters of the coal pulverizing
system changes with the instantaneous coal supply and the
type of coal. Thus, the most continuous variables are always
weakly non-stationary, as illustrated in Figure 4.

The monitoring results of 6 faults are summarized in Ta-
ble 3, including FDRs (%) and FARs (%). PCA fails to de-
tect the faults accurately and timely. Although the FAR of
Fault 1 is acceptable, the FDR is lower than other clustering
based algorithms. The FDR of Fault 2 is 100%, but the FAR
is 10%. PCA can detect Faults 1 and 3, but the FDRs of other
faults are lower than 30%. KPCA fails to distinguish the nor-

Figure 3: Schematic of the coal pulverizing system

JX Zhang et al.: Preprint submitted to Elsevier Page 5 of 9
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Table 2
Data of the practical coal pulverizing system

Fault
type Key variables

Fault
number NoTrS/NoTeS Fault

location Fault cause

Outlet
temperature
abnormality

21 variables: outlet temperature,
pressure of air powder mixture,
primary air temperature,
hot/cold primary air main
pressure, etc.

Fault 1 2160/2880 909
Internal deflagration owing
to high outlet temperature

Fault 2 1080/1080 533
Hot primary air electric

damper failure

Fault 3 1440/1440 626
Air leakage at cold and
hot primary air interface

Rotary
separator

12 variables: rotary separator
speed and current, bearing
temperature, instantaneous coal
feeding capacity of coal feeder,
etc.

Fault 4 2880/1080 806
Frequency conversion cabinet
output short circuit alarm

Fault 5 720/720 352
High temperature of

rotary separator bearing
Fault 6 2880/2160 134 Large vibration

Table 3
Evaluation indexes of the case study

Fault
type Indexes

PCA KPCA PPCA k-means SVD clustering KSVD clustering

T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE

Fault 1
FDRs 0 89.15 99.65 83.27 99.80 99.95 99.75 99.75 99.75 99.75 99.75 99.75
FARs 0 8.81 23.35 0.44 0 13.88 0 0 0 0 0 0

Fault 2
FDRs 0 21.17 99.45 93.43 99.09 100 98.36 98.36 97.81 97.99 98.36 98.36
FARs 0 14.66 41.92 0.19 0 5.83 0 0 0 0 0 0

Fault 3
FDRs 1.23 100 99.75 99.75 100 100 100 100 100 100 100 100
FARs 0.16 10 9.92 0 28.00 100 1.60 0 0.16 1.44 4.80 5.76

Fault 4
FDRs 0 0 100 95.27 100 100 100 100 100 100 100 100
FARs 0 0 4.6 0 0 0 0 0 0.12 0.12 0.12 0.12

Fault 5
FDRs 0 0 100 100 2.44 100 99.73 99.73 99.73 99.73 99.73 99.73
FARs 0 0 7.41 3.70 0 4.27 3.42 3.42 3.42 3.13 3.42 3.13

Fault 6
FDRs 0 27.04 85.30 85.99 29.60 92.60 96.50 96.50 95.56 96.30 95.95 96.69
FARs 0 0 0 1.50 0 0 1.50 1.50 1.50 1.50 1.50 1.50

60

70

80
Instantaneous coal supply

800

850
Speed of rotary separator

3
3.5

4

Air powder mixture pressure

0 500 1000 1500 2000
40

60

Primary air temperature

Figure 4: Partial data of the coal pulverizing system

mal variations from real faults for Faults 1 and 2, because the
FARs are more than 20%. For other faults, KPCA provides
the similar FDRs but the FARs are a little higher than clus-
tering based methods. For PPCA, the simulation results of

Faults 2, 4, 5 and 6 are pretty excellent and the FARs are ac-
ceptable. The FARs of Faults 1 and 3 are relatively high, es-
pecially the Fault 3. In this case study, three clustering based
algorithms provide similar monitoring performance, where
k-means, SVD based clustering and KPCA based cluster-
ing algorithms are adopted and probabilistic PCA parame-
ters are estimated thereafter. The FDRs approach to 100%
and the FARs are lower than 6%. Moreover, only the moni-
toring charts of Fault 1 are listed in Figure 5 owing to space
limitations.

Table 4 lists the practical training and testing time. It
is evident that KPCA costs the most expensive computa-
tional resources and PCA needs the lowest resource. Sim-
ilarly, PPCA also has lower computational complexity. For
three clustering algorithms, the computational complexity is
similar and the KSVD clustering needs considerable more
resources than the others, which is consistent with Table 1.

In conclusion, the proposed probabilistic PCAwith clus-
terings provides excellent performance for nonlinear processes.
Besides, it is less computational complicated than KPCA.
Although the computational complexity is a little higher than
that of PPCA, the accuracy is more satisfactory. Here, we
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Table 4
Simulation time (s) of the case study

Fault
type

PCA KPCA PPCA k-means SVD clustering KSVD clustering

training testing training testing training testing training testing training testing training testing
Fault 1 0.1493 0.0563 319.9 421.07 0.3588 0.0201 1.4062 1.0645 1.5268 1.0314 4.9589 1.0715
Fault 2 0.0477 0.0211 32.82 34.69 0.2176 0.0062 0.7370 0.4074 0.7486 0.4219 1.1281 0.4323
Fault 3 0.0732 0.0291 130.85 121.667 0.2535 0.0081 1.0416 0.5434 1.0386 0.5750 1.7466 0.6070
Fault 4 0.1769 0.0184 1194.15 452.25 0.3378 0.0061 1.7183 0.2511 2.0596 0.2613 13.8107 0.2749
Fault 5 0.0290 0.0116 6.731 6.916 0.1377 0.0046 0.3678 0.1738 0.3584 0.177 0.4634 0.17
Fault 6 0.1785 0.0359 506.66 357.8033 0.4766 0.0138 0.9096 0.4124 0.9833 0.4114 11.3460 0.4103
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Figure 5: Monitoring charts of Fault 1

explain the reason why IMPPCA in [16] is not utilized as
a comparative approach. For IMPPCA, the local model pa-
rameters are estimated by jointly optimizing the likelihood
and obtained when the objective converges. In the iteration
process, as the variables may be nonstationary in Figure 4,
the posterior probability is ill-conditioned and the algorithm
is impossible to acquire the parameters. That is to say, IMP-
PCA in [16] has more application limitations and is not suit-
able for this nonlinear process.

6. Conclusion
This paper presents a nonlinear process monitoring al-

gorithm based on probabilistic PCA with clusterings. The
innovation lies in the SVD instead of traditional PCA dimen-
sionality reduction. In some cases, data after SVD process-
ing would be more dense and different classes are separated

more farther than PCA. Based on this property, to tackle the
algorithm complexity and potential ill-condition of the IMP-
PCA, we determine local PCA model beforehand by three
clustering approaches, and then parameters of local models
are calculated simply by once iteration. Furthermore, we an-
alyze the algorithm complexity and the proposed algorithm
is less computationally complicated compared with KPCA
and IMPPCA. Eventually, compared with PCA, KPCA and
PPCA, the effectiveness and superiorities of the proposed
approach are demonstrated by a practical coal pulverizing
system.

In future, spectral clustering would be investigated fur-
ther and more extensions may be explored for nonstationary
process monitoring.
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A. The probabilistic PCA
Providing that noise � ∼ N(0, �2I), for a given x, the

conditional probability over t is defined by

p(t|x) = (2��2)−d∕2 exp
{

− 1
2�2

‖t −W x − �‖2
}

(18)

The prior probability over x can be calculated as

p(x) = (2�)−q∕2 exp
{

−1
2
xTx

}

(19)

Then, the marginal distribution of t is obtained by

p(t) =∫ p(t|x)p(x)dx

=(2�)−d∕2|C|−1∕2 exp
{

−1
2
(t − �)TC−1(t − �)

}

(20)

where |⋅| represents matrix determinant. The model covari-
ance is computed by C = �2I +WW T.

Based on Bayesian theory, the associated posterior dis-
tribution of x for a specific t is acquired by:

p(x|t) =exp
{

−1
2
{

x −M−1W T(t − �)
}T (�−2M)

{

x −M−1W T(t − �)
}}

× (2�)−q∕2 ||
|

�−2M|

|

|

1∕2

whereM = I +W TW ∈ Rq×q is the posterior covariance.
The log-likelihood of the observation data is

L =
N
∑

n=1
ln
{

p
(

tn
)}

= − N
2
{

d ln (2�) + ln |C| + tr
(

C−1S
)}

(21)

in which S is the sample covariance.

B. Solution of mixing coefficients based on
maximum likelihood
According to [16], the expectation of Lc for MPPCA is

obtained by

⟨Lc⟩ =
N
∑

n=1

K
∑

i=1
Rni

{

ln�i −
d
2
ln �2i −

1
2
tr
{⟨

x(i)n x
(i)
n

T⟩}

− 1
2�2i

‖

‖

tn − �i‖‖
2 + 1

�2i

⟨

x(i)n
⟩TW T

i (tn − �i)

− 1
2�2i

tr
{

W T
iW i

⟨

x(i)n x
(i)
n

T⟩}
}

(22)

where ⟨⋅⟩ denotes the expectation about the posterior dis-
tributions of x(i)n .

⟨

x(i)n
⟩

and
⟨

x(i)n x
(i)
n

T⟩
are posterior mean

and covariance matrices of ith local model, calculated as fol-
lows:

⟨

x(i)n
⟩

=M−1
i W

T
i
(

tn − �i
)

∈ Rq (23)

⟨

x(i)n x
(i)
n

T⟩ = �2iM
−1
i +

⟨

x(i)n
⟩⟨

x(i)n
⟩T ∈ Rq×q (24)
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