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Abstract

Infrasound waves travelling through atmospheric channels are affected by the
conditions they encounter along their path. The shift in the back azimuth angle
of a wavefront detected at the reception site depends on the cross-winds it
encountered. Estimating the original field from this integrated measurement is
an (ill-posed) inverse problem. By using a prior, this can be converted into a
Bayesian estimation problem. In this work, we use the (ensemble) Kalman fil-
ter (EnKF) to tackle this problem. In particular, we provide an illustration of the
setup and solution of the problem in a two-dimensional grid, depending on both
across-track distance and height, which has not been done in previous works.
We use a synthetic setup to discuss the details of the method. We show that one
of the effects of along-track averaging (done in previous studies to simplify the
problem) is to overestimate the magnitude of the analysed values, and propose
that this will be a source of model error. We also illustrate the process with real
data corresponding to nine controlled ammunition explosions that took place
in the summer of 2018. In these cases, the real infrasound waves we study sel-
dom reach higher than 40 km in height. However, the use of covariance-based
methods (e.g., the EnKF) allows for updates in higher regions where the wave
did not travel and where traditional observations are sparse. In fact, the larger
impacts from observations in these cases are in the region of 40-60 km, in agree-
ment with previous works. This study contributes to paving the way towards the
ultimate goal of assimilating information derived from infrasound waves into
operational numerical weather forecasting. More studies in quality control of
the observations and proper validation of the results are urgently needed.
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1 | INTRODUCTION
Infrasound waves can be generated by natural sources
such as earthquakes, volcanoes and ocean microbaroms,
and also from human activities such as mining and
controlled detonations of old ammunition. Under cer-
tain atmospheric conditions, infrasound waves gener-
ated at the surface of the Earth can propagate through
atmospheric wave-guides over large distances, potentially
reaching up to high levels of the atmosphere before being
reflected or refracted back towards the surface, where they
can be detected by ground-based stations (Georges 1972;
Garces et al., 1998). The characteristics of a given wave
are modified as it crosses the atmosphere, with variables
such as wind, temperature and humidity affecting both the
speed and orientation of the detected wavefront as mea-
sured at a receiving station. Hence, the received wave con-
tains integrated information on the atmospheric regions it
encountered along its path. This was recognised quite early
(Groves, 1956; Donn and Rind, 1972; Rind et al., 1973).
However, trying to infer these atmospheric characteristics
from an integrated observation such as the back azimuth
angle of the incoming wavefront is an ill-posed inverse
problem. Making use of a prior renders a Bayesian esti-
mation problem, therefore providing an avenue to provide
solutions (sometimes suboptimal yet still useful) to this
problem (see e.g., Stuart, 2010; Ash et al., 2016).
Information derived from detected infrasound waves
can prove valuable in constraining winds and temper-
atures in the atmosphere, especially in poorly observed
upper regions such as the stratosphere and mesosphere.
The top of current numerical weather prediction models
extends well into the mesosphere (Polavarapu et al., 2005).
It is recognised that processes in both the mesosphere
and stratosphere, and their connection to the troposphere,
are important for both numerical weather prediction and
climate prediction (Orsolini et al., 2011; Charlton-Perez
et al., 2013; Kidston et al., 2015). However, the observa-
tional coverage of these two layers is nowhere near as
dense as that of the troposphere. Some of the largest uncer-
tainties in current reanalyses occur in these levels, lead-
ing the wind representation of mesospheric winds to lag
behind other areas (Baker et al., 2014; Korhonen et al.,
2019). For instance, Duruisseau et al. (2017) compared
high-altitude (pressure less than 20 hPa) ERA-Interim val-
ues against wind measurements taken from a balloon
radiosonde and noted that the standard deviations of the
differences were greater than 5m-s™! in some cases. Le
Pichon et al. (2018) conducted a similar study compar-
ing multiple reanalysis products against measurements
from multiple ground-based instruments, finding that the
standard deviation of the mean zonal wind difference
at times could be larger than 20m-s™! when looking

specifically at heights of 40-60 km. It is therefore clear that
any extra information that can be used to constrain such
estimations better is of paramount value, as well as the
methodology to extract this information in an adequate
manner.

The present work is one of several studies paving the
way to the assimilation of atmospheric infrasound data
into numerical weather prediction models. Assink et al.
(2019) provide a review on this ultimate goal. We fol-
low on the steps of Blixt et al. (2019), Amezcua et al.
(2020), and Vera-Rodriguez et al. (2020). These works
make use of a data set resulting from controlled ammuni-
tion detonations at the Hukkakero site in Finland. These
explosions generate infrasound waves that are detected
by an array of powerful micro-barometers at the ARCES
ground-based site in Karasjok, Norway. A series of daily
detonations are performed over several days every sum-
mer, yielding observational over the course of the last two
decades (Drob et al., 2003; Gibbons et al., 2007). These
data have two desirable qualities. First, since waves are
generated from controlled explosions, we know exactly
the locations of the source and receiver of the wave, as
well as the time of detonation and reception, the latter
two within some error margin. Second, the event can be
considered an individual pulse, which is not the case, for
instance, with continuous sources in a general region (e.g.,
microbarom sources near Iceland), in which it is almost
impossible to disentangle individual waves. The second
is the proximity between the source at Hukkakero and
the receiver at Karasjok, which is approximately 179 km,
where the ARCES array of micro-barometers has been
located since 1987 (Mykkeltveit et al., 1990). This means
that the infrasound waves travel for around 10 min, so the
whole process can be considered instantaneous against
synoptic-scale variability. This is not a feasible approxi-
mation, for instance, for waves generated by microbaroms
near Iceland and detected in Norway, where the distance
is an order of magnitude larger (around 2,000 km).

Blixt et al. (2019) used the ARCES data set to
derive effective cross-wind velocities, which they com-
pared with the ERA-Interim reanalysis data (Dee et al.,
2011). The authors tried different vertical averages of
the along-track-averaged cross-wind to approximate the
effective wind inferred from the observations. They also
performed ray-tracing (e.g., Hedlin and Walker, 2013)
for the different explosions to derive plausible tracks
and maximum vertical penetration heights, and com-
pute vertical sensitivities to the ray. Vera-Rodriguez et al.
(2020) increased the scope of the estimation problem.
While still working in the along-track average setting,
they estimated three variables: tail- and cross-winds,
as well as temperature, and used three observations:
travel time, back azimuth angle and apparent velocity.
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2D grid for infrasound propagation

60

0.025

oflefe]e]e

oflofofe]e]e

50 A

0.020

ofefefe]e

40 A

.

0.015

30

.
.
.

olofe]e
.
.
.
.

weights

height [km]

r 0.010

20 A

.
olefefe]e]e

r 0.005

[
10 4 AnnD
Tl

EREN 0 O R R ) S O £ ) N £33 3 ) 8 ) RN R RS R R R R R R R R

oefefe]e|e

0 50 100

T T —- 0.000
150 200

across-distance [km]

FIGURE 1

Sample two-dimensional atmospheric slab used in this work. The horizontal axis corresponds to the along-track distance,

and the vertical axis to height. The red line shows the trajectory of an infrasound wave from emission, being reflected at some maximum

height, and travelling back and being detected at the surface. The blue-shaded grid boxes are those touched by the ray, and the intensity of the

colour is proportional to the distance travelled by the ray inside the grid boxes [Colour figure can be viewed at wileyonlinelibrary.com]

The authors performed an inversion using a heuris-
tic algorithm developed by Vera-Rodriguez (2019). This
algorithm relies on a smoothness constrain (as a regulari-
sation strategy) to estimate these variables at 137 vertical
levels. They used the ERA-5 EDA (ensemble data assimi-
lation) ten-member reanalysis data to provide a departure
point for the inversion algorithm and to identify ensemble
members with values close to those estimated from obser-
vations (e.g., Simmonds et al., 2020). One of the limitations
they recognised is the fact that they could not estimate val-
ues at those levels above the maximum height reached by
the infrasound waves, which is often around 40 km.
Amezcua et al. (2020) performed off-line data assimila-
tion (DA) with the observed back azimuth angles from dif-
ferent explosions. They used the deterministic ensemble
Kalman filter (DEnKF, Sakov and Oke, 2008) to estimate
along-track-averaged cross-wind values at different levels
of the atmosphere. As background values, they used wind
values coming from the ten-member ERA-5 EDA reanal-
ysis. Once more, the cross-wind values were considered
constant along the whole 179-km track of the infrasound
wave, but vertical variations were permitted. The esti-
mation was not done, however, at all the 137 (unevenly
spaced) vertical levels of the reanalysis, but instead on 6
(evenly spaced) layers of the atmosphere. The use of sam-
ple covariances coming from the background ensemble
allowed the determination of upper-level winds, which
were also the most uncertain in the reanalysis product.
To make the DA successful, the authors used domain
localisation and inflation in the EnKF. All the mentioned
works considered a one-dimensional (1D) setting, which

required along-track averaging. This is a major restriction
that is overcome herein.

The main objective of this work is to provide a
setup to perform DA with infrasound measurements
on a two-dimensional (2D) grid, that is, allowing for
along-track variations of the cross-wind for different
numbers of along-track sections. As an illustration, con-
sider Figure 1. A 2D atmospheric slab of L, = 200 km
(along-track distance) and L, = 60 km (vertical distance)
is discretised into N, along-track sections, and N, vertical
levels, in this case with sizes da = 5km and dz = 2km. An
infrasound wave is emitted at the point (0,0) km, travels
to a maximum height attained in the middle of the hor-
izontal domain at the point (100, 35) km, and is reflected
back towards the surface, where it is detected at the point
(2,000) km. The trajectory followed by the infrasound wave
is shown by a red line, forming an isosceles triangle. A
grid point is coloured white if the ray does not touch it,
and in a shade of blue if the ray touches it. The shade of
blue (labelled weight) is proportional to the distance the
wave travels inside the grid box divided by the length of
the total trajectory (more on this in the next section). The
problem is then to use the integrated observation to update
the cross-wind variable at the N, X N, grid points.

In Section 2, we briefly discuss the geometric limit for
the propagation of infrasound waves in the atmosphere,
which is the setup used in this and previous works. Per-
haps the most important point of this section is to define
the observation operator which acts in the DA problem.
Section 3 discusses the Kalman filter and the ensemble
implementation we use in this work. It also helps define
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Simple schematic showing the geometric setup for infrasound transmission. (a) Effect of a cross-wind on a wave travelling

from a source S to a receptor R. The cross-wind advects the wavefront and creates an apparent source S'. (b) Modification of the observed

back azimuth angle of the wavefront at the reception site. (c) Discretisation of the process into N, segments in the along-track direction of

propagation [Colour figure can be viewed at wileyonlinelibrary.com]

the role of the elements defined in Section 2 in the DA
process. Section 4 is, in our opinion, the most impor-
tant of the work. Using a synthetic setup, we demonstrate
the assimilation process under ideal conditions, in par-
ticular illustrating how the presence of correlations in
the background wind field allow for updates beyond the
wave path. In this section we also illustrate the effects
that along-track averaging of the original fields (as used
in previous works to simplify the problem) can lead to
inaccurate results unless a source of representation error
(e.g., Janji¢ et al., 2018) is considered. In Section 5 we per-
form the DA process using data from nine explosions that
took place in 2018 at Hukkakeiro. The sample covariances
coming from a ten-member ensemble prove to be very
noisy, and we propose a way to ameliorate this. Finally,
Section 6 contains a summary and discussion about this
work. Furthermore, there are many areas that still need to
be tackled before proceeding to operational assimilation of
infrasound waves for NWP. We discuss these in detail and
provide ideas for the future.

2 | GEOMETRIC PERSPECTIVE OF
THE PROPAGATION OF
INFRASOUND WAVES IN THE
ATMOSPHERE

The main phenomenon exploited in this study is that a
background wind affects the propagation of an infrasound
wave. More specifically, the wavefront of an infrasound
wave can be advected by any cross-wind it encounters. The
opposite is not true, meaning that an infrasound wave has
a negligible effect on the background winds.

For the following explanation we rely on Figure 2.
Panel (a) illustrates a wave originating at a source S and
received at a receiver R some distance away. A cross-wind
W¢ (constant for now) is present along its path. If W¢ = 0,
the infrasound wave arrives at the receiver unaltered and
can be traced back to its true source. If the wavefront, how-
ever, is translated by a cross-wind W¢ # 0, then it can be
traced back to an apparent source S'. A right-angled tri-
angle is then formed between S, R and S’. The distance
between S and R is called the along-track ground distance
and is denoted by d?, whereas the distance from S to S’ is
called the cross-track distance and is denoted by d°.

When a wave is detected, one can measure the back
azimuth angle 0, that is, the angle of the incoming ray
with respect to north, as shown in panel (b). The bending
caused by W°¢ leads to a measured angle back azimuth ¢'.
The effect of the cross-wind W¢ is related to the difference
between these angles (Diamond 1964):

A =0 —0, 1)

where if W°¢ > 0 then A0 < 0, and if W° < 0 then A§ > 0.
To relate W*¢ and A#, one uses the concept of celerity v,
that is, the along-track distance d* divided by the total
propagation time T

v=2 2
- @
where T is a known quantity, since we know the times of
both explosion and detection. W¢ can be directly related
to d° using the fact that, by construction, the cross-wind is
parallel to d¢. Therefore,

d°=W°T. 3)
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From our geometric setup, the angle shift A@ can be writ-
ten as

(o
Af@ = — arctan <K> . 4)
1%

So far, W* has been constant in time and space. When
considering the explosions used in this study, we have
that d® ~ 179 km, so assuming a constant W* is not real-
istic. The next step is to consider W¢ as a variable that
changes with position along d?, thus becoming w* (r¢, t),
where r® and r¢ denote the directions that d* and d° face,
respectively. This is shown in panel (c) of Figure 2. If we
consider the waves generated at the source to be spherical,
we always have a wavefront at d®. Therefore, we always
focus on the cross-wind along this line, and there is no rea-
son to consider variation in the r¢ direction. In the rest of
this work, we continue to consider the wind fields to be
time invariant. Since, in our setting, the whole infrasound
transmission process lasts about 10 min, this is not a bad
approximation. The general case with time-varying fields
is more complicated and is not explored in this article.

Returning to Figure 2, in panel (c) we divide the dis-
tance d® into N, sections such that d* = Zf;":ldna. In the
n" section, we can still apply Equation (3) to obtain the
cross-wind shift dj, as

dy, = Wi, T, (5)
where wj, is the cross-wind value in the n" section in the
along-track direction, and T, is the time the wavefront

spends in this section. It should be clear that T = ZN” T,

n,=1 -

To calculate each T, , we can relate the along-track

distance ground segment length, dy, , with the along-track

speed for each ground segment denoted by w, and the

adiabatic speed of sound denoted by C, namely
dy,

©CHmy

(6)

n

In reality, C is a function of temperature and atmospheric
water content, but is considered constant here. Substitut-
ing Equation (6) into (5) and adding over all segments
yields the apparent cross-wind displacement as

N diwg

de = Z C+—W (7)

n,=1

To use (4) we can define an average cross-wind velocity
W€ by dividing (7) by the total time T. We can write (4) in
this more general case as

=1%n,"n,

A® = —arctan| == ¢ 2| ®

Royal Meteorological Society

with the weights being

—dz" 9)
o = T(C+ws)

These weights take into account the time spent within each
section along dj . They can also be written as

- (10

which implies that they are normalised.

The problem we are solving includes the wave trav-
elling to a given height and being reflected back, whilst
also travelling in the along-track direction. In Figure 1,
the maximum vertical penetration is 35km. Therefore,
we introduce height as another dimension along which
the wind fields vary. Note that, when projecting the tra-
jectory onto the horizontal plane, our analysis for the
relationship between the back azimuth and the effective
cross-wind remains valid. We split the vertical distance
into N, sections, such that

NZ
Zmax = ZZnZ,

n,=1

11)

where Zmax is the maximum height reached by a
given wave. For every grid position {ng,n;} in this
two-dimensional setting, there is an associated cross-wind
value given by sza,nz- Multiplying these winds by associ-
ated weights and summing over both N, and N, produces
the weighted average cross-wind as

Nﬂ NZ
C C
W = Z Z“na,nz Wy -

n,=1n,=1

(12)

The values ay,, ,, are the weights for each grid box. The
weight is zero for grid boxes within which the wave
does not propagate, and non-zero if it does. As done in
the case of 1D propagation, Equation (12) can used to
relate the cross-wind to the deviation in the back azimuth
angle as

Na

N,
1 Z
A6 = —arctan <; Z Z“nmnz wﬁlmnz> . (13)

n,=1n,=1

For our experiments, the weights «, , are obtained
as a product of two factors. The first is the length of the
wave trajectory in a given grid box, and the second factor
is the vertical sensitivity to the wave transmission. This is
obtained from a ray-tracing technique as done in Blixt et al.
(2019).
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3 | SOLVING THIS PROBLEM
WITH THE (ENSEMBLE) KALMAN
FILTER

31 |
terms

The setup of the problem in KF

DA techniques include two steps: forecast and analysis. As
in Amezcua et al. (2020), in this study we perform off-line
assimilation; that is, we only do the analysis step. The anal-
ysis is not fed back into the forecast model as improved
initial conditions, hence there is no cycling in this study. In
this section, we discuss the analysis step of the DA method
that we use to approach the problem. We also relate the
elements of the previous sections to those needed in the
DA process. We choose the stochastic ensemble Kalman
filter (SEnKF - Burgers et al., 1998; van Leeuwen, 2020).
The reason behind this choice will become evident when
discussing covariance localisation.

The Kalman filter (KF, Kalman, 1960; Kalman and
Bucy, 1961) relies on forecasting the first two moments
of the state variables, and uses observations to update the
values from background (or forecast) to analysis. The back-
ground value x” € RM: is considered to come from a multi-
variate Gaussian distribution (MGD) with mean u® € R
and covariance matrix B € RN, An important fact that
becomes useful in Section 4 is that a covariance matrix can
be decomposed as

B =x2Ccx!/?, (14)

where X € R¥>N: is a diagonal matrix with the variance
of the variables along the main diagonal, and C € RN~
is a correlation matrix. A correlation matrix has 1’s along
the main diagonal, while all the off-diagonal elements are
bounded between —1 and 1.

In the analysis step of the KF, the information com-
ing from observations is incorporated. An observationy €
R™ is a linear transformation of the state variable via
an observation matrix H € R¥x, and contaminated by
observational error. Explicitly,

y=Hx+n, (15)

where n € R™ is observational error coming from an MGD
with zero mean (unbiased) and observational error covari-
ance R € R"™ In our problem, N, = 0.

The difference between the observation and the map-
ping of the background mean into observation space is
known as the innovation d” € R™. Explicitly,

d® =y —Hp'. (16)

The analysis step updates the y and B into their corre-
sponding analysis values using the equations

e = pb +Kd® (17a)

A =(I-KH)B. (17b)
Note that the equation for the analysis mean is extremely
simple to interpret: it is a linear combination of the back-
ground mean and the innovation. The weights in the lin-
ear combination are given by the rectangular matrix K €

RNy the so-called Kalman gain, explicitly
K =BH'T™! (18a)
I'=HBH" +R. (18b)

The Kalman gain can be regarded as the multivariate ver-
sion of a ratio of variances: the background (co)variance in
the numerator, and the total (co)variance I' (background
plus observation) in the denominator. The KF equation for
the analysis covariance can be interpreted as a contraction
of the background covariance.

There can be complications with respect to the frame-
work we just described. For instance, it can be difficult
to obtain robust estimators for the mean p? and covari-
ance B of the state variables. Instead, we have access to
a sample of realisations of the state variable, called an
ensemble, whose size is often considerably smaller than
the number of state variables. Another complication is
that observations can involve nonlinear transformations
of the state variables. A Monte Carlo implementation
of the KF known as the ensemble Kalman filter solves
this problem. While the KF is optimal when the obser-
vation operator is linear, the ensemble alternative can
provide suboptimal yet still useful estimators (Evensen,
2009). There are many implementations of the EnKF, from
which we choose the stochastic ensemble Kalman filter
(SEnKF; Burgers et al., 1998; van Leeuwen, 2020) in this
work.

Let us write our problem in terms of the notation used
for the KF. The state vector x € R is the collection of
cross-wind values in the grid, concatenated in any order
as long as one is consistent throughout all the steps of the
method. We choose the following order (first vertical, then
along-track):

T
—_ C C C C
X = [W1,1’ WIS W e ’WNa,Nz] , (19

where N, = N;N,. Consider that we have a background
sample of N, elements. This is labelled as background
ensemble X® € RN>M. and can be written explicitly as the
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matrix
xXb = [x’l’, xg, ,xﬁ,ﬁ] ) (20)

Now let us look at the observational side. Defining the
sensitivity coefficients for each grid point following the
same order as for (19), we have the vector @ € RM,

T

a = [0(1,1, cee s (XLNZ, ey ey aNa,l’ cee aNa)Nz] . (21)
Many of the elements of this vector will be zero, since they
correspond to grid points where the ray does not travel. We

can finally write the (nonlinear) observation equation as

T
y = —arctan (?) + 1. (22)

In this case we have N, =1, that is, a single integrated
observation from N, state variables. Furthermore, h :
RN: » RNy is a nonlinear function. Nonetheless, it is
not too far from linear as long as the argument of the
arc-tangent is relatively smaller than unity, since the Tay-
lor expansion of this function is

arctan(é) = & + O(&)>. (23)

In our case, the argument of the arc-tangent is a fraction
with an effective wind speed in the numerator and celerity
in the denominator. The typical values of the denomina-
tor are 10' m-s~!, whereas the celerity in the denominator
is close to C, which is around 300m-s~!. Therefore the
(nondimensional) value of the argument in the arc-tangent
is around 107!, The linearisation of the observation opera-
tor around X,,s = 0 is labelled as H € RN x. This becomes
important later in this section, and is simple to write down
as

H=--a". (24)

The analysis step of the SEnKF is quite simple to imple-
ment since it performs the update for each one of the
ensemble members separately, by repeatedly applying the
KF analysis equation for the mean. The analysis value of
the n ensemble member is

Xy, = XZE + Ked‘,’,l:. (25)

The perturbed innovations for each ensemble member
dﬂl: € R are computed as follows (van Leeuwen, 2020):

ay =y —(h(xh)+m,)- (26)

The term 7, € RN is a realisation of the observational
error, which is added to the mapping of the state variables
into observation space (hence the word SstochasticT in

Royal Meteorological Society

SEnKF). It is easy to ensure that the N, perturbations are
centred in zero. We have written K, to denote that the gain
is computed with the ensemble covariance P’, which is an
estimator of B. The ensemble-based gain is then

K, = PPH T} (272)

.= HP'H +R. (27b)

H € R™*: is the linearisation of the observation opera-
tor, which we found in Equation (24). There are ways to
compute K, that do not require the linearisation of the
observation operator, but instead map all members into
observation space, compute perturbation matrices in both
state and observational space, and perform outer prod-
ucts (e.g., Hunt et al., 2007; Sakov and Oke, 2008). We
do not go down this path. The reason for our choice has
to do with the use of model-space localisation and hav-
ing an integrated observation operator, which is explained
next.

3.2 | Implementing localisation

The Kalman gain has the important role of spreading
the impact from observations to state variables. In our
problem, this is particularly crucial since we have a sin-
gle observation whose integrated information has to be
distributed to Nj state variables. The quality of P is vital
to the quality of K and therefore to the accuracy of the
result of the DA process. Small samples are can lead to
spurious covariances as a result of sampling noise. Local-
isation is a method to ameliorate this problem. It involves
artificially modifying the sample covariances to reduce
the magnitude of (and sometimes completely eliminate)
undesired elements. There are several ways to implement
localisation (see e.g., Sakov and Bertino, 2011). Here we
only discuss the so-called B-localisation, which is adequate
when dealing with observations which include integrated
information; see for example Greybush et al. (2011) for the
differences between B- and R-localisation.

B-localisation involves directly modifying P or its par-
tial or total mapping into observation space, that is, PHT
and HPH”. The latter is useful when the computation of
the full P? is not feasible, but this is not an issue in our
case. The simplest form of B-localisation occurs in model
space (see e.g., Slyeva et al., 2019). This requires directly
replacing the sample covariance matrix for a modified ver-
sion, that is, P” — P? . Model-space localisation requires
the linearisation of the observation operator to perform the
products I:IP"IOCI:IT and Pblocl:lT required in the Kalman
gain (Shlyeva et al., 2019). Fortunately, in our case we have
this readily available in Equation (24).
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The localised background covariance matrix Pbloc €
RN=Nx g often obtained by Schur (element-wise) multipli-
cation of the original P® with a tapering matrix L € RN,
that is,

P? = PPoL. (28)

This tapering matrix is prescribed, and its design can
come from our knowledge of the physical system, or
using length scales coming from a tuning process to
optimise (under some metric), the performance of the
DA system.

Another option to modify P? is to perform the decom-
position indicated in Equation (14), trust the sample vari-
ances, and focus on modifying the sample correlation
matrix C. The ensemble correlation raised to a power
(ECORAP; Bishop and Hodyss, 2007; ECORAP; Bishop
and Hodyss, 2009) is a method which aims to “sharpen”
the structures present in C. In its simple implementation,
it involves raising all and every element of the correlation
matrix to a power p:

Ci,j «— (Ci‘j)Psign (Ci’j) . (29)

where the sign function ensures that the sign of the orig-
inal element is not lost when k is even. The rationale
behind this method is that correlations will become more
SpeakedT. If the correlation value is exactly equal t