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Abstract
In this paper we generalise the results proved in N. Katzourakis (SIAM J. Math. Anal. 51,
1349–1370, 2019) by studying the ill-posed problem of identifying the source of a fully
nonlinear elliptic equation. We assume Dirichlet data and some partial noisy information
for the solution on a compact set through a fully nonlinear observation operator. We deal
with the highly nonlinear nonconvex nature of the problem and the lack of weak continuity
by introducing a two-parameter Tykhonov regularisation with a higher order L2 “viscosity
term” for the L∞ minimisation problem which allows to approximate by weakly lower
semicontinuous cost functionals.

Keywords Regularisation strategy · Tykhonov regularisation · Inverse source identification
problem · Fully nonlinear elliptic equations · Calculus of Variations in L∞

Mathematics Subject Classification (2010) 35R25 · 35R30 · 35J60 · 35J70

1 Introduction

Let n, k ∈ N with k, n ≥ 2 and let Ω ⊆ R
n be a bounded connected domain with C1,1

regular boundary ∂Ω . Let also

F : Ω × R × R
n × R

n⊗2

s −→ R

be a Carathéodory function, namely x �→ F(x, r, p, X) is Lebesgue measurable for all
(r, p, X) ∈ R × R

n × R
n⊗2

s and (r, p, X) �→ F(x, r, p, X) is continuous for a.e. x ∈ Ω .
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In this paper, the notation R
n⊗k

s stands for the vector space of fully symmetric k-th order
tensors in R

n ⊗ · · · ⊗ R
n (k-times). Given g ∈ W 2,∞(Ω), consider the Dirichlet problem{

F[u] = f in Ω,

u = g on ∂Ω,
(1.1)

for some appropriate source f : Ω −→ R. Here F[u] denotes the induced fully nonlinear
2nd order differential operator, defined on smooth functions u as

F[u] := F(·, u, Du, D2u). (1.2)

Evidently, we are employing the standard symbolisations Du = (Diu)i=1...n, D2u =
(D2

ij u)i,j=1...n and Di ≡ ∂/∂xi . The above direct Dirichlet problem for F asks to deter-
mine u, given a source f and boundary data g. (In fact the source f is obsolete and can be
absorbed into F , but for the problem we are interested in this paper it is more convenient to
write it in this separated form). This is a semi-classical problem which is essentially stan-
dard material, see e.g. [22]. In particular, it is known that under various sets of assumptions
on F that (1.1) is well-posed and, given f ∈ L∞(Ω) and g ∈ W 2,∞(Ω), for any p > n

there exists a unique solution u in the locally convex (Fréchet) space

W2,∞
g (Ω) :=

⋂
1<p<∞

(
W 2,p ∩ W

1,p
g

)
(Ω).

In general, the solution u is not in the smaller space (W 2,∞ ∩W
1,∞
g )(Ω) (not even locally),

due to the failure of the W 2,p estimates for p = ∞, which happens even in the linear case
(see e.g. [21]). Additionally, (1.1) satisfies for any p > n the fully nonlinear Lp global
estimate

‖F(·, v, Dv, D2v)‖Lp(Ω) ≥ C1‖v‖W 2,p(Ω) − C1‖g‖W 2,p(Ω) − C2 (1.3)

for some constants C1, C2 > 0 depending only on the parameters and any v ∈ (W 2,p ∩
W

1,p
g )(Ω). For sufficient conditions on F which guarantee the satisfaction of solvability of

(1.1) in the strong sense and of the uniform estimate (1.3) we refer to [12, 13, 16, 28, 30].
Note that the above problem contains as a special case the archetypal instance of diver-

gence operators with C1 matrix coefficient A, as well as the non-divergence linear case with
continuous coefficient: {

L1[u] = div(ADu) + b · Du + cu,

L2[u] = A : D2u + b · Du + cu.
(1.4)

In the above, the notations “:” and “·” symbolise the Euclidean inner products in the space
of symmetric matrices R

n⊗2

s and in R
n respectively. More generally, the inner product of

two tensors T , S ∈ R
n⊗k

s will also be denoted by “:”, that is

T : S :=
∑

1≤a1,...,ak≤n

Ta1···ak
Sa1···ak

.

The inverse problem relating to (1.1) asks the question of perhaps determining f , given
the boundary data g and some other partial information on the solution u, typically some
approximate experimental measurements of some function of it known only up to some error.
The inverse problem is severely ill-posed even in the linear case of the Laplacian operator
F = Δ, as the noisy data measured on a subset of Ω might either not be compatible with
any exact solution, or they may not suffice to determine a unique f even if compatibility
holds true.
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The above type of inverse problems are especially crucial for various applications, even
in the model case of the Poisson equation, see e.g. [1, 8, 17, 23, 31, 32, 34, 36–40]. In this
paper we will assume that the approximate information on u takes the form

K[u] = kγ on K, (1.5)

where K is an observation operator, taken to be a first order fully nonlinear differential
operator of the form

K[u] := K(·, u, Du), (1.6)

where K and its partial derivates Kr, Kp satisfy

K, Kr ∈ C(K × R × R
n), Kp ∈ C(K × R × R

n;Rn). (1.7)

In (1.5) and (1.7), K symbolises the set on which we take measurements, which will be
assumed to satisfy

K ⊆ Ω is compact and exists κ ∈ [0, n] : Hκ (K) < ∞. (1.8)

In the above, Hκ denotes the Hausdorff measure of dimension κ . Our general measure and
functional notation will be either standard or self-explanatory, e.g. as in [15, 18, 27]. Finally,
kγ ∈ L∞(K,Hκ ) is the function of approximate (deterministic) measurements taken on K,
at noise level at most γ > 0:

‖kγ − k0‖L∞(K,Hκ ) ≤ γ, (1.9)

where k0 = K[u0] corresponds to ideal error-free measurements of an exact solution to
(1.1) with source f = F[u0].

To recapitulate, in this paper we study the following ill-posed inverse source identifica-
tion problem for fully nonlinear elliptic PDEs:

⎧⎨
⎩

F[u] = f in Ω,

u = g on ∂Ω,

K[u] = kγ on K.
(1.10)

This means that we are searching for a selection process of a suitable approximation for f

from the data kγ on K through the observation K[u] of the solution u. To the best of our
knowledge, (1.10) has not been studied before, at least in this generality. Our approach does
not exclude the extreme cases of K = Ω (full information) or of K = ∅ (no information),
although trivial changes are required in the proofs. Sadly, an exact solution may not exist
as the constraint may be incompatible with the solution of (1.1), owing to the errors in
measurements. On the other hand, it is not possible to have a uniquely determined source
on the constraint-free region Ω \K. Instead, our goal is a strategy to determine an optimally
fitting uγ (and respective source f γ := F[uγ ]) to the ill-posed problem (1.10). A popular
choice of operator K in the literature (when L = Δ) consist of some term of the separation
of variables formula, as e.g. in [39].

Herein, we follow an approach based on recent advances in Calculus of Variations in
the space L∞ (see e.g. [26] and references therein) developed for functionals involving
higher order derivatives, which has already been applied to the special case of the inverse
source problem for linear PDEs (1.4) in [25]. This relatively new field was pioneered by
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Gunnar Aronsson in the 1960s (see e.g. [3–7]) and is still a very active area of research; for
a review of the by-now classical theory involving scalar first order functionals we refer to
[24].

Following [25], we aim at providing a regularisation strategy inspired by the classical
Tykhonov regularisation strategy in L2 (see e.g. [29, 33]). As a first possible step, consider
the next putative L∞ “error” functional:

E∞,α(u) := ‖K[u] − kγ ‖L∞(K,Hκ ) + α‖F[u]‖L∞(Ω), u ∈ W2,∞
g (Ω), (1.11)

for some fixed parameter α > 0. The advantage of searching for a best fitting solution in
L∞ is evident: we can keep the error term |K[u] − kγ | uniformly small and not merely
small on average, as would happen if one chose to minimise some integral of a power of
the error instead. As in [25], the goal would be to minimise E∞,α over W2,∞

g (Ω), and
then any minimiser of (1.11) would provide a candidate solution for our problem. Then, for
any fixed α, this would be the best fitting solution with the least possible uniform error,
namely F[u] ∼= f uniformly on Ω and K[u] ∼= kγ uniformly on K. Unfortunately, even
if one momentarily ignores the problem of lack of regularity for (1.11) and the fact that
W2,∞

g (Ω) is not a Banach space, the main problem is that in general minimisers do not
exist in the genuine fully nonlinear case of operator F (namely when X �→ F(x, r, p, X) is
nonlinear) as (1.11) is not weakly lower semicontinuous in the Fréchet space W2,∞

g (Ω),
as the highest order term may be nonconvex/non-quasiconvex. In the special linear case of
[25], this problem was not present as the linearity of the differential operator was implying
the desired weak lower semi-continuity.

In this work we resolve the problem explained above by proposing a double approxima-
tion method (or rather triple, as we will see shortly) which involves an additional Tykhonov
or “viscosity” term which effectively is a weakly lower-semicontinuous approximation of
(1.11). Hence, we will consider instead

⎧⎨
⎩

E∞,α,β(u) := ‖K[u] − kγ ‖L∞(K,Hκ ) + α‖F[u]‖L∞(Ω) + β
2 ‖Dn̄u‖2

L2(Ω)
,

u ∈
(
Wn̄,2 ∩ W

1,2
g

)
(Ω),

(1.12)

where n̄ := [n/2] + 3. In the above β > 0 is a fixed parameter, [·] symbolises the integer
part and Dn̄u is the n̄-th order weak derivative of u.

It is well known in the Calculus of Variations in L∞ that (global) minimisers of supremal
functionals, although usually simple to obtain with a standard direct minimisation [15, 19],
they are not genuinely minimal as they do not share the nice “local” optimisation properties
of minimisers of their integral counterparts (see e.g. [10, 35]). The case of (1.12) studied
herein is no exception to this rule. A relatively standard method is bypass these obstructions
is to employ minimisers of Lp approximating functionals as p → ∞, establishing appro-
priate convergence of Lp minimisers to a limit L∞ minimiser. The idea underlying this
approximation technique is based on the simple measure theory fact that the Lp norm (of a
function in L1 ∩ L∞) converges to the L∞ norm as p → ∞. This method is quite standard
in the field and furnishes a selection principle of L∞ minimisers with additional desirable
properties (see e.g. [9, 11, 14, 20, 26]). In this fashion one is also able to bypass the lack
of differentiability of supremal functionals and derive necessary PDE conditions satisfied
by L∞ extrema. This is indeed the method that is employed in this work as well, along the
lines of [25].
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We now present the main results to be established in this paper. As already explained, we
will obtain special minimisers of (1.12) as limits of minimisers of⎧⎨

⎩
Ep,α,β(u) := ∥∥|K[u] − kγ |(p)

∥∥
Lp(K,Hκ )

+ α
∥∥|F[u]|(p)

∥∥
Lp(Ω)

+ β
2 ‖Dn̄u‖2

L2(Ω)
,

u ∈
(
Wn̄,2 ∩ W

1,2
g

)
(Ω).

(1.13)
In (1.13) we have used the normalised Lp norms

‖f ‖Lp(K,Hκ ) :=
(

−
∫
K

|f |pdHκ

)1/p

, ‖f ‖Lp(Ω) :=
(

−
∫

Ω

|f |pdLn

)1/p

and the integral signs with slashes symbolise the average with respect to the Hausdorff
measure Hκ and the Lebesgue measure Ln, respectively. Further, | · |(p) symbolises the next
p-regularisation of the absolute value away from zero:

|a|(p) :=
√

|a|2 + p−2.

Let us also note that, due to our Lp-approximation method, as an auxiliary result we also
provide an Lp regularisation strategy for finite p as well, which is of independent interest.
For the proof we will need to assume that the Dirichlet problem (1.1) for the fully nonlinear
operator F satisfies the W 2,p elliptic estimates (1.3) for all large enough (finite) p > n, as
well the following: F and its partial derivates Fr, Fp, FX satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F, Fr ∈ C
(
Ω × R × R

n × R
n⊗2

s

)
,

Fp ∈ C
(
Ω × R × R

n × R
n⊗2

s ,Rn
)

,

FX ∈ C
(
Ω × R × R

n × R
n⊗2

s ;Rn⊗2

s

)
.

(1.14)

We note that sufficient general conditions of when such operators satisfy W 2,p elliptic
estimates can be found for instance in the papers [12, 13, 16, 28, 30].

Theorem 1 Let Ω ⊆ R
n be a bounded C1,1 domain and g ∈ Wn̄,2(Ω). Suppose also the

operators (1.2) and (1.6) are given, satisfying the assumptions (1.3), (1.7), (1.8) and (1.14).
Suppose further a function kγ ∈ L∞(K,Hκ ) is given which satisfies (1.9) for γ > 0.
Let finally α, β > 0 be fixed. Then, we have the following results for the inverse problem
associated to (1.10):

(i) There exists a global minimiser u∞ ≡ u
α,β,γ∞ ∈ (W n̄,2 ∩ W

1,2
g )(Ω) of the functional

E∞,α,β defined in (1.12). In particular, we have E∞(u∞) ≤ E∞(v) for all v ∈
(W n̄,2 ∩ W

1,2
g )(Ω) and

f∞ ≡ f
α,β,γ∞ := F[uα,β,γ∞ ] ∈ L∞(Ω).

Further, there exist signed Radon measures

μ∞ ≡ μ
α,β,γ∞ ∈ M(Ω), ν∞ ≡ ν

α,β,γ∞ ∈ M(K)

such that the nonlinear divergence PDE

Kr[u∞]ν∞ − div
(
Kp[u∞]ν∞

) + α((dF)u∞)∗[μ∞] + β(−1)n̄(Dn̄ : Dn̄u∞) = 0,

(1.15)
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is satisfied by the triplet (u∞, μ∞, ν∞) in the sense of distributions (see (2.2)). In
(1.15), the operator ((dF)u∞)∗ is the formal adjoint of the linearisation of F at u∞,
defined via duality as

((dF)u∞)∗[v] := div(div(FX[u∞]v)) − div(Fp[u∞]v) + Fr[u∞]v,

Fr, Kr, Fp , Kp, FX denote the partial derivatives of F, K with respect to the respec-
tive variables and Fr[v], Kr[v], Fp[v], Kp[v], FX[v] denote the respective differential
operators Fr(·, v, Dv, D2v),Kr(·, v, Dv), . . . etc. Additionally, the error measure ν∞
is supported in the closure of the subset of K of maximum error, namely

supp(ν∞) ⊆
{
|K[u∞] − kγ |� = ‖K[u∞] − kγ ‖L∞(K,Hκ )

}
, (1.16)

where “(·)�” denotes the “essential limsup” with respect to Hκ�K on K (see Defi-
nition 3 that follows). If additionally the data function kγ is continuous on K, (1.16)
can be improved to

supp(ν∞) ⊆ {|K[u∞] − kγ | = ‖K[u∞] − kγ ‖L∞(K,Hκ )

}
. (1.17)

(ii) For any α, β, γ > 0, the minimiser u∞ can be approximated by a family of minimis-
ers (up)p>n ≡ (u

α,β,γ
p )p>n of the respective Lp functionals (1.13) and the pair of

measures (μ∞, ν∞) ∈ M(Ω) × M(K) can be approximated by respective signed
measures (μp, νp)p>n ≡ (μ

α,β,γ
p , ν

α,β,γ
p )p>n, as follows:

For any p > n, (1.13) has a global minimiser up ≡ u
α,β,γ
p in (W n̄,2 ∩ W

1,2
g )(Ω)

and there exists a sequence (pj )
∞
1 , such that⎧⎪⎨

⎪⎩
up −→ u∞ in C2(Ω),

Dkup −→ Dku∞ in L2
(
Ω,Rn⊗k

s

)
, for all k ∈ {3, . . . , n̄ − 1},

Dn̄up ⇀ Dn̄u∞ in L2
(
Ω,Rn⊗n̄

s

)
,

(1.18)

as pj → ∞. Moreover, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

νp :=
∣∣K[up] − kγ

∣∣p−2
(p)

(
K[up] − kγ

)
Hκ (K)

∥∥|K[up] − kγ |(p)

∥∥p−1
Lp(K,Hκ )

Hκ�K
∗
⇀ ν∞ inM(K),

μp := |F[up]|p−2
(p) F[up]

Ln(Ω)
∥∥|F[up]|(p)

∥∥p−1
Lp(Ω)

Ln�Ω
∗
⇀ μ∞ inM(Ω),

(1.19)

as pj → ∞. Further, for each p > n, the triplet (up, μp, νp) solves the PDE

Kr[up]νp − div(Kp[up]νp) + α((dF)up )∗[μp] + β(−1)n̄(Dn̄ : Dn̄up) = 0, (1.20)

in the sense of distributions (see (2.1)).
(iii) For any exact solution u0 ∈ (W n̄,2 ∩ W

1,2
g )(Ω) of (1.10) (with f = F[u0] and

K[u0] = k0) corresponding to measurements with zero error, we have the estimate:∥∥∥K[uα,β,γ∞ ] − K[u0]
∥∥∥

L∞(K,Hκ )
≤ 2γ + α‖F[u0]‖L∞(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)
, (1.21)

for any α, β, γ > 0.
(iv) For any exact solution u0 ∈ (W n̄,2 ∩ W

1,2
g )(Ω) of (1.10) (with f = F[u0] and

F[u0] = k0) corresponding to measurements with zero error and for p > n, we have
the estimate:∥∥∥K[uα,β,γ

p ] − K[u0]
∥∥∥

Lp(K,Hκ )
≤ 2γ + α‖F[u0]‖Lp(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)
, (1.22)
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for any α, β, γ > 0.

We note that the estimate in part (iv) is useful if we have merely that F[u0] ∈ Lp(Ω)

for p < ∞ (namely, when F[u0] �∈ L∞(Ω)). We close this section by noting that the
reader may find in [25] various comments and counter-examples regarding the optimality
of Theorem 1 (therein stated for the case of a linear differential operator F).

2 Discussion, Auxiliary Results and Proofs

We begin with some clarifications on Theorem 1.

Remark 2 In index form, the definition of the formal adjoint ((dF)u∞)∗ of the linearisation
of F at u∞ can be written as

((dF)u∞)∗[v] =
n∑

i,j=1

D2
ij

(
FXij

[u∞]v) −
n∑

k=1

Dk

(
Fpk

[u∞]v) + Fr[u∞]v

and its distributional interpretation via duality reads

〈((dF)u∞)∗[v], φ〉 =
∫

Ω

⎧⎨
⎩

n∑
i,j=1

(D2
ij φ)FXij

[u∞] +
n∑

k=1

(Dkφ)Fpk
[u∞] + φFr[u∞]

⎫⎬
⎭ vdLn,

for all φ ∈ Cn̄
c (Ω). Hence, by taking into account the definitions of the measures μp , νp in

(1.19), the distributional interpretation of (1.20) is

−
∫
K

(
Kr[up]φ + Kp[up] · Dφ

) |K[up] − kγ |p−2
(p) (K[up] − kγ )∥∥|K[up] − kγ |(p)

∥∥p−1
Lp(K,Hκ )

dHκ

+α−
∫

Ω

(
Fr[up]φ + Fp[up] · Dφ + FX[up] : D2φ

) |F[up]|p−2
(p) F[up]∥∥|F[up]|(p)

∥∥p−1
Lp(Ω)

dLn

+β−
∫

Ω

Dn̄up : Dn̄φdLn = 0, (2.1)

for all φ ∈ Cn̄
c (Ω). Similarly, the distributional interpretation of (1.15) is

−
∫
K

(
Kr[u∞]φ + Kp[u∞] · Dφ

)
dν∞

+α−
∫

Ω

(
Fr[u∞]φ + Fp[u∞] · Dφ + FX[u∞] : D2φ

)
dμ∞

+β−
∫

Ω

Dn̄u∞ : Dn̄φdLn = 0, (2.2)

for all φ ∈ Cn̄
c (Ω).

Further, we note that the physical interpretation of the measures μ∞ and ν∞ arising in
the PDE is that they essentially “charge” the sets whereon |F[u∞]| and |K[u∞] − kγ | are
maximised over Ω and K, respectively.

We now state a definition and a result taken from [25] which are required for our proofs.
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Definition 3 (The essential limsup, [25]) Let X ⊆ R
n be a Borel set and let ν ∈ M(X) be

a finite positive Radon measure on X. Given f ∈ L∞(X, ν), we define f� ∈ L∞(X, ν) by

f�(x) := lim
ε→0

(
ν − ess sup

y∈Bε(x)

f (y)

)
, ∀ x ∈ X,

and call f 
 the ν-essential limsup of f . Here, Bε(x) denotes the open ball of radius ε

centred at x ∈ X.

The following result studies what we call “concentration measures” of the approximate
Lp minimisation problems as p → ∞.

Proposition 4 (Lp concentration measures as p → ∞) Let X be a compact metric space,
endowed with a positive finite Borel measure ν which gives positive values to any open
subset of X except ∅. Consider (fp)∞1 ⊆ L∞(X, ν) and the sequence of signed Radon
measures (νp)∞1 ⊆ M(X), given by:

νp := 1

ν(X)

(|fp|(p)

)p−2
fp∥∥|fp|(p)

∥∥p−1
Lp(X,ν)

ν, p ∈ N,

where | · |(p) = (| · |2 + p−2)1/2. Then:

(i) There exists a subsequence (pi)
∞
1 and a limit measure ν∞ ∈ M(X) such that

νp
∗
⇀ ν∞ in M(X),

as pi → ∞.
(ii) If there exists f∞ ∈ L∞(X, ν) \ {0} such that

sup
X

|fp − f∞| −→ 0 as p → ∞,

then ν∞ is supported in the set where |f∞| is maximised:

supp(ν∞) ⊆
{
|f∞|� = ‖f∞‖L∞(X,ν)

}
.

(iii) If additionally to (ii) the modulus |f∞| of f∞ is continuous on X, then the following
stronger assertion holds:

supp(ν∞) ⊆ {|f∞| = ‖f∞‖L∞(X,ν)

}
.

Now we establish Theorem 1. The proof consists of several lemmas. We note that some
details might be quite well known to the experts of Calculus of Variations, but we chose to
give most of the niceties for the convenience of the readers and for the sake of completeness
of the exposition.

Lemma 5 For any p > n and α, β, γ > 0, the functional (1.13) has a minimiser up ∈
(W n̄,2 ∩ W

1,2
g )(Ω):

Ep,α,β(up) = inf
{

Ep,α,β(v) : v ∈ (W n̄,2 ∩ W 1,2
g )(Ω)

}
.

822 B. Ayanbayev, N. Katzourakis



Proof Since g ∈ W 2,∞(Ω)

Ep,α,β(g) ≤ E∞,α,β(g)

≤ ‖kγ ‖L∞(K,Hκ ) + ‖K(·, g, Dg)‖L∞(K,Hκ )

+α‖F(·, g, Dg, D2g)‖L∞(Ω) + β

2
‖Dn̄g‖2

L2(Ω)

< ∞.

Hence,

0 ≤ inf
{

Ep,α,β(v) : v ∈ (W n̄,2 ∩ W 1,2
g )(Ω)

}
≤ E∞,α,β(g) < ∞.

Further, Ep,α,β is coercive in the space (W n̄,2 ∩W
1,2
g )(Ω). Indeed, by our assumption (1.3),

Hölder’s inequality and that p > n ≥ 2, for any v ∈ (W n̄,2 ∩ W
1,2
g )(Ω) we have

Ep,α,β(v) ≥ α‖F[v]‖Lp(Ω) + β

2
‖Dn̄v‖2

L2(Ω)

≥ α
(
C1‖v‖W 2,p(Ω) − C1‖g‖W 2,p(Ω) − C2

) + β

2
‖Dn̄v‖2

L2(Ω)

≥ αC1‖v‖W 2,2(Ω) + β

2
‖Dn̄v‖2

L2(Ω)
− αC1‖g‖W 2,p(Ω) − αC2

which implies

αC1‖v‖W 2,2(Ω) + β

2
‖Dn̄v‖2

L2(Ω)
≤ E∞,α,β(g) + αC1‖g‖W 2,p(Ω) + αC2,

for any v ∈ (W n̄,2 ∩ W
1,2
g )(Ω). Now, by Poincaré inequality in W

1,2
g (Ω) we have

‖v‖L2(Ω) ≤ C
(‖Dv‖L2(Ω) + ‖g‖W 1,2(Ω)

)
for some C > 0, and by the interpolation inequalities in the Sobolev space Wn̄,2(Ω), we
have

‖Dkv‖L2(Ω) ≤ C
(
‖Dv‖L2(Ω) + ‖Dn̄v‖L2(Ω)

)
,

for some C > 0 and any k ∈ {1, . . . , n̄}. By putting the last three estimates together, we
conclude that

‖v‖Wn̄,2(Ω) ≤ C,

where the constant C > 0 in general depends on p but is uniform for v ∈ (W n̄,2∩W
1,2
g )(Ω).

Let now (um
p )∞1 be a minimising sequence of Ep,α,β :

Ep,α,β(um
p ) −→ inf

{
Ep(v) : v ∈ (W n̄,2 ∩ W 1,2

g )(Ω)
}

,

as m → ∞. Then, by the coercivity estimate, we have the uniform bound

‖um
p ‖Wn̄,2(Ω) ≤ C

for some C > 0 independent of m ∈ N. By standard weak and strong compactness
arguments in Sobolev and Hölder spaces, together with the Morrey estimate

‖v‖Ck−[n/2]−1,σ (Ω) ≤ C‖v‖Wk,2(Ω),
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applied to k = n̄, there exists a subsequence (u
mk
p )∞1 and up ∈ (W n̄,2 ∩ W

1,2
g )(Ω) such

that, along this subsequence we have⎧⎪⎨
⎪⎩

um
p −→ up in C2(Ω),

Dkum
p −→ Dkup in L2

(
Ω,Rn⊗k

s

)
, for all k ∈ {3, . . . , n̄ − 1},

Dn̄um
p ⇀ Dn̄up in L2

(
Ω,Rn⊗n̄

s

)
,

as mk → ∞. The above modes of convergence and the continuity of the function K defining
the operator K imply that K[um

p ] −→ K[up] uniformly on K as mk → ∞. Therefore,
∥∥∥|K[um

p ] − kγ |(p)

∥∥∥
Lp(K,Hκ )

−→ ∥∥|K[up] − kγ |(p)

∥∥
Lp(K,Hκ )

as mk → ∞. Additionally, by the continuity of the function F defining the operator F and
the uniform convergence of the minimising sequence up to second order derivatives, we
have

F[um
p ] −→ F[up] in C(Ω),

as mk → ∞. Finally, by weak lower semi-continuity in L2 we have∥∥∥Dn̄up

∥∥∥
L2(Ω)

≤ lim inf
k→∞

∥∥∥Dn̄umk
p

∥∥∥
L2(Ω)

.

By putting all the above together, we infer that

Ep,α,β(up) ≤ lim inf
k→∞ Ep,α,β(umk

p ) ≤ inf
{

Ep,α,β(v) : v ∈ (W n̄,2 ∩ W 1,2
g )(Ω)

}
,

which concludes the proof.

Note that the proof above reveals the fact that Ep,α,β is weakly lower semi-continuous

on the space (W n̄,2 ∩ W
1,2
g )(Ω), even though it is not explicitly stated.

Lemma 6 For any α, β, γ > 0, there exists a (global) minimiser u∞ of E∞,α,β in the

space (W n̄,2 ∩ W
1,2
g )(Ω), as well as a sequence of minimisers (upi

)∞1 of the respective
Ep,α,β -functionals from Lemma 5, such that (1.18) holds true.

Proof For each p > n, let up ∈ (W n̄,2 ∩ W
1,2
g )(Ω) be the minimiser of Ep,α,β given by

Lemma 5. (We will follow a similar method and utilise the estimates appearing therein). For
any fixed q ∈ (n,∞) and p ≥ q, Hölder’s inequality and minimality yield

Eq,α,β(up) ≤ Ep,α,β(up) ≤ Ep,α,β(g) ≤ E∞,α,β(g) < ∞.

By employing again the coercivity of Eq,α,β , we have the estimate

Eq,α,β(up) ≥ α
(
C1‖up‖W 2,q (Ω) − C1‖g‖W 2,q (Ω) − C2

) + β

2
‖Dn̄up‖2

L2(Ω)
,

which by Poincaré’s inequality and the interpolation inequalities in Wn̄,2(Ω), yield

sup
p≥q

‖up‖Wn̄,2(Ω) ≤ C
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for some C > 0 depending on q and all the parameters, but independent of p. By a standard
diagonal argument, for any sequence (pi)

∞
1 with pi −→ ∞ as i → ∞, there exists a

function

u∞ ∈ (W n̄,2 ∩ W 1,2
g )(Ω)

and a subsequence (denoted again by (pi)
∞
1 ) along which (1.18) holds true. It remains to

show that u∞ is in fact a minimiser of E∞ over the same space. To this end, note that for
any fixed q ∈ (n,∞) and p ≥ q, we have

Eq,α,β(up) ≤ Ep,α,β(up) ≤ Ep,α,β(v) ≤ E∞,α,β(v)

for any v ∈ (W n̄,2 ∩ W
1,2
g )(Ω). By the weak lower semi-continuity of Eq,α,β in the space

(W n̄,2 ∩ W
1,2
g )(Ω) demonstrated in Lemma 5, we have

Eq,α,β(u∞) ≤ lim inf
i→∞ Eq,α,β(upi

) ≤ E∞,α,β(v),

for any v ∈ (W n̄,2 ∩ W
1,2
g )(Ω). By letting q → ∞ in the estimate above, we deduce that

E∞,α,β(u∞) ≤ inf
{

E∞,α,β(v) : v ∈ (W n̄,2 ∩ W 1,2
g )(Ω)

}
,

as desired.

Lemma 7 For any α, β, γ > 0 and p > n, consider the minimiser up of the functional

Ep,α,β over (W 2,p ∩ W
1,p
g )(Ω) constructed in Lemma 5. Consider also the signed Radon

measures μp ∈ M(Ω) and νp ∈ M(K), defined in (1.19). Then, the triplet (up, μp, νp)

satisfies the PDE (1.20) in the distributional sense, namely (2.1) holds true for all test
functions φ ∈ Cn̄

c (Ω).

Proof We involve a standard Gateaux differentiability argument. Let us begin by check-
ing that μp , νp as defined in (1.19) are uniformly bounded Radon measures when up ∈
Wn̄,2(Ω). Since by the regularity of F,K, up they obviously define absolutely continu-
ous measures, it suffices to check that by Hölder inequality’s, we have the total variation
estimates

‖νp‖(K) ≤
(∥∥|K[up] − kγ |(p)

∥∥
Lp(K,Hκ )

)1−p −
∫
K

∣∣K[up] − kγ
∣∣p−1
(p)

dHκ

≤
(∥∥|K[up] − kγ |(p)

∥∥
Lp(K,Hκ )

)1−p
(

−
∫
K

∣∣K[up] − kγ
∣∣p
(p)

dHκ

) p−1
p

= 1

and similarly

‖μp‖(Ω) ≤
(∥∥|F[up]|(p)

∥∥
Lp(Ω)

)1−p −
∫

Ω

∣∣F[up]∣∣p−1
(p)

dLn

≤
(∥∥|F[up]|(p)

∥∥
Lp(Ω)

)1−p
(

−
∫

Ω

∣∣F[up]∣∣p
(p)

dLn

) p−1
p

= 1.
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Next, fix φ ∈ Cn̄
c (Ω). By using the regularity assumptions on F,K , we formally

compute, recalling the abbreviations F[v] = F(·, v, Dv, D2v) and K[v] = K(·, v, Dv):

d

dε

∣∣∣∣
ε=0

Ep,α,β(up + εφ)

=
(

−
∫
K

|K[up] − kγ |p(p) dHκ

) 1
p

−1

−
∫
K

|K[up] − kγ |p−2
(p)

(
K[up] − kγ

)
�

�
[
Kr[up]φ + Kp[up] · Dφ

]
dHκ

+α

(
−
∫

Ω

|F[up]|p(p) dLn

) 1
p

−1

−
∫

Ω

|F[up]|p−2
(p) F[up] �

�
[
Fr[up]φ + Fp[up] · Dφ + FX[up] : D2φ

]
dLn

+β−
∫

Ω

Dn̄up : Dn̄φ dLn.

By invoking the definitions of μp, νp, the above yields that

d

dε

∣∣∣∣
ε=0

Ep,α,β(up + εφ) =
∫
K

[
Kr[up]φ + Kp[up] · Dφ

]
dνp

+α

∫
Ω

[
Fr[up]φ + Fp[up] · Dφ + FX[up] : D2φ

]
dμp

+β−
∫

Ω

Dn̄up : Dn̄φ dLn.

Since up is the minimiser of Ep,α,β , we have that Ep,α,β(up) ≤ Ep,α,β(up + εφ) for all
ε ∈ R and all φ ∈ Cn̄

c (Ω). Hence, our computation implies that the PDE (1.20) is indeed
satisfied as claimed, once we confirm that the formal computation is rigorous, and that
therefore Ep is Gateaux differentiable at the minimiser up for any direction φ ∈ Cn̄

c (Ω)

because by the continuity of F, K and the fact that up ∈ (C2 ∩ Wn̄,2)(Ω), F[up] ∈ C(Ω)

and K[up] − kγ ∈ L∞(K,Hκ ), Hölder’s inequality implies that

Fr[up]φ + Fp[up] · Dφ + FX[up] : D2φ ∈ C(Ω)

and
Kr(·, up, Dup)φ + Kp(·, up, Dup) · Dφ ∈ C(K)

for any φ ∈ Cn̄
c (Ω). Finally, Dn̄up : Dn̄φ ∈ L1(Ω) since Dn̄up ∈ L2

(
Ω,Rn⊗n̄

s

)
.

Lemma 8 For any α, β, γ > 0, consider the minimiser u∞ of E∞,α,β constructed in
Lemma 6 and the minimisers (up)p>n of the functionals (Ep,α,β)p>n. Then, there exist
signed Radon measuresμ∞ ∈ M(Ω) and ν∞ ∈ M(K) such that the triplet (u∞, μ∞, ν∞)

satisfies the PDE (1.15) in the distributional sense, that is (2.2) holds true. Additionally,
there exists a further subsequence along which the weak* modes of convergence of (1.19)
hold true as p → ∞.

Proof By the proof of Lemma 7, we have the uniform in p total variation bounds
‖μp‖(Ω) ≤ 1 and ‖νp‖(K) ≤ 1. Hence, by the sequential weak* compactness of the
spaces of Radon measures

M(Ω) = (
C0(Ω)

)∗
, M(K) = (

C(K)
)∗

, (2.3)
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there exists a further subsequence denoted again by (pi)
∞
1 such that μp

∗
⇀ μ∞ in M(Ω)

and νp
∗
⇀ ν∞ in M(K), as pi → ∞. Fix now φ ∈ Cn̄

c (Ω). By Lemma 7, we have that
the triplet (up, μp, νp) satisfies (1.20), that is (2.1) holds true for any fixed test function.
Since up −→ u∞ in C2(Ω) as pi → ∞, F,Fr, Fp, FX,Kr, Kp are all continuous up to the
boundary, we have as pi → ∞ that

Kr[up]φ + Kp[up] · Dφ −→ KrKr[u∞]φ + Kp[u∞] · Dφ,

Fr[up]φ + Fp[up] · Dφ + FX[up] : D2φ −→ Fr[u∞]φ + Fp[u∞] · DφFX[u∞] : D2φ,

uniformly on K and on Ω respectively, for any fixed φ ∈ Cn̄
c (Ω). Further, we have μp

∗
⇀

μ∞ and νp
∗
⇀ ν∞ in M(Ω) and in M(K) respectively as pj → ∞. By standard properties

of the weak*-strong continuity of the duality pairings (2.3), we have that the first two terms
of (2.2) converge to the respective first two terms of (2.1), as pi → ∞. Finally, since
Dn̄up ⇀ Dn̄up in L2

(
Ω,Rn⊗n̄

s

)
and Dn̄φ ∈ L2

(
Ω,Rn⊗n̄

s

)
, we also have that the last term

of (2.2) converges to the respective last term of (2.1), as pi → ∞. Hence, we have indeed
obtained (1.15) by passing to the limit as pi → ∞ in (1.20).

Lemma 9 For any α, β, γ > 0, p > n and u0 ∈ (W 2,p ∩ W
1,p
g )(Ω) such that∥∥∥kγ − K[u0]

∥∥∥
L∞(K,Hκ )

≤ γ,

the ((α, β, γ )-dependent) minimiser up of Ep (constructed in Lemmas 5–8), satisfies the

error bounds (1.22). If additionally u0 ∈ (W n̄,2 ∩W
1,2
g )(Ω), then the ((α, β, γ )-dependent)

minimiser u∞ of E∞ (constructed in Lemmas 5–8), satisfies the error bounds (1.21).

Proof Let us denote k0 := K[u0], noting that k0 ∈ C(K) and that

‖kγ − k0‖L∞(K,Hκ ) ≤ γ .

Recall that for any p > n, up is a global minimiser of Ep,α,β in (W n̄,2 ∩ W
1,2
g )(Ω).

Therefore,
Ep,α,β(up) ≤ Ep,α,β(u0).

This implies

‖K[up] − kγ ‖Lp(K,Hκ ) + α‖F[up]‖Lp(Ω) + β

2
‖Dn̄up‖2

L2(Ω)

≤ ‖K[u0] − kγ ‖Lp(K,Hκ ) + α‖F[u0]‖Lp(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)
.

The above together with Minkowski’s and Hölder’s inequalities yields

‖K[up] − K[u0]‖Lp(K,Hκ ) ≤ ‖K[u0] − kγ ‖Lp(K,Hκ ) + ‖K[u0] − kγ ‖Lp(K,Hκ )

+α‖F[u0]‖Lp(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)

= 2‖kγ − k0‖Lp(K,Hκ ) + α‖F[u0]‖Lp(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)

≤ 2γ + α‖F[u0]‖Lp(Ω) + β

2
‖Dn̄u0‖2

L2(Ω)
,

as claimed. To obtain the corresponding estimate for u∞ in the case that additionally u0 ∈
(W n̄,2∩W

1,2
g )(Ω), we pass to the limit as pi → ∞ in the estimate above and the conclusion
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follows by letting pi → ∞ due to the strong convergence up −→ u∞ in C2(Ω) as pi →
∞. The lemma ensues.

The proof is now complete by noting that the statements (1.16)–(1.17) in Theorem 1
follow from Proposition 4 and the established modes of convergence.
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