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Abstract: The accurate and timely assessment of pasture quantity and quality (i.e., nutritive charac-
teristics) is vital for effective pasture management. Remotely sensed data can be used to predict 
pasture quantity and quality. This study investigated the ability of Sentinel−2 multispectral bands, 
convolved from proximal hyperspectral data, in predicting various pasture quality and quantity 
parameters. Field data (quantitative and spectral) were gathered for experimental plots represent-
ing four pasture types—perennial ryegrass monoculture and three mixtures of swards representing 
increasing species diversity. Spectral reflectance data at the canopy level were used to generate Sen-
tinel−2 bands and calculate normalised difference indices with each possible band pair. The suita-
bility of these indices for prediction of pasture parameters was assessed. Pasture quantity parame-
ters (biomass and Leaf Area Index) had a stronger influence on overall reflectance than the quality 
parameters. Indices involving the 1610 nm band were optimal for acid detergent fibre, crude pro-
tein, organic matter and water-soluble carbohydrate concentration, while being less affected by bi-
omass or LAI. The study emphasises the importance of accounting for the quantity parameters in 
the spectral data-based models for pasture quality predictions. These explorative findings inform 
the development of future pasture quantity and quality models, particularly focusing on diverse 
swards. 

Keywords: pasture quality; pasture quantity; remote sensing; Sentinel−2; spectral indices; multi-
species swards 
 

1. Introduction 
Pastures are one of the most important terrestrial ecosystems on earth with currently 

26% of the world’s land area and 70% of the world’s agricultural area covered by grass-
lands (http://www.fao.org; accessed on 19/08/2020). Pastures are not only a major and rel-
atively inexpensive livestock feed source, but also support ecosystem services, such as 
biodiversity conservation and soil carbon sequestration [1]. In 2018, permanent grassland 
(i.e., land used as grassland for five years or more) constituted nearly 57% of the total 
agricultural area in the UK [2]. 
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Efficient pasture management is one of the key factors governing economic viability 
of the dairy and ruminant meat industry by ensuring accurate and well-planned pasture 
allocation for optimal grazing and conservation [3–5]. More than ever before, there is a 
need for an accurate near real-time methods for estimating and predicting pasture quan-
tity and quality, especially in the context of grass-based dairy production systems such as 
the UK, one of the largest milk producers in Europe [6]. 

Current methods that farmers use for pasture monitoring include visual observations 
through field walking, rising plate meters (RPMs) for pasture biomass [7,8] and handheld 
Near-InfraRed Spectroscopy (NIRS) device surveys and/or laboratory chemical or NIRS 
analysis for pasture chemical composition that determines its nutritive value and digesti-
bility [9–11]. While informative on a local scale, these methods are time, labour and cost 
intensive [7,11,12]. 

Pasture management using information from remote sensing (RS) offers advantages 
over traditional methods, such as provision of near real-time information, coverage of 
large areas, frequent repeated measurements and a choice of different spectral bands, i.e., 
visible, near infrared (NIR) and short wave infrared (SWIR) to monitor different pasture 
parameters [13]. The application of pasture monitoring using remote sensing data has al-
ready been demonstrated in various studies [13–16]. In spite of these advantages, wide 
implementation of these methods to operationally monitor pastures still remains limited 
due to factors such as unsuitability of spatial and temporal resolutions of the datasets (for 
example, MODerate resolution Imaging Spectroradiometer [MODIS] data have a mini-
mum resolution of 250 m, and LANDSAT data are only available every 16 days). Most 
importantly, high resolution RS datasets (such as Satellite Pour l’Observation de la Terre 
(SPOT), WorldView and Indian Remote Sensing (IRS) data) are generally not freely avail-
able. Frequent cloud cover, especially in temperate climate regions such as the UK, also 
reduces the temporal frequency of usable images. 

The release of the pair of Sentinel−2 multispectral imager satellites has potentially 
eliminated some of these limitations [17,18]. Specifications of Sentinel−2 include 13 multi-
spectral bands including three novel red−edge bands for vegetation monitoring, high spa-
tial resolution (10, 20 and 60 m), short revisit time (~5 days using two satellites), large 
swath width, higher signal to noise ratio, as well as the data being freely available. Senti-
nel−2 data have already been assessed for irrigation performance for dairy pastures [19], 
shown promise in quantifying biomass response to different fertilizer treatments [17] and 
have been found effective for retrieval of pasture structural parameters such as Leaf Area 
Index (LAI), which provides information about pasture canopy growth and density [18]. 
On the other hand, the potential of Sentinel−2 bands for monitoring pasture quality pa-
rameters relating to nutritional content has not been tested widely.  

The potential of Sentinel−2 bands in retrieving vegetation nitrogen concentration us-
ing field spectroscopy data has been discussed by [20]. Sentinel−2 images have also been 
used to map plant chlorophyll content [21]. Recently, Lugassi et al. [22] also explored the 
potential of Sentinel−2 images for mapping crude protein and fibre content. Further re-
search is needed to explore the usability of Sentinel−2 data for a wide range of pasture 
composition predictions that relate to nutritive quality parameters. 

Pasture quality parameters such as contents of fibre (cellulose, hemicellulose and 
other structural carbohydrates), crude protein (typically estimated from nitrogen concen-
tration) and water soluble carbohydrates (sugars) have very subtle spectral characteristics 
and generally are studied using hyperspectral data [11,23–25]. However, hyperspectral 
data are generally gathered on the smaller scale (i.e., field to multi-field using drones or 
portable instruments). There are no operational satellites providing these datasets at high 
spatial resolution and regional coverage. However, field hyperspectral data provide a 
very good opportunity to simulate broader multispectral bands with the same spectral 
characteristics as those of operational satellites, and hence can be utilised to understand 
the potential of those broad bands in studying biophysical characteristics such as pasture 
nutritive characteristics and species composition. The proximity of the field hyperspectral 
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sensor to the target canopy also eliminates various factors such as atmospheric interfer-
ence and view geometry that can affect relationships between dependent variables (pas-
ture quality) and independent variables (spectral reflectance). Thus, in order to establish 
actual Sentinel−2 based models for pasture quality, it is important to understand in the 
first instance whether the reflectance in wavebands chosen for the Sentinel−2 satellites are 
in principle sensitive to the quality parameters of interest. 

Therefore, the main aim of this paper is to test whether Sentinel−2 multispectral 
bands can be used to determine pasture quality parameters with suitable accuracy. We 
also include pasture quantity (biomass, LAI) parameters in our analysis to understand the 
influence of these parameters on pasture quality estimation. 

2. Materials and Methods 
2.1. Study Area 

Data collected from experimental pasture plots established at a temperate research 
farm in southern England (UK) were used in this study. Sonning farm (51.4729° N, 0.9037° 
W), the site of the University of Reading’s Crops Research Unit, is located in the River 
Thames catchment, 5.5 km northeast of Reading. The farm’s soil mainly comprises free-
draining alluvial material, with a sandy loam texture. At this site, during the 2017 growing 
season, four different pasture types were grown (Perennial Ryegrass only (PRG; 5 varie-
ties), a 6 species mixture (Mix−6), a 12 species mixture (Mix−12); and a 17 species mixture 
(Mix−17)) in 4 m × 5 m plots with four replicates of each pasture type, i.e., a total of 16 
plots. All mixtures contained a proportion of PRG combined with increasing numbers of 
other grasses, legumes and herbs (Table 1). The plots were configured in a 4 × 4 Latin 
square layout where no treatment was repeated in any row or column of the plot design. 
Establishment took place in Autumn 2016 on land that was under permanent pasture 
prior to the experiment. Soil surveys were conducted at the time of sowing to ensure soil 
mineral indices were at appropriate levels to support plant growth. In 2017, the PRG plots 
received inorganic Nitrogen (N) fertilizer at a rate of 250 kg N ha−1 yr−1 (ammonium nitrate) 
over five separate applications (each 50 kg N ha−1), two occurring prior to the first harvest 
and then one after each of the first three harvests. Plots containing plant mixtures were 
not fertilised to promote N fixation by legumes in the mixtures. 

2.2. Data Collection 
All four pasture types were harvested multiple times during the 2017 growing sea-

son. The date of harvest was chosen when biomass estimates by RPM reached a minimum 
target quantity of 2500 kg DM ha−1. Harvest occurred as soon as possible after this target 
was reached, as weather and labour availability would allow. Such constraints caused 
variation in actual harvest biomass, particularly where the growth rate in particular plots 
was high. As different pasture types grew at different rates through the season, the har-
vest timings of each pasture type were allowed to vary so as not to disadvantage any of 
the pastures through wrongly timed harvesting. In total, the PRG plots were cut five times 
in the 2017 season, and the three different mixed plot types were cut four times each as 
their total biomass yield was lower. 

Two types of data were collected: those based on destructive sampling (physical re-
moval of biomass) and those based on non-destructive sampling (just before each harvest). 
Destructive pasture data collection comprised sampling for, and determination of, bio-
physical variables (biomass) and biochemical variables (crude protein (CP), acid detergent 
fibre (ADF), neutral detergent fibre (NDF), water soluble carbohydrate (WSC) and organic 
matter (OM)); see Sections 2.2.1 and 2.2.2. Non-destructive pasture data collection in-
cluded measurements of Leaf Area Index (LAI; Section 2.2.3) and of spectral reflectance 
data (Section 2.2.4). Destructive sampling occurred at every harvest for use in a concurrent 
study; however, due to weather conditions, non-destructive sampling for the present 
study only occurred on a subset of four harvest dates (Table 1) which limited the number 
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of samples that could be used in the present work. On the first of these four harvest dates, 
the sampling of PRG plots took place, while during the three subsequent harvest dates, 
all three of the mixed pasture types were harvested. This resulted in a greater number of 
mixed pasture samples than PRG samples represented in the resulting sample set. 

Table 1. A summary of the four pasture types (mixtures of perennial ryegrass, grasses, legumes and forbs), including 
species type and sampling dates in 2017. Each pasture species mix contains at least one variety of perennial ryegrass and 
then up to 16 other species, with the grasses, legumes and forbs in each mix listed in column 2. Grasses have been separated 
from legumes and forbs by semi-colon. Non-destructive sampling included measurements of Leaf Area Index (LAI) and 
spectral measurements. 

Pasture Type Species Dates of Simultaneous Non-Destructive and 
Destructive Pasture Sampling 

Perennial 
Ryegrass (PRG, 4 

samples) 

Perennial Ryegrass  
(5 varieties) 24 April   

Mix-6 (12 sam-
ples) 

Perennial Ryegrass  
(3 varieties); timothy, red clover, white clover  

(2 varieties), chicory, ribgrass 

2 May 14 June 25 August 

Mix-12 (12 sam-
ples) 

Perennial Ryegrass, Festulolium, timothy, cocksfoot, 
meadow fescue; red clover, alsike clover, white clo-

ver, Lucerne, yellow trefoil, chicory, ribgrass 

Mix-17 (11 sam-
ples) 

Perennial Ryegrass, Festulolium, timothy, cocksfoot, 
meadow fescue, tall fescue; red clover, white clover  
(2 varieties), alsike clover, sweet clover, birdsfoot 
trefoil, sainfoin, chicory, ribgrass, burnet, yarrow, 

sheep’s parsley 

2.2.1. Sampling and Preparation for Biomass and Pasture Quality Analysis 
Three 50 × 50 cm quadrats were cut for each plot from randomly chosen locations on 

each of the sampling dates (Table 1). The cut sample contained the vegetative material 
growing above 7 cm, as measured from the soil surface, to replicate the available biomass 
eaten by livestock using conventional grazing pressure (i.e., stocking to achieve a 7 cm 
residual for optimal regrowth), and to prevent damage to forage species that grow from 
a raised crown. Available biomass from the three quadrats was bulked together, then 
stored in a cool box and subsequently a refrigerator until ready for weighing and drying. 
Samples were dried in a forced air oven set at 60 °C for 72 h so that a constant weight was 
achieved, then reweighed to determine dry matter percentage and saved for subsequent 
chemical composition analyses. Drying at 60 °C for an extended period is recommended 
practice for samples that are intended for chemical analysis so that the nutritive content 
of the sample is preserved [26]. In total, forty bulked samples were analysed for the pur-
pose of this study (one cut × four replicates for PRG; three cuts × four replicates for each 
of the three mixed pasture types; Table 1). However, one sample from Mix-17 spoiled, 
leaving a total of 39 samples used for analysis. 

2.2.2. Pasture Quality Analysis 
Laboratory pasture composition analysis of the dried pasture samples was per-

formed for CP, NDF (an estimate of total hemicellulose, cellulose and lignin), ADF (an 
estimate of total cellulose and lignin), WSC and OM using standard laboratory analysis 
methods as follows: nitrogen concentration was measured using the macro-Kjeldahl 
method and multiplied by 6.25 to give CP (AOAC method 954.01) [27]; ADF and NDF 
were assayed using a filter bag technique with heat-stable amylase and inclusive of resid-
ual ash according to the ANKOM methods 12 and 13, respectively [28]; ash content was 
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measured by combustion of a subsample at 500 °C for 16 h; OM was calculated by deduct-
ing ash content from the dry matter content (AOAC method 942.05) [27]; and WSC was 
obtained using procedures described by Fuller et al. [29]. 

 

2.2.3. LAI Measurement 
LAI was measured using a ceptometer (AccuPAR LP−80, Decagon Devices, Pullman, 

WA, USA). For each plot, ten measurements were taken facing the sun, first above canopy 
level and subsequently below the canopy (i.e., just above the soil) to calculate the differ-
ence in photosynthetically active radiation (PAR). LAI was then derived from the meas-
ured PAR according to classic light extinction theory and retrieved from the instrument’s 
built-in datalogger. All measurements were taken under stable cloud conditions. The leaf 
inclination factor of the ceptometer was set to 1, assuming a spherical leaf angle distribu-
tion. 

2.2.4. Canopy Spectral Reflectance Data  
Canopy hyperspectral reflectance data were collected using two SVC HR−1024i spec-

troradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) in dual field of view 
mode. The instrument measures reflectance between 350 and 2500 nm. The standard set-
up, as described by MacLellan and Gray [30], was followed for both the dual field of view 
and post-processing protocol (http://fsf.nerc.ac.uk/; accessed on 01/08/2018). The dual 
field of view set-up involves two spectroradiometers (one looking at the canopy and an-
other at the standard spectralon reflectance panel). This approach ensures minimisation 
of the effect of variable incoming radiation on the measurements, and hence this method 
yields reliable and comparable measurements of reflectance. Spectral reflectance was 
measured using a 25o angle field-of-view fibre optics cable connected to the SVC at 1 m 
above the ground in nadir with an integration time of 3 s for each measurement. Twelve 
measurements were taken uniformly over each plot, and the average spectrum was used 
for subsequent analyses. 

2.3. Post-Processing of Reflectance Data and Construction of Spectral Index-Based Models  
2.3.1. Conversion of Hyperspectral Bands to Sentinel−2 Broadbands 

The hyperspectral bands collected using the SVC HR−1024i field spectroradiometer 
were converted (convolved) into 12 multispectral Sentinel−2 (S2) broadbands using the 
spectral response function for the S2A sensor. There are thirteen Sentinel−2 bands, but the 
tenth (1375 nm) band was removed from the analyses due to the occurrence of noisy data. 
Moreover, this band is deemed to be of less relevance for vegetation remote sensing from 
satellites, due to its high sensitivity to atmospheric aerosols and water vapour. 

2.3.2. Band-Pair Analysis Using the Normalised Difference Index (NDI) 
Band analysis was performed on the reflectance data to assess the best combination 

of S2 band-pairs for predicting the different pasture quality and quantity (PQQ) parame-
ters. The reflectance values from pairs of each of the different band combinations (bands 
x and y) were substituted into the generic Normalised Difference Index (NDI) equation 
(Equation (1)), where R is the reflectance in the corresponding bands (x and y). 

NDIx,y = (Rx − Ry)/(Rx + Ry)  (1) 

These index values were then compared with the PQQ results obtained from destruc-
tive sampling and subsequent laboratory analyses (Sections 2.2.1 and 2.2.2) and from non-
destructive sampling for LAI (Section 2.2.3). This analysis was repeated for each PQQ pa-
rameter for best-fit first, second and third orders of polynomial equations fitted through 
the PQQ versus NDI data. Our methodological approach to test the potential of S2 bands 
for the estimation of pasture parameters is based on regression analysis and comparable 
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to other studies which have undertaken similar statistical analyses in the context of differ-
ent vegetation types and properties [15,17,31]. 

2.3.3. Leave One Out Cross-Validation (LOOCV) 
The analysis for determining the best S2 band combinations (Section 2.3.2) and liter-

ature-based vegetation indices (Section 2.3.4) for estimating each of the PQQ parameters 
was performed using a total of 39 spectral and pasture biophysical and biochemical ob-
servations of the four different pasture types (see Section 2.2.1 and Table 1). A Leave One 
Out Cross-Validation (LOOCV) method was employed for model cross-validation as the 
sample size was limited. The cross-validation approach allows rigorous testing of statisti-
cal relationships by avoiding over- and under-fitting. The average Mean Square Error 
(MSE) over each of the 39 runs along with the regression r2, slope and intersect between 
modelled and measured values for the left-out samples were calculated. Furthermore, the 
average Concordance Correlation Coefficient (Conr), which was considered to be a robust 
metric for absolute comparison of model performance with reference to measured values, 
was also calculated [32]. 

2.3.4. Vegetation Indices (VIs) Analysis 
A few selected vegetation indices (VIs) that have already been used for determination 

of vegetation quantity or quality parameters, and that can be calculated using pairs of S2 
bands (Table 2), were tested for statistical relationships with each PQQ parameter using 
the same cross-validation method as described in Section 2.3.3. 

Table 2. Vegetation indices suggested in the literature for vegetation quantity or quality that can be calculated using pairs 
of Sentinel−2 bands. Ri refers to the reflectance factor at wavelength i nm. 

Index Formula Selective Reference 

NDVI (Normalised Difference Vegetation Index) 
𝑅!"# − 𝑅$$%
𝑅!"# + 𝑅$$%

 [33,34] 

GNDVI (Green Normalised Difference Vegetation Index) 
𝑅!"# − 𝑅%$&
𝑅!"# + 𝑅%$&

 [35,36] 

CLre (ChLorophyll red edge) (
𝑅'!(
𝑅'&%

) − 1 [20,37] 

REPO (Red Edge POsition) 700 + 40

(𝑅$$% +	𝑅'!()
2 − 𝑅'&%
𝑅'"& − 𝑅'&%

 [20,37] 

NDMI (Normalised Difference Moisture Index) 
𝑅!$% − 𝑅)$)&
𝑅!$% + 𝑅)$)&

 [38] 

PSRI (Pigment Senescence Reflectance Index) 
𝑅$$% − 𝑅"*&

𝑅'"&
 [39] 

WDRVI (Wide Dynamic Range Vegetation Index) 
(0.1𝑅'!( −	𝑅$$%)
(0.1𝑅'!( +	𝑅$$%)

 [22] 

SAVI (Soil-Adjusted Vegetation Index) 
(𝑅!"# − 𝑅$$%)(1 + 0.428)

𝑅!"# + 𝑅$$%+&."#!
 [22] 

The indices were chosen such that different bands ranging from VIS to SWIR were utilised. These indices have been re-
ported to be sensitive to different structural and biochemical constituents in a variety of vegetation types previously. 

3. Results 
3.1. Relationships between Two-Band NDIs and Measured PQQ Parameters 

Firstly, in order to assess the interdependencies between the determined PQQ pa-
rameters, Table 3 shows Pearson correlation coefficients (r) between pairs of laboratory-
derived values for pasture quantity and quality parameters. Biomass had a strong corre-
lation with LAI (positive correlation) as well as with quality parameters ADF (negative) 
and WSC (positive). LAI had a relatively poor correlation with pasture quality parame-
ters, apart from with CP (0.58). A large negative correlation was observed between ADF 
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and WSC (−0.90) as well as between OM and CP (−0.81) and between WSC and CP (−0.61). 
NDF did not show a good correlation with any of the parameters, apart from with ADF (r 
= 0.65). A large positive correlation was found between OM and WSC (0.87). 

Table 3. Pearson correlation coefficient (r) among all pairs of laboratory-derived pasture quantity 
and quality parameters (39 samples for each parameter). The largest correlations (r >±0.6) have 
been highlighted in bold. 

Correlation  
coefficient Biomass LAI ADF NDF CP WSC OM 

Biomass  1.0       
LAI 0.70 1.0      
ADF −0.72 −0.35 1.0     
NDF −0.32 −0.27 0.65 1.0    
CP −0.01 0.58 0.27 −0.17 1.0   

WSC 0.65 0.13 −0.90 −0.36 −0.61 1.0  
OM 0.37 −0.14 −0.66 −0.05 −0.81 0.87 1.0 

LAI—leaf area index, ADF—acid detergent fibre, NDF—neutral detergent fibre, CP—crude pro-
tein, WSC—water soluble carbohydrate, OM—organic matter. 

Figure 1 shows a 2-D matrix plot that summarises the strength of the relationship 
between NDIs and pasture quantity parameters (biomass and LAI), using MSE. Table 4 
provides results for those combinations of wavelengths for which the MSE values were 
lower than the fifth percentile of all MSEs, thus depicting their comparatively high poten-
tial in capturing variations in the respective parameter.  

 
Figure 1. Two-dimensional matrix plot showing mean square errors (MSEs) obtained for models 
built using all possible Sentinel−2-based two-band normalised difference indices (NDIs) for (a−c) 
biomass (39 samples) and (d−f) leaf area index (LAI, 39 samples). 

Variation in biomass was captured by those two-band NDIs that had wavelength 
combinations (see Equation (1)) in the visible, red-edge and NIR bands (Figure 1a−c). An 
increase in the polynomial order of the equation did not lead to any notable decrease in 
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MSE. Relationships developed using the SWIR bands (1610 and 2190 nm) were weaker 
(i.e., higher MSE values) compared to the VNIR bands. LAI showed strong relationships 
with a rather limited number of two-band indices compared to the biomass (Figure 1d−f). 
None of the band combinations involving the SWIR band showed a consistently strong 
relationship with LAI. The wavelengths 560 nm and 443 nm in combination with others 
in the visible, NIR or red-edge region produced the best results for biomass and LAI, re-
spectively (Table 4). However, the accuracies were comparable across this entire spectrum 
(VIS to NIR). 

Figure 2 shows the MSE matrix plot for ADF and NDF. In the case of ADF (Figure 
2a−c), strong relationships were obtained for NDIs involving the 1610 nm band. This find-
ing is consistent over all three orders used for the relationships. In the case of NDF, MSEs 
were higher compared to those for ADF (Figure 2d−f). None of the band combinations led 
to MSE values less than 20 g kg−1 of DM. The poor relationships for NDF were also evident 
from low Conr values (Table 4).  

 
Figure 2. Two-dimensional matrix plot showing mean square errors (MSEs) obtained for models 
built using all possible Sentinel−2-based two-band normalised difference indices (NDIs) for (a−c) 
acid detergent fibre (ADF, 39 samples) and (d−f) neutral detergent fibre (NDF, 39 samples). 

Table 4. Statistical indicators for the developed ‘best’ models for pasture quantity and quality pa-
rameters (39 samples for each parameter) using ‘leave one out’ cross validation. Only normalised 
models yielding mean square errors (MSEs) in the lowest 5th percentile (considering all possible 
models) are listed. The results in bold highlight models yielding highest Conr. 

Parameter Order Wave.  
(1) 

Wave.  
(2) MSE r2 Slope intercept Conr 

LAI 

1 443 490 0.33 0.84 0.86 0.42 0.91 
1 443 665 0.39 0.73 0.75 0.73 0.83 
1 705 740 0.43 0.66 0.67 0.96 0.76 
1 705 945 0.44 0.67 0.69 0.92 0.77 
2 443 490 0.34 0.84 0.86 0.42 0.91 
2 443 665 0.30 0.81 0.81 0.55 0.88 
2 705 740 0.44 0.65 0.67 0.96 0.76 
2 705 945 0.45 0.65 0.68 0.93 0.76 
3 443 490 0.35 0.83 0.84 0.47 0.90 
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3 443 665 0.29 0.81 0.81 0.56 0.88 
3 665 1610 0.45 0.54 0.56 1.30 0.64 
3 705 740 0.45 0.63 0.68 0.96 0.76 

Biomass 

1 560 783 29.50 0.80 0.81 38.24 0.88 
1 560 842 28.99 0.80 0.82 37.34 0.88 
1 560 865 28.56 0.80 0.82 36.80 0.88 
1 560 945 30.34 0.80 0.81 38.36 0.88 
2 490 865 30.40 0.76 0.80 39.91 0.86 
2 560 783 29.46 0.78 0.81 38.22 0.87 
2 560 842 29.06 0.78 0.82 37.44 0.87 
2 560 865 28.81 0.78 0.82 36.97 0.88 
3 490 865 31.20 0.77 0.80 40.56 0.86 
3 560 783 30.30 0.77 0.82 38.09 0.87 
3 560 842 30.14 0.78 0.82 37.79 0.87 
3 560 865 29.96 0.78 0.82 37.64 0.87 

ADF 

1 783 1610 16.51 0.81 0.82 47.30 0.88 
1 842 1610 16.49 0.80 0.82 48.09 0.88 
1 865 1610 16.48 0.80 0.81 48.75 0.88 
1 945 1610 16.37 0.80 0.81 48.71 0.88 
2 783 1610 15.87 0.81 0.83 42.99 0.89 
2 842 1610 15.92 0.81 0.83 43.82 0.89 
2 865 1610 15.96 0.81 0.83 44.42 0.89 
2 945 1610 15.61 0.81 0.84 42.25 0.89 
3 783 1610 16.16 0.82 0.83 42.66 0.89 
3 842 1610 16.19 0.81 0.83 43.37 0.89 
3 865 1610 16.18 0.81 0.83 43.80 0.89 
3 945 1610 15.81 0.82 0.84 40.76 0.90 

NDF 

1 665 705 28.96 0.38 0.41 248.16 0.45 
1 783 842 25.93 0.43 0.46 225.70 0.52 
1 783 865 26.85 0.45 0.47 221.74 0.53 
1 842 865 28.65 0.41 0.44 234.82 0.49 
2 665 705 28.74 0.37 0.41 245.64 0.46 
2 665 740 29.53 0.35 0.39 254.30 0.44 
2 783 842 26.57 0.39 0.44 236.04 0.49 
2 783 865 27.88 0.41 0.45 232.71 0.50 
3 665 705 30.24 0.33 0.37 263.00 0.41 
3 783 842 28.17 0.36 0.43 240.25 0.49 
3 783 865 28.56 0.43 0.47 222.36 0.53 
3 842 865 30.53 0.38 0.44 233.65 0.50 

CP 

1 443 705 16.31 0.51 0.59 44.77 0.67 
1 560 705 16.49 0.49 0.52 51.72 0.59 
1 560 1610 15.27 0.61 0.63 39.71 0.71 
1 705 1610 13.64 0.69 0.71 31.36 0.79 
2 443 705 15.07 0.61 0.65 37.09 0.73 
2 560 705 16.51 0.47 0.52 51.58 0.60 
2 560 1610 14.01 0.63 0.68 34.56 0.76 
2 705 1610 11.90 0.74 0.76 26.31 0.83 
3 443 705 17.38 0.34 0.54 47.01 0.58 
3 560 705 16.27 0.47 0.52 51.73 0.60 
3 560 1610 15.67 0.50 0.67 37.03 0.70 
3 705 1610 12.40 0.70 0.74 28.57 0.81 
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 1 740 1610 3.86 0.81 0.82 3.77 0.88 

WSC 

1 842 1610 4.20 0.80 0.81 3.95 0.88 
1 865 1610 4.16 0.80 0.81 3.85 0.88 
1 945 1610 4.00 0.82 0.83 3.51 0.89 
2 740 1610 3.97 0.80 0.82 3.64 0.88 
2 842 1610 4.33 0.79 0.81 3.85 0.87 
2 865 1610 4.28 0.79 0.82 3.75 0.88 
2 945 1610 4.13 0.81 0.83 3.39 0.89 
3 490 705 3.97 0.76 0.78 4.45 0.85 
3 740 1610 3.90 0.80 0.82 3.70 0.88 
3 865 1610 4.04 0.80 0.83 3.62 0.88 
3 945 1610 3.81 0.82 0.85 3.18 0.90 

OM 

1 560 705 9.03 0.48 0.51 445.26 0.58 
1 740 1610 9.23 0.47 0.50 461.21 0.56 
1 865 1610 9.30 0.45 0.47 482.93 0.53 
1 945 1610 9.13 0.47 0.49 462.85 0.56 
2 560 705 9.11 0.46 0.54 424.48 0.61 
2 740 865 9.45 0.38 0.41 538.39 0.46 
2 740 1610 9.49 0.45 0.50 458.62 0.57 
2 945 1610 9.40 0.45 0.50 453.26 0.57 
3 490 705 7.63 0.59 0.62 347.79 0.70 
3 560 705 8.03 0.56 0.61 359.88 0.69 
3 740 1610 9.13 0.47 0.52 440.34 0.59 
3 945 1610 9.39 0.46 0.52 441.91 0.59 

Similar to ADF, both CP and WSC were predicted well by NDIs involving the 1610 
nm band (Figure 3). In the case of CP, the best combination was that of 1610 nm with 705 
nm and with the second order of relationship (Conr = 0.83, Table 4; Figure 3a−c). For WSC, 
all the NDIs resulting in MSE values less than the fifth percentile of all MSEs involved the 
1610 nm band, with the highest Conr for the combination of 1610 and 945 nm (Table 4, 
Figure 3d−f). Similarly, NDIs involving 1610 nm produced the best relationships for the 
OM (Table 4, Figure 3g−i). However, the overall fit of the relationships was comparatively 
poorer as is evident from the lower Conr values. The best relationship, i.e., the highest 
Conr and lowest MSE, was obtained with the blue (490 nm) and red-edge band (705 nm), 
for the third order fit (Table 4). 

Figure 4 graphically represents the model fits between the PQQ parameters and their 
‘best-fit’ NDIs. However, it should be noted that based on Table 4, other NDIs with similar 
Conr and MSE values will result in similar model fits, for the respective order of relation-
ship. Both biomass and LAI were well predicted by linear models with the relationships 
fitting well across all treatments, even at high vegetation densities. Similarly, for other 
parameters, the ‘best’ model generally captured variations in all the treatments, avoiding 
any consistent over- or under-fitting for any specific treatments, except WSC for PRG. 
However, the limited number of PRG data points offered reduced scope for further inves-
tigation. 
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Figure 3. Two-dimensional matrix plot showing mean square errors (MSEs) obtained for models 
built using all possible Sentinel−2-based two-band normalised difference indices (NDIs) for (a−c) 
crude protein (CP, 39 samples), (d−f) water soluble carbohydrate (WSC, 39 samples) and (g−i) or-
ganic matter (OM, 39 samples). 

 
Figure 4. Best modelled relationships between pasture parameters and respective normalised difference indices (NDIs): 
(a) biomass, (b) leaf area index (LAI), (c) acid detergent fibre (ADF), (d) neutral detergent fibre (NDF), (e) crude protein 
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(CP), (f) water soluble carbohydrate (WSC), (g) organic matter (OM). For each of the parameters, 39 samples were used to 
fit the relationships. 

3.2. Relationships between VIs and PQQ Parameters 
For biomass, most of the indices except PSRI and NDMI led to relationships with 

MSEs and Conr comparable to those of the best NDIs (Tables 4 and 5, Figure 1a−c). For 
LAI, only CLre and REPO led to relationships with Conr values higher than 0.70. For the 
quality parameters, the VI models were noticeably less accurate than those obtained with 
the band-pair NDIs. 

For both ADF and WSC, NDMI produced a closely fitting model with low MSE and 
Conr > 0.85. However, it is important to note that NDMI involves bands 865 and 1610 nm 
(Table 2); we had already identified the 1610 nm band, when used in combination with 
other bands in NDIs, as a band that yields good fits for certain quality parameters (includ-
ing ADF and WSC; see Section 3.1 and Figure 3). None of the VIs chosen resulted in a 
good relationship for CP, NDF and OM. 

Table 5. Mean square error (MSE) and concordance correlation coefficients (Conr) for predicting pasture quantity and 
quality parameters (39 samples for each parameter) using literature-based indices (Table 2). The results in bold highlight 
models yielding highest Conr. 

  Biomass LAI CP ADF NDF WSC OM  
Index Order MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr 
NDVI 1 41.99 0.77 0.50 0.64 26.28 0.00 26.31 0.58 31.10 0.32 7.95 0.27 12.63 0.00 
NDVI 2 32.13 0.84 0.51 0.64 25.62 0.09 26.23 0.63 30.14 0.43 7.69 0.48 11.94 0.30 
NDVI 3 35.29 0.82 0.51 0.63 28.04 0.18 30.11 0.51 31.56 0.34 8.74 0.41 13.29 0.33 

GNDVI 1 28.99 0.88 0.52 0.68 26.68 −0.01 24.30 0.63 33.87 0.17 7.53 0.40 12.22 0.04 
GNDVI 2 29.06 0.87 0.53 0.67 27.65 −0.02 24.77 0.62 31.56 0.40 7.87 0.40 13.11 0.08 
GNDVI 3 30.14 0.87 0.54 0.68 25.38 0.04 25.90 0.64 32.40 0.40 7.11 0.49 11.51 0.22 

SAVI 1 42.21 0.77 0.50 0.64 26.21 0.00 26.73 0.56 31.06 0.32 8.01 0.26 12.68 −0.01 
SAVI 2 30.91 0.86 0.51 0.64 25.41 0.12 26.40 0.62 30.16 0.43 7.64 0.49 11.77 0.32 
SAVI 3 33.23 0.84 0.50 0.64 27.53 0.19 30.46 0.50 32.00 0.33 8.65 0.42 12.97 0.35 
CLre 1 33.86 0.83 0.47 0.75 25.96 0.00 27.59 0.53 35.78 0.10 8.23 0.29 12.65 0.02 
CLre 2 34.81 0.84 0.47 0.75 26.75 −0.01 26.40 0.55 33.32 0.32 8.23 0.30 13.39 0.02 
CLre 3 33.37 0.84 0.48 0.75 23.15 0.23 27.93 0.56 28.97 0.48 7.70 0.43 11.49 0.32 
REPO 1 31.44 0.86 0.49 0.73 26.51 −0.01 26.68 0.56 37.06 0.05 7.91 0.37 12.43 0.06 
REPO 2 31.66 0.87 0.50 0.72 25.10 0.00 24.07 0.63 33.83 0.27 6.89 0.45 12.11 0.06 
REPO 3 31.99 0.86 0.50 0.76 22.32 0.24 25.60 0.63 32.54 0.35 7.06 0.55 11.56 0.31 

WDRVI 1 38.92 0.80 0.50 0.64 26.41 −0.01 25.57 0.61 31.91 0.29 7.81 0.32 12.48 0.00 
WDRVI 2 34.03 0.83 0.51 0.63 25.57 0.06 26.17 0.63 29.77 0.43 7.64 0.47 11.87 0.27 
WDRVI 3 34.72 0.83 0.52 0.63 27.01 0.18 27.61 0.59 30.68 0.40 8.12 0.48 12.74 0.35 
NDMI 1 48.72 0.68 0.77 0.09 22.72 0.09 16.48 0.88 34.39 0.17 4.16 0.88 9.30 0.53 
NDMI 2 44.30 0.73 0.68 0.25 21.65 0.24 15.96 0.89 35.13 0.15 4.28 0.88 9.60 0.55 
NDMI 3 47.18 0.72 0.66 0.27 21.55 0.25 16.18 0.89 35.62 0.14 4.04 0.88 9.60 0.56 
PSRI 1 70.88 0.18 0.58 0.46 22.40 0.24 38.41 0.06 31.56 0.31 9.48 −0.01 12.58 0.03 
PSRI 2 68.72 0.21 0.54 0.49 22.16 0.23 39.49 0.04 32.65 0.27 9.73 −0.01 12.80 0.02 
PSRI 3 81.20 0.15 0.60 0.41 23.96 0.31 44.14 −0.05 32.89 0.25 10.90 −0.12 14.97 0.08  

4. Discussion 
Spectral data-based monitoring of pasture quality has mainly been conducted using 

hyperspectral data [23,25,40,41], whereas limited research has been done to investigate 
the application of satellite multispectral sensors for pasture quality monitoring. The avail-
ability of Sentinel−2 images offers great potential for regular monitoring of pasture quan-
tity [18] as well as quality [22]. The analysis presented in the present study, with a large 
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number of two-band indices, showed good sensitivity in a moderate number of Sentinel−2 
band combinations to variations in ADF and WSC, but reduced sensitivity of Sentinel−2 
bands for the prediction of CP, NDF and OM. These results are different from those pre-
sented by Lugassi et al. [22], wherein the authors demonstrated a reasonable capability of 
information retrieved from Sentinel−2 images for CP and NDF estimation. However, dif-
ferent authors have reported variable performance of spectral data in estimating a range 
of pasture quality parameters [11,25,42,43], which suggests that the relationships between 
the spectral bands or regions studied and pasture quality parameters are not as strong as 
for other biochemicals, for example, leaf chlorophyll content [44]. Another interpretation 
of the variable performance in different studies could be that relationships between spec-
tral reflectance and pasture quality are less stable than for other biochemicals—e.g., cor-
related bands may differ depending on forage species, weed proportion, structure of the 
canopy, etc., which would all change between studies. Vegetation nitrogen content (which 
is related to CP) in particular does not have any specific spectral response because it ap-
pears in many different chemical forms within the plant [45] and in different plant organs. 
Moreover, CP represents a broad range of proteins which collectively did not appear to 
have strong spectral features when considering reflectance at the canopy level, at least not 
diagnosed by the majority of band combinations tested in this study.   

A strong influence of pasture quantity parameters, biomass followed by LAI, on the 
spectral reflectance was observed in our study. The correlations among and between pas-
ture quantity (especially biomass) and quality (ADF, WSC) parameters also play a role 
(see Table 3); they are influenced by pasture composition, weather and soil conditions and 
management as well as pasture phenological stages [22,46]. The increase in biomass as the 
canopy grows is strongly related to increased proportions of ADF and a drop in CP be-
cause of the increased lignification of the plant stem and the reduction in leaf:stem ratio 
[47]. The reduced sensitivity of reflectance to CP and NDF may also be linked to their 
reduced content in the pastures towards the fully-grown vegetative stage of the plant.  

The correlations between quality and quantity parameters make it difficult to model 
the spectral response to changes in a single parameter independently [25,45]. Some of 
these complexities can be reduced by selectively choosing bands showing increased sen-
sitivity to a particular parameter. This kind of approach to band selection has been found 
to improve predictability of multispectral remote sensing-based models for pasture pa-
rameters [11,41,48]. Our findings show that while most of the pasture quality parameters 
influenced reflectance in the 1610 nm band (Figures 2 and 3), this band is not particularly 
sensitive to changes in biomass and LAI (Figure 1). Thus, the detection of pasture quality 
indices can ideally focus on this band. 

The pasture quantity parameters dominate the spectral reflectance at the canopy level 
more than the leaf level quality parameters, as evident from the strong statistical relation-
ships between biomass and LAI with NDIs compared to those with the pasture quality 
parameters that were measured at the leaf level. Hence, their role cannot be neglected 
while designing remote sensing-based pasture quality monitoring and mapping methods. 
Our results highlight the possibilities of developing pasture quality prediction models 
based on correlations with NDIs. Therefore, while developing a multivariate model for 
pasture quality parameters based on remote sensing data, it may be advantageous to in-
tegrate remotely-sensed biomass estimates (and hence implicit information on plant struc-
ture and growth stage) directly as prior information. Such integration of prior information 
has been found to be useful for retrieval of vegetation parameters such as leaf chlorophyll 
[49,50]. Further insight into this complex issue of dominance of certain parameters in the 
overall reflectance can potentially be achieved using physically-based radiative transfer 
models [51]. However, it will require development of conversion equations to relate the 
pasture quality parameters with those required for the radiative transfer model simula-
tions. 

The best-fit relationship plots presented in Figure 4 between NDIs and biomass, LAI, 
ADF and WSC, respectively, seem to fit well across the four treatments. This shows that 
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the chosen band combinations have good predictability for these quality parameters, irre-
spective of pasture type. However, it is also important to note that the increase in the 
polynomial orders generally led to marginal improvements only in the statistical indica-
tors (Table 4). Most relationships between pasture parameters and respective normalised 
difference indices (apart from the one shown in Figure 4g) display a trend that appears 
linear on inspection. Hence, when developing models for predictions, the use of complex 
polynomial models may result in undesirable overfit issues with little improvement in the 
model variance. 

The SWIR band of 1610 nm, in combination with red-edge and NIR bands, were sen-
sitive to ADF, CP, WSC and OM. This wavelength region has been found to be important 
in pasture quality estimates [25,40,41]. However, none of the band combinations that in-
cluded SWIR band 2190 were found to have a good or moderate relationship with the 
pasture quality parameters. In contrast, this waveband has been found to be quite sensi-
tive by other researchers [11,25,41], especially with reference to fibre content, due to ab-
sorption features in cellulose molecules. In the present study, some highly diverse mix-
tures of pastures (including different grasses, herbs and legumes) were studied, with con-
siderable variability in structure and vegetation moisture content, which can possibly ex-
plain the poor correlation with these bands. Moreover, at peak growth stage of pasture 
canopies, there is an increased fraction of non-photosynthetic vegetation components, 
which can possibly dampen the spectral features in this region [23]; in the present study, 
pasture cuts were always taken around the time of peak growth stage.  

The relatively poor performance in general of the literature-based spectral indices 
(Tables 2 and 5) suggests that for the development of reliable remote sensing-based pre-
dictive models of pasture quality parameters, the testing of all possible band combinations 
is important, in particular when the pasture canopy is composed of a diverse mixture of 
grasses, legumes and forbs. With the relatively limited set of data in terms of numbers as 
well as growth stages used in this study, it is not possible to test a multivariate approach 
using a variety of bands and spectral indices together through more robust statistical mod-
elling methods such as PLSR or machine learning. However, the present paper assesses 
the sensitivity of Sentinel−2 spectral bands to pasture quantity and quality parameters in 
its most straightforward form, while ensuring statistical robustness through the LOOCV 
approach. The good correlation found between the various bespoke multispectral two-
band indices, and to a lesser extent the literature-based indices, as well as the various 
pasture quality and quantity parameters is encouraging. However, our findings are based 
on proximal optical remote sensing data. Hence, further research is needed to build pre-
diction models using the actual Sentinel−2 images in combination with large field datasets 
ranging across a variety of pasture types at different growth stages. Moreover, our plots 
were cut by hand and not grazed nor trampled by livestock. This will also affect the shape 
of the relationships between the spectral indices and pasture parameters by causing more 
variability in terms of vegetation structure. 

5. Conclusions 
The study presented results for the assessment of Sentinel−2 bands, simulated from 

field hyperspectral data, in capturing pasture quality parameters for mixed-species pas-
tures at a stage of growth appropriate for rotational grazing. The results suggest that the 
role of pasture quantity parameters, such as biomass and LAI, has to be taken into account 
while developing remote sensing-based pasture quality prediction models, firstly due to 
the higher sensitivity of reflectance to quantity parameters, and secondly, due to non-spe-
cific and weaker relationships between most of the quality parameters and the spectral 
data. However, some strong relationships were found between certain quality parameters 
(ADF, CP and WSC) and bespoke vegetation indices, especially for normalised vegetation 
indices using the 1610 nm band, thus highlighting its importance in remote sensing-based 
pasture quality monitoring. The scope of the present study has some limitations, for ex-
ample in relation to its sample size and range of pasture growth stages. However, it does 
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provide important insights into the complexities that have to be taken into account while 
designing remote sensing-based pasture monitoring projects, in particular for multi-spe-
cies swards. 
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