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Abstract: Accurate estimation of the timing of intensive spring leaf growth initiation at mid and
high latitudes is crucial for improving the predictive capacity of biogeochemical and Earth system
models. In this study, we focus on the modeling of climatological onset of spring leaf growth in
Central Europe and use three spring phenology models driven by three meteorological datasets. The
MODIS-adjusted NDVI3g dataset was used as a reference for the period between 1982 and 2010,
enabling us to study the long-term mean leaf onset timing and its interannual variability (IAV). The
performance of all phenology model–meteorology database combinations was evaluated with one
another, and against the reference dataset. We found that none of the constructed model–database
combinations could reproduce the observed start of season (SOS) climatology within the study region.
The models typically overestimated IAV of the leaf onset, where spatial median SOS dates were best
simulated by the models based on heat accumulation. When aggregated for the whole study area,
the complex, bioclimatic index-based model driven by the CarpatClim database could capture the
observed overall SOS trend. Our results indicate that the simulated timing of leaf onset primarily
depends on the choice of model structure, with a secondary contribution from the choice of the
driving meteorological dataset.

Keywords: phenology; start of season; spring green-up; meteorology; database sensitivity

1. Introduction

Plant development has evolved to respond to the seasonality of various environmental
factors and is influenced by the interannual variability of climate [1,2]. Plant phenology
research focuses on the periodic events occurring within the annual cycles of terrestrial
vegetation [3,4]. Plant development has internal (genetic) and external (environmental)
drivers. In the temperate zone, adaptive plant strategies must feature traits such as toler-
ance of late spring or early autumn frost damage and mid-summer water shortages. The
timing of flowering and propagule development must enable successful reproduction [5].

In a feedback loop, the phenological stage of the vegetation influences the exchange
of heat and mass between the land surface and the atmosphere [6]. Phenology thus plays
an important role in ecosystem function, influencing the carbon balance of the soil–plant
system and regulating biogeochemical and biophysical feedbacks through the coupled
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carbon-, water-, and energy cycles [4,6]. In the highly seasonal temperate zone at mid- and
high latitudes, specific attention is paid to the start of the active vegetation period [2,7].
Surface and remote sensing observations provide information about the leaf onset at
contrasting spatial scales [8–10].

Given the determinant role played by plant phenology, models of varying com-
plexity have attempted to quantify the timing of the onset of the growing season (com-
monly referred to as the start of season (SOS), expressed by the numerical day of year
(DOY)) [3,4,11–16]. Phenology models aim to capture the long-term mean SOS and its
interannual variability [6], while an accurate representation of recently observed SOS
trends related to climate change is also crucial for future prediction of plant growth [1,3].
Phenology models are integral parts of the biogeochemical models (BGMs), Dynamic
Global Vegetation Models (DGVM), and also are increasingly included in General Circula-
tion Models (also referred to as Global Climate Models, GCM) and Earth system models
(ESM) [4,17,18]. Given the generalisation inherent in these large-scale models, their re-
gional applicability and performance metrics of the methods they make use of remain a
challenge [19].

Meteorological variables such as temperature, precipitation, radiation, and photope-
riod are important drivers of vegetation development. These variables play a key role in
phenology models [4,13,20,21]. During the past two decades, there has been a growth in
the number of available meteorological datasets that can be used in studies of vegetation
growth [22]. Data availability, however, poses new challenges: The decision of which
dataset is the most suitable for the research is likely to affect the eventual result. Previous
phenological studies used datasets developed by the Modern-Era Retrospective Analysis
for Research and Applications (MERRA) [23], E-OBS [5], CRU-NCEP [2], ERA-15 reanalysis
product of European Centre for Medium-Range Weather Forecasts (ECMWF) with a spatial
resolution of 1◦ × 1◦ [24], and the ERA-Interim reanalysis of ECMWF [25]. The Daymet
database [26,27], with 1 km spatial resolution, was also used for North America by a
number of studies [13,20,28]. Surprisingly, given the large number of available datasets,
a comparison of the performance of phenology models as a function of meteorological
database selection is largely missing from the literature.

The aim of the present study is to quantify the sensitivity of SOS estimation to the
choice of the model structure, and to the selection of the driving meteorological dataset.
Three commonly used spring phenology models with different meteorology data require-
ments were used to evaluate the quality of phenological prediction as a function of the
selection of driving variables. As a case study, we investigate Hungary, which has experi-
enced a number of extreme weather events (heatwaves, drought, extreme precipitation) in
recent years, likely to have affected the variability of SOS and therefore pose a modelling
challenge [29–31]. We used the NDVI3g dataset as an observation-based reference [29].

We seek to answer the following questions:

1. How accurately can models simulate the observed SOS climatology in the region?
2. Are models able to capture observed interannual variability and long-term trends

of SOS?
3. Is the choice of model or the choice of the meteorological database a more important

factor affecting the accuracy of estimated SOS?

The results are very likely to inform the application of phenology models in Central
Europe as the provided parameterisation can be directly included in BGMs or ESMs. The
study also has global relevance as the tested comparison methodology applies to the study
of any locality or phenological stage.

2. Materials and Methods
2.1. Study Area

This study focuses on Hungary (Figure 1). The country is located in the temper-
ate climatic zone in Central Europe. Hungary is influenced by three major climate
systems: Continental, Mediterranean, and Oceanic. The long-term (1981–2010) mean
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annual temperature is 10–11 ◦C, with mean annual precipitation of 500–750 mm.
(https://www.met.hu/eghajlat/magyarorszag_eghajlata/; accessed on 11 January 2021.)
The country is situated in the Carpathian Basin and is characterised by relatively low relief.
The majority of the country is below 400 m with a mean elevation of ~150 m.
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Figure 1. Geographical location (inset) and land use map of Hungary, based on the CORINE 2012 Land Cover database
at 500 × 500 m spatial resolution. Land use categories shown on the map are described on the website of the database
(http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012, accessed on 23 November 2021). Individual pixels
used for the calibration of the phenology models are highlighted with coloured rectangles (see Section 2.6). Here we
considered three main land use categories: Grasslands, forests, and arable lands. Pixel size is determined by the NDVI3g
reference dataset.

The dominant plant functional types (PFT) are arable land (~48% of the total coun-
try area), deciduous broadleaf forest (~18%), and grassland (~11%; [32]). Forests are
typically found at higher elevations. The study uses a regular Gaussian grid with a
1/12◦ × 1/12◦ spatial resolution that was defined by the grid geometry of NDVI3g datasets
(see Section 2.4).

2.2. Phenology Models

The estimation of the onset of spring vegetation growth is a highly scale-dependent
task [17]. For large-scale modelling exercises, the species-specific or individual-based
phenology models have to be upscaled to regional, continental, or global scales, which
is a major challenge [6,17,20]. In this study, given the nature of the used models (BGMs,
DGVMs, GCMs, and ESMs) we follow the method of [24] and [33] focusing on the cli-
matological onset of leaf growth. In other words, we seek solutions that can be used
to simulate climate-driven changes in the timing of SOS at a larger scale [20]. First, we
handled SOS of forests, grasslands, and arable lands separately at the individual pixel level.
Then we combined the PFT specific SOS according to the share of PFTs within the pixels to
provide a single SOS for a given year that is comparable with the observation-based SOS at
1/12◦ × 1/12◦ resolution.

https://www.met.hu/eghajlat/magyarorszag_eghajlata/
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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Three phenological models with different meteorological data requirements and
underlying representation of the biological process were selected for the estimation of the
onset of spring leaf growth.

2.2.1. WM

The first phenological model uses the simplest (and probably the most popular) ap-
proach: SOS is determined by accumulated thermal time. This method is widely used in
terrestrial models such as IBIS (Integrated Biosphere Simulator; [34]) and CLM-DGVM
(Community Land Model–Dynamic Global Vegetation Model; [34]). In this model (referred
to as the warming model; WM), SOS is estimated as the calendar date when the cumulative
growing degree-day (GDD; also known as heatsum relative to a predefined base tempera-
ture) exceeds a predetermined value. For a given PFT-specific base temperature, WM has
one adjustable parameter, which is the cumulative GDD threshold. We use 1 January as the
start of the GDD accumulation. The base temperature (Tbase) and GDD threshold values
used in this study were set by model optimisation (see Section 2.6). WM uses mean daily
temperature only as input data.

2.2.2. CWM

The second model uses heat accumulation in spring as the driving factor (just as in
the WM), but the timing of SOS as also affected by the exposure to low temperatures (i.e.,
fulfilment of the chilling requirement, or in other words vernalization) during winter. In
this model, the GDD threshold is defined as:

GDD(t) = a + b·ec·NCD(t), (1)

where NCD is the number of chilling days, while a, b, and c are three adjustable model
parameters. Here we refer to this model as a chilling-warming model (CWM). This ap-
proach is used in the process-driven ORCHIDEE (Organizing Carbon and Hydrology
in Dynamic EcosystEms; [34]) and the SEIB-DGVM (Spatially Explicit Individual Based-
Dynamic Global Vegetation Model; [34]) models. The CWM uses daily mean temperature
as the input, but in this case, estimates of SOS for a given year use meteorological data from
the second half of the previous year to calculate the fulfilment of the chilling requirement.
Parameter optimisation was performed before the application of the model.

2.2.3. GSIM

A bioclimatic index (Growing Season Index; GSI) was constructed for the third model
(Growing Season Index Model, GSIM), representing known constraints to foliar develop-
ment [35]. Three variables were combined to jointly modulate the timing of SOS (where
each variable has two limits): Suboptimal (minimum) temperature (with limits TMmin
and TMmax), vapor pressure deficit (VPD, with VPDmin and VPDmax), and photoperiod
(Photomin and Photomax). Threshold limits, potentially adjustable in the GSI model, were
set, and then indices were calculated separately for all three variables, and the GSI was
calculated by multiplying the three indices. The calculated GSI has to reach a threshold,
which is also an adjustable parameter. There is an additional adjustable parameter in
the model that controls the smoothing window size that is used to avoid false onset de-
tections [35]. Optimisation of the GSIM was done for all eight parameters included in
the model.

2.2.4. Applicability of the Models

In forests and low-management intensity grasslands, it is reasonable to assume that the
meteorological variables are the main drivers of the SOS date. In arable crops, particularly
in spring-sown varieties, the phenology is also affected by human decisions (e.g., planting
date). The often-intensive spring leaf growth of winter crop varieties is largely driven by the
environmental conditions of the current and preceding years, as they are planted in autumn
and are overwintering. Winter crops typically require vernalization; the accumulation
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of exposure to cold temperatures affects their phenological development [36,37]. In this
sense, the CWM (originally developed for simulation of bud break of trees) might be
structurally more suitable for winter crops and might reflect the effect of environmental
variables on the spring leaf growth. To further complicate the picture, actual environmental
conditions affect farmer decision making [38]. Crop phenology thus integrates weather,
variety, and anthropogenic factors. At the target resolution of the study (1/12◦ × 1/12◦),
winter and spring varieties share the total harvested area within a pixel almost equally
(http://www.ksh.hu/docs/eng/xstadat/xstadat_annual/i_omn007a.html, accessed on
20 January 2021). Since spring varieties are typically planted after the initiation of leaf
growth of other vegetation types, the phenology of winter crops may be the main driver of
the observed green-up within a pixel. In summary, we assume that the climate will affect
the intensive spring leaf growth for all plant functional types, and theoretically, all three
model types are suitable for the estimation of SOS.

2.3. Meteorological Datasets
2.3.1. CarpatClim Database

CarpatClim is a high-resolution dataset based on weather observations of several
meteorological variables for the Carpathian Region (44◦–50◦ N latitudes and 17◦–25◦ E
longitudes) covering the period of 1961–2010 [39] at a 1/10◦ × 1/10◦ resolution regular
grid. CarpatClim uses a relatively dense observation network (in Hungary, 109 stations
measured precipitation and 34 stations temperature), although its temporal coverage is
limited (the dataset ends in 2010). CarpatClim is one of the regional, observation-based
gridded datasets that are available for specific parts of Europe (summarized in [22]).
1/10◦ × 1/10◦ resolution of CarpatClim data were interpolated to the target 1/12◦ × 1/12◦

resolution grid of this study using simple linear interpolation taking into account the area
of the grid cells overlapping with the target grid cells.

2.3.2. FORESEE Database

FORESEE (Open Database FOR Climate Change-Related Impact Studies in Cen-
tral Europe) is a free meteorological database for Central Europe covering the period of
1951–2100 with 1/6◦ × 1/6◦ spatial resolution [30,40]. FORESEE contains observation-
based daily minimum/maximum temperature, precipitation data, and climate projections
for these variables—the latter starting from the last continuously updated observed year.
The dataset is supplemented by daylight mean temperature, global radiation, and VPD
data estimated by the MTClim model [26]. Daylength (photoperiod) is also estimated by
MTClim and used in this study to drive the GSIM. The target area of FORESEE spans
42◦35′–51◦05′ N latitudes and 10◦55′–28◦05′ E longitudes. The observation-based data
(1951–2018) were built using the E-OBS v17 dataset [29,41]. FORESEE uses a relatively low
number of station data (17 stations for temperature and 16 stations for precipitation). In
the present study, we used a version of FORESEE interpolated to the target 1/12◦ × 1/12◦

resolution regular grid defined by the reference dataset.

2.3.3. ERA5 Database

ERA5 is a reanalysis database constructed and disseminated by ECMWF [42,43]. At
present, ERA5 contains data from 1979 (also preliminary from 1950) until the present in
hourly time steps. Observations are used indirectly in ERA5 through the 4D-Var data as-
similation method. In this sense, ERA5 represents an alternative compared to CarpatClim
and FORESEE that are both interpolated observation-based datasets. This assimilation
method uses instrumental measurements and short-range model runs to produce grid-
ded values of several meteorological parameters. The horizontal resolution of ERA5 is
1/4◦ × 1/4◦. Surface data are available for 2D meteorological parameters such as rainfall,
2m temperature, wind speed, incoming solar radiation, and many others. ERA5 data
were retrieved using the CDS API via R interface at a regular 1/10◦ × 1/10◦ resolution
grid (due to technical considerations). The hourly data were post-processed to provide

http://www.ksh.hu/docs/eng/xstadat/xstadat_annual/i_omn007a.html
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daily minimum/maximum temperatures and other ancillary variables needed in the study.
ERA5 data were interpolated to the target grid using simple linear interpolation taking
into account the area of the grid cells overlapping with the target grid cells.

2.4. Remote Sensing Based Reference Spring Phenology Dataset

Satellite-based remote sensing data were used in the present study to provide a refer-
ence for modelling. As remote sensing does not directly measure the SOS, the information
registered by the instruments can be considered as proxy data. Thus, SOS determination
from satellite data also has its own methodology and uncertainty (e.g., [44–48]) that has to
be considered during the application of the datasets.

The MODIS-adjusted NDVI3g remote sensing dataset [29] covering Central Europe
was used to provide observation-based data describing SOS. The dataset was created from
the original NDVI3g [49] by statistical harmonisation (adjustment) using NDVI calculated
from the data measured by the MODerate resolution Imaging Spectroradiometer (MODIS).
Adjustment coefficients were determined for the overlapping years of NDVI3g and MODIS
(2000–2013) and then applied to the entire NDVI3g period (1982–2013). The dataset has
a 1/12◦ × 1/12◦ spatial and 15-day temporal resolution for the 1982–2013 period. The
harmonised NDVI3g dataset showed improved quality for diverse vegetation metrics
compared to the original NDVI3g [29].

SOS was calculated at pixel level based on the methodology described in [29], which
partially follows the work of [50]. In brief, SOS was calculated as the average of three
different methods, where SOS is the date when (1) the NDVI shows the highest rate of
change in the year; (2) the derivative of the wavelet transformed function fitted to NDVI
values reaches its first local maximum; and (3) the NDVI first reaches the value that
gives the highest rate of change of the multiannual NDVI curves (serving as a predefined
threshold). The uncertainty of the NDVI3g-based reference SOS data was estimated as the
standard deviation of the results of the above three methods.

2.5. Ancillary Data Used in the Study

The elevation of grid cells at 1/12◦ × 1/12◦ resolution was estimated by the Shuttle
Radar Topography Mission (SRTM) Digital Elevation Database [51]. Elevation classes
within the target area were created considering the number of pixels within a given class so
that sufficient data were available to support statistical analysis. Three classes were created:
pixels below 100 m, between 100 and 200 m, and above 200 m elevation.

The share of generalized land cover categories (i.e., PFTs) within each grid cell was
calculated based on the CORINE Land Cover 2012 database. Grid cells with relatively
homogeneous PFT cover were used for the optimisation of the phenology models. Pixels
were classified into three categories: If, within the pixel, PFT cover reached 70% threshold
for grasslands, 80% threshold for forests, and 90% threshold for arable lands. Overall,
25 pixels were selected for forest, 99 pixels for arable lands, and only 5 pixels for grasslands
(Figure 1).

2.6. Optimisation of Phenological Models

Annually calculated, PFT-dependent median SOS dates were used to optimize the
models using the selected homogeneous pixels and the description of their spring phenol-
ogy from the NDVI3g dataset.

In the case of the WM, a simple global search algorithm was used with Tbase limit
ranging from 0 to 8 ◦C and GDD threshold ranging from 100 to 300 ◦C days. We used
1 ◦C steps for Tbase and 1 ◦C days steps for GDD threshold, and all parameter combinations
were tested. The root mean square error (RMSE) was calculated from the SOS medians of
the PFT specific pixels calculated by model–dataset combinations and the NDVI3g-based
SOS median. The parameter optimum was selected by finding the minimum RMSE.

In the case of the CWM, all five parameters were subject to calibration (a, b, c, GDD,
and NCD; see [24]). We set the range of the parameters based on [24,34]. Parameter a was
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varied between −90 and −47 ◦C days, while parameter b was varied between 622 and
653 ◦C days, with 1 ◦C days steps for both cases. Parameter c was varied between −0.011
and −0.0101 with 0.001 steps. Tbase was varied between 0 and 8 ◦C, and NCD_Tbase was
varied between 0 and 5 ◦C with 1 ◦C steps (NCD refers to the number of chilling days).

The GSIM model is characterised by a relatively high number of parameters. To
simplify the optimisation process, we first fixed the difference between the TMMin and
TMMax (see above). Then, minimum temperature limits were varied systematically between
−2 and 7 ◦C (TMMin), and 5 and 14 ◦C (TMMax) with 1 ◦C resolution. VPD limits were varied
between 500–1400 hPa (VPDmin) and 3700–4600 hPa (VPDmax) with 100 hPa steps. The
photoperiod was varied between 35,500–36,400 s (PhotoMin) and 39,100–40,000 s (Photomax)
with 100 s steps. After this initial optimisation, a second step was necessary with reduced
degrees of freedom. By fixing all other parameters, minimum temperature limits were
varied between −3 and 5 ◦C (TMMin), and 3 and 11 ◦C (TMMax) with 0.5 ◦C resolution,
now without fixing the difference between the minimum temperature thresholds. The GSI
threshold was also included in the optimisation and was varied between 0.42 and 0.58 with
0.01 steps.

After model optimisation using relatively homogeneous PFT cover pixels, phenologi-
cal models were run for all available pixels in the target area. Then the PFT-specific results
were combined by weighting using the share of PFTs for the given pixel. The resulting SOS
dataset reflects the contribution of different PFTs to the estimated SOS, which means that
they are comparable with the observation-based SOS dataset for the whole country.

2.7. Statistical Analysis

The SOS datasets generated using the models and the adjusted NDVI3g dataset were
calculated in a common 1/12◦ × 1/12◦ resolution grid, with a total of 1592 pixels available
in Hungary. As the NDVI3g dataset provides unrealistic values over lakes and urban areas,
a few pixels were excluded from the analysis. The remaining 1539 pixels were analysed in
the study for the period of 1982–2010. The start year of the comparison is defined by the
availability of NDVI3g, while the end year (2010) is constrained by the limited temporal
availability of the CarpatClim dataset.

Climatological maps providing information about the long-term mean SOS data for the
pixels were created. Long-term mean SOS was calculated for each pixel using the different
model–database combinations, and for the NDVI3g dataset. The pixel-based results were
further analysed (country median, standard deviation, 5th and 95th percentiles). Elevation
classes were created for analysis based on the DEM dataset. We also calculated the spatial
covariance between the pixel level SOS climatology values.

The interannual variability of the results was quantified in annual box-whisker plots.
Median SOS dates were used to further analyse the relationship between the observation-
based and estimated data. Performance metrics (bias, RMSE, and square of the linear
correlation coefficient (R2); for definitions see e.g., [52]) were calculated using the annually
calculated country medians for the elevation classes, and the pixel-based SOS time series
as well.

Trend analysis was performed using the calculated annual median SOS values to
check the applicability of the models in terms of long-term, climate change-related SOS
shifts in the study period. The analysis was executed at the pixel level, then histograms
were created to compare the overall, pixel-based trends, and the observation-based trends.
Statistical significance (p-value) of the regressions was quantified.

To quantitatively assess whether the model selection or the meteorological database
selection influences the results more, a specific algorithm was developed. Annual SOS
dates were analysed for the 1982–2010 period for all nine model-database combinations at
the pixel level. As the first step, cumulative density functions (CDFs) were calculated for
the SOS time series of the given pixel. Two groups were created from the CDFs, where each
group contained three separate CDF combinations. In the first group (weather group), the
three models were fixed one at a time and their results were compared as the function of
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meteorological datasets (CarpatClim, FORESEE, ERA5). In the second group (model group)
the three meteorological datasets were fixed one at a time, and the associated model results
were compared for the WM, CWM, and GSIM models, respectively. A total of six CDF
combinations were created (three for the weather group and three for the model group),
where each combination consisted of three CDFs. The Kolmogorov–Smirnov distance was
used to calculate the average distance between all possible CDF pairs in each combination.
The mean distance was calculated for the two groups (model and weather). Then, to
calculate one unified index (referred to as the Importance Indicator, abbreviated as IID)
the mean distance of the second group was subtracted from the mean distance of the first
group. If the model selection is more important than the meteorological dataset selection,
the difference is negative. The IID was calculated for all grid cells and visualised in the
form of a heat map. The statistical significance of IID was calculated with a permutation
test for each pixel. Using the previously calculated CDFs, 100,000 permutations were
performed. We calculated the IID for each relabelled CDF. The null hypothesis was that the
true IID is zero (i.e., we cannot choose between model and weather group). The p-values
were calculated by counting the number of cases where the absolute value of the random
IID was higher than or equal to the absolute value of the actual IID.

The calculations were performed in Interactive Data Language v8.5 (Harris Geospatial
Solutions, Inc., Broomfield, CO, USA), and in the R statistical computing software [53],
where the latter was used for IID calculations.

3. Results
3.1. Model Parameterisation

Table 1 presents the parameters of optimised models. As a result of the GSIM optimisa-
tion, the minimum temperature and VPD thresholds were changed relative to the original
values proposed by [35], while the daylength limits remained the same. For grasslands and
arable lands, the minimum temperature limits are the same, and for forests and grasslands,
VPD limits became the same.

Table 1. PFT-specific parameters for the three optimised models used in the study. WM refers to the
warming model, CWM stands for the chilling-warming model, and GSIM is the Growing Season
Index Model. A detailed description of the GSIM is provided in [35].

Grasslands Forests Croplands

GSIM

TMMin [◦C] −1.5 1.5 −1.5
TMMax [◦C] 10.5 9 10.5

VPDmin [hPa] 1000 1400 1400
VPDmax [hPa] 4200 4600 4600
Photomin [s] 36,000 36,000 36,000
Photomax [s] 36,900 36,900 36,900
GSIthreshold 0.5 0.45 0.55

Smoothing [days] 30

CWM

a [◦C days] −76 −47 −47
b [◦C days] 624 652 624

c −0.011 −0.101 −1.0103
Tbase [◦C] 4 5 4

NCD_Tbase [◦C] 4 5 5

WM

Tbase [◦C] 5 7 5
GDDthreshold [◦C days] 105 112 128
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For the WM, the optimum GDD threshold was set to 105–128 ◦C days (depending on
the PFT) as a result of the calibration. The same Tbase was used for grasslands and arable
lands (5 ◦C). Tbase for forests is higher than that of arable lands and grasslands.

Tbase values used by the WM and the CWM differ as a result of the optimisation.
However, the Tbase values for grasslands and arable lands are lower than for forests, both
for the WM and CWM models. The chilling day base temperature (NCD_Tbase) is lower in
grasslands than in forests and croplands.

3.2. Climatology Maps for SOS

Figure 2 shows SOS climatology maps for the country, calculated as median SOS
date (DOY) of the three models driven by the three different climate datasets covering the
1982–2010 period. Model results disagree about the location of regions typical for early
SOS. Observation-based long-term SOS indicates the earliest greening in the eastern, plain
regions of the country. If we compare the sensitivity of the models to local features, it is clear
that the CarpatClim dataset provides the highest level of details (pixel-by-pixel variability).
As expected, the ERA5 dataset is characterized by smoothed-out spatial features, given the
1/4◦ × 1/4◦ native spatial resolution, which is quite coarse compared to the other datasets.
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Figure 2. Start of season (SOS) climatology maps (expressed as day-of-year) showing mean values
for the 1982–2010 period. Day-of-year values were calculated by combining three phenology models
(vertical) and three meteorological datasets (horizontal). The observation-based NDVI3g SOS dataset
is provided as a reference. Pixels excluded from the analysis due to low vegetation cover are in white.
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Table 2 provides key statistics behind the SOS climatology maps, allowing for quan-
titative insight into the spatial variability of the SOS estimates. The observation-based
median SOS date for the 1982–2010 period is DOY 105 (15 April). SOS values increase
with elevation both according to the models and the observation (with the exception of
FORESEE-driven GSIM and ERA5-driven WM). Model–database combinations typically
reproduce the observed median given the optimisation of the models. GSIM systematically
predicts earlier SOS relative to the observation, except for the CarpatClim input data in
the 200–700 m elevation class. In the case of CWM and WM, the different meteorological
datasets provide very similar results.

Table 2. Spatial statistics of the SOS climatologies (expressed by DOY): Medians, standard deviations, 5th and 95th
percentiles. Percentiles are abbreviated as “perc”, standard deviation is abbreviated as “SD”. The last column presents the
observation-based data. Results are presented for the selected elevation classes as well.

Phenology Model CWM WM GSIM CWM WM GSIM CWM WM GSIM
NDVI3gDriving

Meteorology CarpatClim FORESEE ERA5

overall median 104 104 100 104 103 99 105 103 94 105
0–100 m median 103 103 98 103 102 99 103 103 93 102.3

100–200 m median 105 104 100 104 103 98 105 104 95 105
200–700 m median 106 109 106 106 109 102 106 103 99 106

overall SD 2.0 4.0 4.7 1.6 3.3 3.6 1.8 3.6 3.7 7.6
0–100 m SD 0.8 2.2 1.6 0.8 1.9 2.5 0.9 1.9 1.3 7

100–200 m SD 1.1 2.5 3.6 1.0 2.1 3.1 1.3 2.5 2.6 7.9
200–700 m SD 2.8 5.5 6.9 1.6 3.9 4.3 1.2 3.8 4.6 4.8

overall 5th perc 102 100 96 102 100 94 102 99 92 92
0–100 m 5th perc 102 100 96 102 99 93 102 99 92 90.7

100–200 m 5th perc 103 101 96 102 101 94 103 102 93 96
200–700 m 5th perc 104 103 94 104 104 96 105 103 93 103.7

overall 95th perc 108 112 109 107 111 106 108 112 103 118
0–100 m 95th perc 105 107 101 104 106 102 105 105 96 112.7

100–200 m 95th perc 106 109 107 105 108 104 107 109 101 119.3
200–700 m 95th perc 113 121 117 109 116 109 109 115 107 118

Standard deviation (i.e., spatial variability) is underestimated by the model–database
combinations (except for the GSIM and WM driven by CarpatClim in the 200–700 m
elevation class). The CWM consistently predicts smaller spatial variability than the other
two. The GSIM has the highest overall SD values; these are the closest to those of the
observations but still underestimated (the exception is the 0–100 m GSIM driven by the
CarpatClim and ERA5 database). According to the observed data, the earliest vegetation
onset is DOY 92 (2 April), while the latest is DOY 118 (28 April). Looking at model
performance, the GSIM is the best in estimating SOS data points in the 5th percentile (early
greening regions), while the WM provides better predictions for the 95th percentile (late
greening regions).

An additional statistical assessment of the SOS climatologies is presented in Table S1
of the Supplementary Material. According to the results, the spatial covariance between
the maps generated by the model-database combinations is typically low. The highest R2 is
associated with the WM driven by the CarpatClim and the FORSESEE database.

3.3. Interannual Variability

Figure 3 shows the interannual and spatial variability of the modelled and observed
SOS, with relatively higher spatial variability within the specific years for the GSIM and
the WM. CWM is associated with low spatial variability across years that is consistent
with the SOS maps presented in Figure 2. None of the model-database combinations could
reproduce the observed high spatial variability of SOS (represented by the interquartile
ranges) for the specific years that are present in the observation-based SOS plot (lowest
graph in Figure 3).
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Figure 3. Box-whisker plots showing spatial and temporal variability of the SOS estimation for the whole study area
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values and the whiskers show extreme values within 1.5 times of the interquartile range.

IAV was expressed as the standard deviation around the annual median SOS dates.
Table 3 shows statistics about the IAV for the whole county, based on all available model-
database combinations, and also for the NDVI3g-based results. The overall standard
deviation of the observation is ~5 days and decreases with elevation. The observed IAV is
smaller than modelled, and the CWM estimate is the closest to the NDVI3g-based IAV. In
the case of WM, the CarpatClim-driven CWM and ERA5-driven GSIM concur that the least
variability is found at the elevation class 200–700 m, which is the case in the observed data.

The performance metrics describing modelled annual median SOS dates relative to the
observation-based dataset show that the models typically slightly underestimate the obser-
vation. Further, the smallest overall RMSE value results from the CWM, followed by WM
and GSIM (Supplementary Material, Table S2). An additional statistical assessment of the
IAV is presented in Tables S2 and S3, and Figures S1 and S2 of the Supplementary Material.
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Table 3. Interannual variability (expressed as standard deviation in days, SD) of the annually calculated median SOS dates
for the different model–database combinations and observations. Data are shown for the selected elevation classes and the
whole study area.

Phenology Model CWM WM GSIM CWM WM GSIM CWM WM GSIM NDVI3g

Driving Meteorology CarpatClim FORESEE ERA5

overall SD 5.6 8.9 7.9 5.5 8.8 7.5 5.8 9.0 8.8 5.4
0–100 m SD 5.7 9.0 7.8 5.5 8.8 7.4 6.0 9.4 9.2 7.8

100–200 m SD 5.7 8.9 8.1 5.8 9.3 7.9 5.7 9.0 8.8 5.5
200–700 m SD 5.5 8.0 8.3 5.6 8.6 7.8 7.6 7.3 7.6 3.2

3.4. Trend Analysis

Temporal change in the timing of spring leaf development was extracted from the
simulated and observed SOS datasets. Observation-based estimates suggest that the
date of SOS advanced in Hungary by 2.4 days per decade during the 1982–2010 time
period, and this advance is the fastest at elevations below 100 m (Table 4). The FORESEE-
and CarpatClim-driven GSIM generate an SOS trend consistent with the observations,
whereas the WM shows the largest advancement of spring greening. The models used
in this study are unable to consistently account for the observed trend change across
the elevations. They typically generate similar trends across all three elevation classes
(Supplementary Material, Figure S3).

Table 4. Long-term change in country-median SOS (expressed as days/10 years) predicted by different model–database
combinations, and the NDVI3g-based observation median for the 1982–2010 period.

Phenology Model CWM WM GSIM CWM WM GSIM CWM WM GSIM NDVI3g

Driving Meteorology CarpatClim FORESEE ERA5

overall decadal trend −1.6 −3.6 −2.2 −1.4 −3.6 −2.8 −1.2 −3.1 −1.2 −2.4
0–100 m trend −1.2 −3.1 −1.6 −1.2 −3.3 −2.4 −1.6 −3.0 −1.2 −3.1

100–200 m trend −1.7 −3.7 −2.1 −1.7 −3.8 −2.9 −1.2 −3.4 −1.3 −2.0
200–700 m trend −1.7 −4.4 −3.8 −1.8 −4.0 −3.4 −1.6 −4.2 −2.1 −2.3

3.5. Model and Driving Meteorology Database Selection

Our modelling exercise shows that choosing the right model to predict SOS is far more
consequential than selecting the meteorological database to drive that model (Figure 4).
In the case of Hungary, it is only a minority of mountainous pixels found in the highest
elevation class (3.1% of the area) where the selection of the database is more important
in terms of SOS prediction accuracy. The difference in the prediction accuracy as a result
of model or database choice is statistically significant (p < 0.05) in 1169 pixels out of
1539 considered in the analysis.
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4. Discussion

Modelling the climatological onset of spring leaf growth in BGMs and ESMs/GCMs
is crucial, especially under current rapid climate change [6,54]. Modelling approaches try
to approximate the reality and represent our current knowledge of plant physiology but
will remain simplified representations of the real world processes [13,18,24]. Alongside
modelling issues due to simplification, it is widely recognised that inaccuracies in the input
data and errors in reference datasets used for model optimisation (see e.g., [5,25]) both
negatively affect the accuracy of any prediction. In the present study, we aimed to evaluate
the relative contribution of the phenology model and meteorological dataset selection to
the accuracy of predicting the onset of spring leaf growth. The proposed method could be
further developed and integrated into GCMs and ESMs.

4.1. Model Parametrisation, Model Structural Differences

The TMMax threshold for the GSIM suggested by the calibration was considerably
higher than those proposed by [35] at the global scale (Table 1), whereas the minimum
temperature thresholds were more realistic and correspondent to plant physiology. GSIM
uses daily, non-accumulated environmental data to constrain bud break in spring and
subsequent leaf growth, unlike the WM and CWM, which use cumulative values. In this
sense, the WM and CWM can be considered models with “memory” with the capacity to
integrate the effects of past environmental conditions. The results of our model parameteri-
sation suggest that minimum temperatures may need adjustment to allow for sufficient
heat accumulation to drive SOS.
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The SOS trends simulated by the GSIM capture the observations fairly well, while
the other models offered less accurate results. A possible explanation might be that the
minimum temperature is used by the GSIM, while the mean temperature is used by the
other two approaches. At the point of leaf growth initiation, the vegetation might be more
sensitive to early morning low temperatures, which would be masked by the use of the
daily mean [35]. As the majority of current phenology models use mean air temperature as
a driving variable, our observation suggests that considering minimum temperatures may
improve their accuracy.

4.2. Spring Plant Phenology in Central Europe

Plant phenology was already investigated in Hungary, in studies focusing on leaf
phenology, flowering time, or other aspects of the phenological cycle [9,29,55–61]. In
a study looking at the flowering of six mixed herbaceous and woody species between
1951 and 2000, the date of flowering advanced by 1.9–4.4 days/decade in four out of the
six species [60]. These results corroborate the trends we extracted from the NDVI3g dataset
(Figure S3 of the Supplementary Material). Similarly, spring budburst and flowering were
seen to advance by 2.1 days/decade in Europe during an investigated period covering
30 years [57], with a similar observation originating from Hungary [56]. However, a num-
ber of herbaceous and woody species studied in 10 central European regions in 1980–1995
advanced their spring phenology by 13.9 days/decade in urban and 15.3 days/decade
in rural regions [62]. This is nearly an order of magnitude faster than the trend observed
in this study. An examination of Europe from satellite observations in 1982–2001 at
1/10◦ × 1/10◦spatial resolution came to a similar conclusion: Spring advanced by
13.2 days/decade in the domain that includes Hungary [63]. Interestingly, in situ ob-
servations of SOS trends in Central Europe based on the PEP725 database for the 1982–2011
period [4] indicate a slightly faster advance by 4.7 days/decade than the NDVI3g-based
trend presented here. However, the WM model (driven by FORESEE or CarpatClim)
comes very close to the observations derived from PEP725. Clearly, even though the spring
initiation of growth is a complex process, the modelling approaches investigated in this
study can provide reasonable predictions.

4.3. Evaluation of Model Performance

Relatively few studies of plant phenology report model bias (Table 5), even though
this metric of model performance is critically important in the case of BGMs and ESMs, as
biased estimation of SOS affects the simulated carbon budget [64]. The performance of our
models is comparable to those published in the literature. The RMSE tends to be smaller in
individual-based models. Our models show moderate performance as measured by R2,
which is partly explained by the spatial scale of this study (effect of mixed PFTs) and the
general optimisation of the models. The bias is relatively large in some pixels, indicating
that further optimisation and further development of the models are needed.

Table 5. Performance metrics of selected spring phenology models and those from this study. Some of the values were
estimated from figures presented in respective publications. Data presented for this study are based on Table S3 of the
Supplementary material.

Reference Biome Type Location,
Spatial Scale Model Type RMSE [Days] R2 Bias [Days]

[5]
deciduous and
evergreen tree

species

Central Europe,
individual based

several model types driving
by chilling or forcing and

photoperiod
7–9

[11]
deciduous and
evergreen tree

species

southern France,
individual based

Unified Model 1 0.53–0.92

UniChill 1 0.53–0.9

UniForc 1 0.29–0.84
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Table 5. Cont.

Reference Biome Type Location,
Spatial Scale Model Type RMSE [Days] R2 Bias [Days]

[23] deciduous
broadleaf forest

USA, site level
evaluation

Sequential-, Parallel- and
Alternating Model 2 5–17 0.06–0.581

USA,
continental-scale

evaluation
Alternating Model 2 5–8 0.36–0.49

[33]

15 biome types
including

deciduous and
evergreen forests,

grasslands,
shrublands,

savannas

Northern
Hemisphere, 500
× 500 m

WM 20 ± 19 0.67

Number of Growing Days
model 19 ± 18 0.73

Number of Chilling
Days-Growing Degree Day

model (CWM)
22 ± 20 0.61

Biome-BGC 5–11 0.68

[65]
deciduous and
evergreen tree

species

Pyrenees
Mountains,

individual based

UniFord 1 6.29–10

UniChill 1 6.72–9.07

phototermal endo-
ecodormancy model 5.85–9.45

[66] Larch

8 sites in the Alps
with wide
altitudinal

distribution

optimised WM 4 0.9

optimised GSIM 5 0.92

original GSIM 27 0.92

[67]
deciduous and
evergreen tree

species

western France,
individual based

models based on forcing or
both forcing and chilling

temperature
2.6–9.4 −0.5–2.4

[68] grasslands western USA,
0.125◦ × 0.125◦

WM 41.6–45.3 0.04–0.087 −39.6–−35.1

modified WM 16.4–18.9 0.43–0.84 0.2–8.2

Sequential Model 2 18.9–19.9 0.49–0.54 1.3–5.8

Parallel Model 2 18.5–19.9 0.35–0.42 1.5–5.8

GSIM 44.2–67.8 0.51–0.59 33–36.2

Accumulated GSIM 17.1–18.5 0.86-0.91 1.2–7.8

this study mixed landscape regional scale,
1/12◦ × 1/12◦

CWM 6.5–18.7 0–0.24 −11.6–10.9

WM 7.6–19 0–0.40 −12.5–11.5

GSIM 8.6–23.2 0–0.27 −20–9
1 Unified model is a generalised model to simulate vegetative or reproductive phenology of trees (chilling and forcing are both included).
Its simplified versions are thermal ecodormancy models UniChill and UniForc. 2 Chilling models with different type of formulations
(sequential, alternating, parallel).

4.4. Model Selection Versus Meteorology Database Selection

Phenology models are known to be sensitive to the choice of the forcing data [25],
but this is the first study that compares the relative importance of the model and driv-
ing meteorological dataset selection. Due to the recent advances in the construction and
dissemination of meteorological information, today’s users typically have access to a
number of different meteorological databases to drive their models. Similarly, a large
variety of phenology models is available (e.g., [13]). Previous studies comparing dif-
ferent spring phenology models [5,13,14,33,69] show large variation in their capacity to
predict SOS, with a clear need for further investigation [4,69]. In summary, phenology
modelers can and have to make decisions on the model-meteorology combination for
practical applications.

We show that the following different model-dataset combinations are best suited to
represent varying aspects of spring pant phenology: SOS climatology (WM driven by
CarpatClim), IAV (WM driven by FORESEE), and SOS trend (GSIM driven by Carpat-
Clim). We further show that the SOS estimation performance is strongly affected by model



Atmosphere 2021, 12, 963 16 of 20

selection and also by the choice of meteorological dataset. This implies that a detailed
evaluation of model performance is needed, preferably using pre-determined and clearly
defined performance metrics. Additionally, multiple meteorological datasets should be
tested, despite the demand for computational capacity and extensive data handling. The
IID method to quantify the relative importance of model and meteorology dataset selection
for the accuracy of the prediction seems to have performed well and clearly indicated
environments where preference to either selection should be preferred.

As Figure S2 of the Supplementary Material illustrates, model selection was more
important than the meteorology database selection in most of Hungary, although there are
notable exceptions. For example, model selection was not the dominant factor in the regions
concentrated in the mountainous areas. This is interesting because spatial interpolation
of meteorological data over complex terrain suffers from significant issues [70,71]. Some
climate datasets may be able to represent rugged topography better than others, bringing
the choice of the dataset to the fore. In the case of Hungary, which does not have high
mountains (1015 m is the highest point of the country), the choice of phenological model is
clearly more important, but this may not be the case in every environment or if performing
studies over large areas. The selection of a suitable driving dataset may therefore be
critical in some circumstances; however, such a determination is beyond the scope of the
current study.

5. Conclusions

This study evaluated the influence of model and climate dataset selection on the accu-
racy of the start of leaf onset prediction using Hungary as a case study. To our knowledge,
no similar study exists that uses multiple phenology models and driving meteorological
datasets together with observation-based SOS estimates with the evaluation of the relative
importance of model structure and driving meteorology. We provide information sup-
porting model selection and provide a reference dataset and model parameters for future
studies. Generalization of the presented methodology at large spatial scales (e.g., in the
context of GCMs and ESMs) needs further research focusing on other PFTs as well.

No single model-dataset combination could be selected as clearly superior to the
others. Our evaluation based on the newly developed IID index suggests that climate
dataset choice may be more important when high environmental variation is expected at a
small scale. However, in most cases, the choice of the model structure is more important
than the selection of the forcing meteorological database. Current and future climate
datasets should be evaluated for their applicability to phenological research prior to their
use in driving models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12080963/s1, Figure S1: Relationship between the observation-based and the WM based
annual median SOS dates for the 1982–2010 time period. Error bars represent +/− one standard
deviation of the NDVI3g-based SOS estimations. The equation of the fitted line is also presented
(R2 is significant with a p-value < 0.0001)., Figure S2: R2 map based on the FORESEE-driven WM and
the observations for the 1982–2010 time period., Figure S3: Frequency distribution of the pixel-based
decadal trend values for the different models and the different driving datasets per model. The
NDVI3g-based trend is presented in all plots to provide a reference. The plot was constructed with
data from all elevation classes together. Table S1: Performance metrics for the SOS climatology
maps. RMSE and bias are expressed by DOY, while R2 is unitless. Table S2: Performance metrics for
the calculated annual median SOS dates relative to the observation-based results. RMSE and bias
are expressed by DOY, while R2 is unitless. Table S3: Additional statistical information about the
interannual variability of SOS calculated at the individual pixel level. The 5th and 95th percentiles of
the pixel level statistics are presented. RMSE and bias are expressed by DOY, while R2 is unitless.
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