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Abstract: Optimal uptake of micronutrients (B, Cu, Fe, Mn, and Zn) and managing the potentially
toxic elements (PTEs) (Co, Cr, Ni, Pb, and Sr) in the ranges not detrimental to plant function may
be linked to improving plants’ healthy growth and the ability to provide ecosystem services. We
investigated concentrations, mobility, and potential availability of potentially toxic elements (PTEs)
in soil samples from polluted and non-polluted municipal parks in Reading (UK) and Belgrade
(Serbia) and their impact on elemental concentrations in Tilia leaves. We aimed to identify common
limiting factors potentially affecting the growth/healthy function of this widely-used tree species.
Levels of all elements in soil were below limits established by the directive of European Communities,
except for Ni at Belgrade sites. Content of Co, Cr, Cu, Fe, Ni, Pb, and Zn in soluble fraction at
all locations was <10%, indicating low mobility; B showed moderate mobility (11.1–20.7%), Mn
(6.5–55.6%), and Sr—high (44–76.3%). Principal Component Analysis of Tilia leaf tissues showed
a different capacity for uptake/accumulation of PTEs in different locations. Findings indicate the
complexity of local edaphic influences on plants’ elemental uptake and the risk of those leading to
deficiency of important micronutrients, which may impede trees’ function and thus the ability to
optimally provide ecosystem services.

Keywords: lime trees; potentially toxic elements (PTEs); optimized BCR sequential procedure; PTEs
fractionation profile; urban parks; urban soils

1. Introduction

Urban areas are experiencing rapid population growth worldwide, with >80% of
Europeans expected to live in urban areas by 2030 and 68% globally by 2050 [1,2]. This,
coupled with negative environmental impacts of anthropogenic activities in urban areas
(industrial activity, traffic, and energy use), causes densely populated urban areas in Europe
to face environmental health challenges, including air pollution and contamination of water
and soils. Pollution in urban soils has been recognized as one of the major concerns at
local, regional, and global levels due to the impacts of the soil contaminants on human
health as well as their disruption to the geochemical cycling of the urban ecosystems [3,4].
Contamination by the potentially toxic elements (PTEs) also causes environmental issues
related to the toxicity, abundance, persistence, and bio-accumulative character of these
compounds [5,6].

Cities are becoming regional sinks for resource consumption and sources of chemical
emissions which results in elevated concentrations of PTEs but also the deficiency of certain
essential elements due to the changed balance of the biochemical and geochemical cycles
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of chemical elements in urban soils [7,8]. Particularly, urban soil plays a role of a scavenger
agent and adsorption sink for PTEs because once introduced in the urban environment;
they persist in soils over long periods [9–12]. Additionally, soils in urban areas often
have a changed structure, physical and chemical characteristics, and low concentrations
of essential elements [13]. PTEs in urban soils originate from multiple sources, lithogenic
(i.e., natural) and anthropogenic [7,14]. They tend to accumulate at, or close to, the soil
surface, and their mobility and bioavailability are dependent on their nature as well as
on the physical and chemical properties of the soil. Therefore the determination of total
concentrations can over- or under-estimate the risk to the urban environment, including its
impact on the urban vegetation [15–18]. The analysis of bioavailable fractions provides a
more realistic estimate of the pollutants’ potential impact on urban vegetation. One of the
main sequential extraction methods is the Bureau Community of Reference (BCR) protocol,
which entails four fractions [12,19]. However, from an environmental and ecological point
of view, the most important fractions of PTEs are the mobile ones, as they are easily
adsorbed and can be readily released if the environmental conditions are suitable (e.g.,
pH or redox potential) [20]. Therefore, analysis of urban soils is important since the
chemical composition of soil reflects both the soil lithogenic and the anthropogenic inputs
of pollutants from industrial facilities and traffic. So far, most research has focused on the
influence of the labile fraction of heavy metals in soil on bioavailability [8,17,21–23], with
only a small number of studies discussing the effects of the fractionation of PTEs in soils
(especially acid-soluble, oxide-bound, organic matter-bound fractions) as a factor of the
bioaccumulation of elements by plants in urban sites. It is recognized that the labile fraction
determined by sequential extraction can enter plants easily; thus, the ecological effect of
potentially toxic elements is closely related to mobility and speciation of these chemical
elements [8,24–26]. The most easily exchangeable fraction for each element associated with
soil poses the highest risk because it may accumulate in plants in toxic concentrations.
Distribution and geochemical speciation of PTEs in soil could help predict the transfer
of PTEs from soil to plants and to assess the risks associated with the accumulation of
these elements in plants; therefore, the bioavailable concentrations rather than the total
concentrations should be used [22,27]. The fractionation of chemical elements in soils as a
factor of the bioaccumulation of elements by plants has recently attracted the attention of
researchers by using BCR sequential extraction procedure for the study of metal availability
to plants [28,29].

Vegetation in urban environments, including trees, provides multiple ecosystem
services—not least localized cooling, storm water mitigation, noise abatement, and impacts
air quality [30,31]. However, this is dependent on plants remaining healthy, physiologically
active, and growing to their full capacity. In terms of air quality improvement by vegetation,
much research focused on leaf and canopy traits that can be linked to efficient removal of
particulate pollution [32,33] but also green infrastructure forms, which are most efficient
in urban context [34]. More linear types of vegetation (green facades, hedges) have been
suggested as preferential in narrow street canyons, but urban trees still remain important
positive environmental contributors in parks and public open spaces where the creation
of a canyon effect (and consequent trapping of pollutants) is unlikely to happen [35]. The
extent of the role of vegetation in the reduction and removal of airborne particulate matter
is debated, with recent studies suggesting that the key measures for pollutant reduction
should include reduction of sources, with vegetation viewed as a smaller contributor [36].
However, even when canopy sequestration of airborne pollutants is relatively small—
vegetative surfaces do attract particulates (including heavy metals and other PTEs) and
transfer these compounds into litter and soil (e.g., by rainfall) [37]. This poses the question
of how those compounds are redistributed and mobilized in the soil. Plants in urban
ecosystems can reflect the PTEs’ pollution both in soil and atmosphere, enabling the
biomonitoring of pollution over long periods to quantify pollution parameters and identify
the spatial and temporal distribution patterns of the pollutants [37–39]. In the case of
trees, the PTEs uptake takes place in the leaves and roots and is controlled by the species
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characteristics, the concentration of metal, as well as the solubility and bioavailability of
the metals [40,41]. Therefore, the use of PTEs as indicators of soil pollution in polluted
habitats is widespread due to the visible and measurable effects they have on plants [42].
The species of Tilia genus have been often used as biomonitors of trace elements in urban
and industrial environments and for large-scale surveys [37,43–45]. Within the present
study, we aimed to investigate concentrations, mobility, and the potential availability of a
range of PTEs in soil samples from polluted and non-polluted municipal parks in Reading
(UK) and Belgrade (Serbia) within and between the cities. Lime trees were selected as the
target species since they were available in all investigated sites. The lime tree (Tilia sp.) is a
popular tree for landscaping and urban environments in central and northwest European
countries [46]. Soil samples were analyzed by using a sequential extracting procedure, thus
allowing us to differentiate and characterize bioavailable fractions of PTEs and permitting
us to evaluate their potential toxic effects on urban vegetation, especially long-living
plants such as lime trees. Investigated soils belong to the same type of urban soils, which
differ greatly from natural ones, given the fact that they are located in areas of intense
human activity, which results in changes in the original physical, biological, and chemical
properties of the soil [47]. Intensive soil management in cities worldwide often create
man-made soil, sometimes with the soil of unknown origin; therefore, these urban soils are
considered technogenic soils (Technosols, WRB), [48,49] in those cases where the human
impact on their structure is greater than that of natural processes, particularly in topsoil
layers (0–10 cm) [50–53].

The fractionation of chemical elements in soils as a factor of the bioaccumulation
of elements by plants has recently attracted the attention of researchers by using BCR
sequential extraction procedure for the study of metal availability to plants [28,29]. In this
regard, the presented research is the result of scientific collaboration showcasing two case
studies from different cities aiming to promote BCR sequential extraction procedure for the
study of PTEs availability to urban trees as a valuable approach in urban environmental
pollution research and application.

2. Materials and Methods
2.1. Study Areas

Samples’ collection was carried out in two European cities: Belgrade (Serbia) and
Reading (United Kingdom) (Figure 1). In each city, two sampling sites were selected:
municipal parks in the city centers under the influence of direct sources of traffic pollution
(polluted) and municipal parks away from direct sources of pollution (unpolluted).

In Belgrade, Bristol Park (Belgrade polluted site-BP) (1.2 ha) was chosen as the polluted
site because it is located in close vicinity to several major traffic roads, including two bus
stations for national and international traffic as well as a railway station (data provided by
City of Belgrade-City Secretariat for public transport), all under high traffic intensity, with
30,692 vehicles passing by per day, and 2140–2368 vehicles during rush hour. Arboretum
Park (Belgrade unpolluted site-BU) of Faculty of Forestry (6.7 ha) is a protected natural
area and important archive of native and non-native tree species [54], situated within the
zone of mixed Quercuetum frainetto cerris Rudski. This forest park was selected as the
unpolluted site due to the large distance from direct sources of pollution and from the
city center. In Reading, for the polluted site (Reading polluted site-RP), a tree-lined street
perimeter around the University of Reading (Pepper Lane entrance) in an area around
the University’s campus with high to moderate traffic intensity during the work hours
(3000 vehicles per hour) was selected. The sampling area of the Reading polluted site was
approximately 0.5 ha. The botanical garden of the University of Reading (Reading Park—
Harris Garden, Reading unpolluted site-RU), which is located 3 km away from the town,
was selected as an unpolluted site. The garden is an area of 4.9 ha, and includes several
ponds and streams, meadows and gardens of different purposes, as well as woodland.
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2.2. Sample Collection

At each of the four sampling sites, three sampling locations for plant material of
Tilia sp. and associated soil sampling were selected (Belgrade polluted site-BP: BP-1,
BP-2, and BP-3; Belgrade unpolluted site-BU: BU-1, BU-2, and BU-3; Reading polluted
site-RP: RP-1, RP-2, and RP-3; Reading unpolluted site-RU: RU-1, RU-2, and RU-3). The
sampling methodology was compatible with the methodology of empirical sciences, and
when selecting the sampling sites, special care was taken to ensure that they were all
approximately equidistant from the main sources of pollution and that the same baseline
conditions applied to each of them. From each location, leaf samples of Tilia sp. were
collected from five randomly chosen trees (50 g per tree) of the same age (20–30 years old)
and at 1.5 m height from four quarters of the tree crowns. Soil sampling was carried out at
the five points in the root zone of each tree (250 g under each tree), from a depth of 0–10 cm,
with stainless-steel tools. Small stones, plants, and other foreign objects from soil samples
were removed by hand. Leaf samples from Tilia sp. tree and their associated soil from each
sampling location were then mixed, resulting in one composite sample of Tilia sp. leaves
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and corresponding soil per sampling location [10,55–57]. Samples were collected in June
2017. In the laboratory, each representative plant and soil sample was air-dried at room
temperature to constant mass, ground in a laboratory mill, and sieved through a 2 mm
nylon sieve. The prepared samples were then used for analysis.

2.3. Soil and Plant Analysis

In the laboratory, the soil samples were air-dried and passed through a 0.25 mm
stainless sieve, including blank sieving, prior to chemical analysis. Electrical conductivity
(EC, dS m−1) and pH in a 1:5 soil/water ratio was measured in composite soil samples
representative of the areas being sampled [58]. For PTEs analysis, all the subsamples were
homogenized to make composite samples. Soil samples (0.5 g) and plant samples (0.3 g)
were air-dried prior to mineralization and transferred into Teflon (iPrep) vessels. Soil
mineralization was conducted through wet digestion, using USEPA 3050B method [59],
with plant samples digested using USEPA 3052 method [60] in the microwave oven. The
final extracts were filtered and transferred into 50 mL volumetric flasks and then diluted
to the mark with deionized water. To assess the mobility and availability of PTEs (B, Co,
Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in soil, sequential extraction was performed using the
optimized BCR procedure involving four steps [19,61]. The first step determined a fraction
of metals that were exchangeable or associated with carbonates (acid-soluble/exchangeable
fraction); the second was the fraction of metals associated with oxides of Fe and Mn
(reducible fraction), the third was the fraction of metals associated with organic matter and
sulfides (oxidizable fraction), and the fourth was the residual fraction or fraction of metals
that strongly associated with the crystalline structure of minerals (residual fraction). The
pseudo-total metal concentrations in soil samples were calculated as the sum of the metal
concentrations in all four fractions.

2.4. Chemicals

All reagents used for plant digestion, as well as for BCR sequential extraction, were
of analytical grade (Merck, Darmstadt, Germany). ICP-multi-element standard stock
solutions (concentration of elements, 1000 mg L−1 in diluted nitric acid) used to prepare
standard solutions for ICP-OES analysis were also obtained from Merck.

2.5. Instrumentation

A Chyo JK-200 analytical balance (Japan) was used for all weighing and a labora-
tory mill Cullatti Typ MFC (Kinematica AG, Switzerland) for samples’ homogenization.
An inoLab® 7110 pH meter (WTW, Germany) and Knick (Germany) Portamess 911 Con-
ductometer were used to measure pH and electrical conductivity (EC). CEM MARS 6
Microwave Acceleration Reaction System (Matthews, NC, USA) was used for the digestion
of plant samples. An end-over-end mechanical shaker and a centrifuge Sigma 2–16 KL
(Sigma, UK) were used for extraction and separation of extractants from residues in the
sequential extraction procedure. Concentrations of PTEs in plant and soil samples were
determined by inductively coupled plasma optic emission spectrometry (ICP-OES, Spectro
Genesis, Spectro-Analytical Instruments GmbH, Kleve, Germany).

2.6. Quality Control

Quality control and quality assurance of the analytical data was performed by us-
ing the standard reference material for leaves—Beech leaves—BCR—100, and certified
reference material for soil—BCR-701 (Institute for Reference Materials and Measurements—
IRMM, Geel, Belgium), as well as by analysis of both reagent blanks and replicates. The
recovery values were within 95.0%–110.0% for leaves and within 84.1%–107.2% for soil,
demonstrating a good agreement between the measured and certified values. The relative
standard deviations of triplicate measurements were <10%. The detection limits for the
analyzed elements in the soil samples were as follows (mg kg−1): B-0.0003, Co-0.0006,
Cr-0.0011, Cu-0.0007, Fe-0.0081, Mn-0.0006, Ni-0.0003, Pb-0.0042, Sr-0.0001, and Zn-0.0061.
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2.7. Determination of the Mobility Factor (MF) and Bioaccumulation Factor (BAC)

In this study, the PTEs mobility (MF) has been calculated using Equation (1), as
proposed by Kabala and Singh [62]:

MF =
F1

∑ F
× 100 (1)

where F1 is the concentration of a PTE extracted in the acid-soluble/exchangeable fractions,
and ΣF represents the sum of that PTEs concentration in all the fractions.

Bioaccumulation factor (BAC) as index of the ability of the plant to accumulate a
particular element with respect to its concentration in the soil substrate was calculated
as follows:

BAC = Clea f /Csoil (2)

where Cleaf—leaf PTE concentration (mg kg−1, DW); Csoil—soil PTE concentration (mg kg−1,
DW), with BAC > 1 suggesting that a plant is a PTE accumulator.

2.8. Statistical Analysis

One-way analysis of variance (ANOVA) was performed to test the differences in PTEs
accumulation in soil samples and Tilia sp. leaves, both from polluted and unpolluted sites
(subsequent tests of normality by the Shapiro-Wilk W test and Levene’s test of homogeneity
of variances showed non-significant values for all the reported ANOVA breakdowns), and
means were separated with Bonferroni test. Principal component analysis (PCA) was
performed to detect differences between analyzed sites and Tilia sp. trees that grow at
these sites based on the variations in the concentration of PTE in soil and leaves, as well
as to establish the possible sources of toxic elements in the soil. This analysis included
data on the concentration of all examined elements, and only main components with
Eigen values > 1.0 were considered. To test the correlation between the variables, Varimax
rotation with Kaiser’s normalization was carried out. Correlation analysis was used to
establish the inter-elemental relationship between soil and leaf samples. All statistical
analyses were performed using the SPSS software package, Version 21, and program
package Statistica [63].

3. Results and Discussion
3.1. Soil Properties

Soils have many ecological functions, including carbon absorption, water retention,
and as an environment for microorganism growth. However, urban soils are routinely
degraded, resulting in a negative impact on plants. Common issues associated with urban
soils include compaction, water shortages (e.g., due to surface runoff), increased soil
temperature, salinity, pollution, increased pH, and also the deficiency of organic matter and
essential elements deficiency, depriving the service function of soil [64]. Soil pH has a great
influence on soil chemical processes which determine the behavior of pollutants because
the solubility of some elements tends to increase at lower pH and decrease at higher pH
values [21,24,26,65,66]. Earlier work, including our own, showed reduced solubility of
some PTEs in alkaline urban soils [8,10,67,68]. In this study, differences in pH and EC
between sampling sites were evident; pH values in Belgrade ranged from 7.6 at BP-1 to
7.9 at BU-3, which classifies these soils as slightly alkaline (pH 7.4–7.8), while in Reading,
it varied from 6.1 at RU-3 to 7.1 at RU-1, which classifies these soils as slightly acidic
to neutral (pH 6.1–7.3, Table 1 and Table S1 provided in Supplementary Material) [69].
The concentration of total soluble salts (measured by EC) in the examined soils ranged
from 0.111 at BP-2 to 0.246 dS m−1 at AP-2 in Belgrade City, while higher values were
measured in Reading urban sites, in the range of 0.226 to 0.605 dS m−1 (at RU-2, RP-3,
respectively, Table 1 and Table S1). These results indicate that the content of soluble salts in
examined soils should not have a negative impact on the plants’ growth due to EC values
of <4 dS m−1 [69,70]. Possible reasons for the pH > 7 in the examined soils include, in
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particular, the release of alkaline leachates from calcareous materials and decomposing
organic waste [71]. In addition, alkaline conditions in the soil, particularly in Belgrade, may
be linked with widespread practice to add construction waste materials into soils during
construction of urban parks, e.g., calcium carbonate or calcium-magnesium carbonate in
gravel, tiles, cement, concrete, mortar, etc., or to the atmospheric deposition of alkaline
material from industry such as coal combustion and waste incineration [8,72,73] while in
terms of EC, it could be related to using of NaCl and CaCl2 for de-icing in winter, as well as
Ca-rich irrigation water during dry and hot summers which can also result in an increase
of pH [74].

Table 1. Mean values and standard deviation in parenthesis of pH reaction and electrical conductivity (EC) in studied
urban soils (i.e., polluted and unpolluted sites in Belgrade and Reading). BP and RP represent polluted, while BU and RU
represent unpolluted sampling sites.

BP-1 BP-2 BP-3 BU-1 BU-2 BU-3 RP-1 RP-2 RP-3 RU-1 RU-2 RU-3

pH 7.6
(0.2)

7.7
(0.1)

7.6
(0.1)

7.8
(0.0)

7.8
(0.1)

7.8
(0.2)

7.1
(0.2)

6.8
(0.4)

6.8
(0.1)

6.5
(0.3)

6.30
(0.4)

6.1
(0.5)

average 7.6
(0.1) a

7.8
(0.1) a

6.9
(0.3) b

6.3
(0.4) c

EC 0.186
(0.015)

0.111
(0.009)

0.208
(0.02)

0.168
(0.00)

0.246
(0.03)

0.183
(0.02)

0.579
(0.041)

0.541
(0.032)

0.605
(0.045)

0.265
(0.02)

0.226
(0.01)

0.230
(0.015)

average 0.168
(0.046) b

0.199
(0.040) b

0.575
(0.044) a

0.240
(0.023) b

3.2. Concentration and Fractionation Profile of Selected Elements in Soil

Studies in different cities around the world routinely show that urban soils are subject
to anthropogenic disturbance; however, these surveys are difficult to compare due to a lack
of common sampling and analytical protocols. In this study, the urban soils of Reading and
Belgrade were sampled and analyzed using the same sampling and analytical procedures.
The pollution of urban soils with PTEs was estimated by determining the pseudo-total
content of PTEs, including micronutrients (B, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn), which
are listed as priority substances in the directive of European Communities and Background
Values in European Soils [75,76]. Concentrations of all measured elements are provided
in Table 2 and Table S2 (provided in Supplementary Material), and their partitioning into
four BCR fractions are provided in Figure 2. Broadly, Belgrade sites (both polluted and
unpolluted) had higher concentrations of B, Co, Cr, Mn, and Ni compared to Reading
sites. Conversely, concentrations of Cu, Zn, and Sr were significantly higher in the Reading
polluted site compared to all other sites in both cities.

The pseudo-total concentrations for B varied widely, from 19.5 mg kg−1 at RU-3
location to 73.7 mg kg−1 at BU-3, with levels above the average values for worldwide
soils (22–40 mg kg−1 [24]) measured at all sites, aside from locations RU-2 and RU-3. In
Belgrade, B concentrations were somewhat higher in unpolluted soils, unlike in Reading,
where polluted soils had several-fold higher concentrations. Gawlik and Bidoglio [76] do
not propose limit values in soil for B, perhaps because high B content does not necessarily
mean an environmental risk as the multiple factors influence the quantities, bioavailability,
and the distribution of B in the soils. The highest content of B in samples from Belgrade
was found in residual fraction (52.0–87.2%), while the rest was distributed mainly between
the acid-soluble/exchangeable (3.1–20.7%), the reducible (6.3–15.7%), and the oxidizable
fractions (3.27–17.93%). However, in soil samples from Reading, significant amounts of
B were found in the first three fractions (approximately 50%), indicating its moderate
mobility, implying potential availability to plant uptake [77].
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Table 2. Mean values and standard deviation in parenthesis of pseudo-total element concentrations (mg kg−1 d.w.) in
studied urban soils (i.e., polluted and unpolluted sites in Belgrade and Reading). BP and RP represent polluted, while BU
and RU represent unpolluted sampling sites.

B Co Cr Cu Fe Mn Ni Pb Sr Zn

BP-1 62.7
(0.61)

8.1
(0.07)

23.3
(0.28)

21.0
(0.22)

27,832.1
(23.22)

511.50
(6.31)

29.2
(1.03)

8.7
(0.77)

10.2
(0.95)

49.3
(0.51)

BP-2 56.3
(0.48)

7.6
(0.06)

21.2
(0.22)

18.0
(0.22)

24,076.5
(16.95)

502.0
(5.47)

25.9
(0.52)

10.8
(0.84)

7.4
(0.63)

34.1
(0.34)

BP-3 65.0
(0.52)

8.3
(0.09)

23.3
(0.24)

21.0
(0.31)

28,062.4
(11.36)

530.8
(4.38)

28.6
(0.11)

7.9
(0.69)

9.5
(0.78)

40.2
(0.51)

BP
average

61.3
(3.95) ab

8.0
(0.31) b

22.6
(1.04) b

20.0
(1.49) c

26,657.0
(1938.01) a

514.8
(13.53) a

27.9
(1.64) b

9.2
(1.43) d

9.0
(1.44) c

41.2
(6.60) b

BU-1 64.5
(0.64)

9.3
(0.07)

30.0
(0.19)

23.1
(0.33)

25,591.1
(13.01)

517.9
(3.89)

46.4
(0.56)

25.4
(0.21)

23.3
(0.12)

52.8
(0.48)

BU-2 69.1
(0.65)

9.8
(0.25)

34.0
(0.40)

23.3
(0.20)

26,823.3
(14.00)

532.1
(5.22)

62.1
(0.70)

27.6
(0.30)

31.1
(0.35)

51.5
(0.66)

BU-3 73.7
(0.69)

10.3
(0.14)

38.1
(0.32)

23.5
(0.19)

28,055.6
(14.13)

546.3
(4.01)

77.7
(0.67)

29.9
(0.17)

39.0
(0.41)

50.1
(0.49)

BU
average

69.1
(4.01) a

9.8
(0.45) a

34.0
(3.53) a

23.3
(0.28) b

26,823.3
(1067.22) a

532.1
(12.91) a

62.1
(13.54) a

27.6
(1.95) b

31.1
(6.79) b

51.5
(1.25) b

RP-1 48.1
(0.45)

8.2
(0.07)

8.0
(0.67)

35.2
(0.33)

11,976.3
(5.63)

433.2
(3.28)

13.9
(0.14)

138.9
(1.44)

46.8
(0.52)

129.3
(0.33)

RP-2 53.5
(0.52)

8.5
(0.06)

9.1
(0.87)

39.6
(0.28)

14,738.8
(2.88)

426.7
(2.22)

16.6
(0.63)

137.1
(1.28)

44.7
(0.36)

147.5
(0.52)

RP-3 60.0
(0.63)

9.0
(0.09)

8.8
(0.91) 39.20.42) 14,813.8

(1.78)
462.8
(2.95)

15.6
(0.114)

147.0
(2.01)

50.2
(0.43)

134.1
(0.26)

RP
average

53.9
(5.19) b

8.6
(0.35) b

8.7
(0.87) c

38.0
(2.11) a

13,843.0
(1400.36) b

440.9
(16.84) b

15.4
(1.26) c

141.0
(4.75) a

47.2
(2.43) a

137.0
(8.19) a

RU-1 22.8
(0.18)

1.7
(0.09)

5.2
(0.52)

5.8
(0.44)

5878.9
(3.56)

180.7
(1.88)

2.2
(0.23)

18.7
(0.96)

5.2
(0.47)

25.8
(0.17)

RU-2 20.0
(0.19)

1.6
(0.12)

5.1
(0.49)

7.6
(0.67)

5525.9
(14.52)

164.1
(1.56)

2.3
(0.32)

18.0
(0.89)

4.1
(0.33)

24.2
(0.17)

RU-3 19.5
(0.21)

1.7
(0.19)

5.1
(0.55)

6.8
(0.58)

5537.9
(10.78)

159.3
(1.84)

1.9
(0.96)

18.3
(0.85)

3.4
(0.29)

23.4
(0.18)

RU
average

20.8
(1.57) c

1.7
(0.13) c

5.1
(0.46) c

6.7
(0.92) d

5647.6
(173.80) c

168.0
(9.87) c

2.2
(0.55) d

18.4
(0.83) c

4.2
(0.87) c

24.5
(1.09) c

(ANOVA—Bonferroni); Different letters in the same column indicate significant differences between sites at p < 0.001 level.

In the present study, the concentration of Co in the soil exhibited considerable vari-
ability, ranging from a minimum of 1.6 mg kg−1 RU-2 point to a maximum of 10.3 mg kg−1

at BU-3. Similar to B, in Belgrade, higher concentrations were recorded in an unpolluted
site, while in Reading, it was the opposite. At Reading unpolluted site-RU, at all sampling
points, all measured concentrations were below, while at Belgrade polluted site-BU, Read-
ing polluted-RP and Belgrade unpolluted-BU sites except point BU-3 (10.3 mg kg−1) were
within the range of average values for worldwide soils (5.5–10 mg kg−1 [24]). As is the case
with B, the European Council Directive does not propose limit values for Co content in
soil [75,76]. Concentrations of Co were generally similar to those previously found in urban
soils of Belgrade (12.0–41.6 mg kg−1, [78]), Palermo (1.5–14.8 mg kg−1 [79]), and Madrid
(5.3–12.1 mg kg−1 [80]). Furthermore, the fractionation profile of Co varied between the
samples. The dominating chemical form of Co at all the sampling points in Belgrade
was associated with the reducible fraction (41.2–51.8%), followed by the residual fraction
(40.4–45.3%). The oxidizable fraction also had a considerable presence of Co (4.8–8.5%).
The relatively high percentage of Co in the reducible fraction is to be expected due to the
very high absorption capacity of Co by Mn oxides [81,82]. However, in the soils from
Reading, a different fractionation profile for Co was observed, especially in soil from Read-
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ing unpolluted site-RU where its significant part was found in acid-soluble/exchangeable
fraction (20.5–21.1%), indicating its bioavailability despite its very low level in the soil.
The slightly acid reaction of the soil in Reading unpolluted site-RU could have been the
reason for the higher content of Co found in the acid-soluble/exchangeable fraction, given
the fact that the dominant form of Co in nature (Co II) becomes more available in acidic
conditions [83].
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Pseudo-total Cr concentrations in Belgrade soils were also higher in unpolluted sites
compared to polluted, unlike Reading which had a higher Cr concentration in the polluted
site. Chromium concentrations varied from 5.1 mg kg−1 (RU-2 and RU-3) to 38.1 mg kg−1

(BU-3) and were below the mean values described for global as well as European soils
(47–51 mg kg−1 [24], 50–100 mg kg−1 [75,76]), at all the sampling points. Earlier studies
on urban soils in Belgrade [78], Madrid [80], and Palermo [79] also point to a variable Cr
content. The fractionation characterization of Cr at Belgrade unpolluted site-BU showed
that Cr is equally distributed between residual (34.1–61.5%), oxidizable (27.3–35.3%),
and reducible (10.5–28.6%) fraction with the lowest content of Cr extracted in the acid-
soluble/exchangeable fraction (0–2.0%). On the other side, all other sampling points
showed that the major portion of Cr was bound to the silicate lattice and crystallized
oxide minerals (65.1–73.6%), while the rest was associated with organic matter and sulfides
(20.8–33.7%) and iron and manganese oxides (0–6.3%). The content of Cr in the acid-
soluble/exchangeable fraction was very low—below the detection limit. These results
were indicative that Cr had a strong association with the insoluble fraction and, thus, it
was chemically stable and biologically unavailable for plants uptake [84]. Furthermore,
high content of Cr in residual fraction together with slightly acid to slightly alkaline pH
reaction indicate that in the studied soils, the dominant form of Cr is Cr (III), given the
fact that Cr (III) is poorly water-soluble and almost completely precipitates at a pH above
5.5 [78,83,85]. These results are in broad agreement with earlier studies [8,86,87].

Copper showed considerable variation in concentration, from 5.8 mg kg−1 at the RU-1
sampling point to 39.6 mg kg−1 at RP-2. Total Cu concentrations in Belgrade soils were also
higher in unpolluted sites compared to polluted, unlike Reading which had a higher Cu con-
centration in the polluted site. Copper content at all sampling points within Reading unpol-
luted site-RU was below-average values for worldwide soils as well as far below the normal
background of urban contaminated soils in England (190 mg kg−1 [88]), whereas its con-
tent in Belgrade unpolluted and Reading polluted sites was above it (13–23 mg kg−1 [24]).
Generally, the Cu content in soils is dependent on its content in ‘parent’ material but can
also reflect anthropogenic pollution in surface soils since it represents one of the most
serious environmental contaminants that is released from traffic and from processes in
the metal industry [89,90]. However, results obtained from the current study suggest
that Cu content in the soil does not constitute a threat to the environment since all were
below the limit values established by the directive of European Communities (50–140 mg
kg−1 [75,76]). The distribution of Cu fractions in soil samples from Belgrade sampling
sites indicate that the greatest proportion of Cu is associated with the residual fraction
(57.9–76.1%), while the rest is distributed mainly in organic matter and sulfides (8.7–35.1%)
and iron and manganese oxides (6.0–18.4%). A very small amount was associated with
the acid-soluble/exchangeable fraction (0.6–1.3%), which is in good agreement with pre-
viously reported by Yutong et al. [91], Figure 2. In contrast, in soil from Reading, the
highest portion of Cu was associated with organic matter and sulfides (41.9–62.4%), and
the rest was distributed between residual (31.5–46.4%), reducible (3.6–11.0%), and acid-
soluble/exchangeable (2.1–4.2%) fractions. It was previously reported that Cu in urban
soils is mainly bound to the organic matter and sulfides followed by the residual fraction,
and such modes of the occurrence of Cu may be due to the high affinity of Cu (II) to humic
organic matter [92,93].

The Fe content in soil mostly depends on its content in parent material, but can also
reflect anthropogenic pollution in surface soils, given the fact that dust produced in the
industry process contains Fe, Zn, Ca, and Si in the form of oxides [90], which can be
easily transferred to soil. The concentration of Fe in selected soil samples ranged from
5525.9 mg kg−1 at RU-2 to 28,062.4 mg kg−1 at BP-3. In Belgrade soils, Fe concentrations
were similar between the unpolluted and polluted sites, unlike Reading which had a
higher Fe concentration in the polluted sites. The highest concentration of Fe in studied
soils was obtained in residual fraction (70.9–93.5%), suggesting that metals were strongly
bound to the crystalline structures of the soil minerals and potentially unavailable to
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plants [94]. The rest of Fe was associated with organic matter and sulfides (1.8–12.9%)
and with iron and manganese oxides (4.7–16.1%). The lowest amount was extracted
in the acid-soluble/exchangeable fraction (up to 0.4%), which confirms the results of
previous studies [87,95–97]. In soil samples from Reading, somewhat higher Fe content
was extracted in the first three phases of the sequential extraction in comparison with
samples from Belgrade, but not in a quantity that may represent a risk to urban ecosystems.

According to Kabata-Pendias and Pendias [24], mean Mn values in worldwide soils
range from 270 to 525 mg kg−1, while there is no data for limit Mn values for Euro-
pean soils [75,76]. In this study, the lowest amount of Mn was found at the RU-3 point
(159.3 mg kg−1), while the highest was measured at BU-3 (546.3 mg kg−1). In Belgrade, Mn
concentrations were somewhat higher in unpolluted soils, unlike Reading, where polluted
soils had several-fold higher concentrations. The highest Mn content in all soil samples
was obtained in the reducible fraction (32.1–70.2%), which was expected, given the fact that
manganese oxyhydroxides represent a principal target of the hydroxylammonium chloride
reagent [98]. The exceptions were soil samples from Reading unpolluted site-RU where
the highest portion of Mn had been extracted in the acid-soluble/exchangeable fraction
(53.1–55.6%), moderate in reducible (32.1–33.2%), and the rest in the residual (8.5–10.0%)
and oxidizable (3.6–4.1%) fraction. Fractionation profile for Mn showed that its content
in the acid-soluble/exchangeable phase in soil samples from Reading (36.1–55.6%) was
significantly higher compared to samples from Belgrade (6.5–18.9%), indicating that Mn
can be remobilized if environmental conditions change, thus could represent a potential
risk to the urban ecosystems [99]. The results obtained from soils both from Belgrade
polluted and unpolluted sites, as well as Reading polluted sites, were in agreement with
previous studies of urban environments [93,98,100], which also showed that reducible
form is the most important fraction for Mn. However, Lu et al. [96] reported that Mn is
uniformly distributed between the extractable, reducible, and residual fractions, while the
lowest amounts are associated with the oxidizable fraction, which was in line with results
from Reading unpolluted site-RU.

The Ni content in soil is highly dependent on its content in parent rock [24]. In the
present study, in Belgrade, Ni concentrations were higher in unpolluted soils, unlike Read-
ing, where polluted soils had several-fold higher concentrations. Nickel concentrations
varied widely, with the lowest values measured at RU-3 point (1.9 mg kg−1) and the
highest at BU-3 (77.7 mg kg−1). Nickel content, above the mean values for global soils
(13–26 mg kg−1 [24]) as well as the normal background Ni levels in urban contaminated
soils in England (42 mg kg−1 [88]), was measured at all points in Belgrade unpolluted
site-BU and at BP-1 and BP-3 points and was above limit values proposed by directive of
European Communities (30–75 mg kg−1 [75,76]) at the BU-3 point. In general, Ni content
in soil from Belgrade was significantly higher compared to Reading, which is the result
of the specific geological substrate in central parts of Serbia, including Belgrade. Namely,
the origin of Ni and Cr in the soil is determined by the geological substrate, showing an
increased content of Ni and Cr in soils formed on serpentine rocks in western Serbia and in
the valleys of large rivers, where they originate from pedogenetic processes of alluvium
formation [101]. Sequential BCR extraction proved variable distribution of Ni among the
fractions depending on the sampling site. The largest portion of Ni was bound to the
silicate lattice and crystallized oxide minerals (47.5–92.1%), while the rest was mainly
associated with iron and manganese oxides (4.1–32.6%) and organic matter and sulfides
(3.8–19.5%). The lowest portion of Ni was distributed in the acid-soluble/exchangeable
fraction (0–9.2%). However, Ni showed different distribution patterns at BP-1 and RP-2
points, where it was predominantly extracted in the residual fraction (90.5% and 92.1%,
respectively), indicating that Ni is insoluble and relatively immobile in the selected soil
samples. Furthermore, great amounts of this element in all samples from the Belgrade
unpolluted site-BU sampling site were found in the first three fractions (approximately
50%), indicating that under suitable conditions (salinity, pH, and redox potential), it could
potentially be released and represent a serious threat to the environment [99]. Irregular pat-
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terns of Ni partitioning in soils are not unusual in literature. For instance, Ghrefat et al. [86]
and Pavlović et al. [8] found that Ni was evenly distributed among residual, reducible,
and carbonates fractions, while much lower content was extracted in exchangeable and
organic matter fractions. Conversely, results obtained from other urban soil studies showed
residual Ni is the dominant fraction [86,96,98].

In this study, pseudo-total Pb soil content ranged from 7.9 mg kg−1 at BP-3 to
147.0 mg kg−1 at RP-3, and was significantly lower compared to results obtained for
London (approximately 294 mg kg−1 [102]), Glasgow (approximately 389 mg kg−1 [98]),
Palermo (approximately 202 mg kg−1 [79]) and Belgrade (approximately 252.9 mg kg−1 [78]),
and also within the proposed limit values for European soils (50–300 mg kg−1 [75,76]) and
normal background for Pb in urban contaminated soils in England (820 mg kg−1 [88]) at all
the examined sites. In Belgrade, Pb concentrations were somewhat higher in unpolluted
soils, unlike Reading, where polluted soils had several-fold higher concentrations. Lead
content above the mean values described for worldwide soils (22–27 mg kg−1 [24]) was
measured at points BU-2, BU-3, and at all sampling locations in Reading polluted site-RP,
probably due to motor vehicle emissions and particulate matter deposition [93,103]. The
fractionation profile of Pb was quite different from the above elements given the fact that
the highest proportion of Pb was bound to Fe and Mn oxides (42.7–88.0%), while both
oxidizable (7.8–26.0%) and residual (0.0–36.5%) fractions were equally represented in pro-
file. Furthermore, the smallest part of Pb was extracted in the acid-soluble/exchangeable
(0.0–5.1%) fraction. Such a result indicates that lead was mainly associated with the
inorganic soil fraction and could become available if weakly acidic conditions are estab-
lished [56]. These results coincide with the findings of Ramos et al. [104] that most of Pb
was associated with the reducible fraction in polluted soils in Spain, with very low amounts
in the exchangeable fraction. The tendency of Pb to be associated with Fe and Mn oxides
has also been widely reported in other studies in urban regions [98,100].

Strontium content in selected soil samples varied across a wide range from 3.4 mg kg−1

at RU-3 to 50.2 mg kg−1 at the RP-3 sampling point; however, they were below the mean
values described for global soils (87–210 mg kg−1 [24]), while directive of European com-
mission does not propose referent values for Sr in soils [75,76]. Similar to other elements
in Belgrade, Sr concentrations were higher in unpolluted soils, unlike Reading, where
polluted soils had several-fold higher concentrations. Due to the lack of relevant literature
data, it was not possible to compare the content of Sr in tested soils with the same in urban
soils of Europe and worldwide; however, our previous studies in urban areas indicate
that the content of Sr in the soil is within the average values described for worldwide
soils [10,57]. The highest difference, however, in relation to other studied elements is a very
high portion of Sr in the first two fractions of BCR sequential extraction. The portion of
Sr in acid-soluble/exchangeable and reducible fractions exceeds 90% in all soil samples,
except samples from soils in Belgrade polluted site-BP (75.3–81.3%). Furthermore, the
smallest part of Sr was associated with organic matter and sulfides (0.0–2.0%) and with the
silicate lattice and crystallized oxide minerals (0.0–24.7%). Such a fractionation profile of Sr
indicates its high mobility and potential bioavailability.

The pseudo-total Zn content ranged from 23.4 mg kg−1 at RU-3 point to 147.5 mg kg−1

at RP-2. In Belgrade, Zn concentrations were higher in unpolluted soils, unlike Read-
ing, where polluted soils had higher concentrations. A significantly higher Zn content
was found in Reading polluted site-RP, above the mean values described for world-
wide soils (45–60 mg kg−1 [24]) and below the proposed limit values for European soils
(150–300 mg kg−1 [75,76]). The higher content of Zn in soils at Reading polluted site-RP
sampling site was quite likely the result of motor vehicle emissions and other waste prod-
ucts from traffic given the fact that this site is the closest to the road in relation to other
sampling sites. Concentrations of Zn at this site was similar to previously determined in
urban soils in Belgrade (118 mg kg−1 [105]; 188 mg kg−1 [10]), Glazgow (177 mg kg−1 [98])
Madrid (210 mg kg−1 [80]), Naples (180 mg kg−1 [92]), and Torino (183 mg kg−1 [106]).
Fractionation profile for Zn varied with sampling site; in Belgrade, the dominant chem-
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ical form of Zn was associated with the silicate lattice, and crystallized oxide minerals
(56.7–80.5%), followed by the fraction of Zn bound to Fe and Mn oxides (14.2–31.1%) and
organic matter and sulfides (4.6–8.3%). The lowest portion of Zn at these sampling sites was
found in an acid-soluble/exchangeable (0.5–5.2%) fraction. This distribution was consistent
with those previously published by Lu et al. [96] and Yutong et al. [91]. In contrast, in
soil samples from Reading, the greatest proportion of Zn was found in the first two frac-
tions (63.8–76.3%). In percentage terms, this is followed by the acid-soluble/exchangeable
(15.2–34.2%) and residual (14.6–26.9%) fraction. These results indicate that in case of any
change in the environmental conditions such as pH, redox potential, etc., Zn can be easily
remobilized and become available for plant uptake [99].

3.3. Mobility Factor (MF) and Bioaccumulation Factor (BAC) of PTE

The mobility and bioavailability of elements in the soil are affected by physico-
chemical and biological properties of the soil, such as pH, organic matter content, cation
exchange capacity, soil texture, oxidation/reduction potential, plant and microbial activity,
and the distribution of metals among various soil fractions [21,28]. Elements that are
strongly bound to residual fraction have low mobility, and consequently, their availability
to the plants is low, while elements found in the oxidizable and reducible fractions are more
mobile and, under suitable environmental conditions, may become bioavailable. Elements
extracted in acid-soluble/exchangeable fractions are weakly bound to the soil and are most
mobile and easily bioavailable [93,107]. For estimation of element mobility in soils, relative
index or mobility factor (MF) representing a share of an element expressed in percentage
present in water/soluble, exchangeable, and carbonate fractions are often used [62,96,108],
which in the case of BCR sequential extraction represents a share of the element released
after the first step of extraction with 0.11 mol L−1 acetic acid [8,96,109].

The results for mobility factor values for B, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn
in soil samples are presented in Figure 3. mobility factor for all elements, except for Ni,
was higher in soil samples from Reading compared to Belgrade, indicating that they are
more readily available for plant uptake in Reading soils. Low mobility (<10%) and high
stability characterized the following elements: Co (except at Reading unpolluted sites-RU
sampling site 20.5–21.1%), Cr, Cu, Fe, Ni, Pb, and Zn (except in Reading) since they were
strongly connected to resistant minerals of the solid matrix with mobility factor less than
10% [107]. Moderate mobility characterized B (11.1–20.7%) in soil samples from Belgrade
unpolluted sites-BU, Reading polluted sites-RP and Reading unpolluted sites-RU, as well
as Zn (15.2–34.2%) in Reading. Among the studied elements, the highest mobility factors
were determined for Sr (44.0–76.3%) and Mn (6.5–55.6%). Such results can be interpreted
as the symptom of their high mobility and biological availability and can potentially affect
the healthy function of plants growing in that soil and, more broadly, the ecosystem health
in that location [93].

Results of BAC analyses/calculations suggest weak accumulation for most studied
PTEs, apart from B and Sr where BAC > 1 (Table S3, Supplementary Material). This
suggests that Tilia leaves are good accumulators of these two elements. Although great
progress has been made in the studies of phytoremediation of soils polluted with po-
tentially toxic elements, including heavy metals, its application is still very limited due
to the unavailability of suitable plant species, i.e., absence of hyperaccumulator trees in
urban habitats, and long growing seasons required. However, even if the tress cannot be
considered as hyperaccumulators, the trees grown on the highly polluted soils are valuable
phytoextractors able to extract toxic elements effectively or phytostabilizators to retain
these elements in roots [6,42,56].
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3.4. Elemental Concentration in Plant Leaves

Concentrations of B, Cu, Fe, Mn, Ni, Sr, and Zn from each sampling site are presented
in Table 3 and Table S2 (provided in Supplementary Material). Cobalt, Cr, Ni, and Pb were
not detected in Tilia sp. leaves, while Ni was measured only in leaf samples from Reading.
Of the tested elements Mn and Zn had the highest levels measured in leaves at Reading
unpolluted site-RU sampling site, followed by B and Sr in leaves in Belgrade polluted
site-BP and Cu and Fe in leaves in Belgrade unpolluted site-BU.

Boron content in Tilia sp. leaves varied widely from 36.9 mg kg−1 at RU-2 point to
231.5 mg kg−1 at BP-2 and was higher than its content in the soil. The results of one-way
ANOVA showed significant differences between both polluted and unpolluted sites. In
general, higher content of B was measured in Tilia sp. leaves in sites from Belgrade, indicat-
ing its close relation to the external B levels [110]. Boron uptake by plants mostly depends
on the soil pH, parent material, form of B, the content of organic matter, aluminum (Al) and
manganese (Mn) oxides, carbonates, transpiration rate, as well as climate and management
practices [24,77,111]. In addition, B is considered to be one of the most mobile elements,
where soil pH values above 6.5 increase its bioavailability for plants [24,112], therefore
elevated content of leaf B in Tilia sp. from Belgrade polluted site-BP (224.6–231 mg kg−1)
and Belgrade unpolluted site-BU (87.8–95.3 mg kg−1), as well as Reading polluted site-
RP (78.6–82.3 mg kg−1) was measured in comparison to the Reading unpolluted site-RU
(36.4–36.9 mg kg−1) with slightly acidic soil (pH 6.1–6.5). Boron is involved in a number of
metabolic pathways [113]. Some plant species, and to some extent, some cultivars within
species’ differ in the B tolerance [114]. Normal B content in plants varies between 10
and 100 mg kg−1, whereas symptoms of toxicity occur at levels over 100 mg kg−1 [24],
indicating that all the results obtained from Belgrade polluted site-BP were found to be
in the toxic range as a result of pollution caused by fuels coal combustion. Namely, three
coal thermoelectric power plants are located on the territory of Belgrade, within a radius of
50 km [115].
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Table 3. Mean values and standard deviation in parenthesis of element concentration (mg kg−1 d.w.)
in Tilia sp. leaves at polluted and unpolluted sites in Belgrade and Reading. BP and RP represent
polluted, while BU and RU represent unpolluted sampling sites.

Sampling
Point B Cu Fe Mn Ni Sr Zn

BP-1 224.6
(0.19)

4.1
(0.22)

188.0
(0.90)

15.2
(0.16) <DL 165.8

(3.88)
5.5

(0.37)

BP-2 231.5
(0.18)

4.2
(0.12)

200.3
(0.19)

15.7
(0.14) <DL 170.0

(1.66)
3.2

(0.22)

BP-3 229.1
(0.17)

4.9
(0.71)

183.5
(0.16)

15.2
(0.13) <DL 163.3

(2.03)
3.2

(0.26)

BP average 228.4
(3.04) a

4.34
(0.52) c

190.6
(7.52) b

15.4
(0.25) d <DL 166.34

(3.76) a
4.0

(1.20) b

BU-1 93.4
(0.76)

6.9
(0.68)

233.3
(0.31)

27.5
(0.28) <DL 66.4

(0.92)
2.6

(0.16)

BU-2 95.3
(0.69)

7.0
(0.22)

191.5
(0.98)

27.9
(0.35) <DL 70.2

(0.58)
1.6

(0.49)

BU-3 87.8
(0.62)

6.4
(0.11)

234.4
(0.88)

27.0
(0.32) <DL 67.7

(0.81)
1.5

(0.07)

BU average 92.2
(3.45) b

6.8
(0.44) a

219.8
(21.21) a

27.5
(0.48) c <DL 68.1

(1.81) c
1.9

(0.59) c

RP-1 80.8
(0.55)

4.9
(0.23)

39.0
(0.42)

305.2
(2.89)

1.2
(0.01)

85.2
(0.75)

5.8
(0.62)

RP-2 82.3
(0.74)

4.5
(0.51)

37.6
(0.29)

307.8
(3.29)

1.1
(0.02)

87.3
(0.59)

5.8
(0.49)

RP-3 78.6
(0.68)

4.0
(0.33)

35.8
(0.41)

297.3
(1.31)

1.1
(0.21)

83.2
(0.91)

5.3
(0.61)

RP average 80.6
(1.73) c

4.5
(0.51) c

37.4
(1.41) c

303.4
(5.23) b

1.2
(0.11) a

85.2
(1.91) b

5.6
(0.55) b

RU-1 36.7
(0.45)

5.6
(0.32)

34.5
(0.27)

367.8
(2.41)

0.5
(0.05)

65.7
(0.32)

6.8
(0.71)

RU-2 36.9
(0.21)

6.2
(0.09)

42.6
(0.36)

368.8
(3.01)

0.6
(0.04)

68.2
(0.55)

7.2
(0.88)

RU-3 36.4
(0.12)

4.8
(0.10)

34.0
(0.28)

371.8
(2.87)

0.6
(0.44)

64.3
(0.27)

8.6
(0.77)

RU average 36.7
(0.34) d

5.6
(0.58) b

37.0
(4.17) c

369.5
(3.01) a

0.6
(0.22) b

66.1
(1.74) c

7.5
(1.05) a

(ANOVA–Bonferroni); Different letters in the same column indicate significant differences between sites at
p < 0.001 level.

Although Co was present in an acid-soluble/exchangeable fraction at all sampling
sites, its content in leaves was below the detection limit. This is probably due to limited
uptake and translocation of Co from roots to shoots and its strong bonding in roots [116,117].
In soils with neutral and alkaline pH, Co is poorly mobile due to the low solubility of
its hydroxides and carbonates, which represents a limiting factor for Co accumulation in
plants [24].

Chromium in Tilia sp. leaves was also below the detection limit at all sampling sites
due to its absence in acid-soluble/exchangeable fractions. Namely, Cr is predominantly
present in the inaccessible form to plants, its translocation is very low, and most often, it is
retained in roots [24]. In addition, soil pH also greatly affects Cr availability to plants, since
in neutral and alkaline conditions (such as found in our study soils), it becomes unavailable
for uptake [118].

The copper content in leaves of Tilia sp. varied in a narrow range from 4.0 mg kg−1 at
RP-3 point to 7.0 mg kg−1 at BU-2. There were no statistically significant differences in Cu
content between polluted sites; however, differences were observed between unpolluted
sites (Table 3). Results obtained in leaves from polluted sites in both Belgrade and Reading
were below the optimum values for normal plant development (5–30 mg kg−1 [24,65]).
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Copper content can vary significantly depending on the plant part and development
stage [118]; however, Cu deficiency often occurs in soils with low available Cu [119], which
was the case at selected sampling sites (0.6–4.2% Cu extracted in acid-soluble/exchangeable
fraction). Furthermore, Cu is known to have low mobility in relation to other elements in
plants, and its overall solubility of both cationic and anionic forms decreases at pH 7–8 [24].

The results for Fe content in leaves of Tilia sp. revealed that samples from Belgrade
show higher accumulation compared to samples from Reading. Samples from Belgrade
unpolluted site-BU stood out with the highest Fe accumulation (191.5–234.4 mg kg−1),
followed by Belgrade polluted site-BP (183.5–200.3 mg kg−1), with very similar results
obtained from both sampling sites in Reading (34.0–42.6 mg kg−1). Significant differences
were observed between both polluted and unpolluted sites. Despite the wide range in
the Fe content in plant species, some authors consider values of 200–500 mg kg−1 Fe
in leaves of woody species as elevated [120], while values over 300 mg kg−1 could be
considered toxic [121]. Interestingly, results of BCR sequential extraction showed that
at Belgrade sampling sites, Fe was not present in acid-soluble/exchangeable fraction
(0.00–0.02%), while it was also low in Reading (0.00–0.44%). Due to the low bioavailability
of Fe, plants have probably developed different mechanisms to provide a sufficient amount
of this essential element (e.g., activation of the enzyme Fe(III) reductase or increase in the
secretion of non-protein amino acids [122]).

In contrast to Fe, Mn content in leaves samples from Reading (297.3–371.8 mg kg−1)
was several times higher compared to Belgrade (15.2–27.9 mg kg−1), which can be at-
tributed to Mn bioavailability in the acid-soluble/exchangeable fraction in soils from
Reading (36.1–55.6%). Manganese presence in the acid-soluble/exchangeable fraction
in Belgrade polluted site-BP amounted only (6.5–6.6%) and Belgrade unpolluted site-
BU (15.1–18.9 %), respectively. Significant differences were found between both pol-
luted and unpolluted sites. Despite more than sufficient amount of Mn in Belgrade soil
(502.0–546.3 mg kg−1) and its potential availability, the alkaline reaction of soil (pH 7.6–7.9)
caused the plants to accumulate Mn in an insufficient amount for normal functioning in leaf
samples from Belgrade (30–300 mg kg−1 [24]). Furthermore, high Fe content in examined
soil can cause a lower accumulation of Mn due to Mn-Fe antagonism [24]. In contrast to
the narrow range of critical deficiency concentrations of Mn (10–27 mg kg−1), the critical
toxicity concentration varies widely among plant species, as well as environmental con-
ditions [110,123]. Most plants can be affected by an Mn content over 400 mg kg−1 [24].
A high share of Mn in the acid-soluble fraction in Reading unpolluted site-RU soil, as
well as its slightly acid reaction (pH 6.1–6.8), resulted in increased Mn uptake by Tilia sp.
trees from Reading sampling sites in concentrations which are considered as toxic [82].
Generally, Mn is easily taken up by plants when it is present in soluble form in the soil, such
as was the case with trees from Reading. Here, a significant negative correlation (−0.829 **,
Table S4, Supplementary Material) between the concentration of Mn in Tilia sp. leaves and
soil was found, suggesting the presence of other sources of Mn (e.g., anthropogenic sources
including atmospheric deposition).

Nickel content was below the detection limit in all the plant samples from Belgrade
sites despite its presence and availability in acid-soluble/exchangeable fraction in soil from
both Belgrade sampling sites (0.7–9.2%), which can be linked to alkaline soil reaction [124],
but also to species-specific characteristics. Interaction with other elements, e.g., Fe, Cu,
and Zn, can also affect Ni uptake by plants [24]. Unlike Belgrade samples, Ni content in
the acid-soluble/exchangeable fraction in samples from Reading was significantly lower
(0.0–2.6%); however, plants in Reading accumulated Ni in leaves (0.5–1.2 mg kg−1), in an
amount within the normal range for plants (3.7 mg kg−1 [24]). The average content of Ni
in lime leaves from Reading polluted site-RP was 1.2 mg kg−1 and was higher in relation
to the Reading unpolluted site-RU where only 0.6 mg kg−1 was measured, which may be a
result of higher Ni in soil from Reading polluted site-RP.

Lead was below the detection limit in all plant samples from all sites, although it was
extracted in the acid-soluble/exchangeable fraction (0.0–5.1%) due to its low mobility both
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in soils and plants. In plants, Pb can be accumulated either by uptake from soil or by foliar
application [9]. The adsorption of Pb by roots is a passive process, and usually, the rate
of its uptake from the soil is very low [82], which is why it predominantly accumulates
in roots [9]. Additionally, Pb translocates poorly to other plant parts, thus rarely eliciting
toxicity symptoms [83]. Furthermore, at pH > 7, Pb is most probably retained in the soil
due to either co-precipitation with metal oxides or adsorption at metal oxide surfaces [95].

With Sr, significant differences were found between polluted while no significant
differences were recorded between unpolluted sites, with higher Sr concentrations mea-
sured at polluted sites (Table 3). The lowest Sr content was measured in Tilia sp. leaves at
RU-3 (64.3 mg kg−1), while the highest in leaves at BP-2 (170.03 mg kg−1). Unlike other
examined elements, the greatest proportion of Sr was bound to acid-soluble/exchangeable
fraction (44.01–76.3%), indicating its high mobility and bioavailability, which is why the
plants from all sampling sites accumulated Sr in levels that could be regarded as phytotoxic
(>30 mg kg−1 [125]). Strontium is moderately mobile in soils and is usually sorbed by
clay minerals and Fe oxides and hydroxides [82]. Unusual behavior, as well as negative
correlation (−0.864**, Reading polluted site-RP, Table S4, Supplementary Material) point
to anthropogenic sources of Sr, which can be linked to traffic, individual heating units, or
artificial materials in urban soils. Although Sr was not present in high concentrations in
examined soils, its poor sorption probably allowed plants to easily accumulate it in leaves.
Considering that Sr concentrations were higher in lime leaves than in the soil, it can be
assumed that its source comes mainly from urban deposition [126]. Earlier studies proved
that prolonging exposure periods to high levels of airborne Sr lead to its accumulation
in the aboveground parts of plants [10,127]. Easy Sr uptake by plants can also be related
to its similar biogeochemical characteristics to Ca; thus, plants are transferring it into
aboveground organs.

Zinc content in leaves of Tilia sp. varied between 1.50 mg kg−1 in BU-3 up to
8.6 mg kg−1 in RU-3. Generally, higher Zn content was measured in leaves samples
from Reading compared to Belgrade, which can be linked to greater Zn availability in acid-
soluble/exchangeable fraction in Reading (15.2–34.2%) in relation to Belgrade (0.5–6.1%), as
well as lower pH (6.1–7.1). Significant differences were measured between unpolluted sites.
The rate of Zn absorption differs greatly among both plant species and growing media
but depends mostly on soil pH [9], given the fact that the bioavailability of Zn at pH > 7
is substantially reduced. Optimal Zn levels in plant tissues according to Kabata-Pendias
and Pendias [24] are considered to be from 27–150 mg kg−1, while the critical deficiency
concentrations are below 15–20 mg kg−1 [128]. It is evident that Zn content in leaves was
in the critical deficiency range, especially in samples from Belgrade. Severe Zn deficiency is
often associated with alkaline soil conditions, where due to increased adsorptive capacity
for soil particulates, Zn becomes immobile [128]. Furthermore, high Fe content in examined
soils could affect Zn uptake due to Zn-Fe antagonism that depresses the effects of other
elements [24].

3.5. Inter-Elemental Relationships in Plant and Soil Samples

Multivariate statistics revealed different associations between soil and plant PTEs in
the two cities. Soil samples were clustered according to sampling site and were primarily
differentiated according to their origin, with B, Co, Cr, Fe, Mn, and Ni in PC1 component
(60.3% of the total variance), and Cu, Pb, Sr, and Zn in another (35.4% of the total variance,
(Table S5, Supplementary Material), suggesting a natural (lithogenic) origin for the former
group an anthropogenic one for the latter which could be linked to airborne emissions
from the traffic [97,129]. The relationships between examined metals in the soil, based on
the first two principal components (loading plot), are illustrated in Figure 4a. The score
plot (Figure 4b) displays four different groups of samples. The first group contains the soil
samples from Reading polluted site-RP, which are characterized by high Cu, Pb, Sr, and
Zn content. The second group contained soil samples from Reading unpolluted site-RU
site, which was characterized by the lowest content of all tested elements. The third group
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contains soil samples from Belgrade polluted site-BP, where the elements are mostly of
natural origin, whereas the fourth group contains soil samples from Belgrade unpolluted
site-BU, where the content of all tested elements was higher compared to Belgrade polluted
site-BP, especially Pb and Sr.
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Plant samples were clustered according to sampling sites. The PCA of PTEs in Tilia
sp. leaves resulted in a two-component model, which explains 92.3% of the total variance
(Table S5, Supplementary Material). The PC1 explains approximately 62.1% of the total
variance and is significantly positively correlated with Mn, Ni, and Zn and negatively
with Fe, while PC2 explains 30.3% of the total variance and is significantly positively
correlated with B and Sr and negatively with Cu (Table S5, Supplementary Material). The
relationships between the metals based on the first two principal components (loading plot)
are illustrated in Figure 5a. The score plot (Figure 5b) displays three distinctive groups of
samples belonging to different sampling sites. Namely, samples from Belgrade polluted
site-BP formed the first cluster, where the dominant impact on distinction was contributed
by high concentrations of B and Sr. Samples from Belgrade unpolluted site-BU created the
second compact cluster due to the higher Cu concentration, while all samples from Reading
formed the third cluster, which points to the similarity of uptake and accumulation pattern
for Mn, Ni, and Zn, but also to significantly lower Fe concentrations compared to Belgrade
sampling sites.
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4. Conclusions

This study investigated pseudo-total content, mobility, and potential bioavailability of
B, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in soils, as well as the accumulation ability of Tilia
sp. leaves sampled from urban parks in Reading and Belgrade. The research revealed that
concentrations of all examined elements were within limit values proposed by the directive
of European Communities [75,76]. The distribution of soil PTEs showed site-dependent
characteristics, with the highest concentrations of Co, Cr, and Ni measured in Belgrade
(BP-1, BU-2, and BU-3), which is related to the nature of geological substrate in certain
parts of Serbia, including the Belgrade area. Higher concentrations of Cu, Pb, Sr, and Zn
were measured in soils of Reading polluted site-RP. Content of Fe and Mn was similar in
both polluted and unpolluted sampling sites in Belgrade and higher in relation to the same
at both Reading sampling sites. The lowest concentration of all measured elements was
found in Reading unpolluted site-RU. A similar relation for all elements was established
between unpolluted sites in both cities, with higher concentrations of all analyzed elements
in samples from Belgrade compared to Reading.

Mobility factor for all elements, except for Ni, was higher in soil samples from Reading
compared to Belgrade, indicating that they are more readily available for plant uptake in
Reading urban soils. In general, low mobility (MF < 10%) characterized Co, Cr, Cu, Fe, Ni,
and Pb, while moderate mobility was found for B and Mn, which could represent a threat
to urban vegetation due to their increased mobility and bioavailability.

Multivariate statistics revealed different associations between soil and plant PTEs in
the two cities. Soil samples were clustered according to sampling sites and were primarily
differentiated according to their origin. The results of PCA showed that soil B, Co, Cr, Fe,
Mn, and particularly Ni have a geogenic origin, unlike Cu, Pb, Sr, and Zn. In the absence
of major industrial facilities with substantial metal emissions in the vicinity of our study
locations, our data are consistent with traffic-derived sources of these elements.

PCA of elemental concentration in leaf samples showed the different capacities for
uptake and accumulation of PTEs in different locations. Trees growing at urban sites in
Belgrade readily accumulated B, Fe, and Sr, while those in Reading accumulated more
Mn, Ni, and Zn. At all the sites, Cu concentrations were similar, mostly in the deficiency
range. The results also revealed deficiency for essential elements Mn and Zn in samples
from Belgrade due to the alkaline reaction of soils. Excessive uptake of Sr concentrations,
in the toxic range in all the sampling sites regardless of its total content, was likely due to
its high content in bioavailable fractions in soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su13179784/s1: Table S1: Individual pH and EC values in studied urban soils; Table S2:
Individual values of element concentrations (mg kg−1 d.w.) in Tilia sp. leaves and urban soils (i.e.,
polluted and unpolluted sites in Belgrade and Reading). BP and RP represent polluted, while BU and
RU represent unpolluted sampling sites; Table S3: Bioaccumulation factor (BAC) for PTEs in Tilia sp.
at selected sampling sites (i.e., polluted and unpolluted sites in Belgrade and Reading). BP and RP
represent polluted, while BU and RU represent unpolluted sampling sites. Levels > 1 are denoted
in bold; Table S4: Correlation matrix for selected PTEs concentrations in leaves and corresponding
soil samples at selected sampling sites (i.e., polluted and unpolluted sites in Belgrade and Reading).
BP and RP represent polluted, while BU and RU represent unpolluted sampling sites; Table S5: The
results of PCA (Varimax normalized) for selected soil samples and Tilia sp.
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Fractionation, mobility and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities.
Arch. Environ. Contam. Toxicol. 2018, 75, 335–350. [CrossRef] [PubMed]

9. Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001.
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