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Summary paragraph: 83 

The concentration of dissolved oxygen in aquatic systems helps regulate biodiveristy1, 2, nutrient 84 

biogeochemistry3, greenhouse gas emissions4, and drinking water quality5. The long-term 85 

declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to 86 

climate warming and human activity6, 7, but little is known about changes in dissolved oxygen 87 

concentrations in lakes. While dissolved oxygen solubility decreases with increasing water 88 

temperatures, long-term lake trajectories are not necessarily predictable. Oxygen losses in 89 

warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8, 90 

9 or they may increase as a result of enhanced primary production10. Here we analyse 45,148 91 

dissolved oxygen and temperature profiles from 393 temperate lakes spanning 1941-2017. We 92 

find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The 93 

decline in surface waters is primarily associated with reduced solubility under warmer water 94 

temperatures, although surface dissolved oxygen increased in a subset of highly-productive 95 

warming lakes, likely due to increasing phytoplankton production. In contrast, the decline in 96 

deep waters is associated with stronger thermal stratification and water clarity losses, but not 97 

with changes in gas solubility. Our results suggest that climate change and declining water 98 

clarity have altered the physical and chemical environment of lakes. Freshwater dissolved 99 

oxygen losses are 2.5-10 times greater than observed in the world’s oceans6, 7 and could threaten 100 

essential lake ecosystem services2, 3, 5, 11. 101 

 102 

 103 

104 



Main text: 105 

The concentration of dissolved oxygen (DO) in aquatic systems influences biodiversity1, 106 

2, nutrient biogeochemistry3, greenhouse gas emissions4, drinking water quality5, and, ultimately, 107 

human health12. Many aquatic species require well-oxygenated habitat11, 13 and cool water to 108 

survive warm summers2, 11. Loss of deep-water DO degrades water quality by promoting the 109 

release of accumulated nutrients from sediments into water1, 3, which can increase phytoplankton 110 

biomass. This process can also facilitate harmful algal blooms5, which can compromise water 111 

supplies and harm human health12. Despite clear evidence of large-scale deoxygenation in ocean 112 

waters6, 7, there are no systematic large-scale studies of this phenomenon in lakes3.  113 

DO concentrations should decline with increasing water temperature due to reduced gas 114 

solubility. However, other mechanisms can alter DO, potentially amplifying or counteracting 115 

losses predicted from solubility changes alone. For example, rates of heterotrophic respiration 116 

increase with temperature faster than primary production9, and surface-temperature warming can 117 

increase the strength and duration of thermal stratification, reducing water circulation, and 118 

preventing deep-water DO replenishment8, 14, 15. Studies of individual lakes demonstrate deep-119 

water DO concentrations can decrease with lake warming3, 8, 15, 16, reducing access to cold-water 120 

habitat essential to many organisms11. However, given the many feedbacks and processes 121 

regulating DO, overall trajectories currently defy a priori prediction. 122 

We addressed this critical issue by compiling and analyzing an extensive database of lake 123 

temperature and DO profiles to characterize widespread and long-term changes in DO 124 

concentration and its causes. We used data from 393 temperate lake and reservoir basins, each 125 

with a minimum of 15 years of observation (median: 24 years), and report population medians 126 

from long-term surface- (epilimnion) and deep-water (hypolimnion) trends in temperature, DO 127 



concentration, and DO saturation during the late summer period when seasonal DO depletion is 128 

expected to be pronounced17. Our analyses revealed that lake DO concentrations have declined in 129 

both surface and deep waters from 1980 to 2017 by 0.45 and 0.42 mg L-1, respectively (Fig. 1). 130 

These rates represent losses of 5.1 and 20.2% for surface and deep waters, respectively, and were 131 

substantially greater than those observed for the oceans, where total water-column DO has 132 

declined about 2% since 19606.    133 

While deep-water temperatures have been virtually stable since observations began (Fig. 134 

1a; –0.01°C decade-1), both deep-water DO concentration and percent saturation declined 135 

through time (–0.12 mg L-1 decade-1 and –1.2% decade-1; respectively, Fig. 1b, c). Declines were 136 

unrelated to solubility as predicted changes based on solubility (slight increase of 0.01 mg L-1) 137 

were negligible compared with observed losses (median -0.23 mg L-1 based on last five years 138 

relative to first five years of each time series, Fig. 2b) Declining DO, despite essentially 139 

unchanging solubility, implies deep-water habitats have become increasingly inhospitable for 140 

organisms with aerobic metabolism, including fishes. We quantified potential impacts of such 141 

declines on habitat availability by calculating trends in TDO3, the minimum water column 142 

temperature where DO was at least 3 mg L-1. This metric was developed to quantify oxy-thermal 143 

habitats for cold-water fisheries11. In lakes where DO was below 3 mg L-1 anywhere in the water 144 

column at least once in the time series (n = 369), TDO3 increased by 0.17°C decade-1, with 68.0% 145 

of lakes having positive trends and declining habitat for many cold-water species. 146 

 In contrast to trends observed for deep waters, variation in surface-water DO 147 

concentrations was well explained by changes in gas solubility. Consistent with other global-148 

scale lake studies18, median air temperatures warmed at 0.30°C decade-1 and median lake surface 149 

waters warmed at 0.39°C decade-1. Additionally, median wind speed and precipitation declined 150 



(trends of -0.04 m s-1 decade-1 and -4.23 mm decade-1, respectively), while shortwave radiation 151 

increased (1.88 W m2 decade-1; Table S1). Surface-water temperature increases were best 152 

explained by spring and summer air temperature increases and by summer wind speed declines 153 

(Table S2). Surface-water DO concentrations declined at -0.11 mg L-1 decade-1 (Fig. 1b). 154 

Comparing the last five years relative to first five years of each time series revealed that the 155 

median change predicted due to solubility loss was ~63% of the median observed decline in DO 156 

concentration, with solubility-predicted loss of 0.12 versus observed losses of 0.19 mg L-1 (Fig. 157 

2a).  158 

Despite a strong influence of water temperature on DO concentration in surface-waters, 159 

there was substantial variability among lakes (Fig. 2a), and a large subset of lakes exhibited 160 

increases in both water temperature and DO concentration (n=87; Fig. 3d). Analysis of the 161 

interaction between DO concentration, surface temperature, and water clarity (measured as 162 

Secchi depth, a proxy for trophic status19) showed that DO concentration generally decreased 163 

with increasing temperature. However, in lakes with low water clarity (< 2 m), DO concentration 164 

increased when average mean summer surface-water temperatures exceeded ~24°C (Fig. 3c). 165 

Similarly, in a subset of lakes with chlorophyll data (a proxy for phytoplankton biomass; n = 166 

162), positive DO trends were observed when chlorophyll was high and surface temperatures 167 

exceeded ~25°C, (Fig. 3b; P < 0.001). Thus, we suggest that eutrophication and warming interact 168 

to increase surface-water DO concentration despite reduced gas solubility. 169 

Lakes with increasing DO concentration in warming surface waters had significantly 170 

higher surface-water temperatures (Fig. 3a; P = 0.016) and their watersheds contained a 171 

significantly higher proportion of agriculture (P = 0.046) and developed land cover (P < 0.001) 172 

compared with other lakes. When developed land exceeded ~50% of a watershed and surface 173 



water temperature exceeded ~25°C, the probability of a warming lake having an increasing DO 174 

trend was >50%. Combined, these analyses highlight a potential threshold above which water 175 

temperatures and lake productivity interact to elevate DO concentration in surface waters despite 176 

declining gas solubility. While we lack data on phytoplankton taxonomic composition, evidence 177 

indicates that phytoplankton blooms are increasing globally20, in particular due to 178 

cyanobacteria21. High temperatures and elevated nutrient loading can promote surface 179 

cyanobacteria blooms whose photosynthesis leads to DO supersaturation, particularly in 180 

eutrophic lakes as temperatures exceed ~23-25°C10, 21. Consistent with this inferred mechanism, 181 

we note these same lakes exhibited consistently low deep-water DO concentration (median: 0.64 182 

mg L-1) relative to other lakes (median: 3.42 mg L-1), as is expected when a large phytoplankton 183 

biomass sinks and is decomposed in deep-water habitats22. Deep water DO changes are described 184 

in more detail below. 185 

Decadal-scale trends in DO were associated with non-linear changes in surface-water 186 

temperature (Fig. 2c-f; Fig. S1). For example, although surface-water temperatures generally 187 

increased from 1980 onwards, there was a period of accelerated increase during 1990-2000, with 188 

slower warming thereafter (Fig. 2c), consistent with the “warming hiatus” observed during 1998-189 

201223. This trend occurs across the population of all lakes, as well as the subset of lakes 190 

sampled continuously throughout this period. Similarly, surface-water DO exhibited periodic 191 

deviations from an overarching trend of declining DO concentration (Fig. 2d), mainly due to the 192 

productive lakes exhibiting increasing DO levels in surface waters (Fig. 2d, blue line). Excluding 193 

these lakes, analysis of the remaining sites showed a consistent long-term decline in surface-194 

water DO (Fig. 2d, red line). Deep-water temperatures exhibited a pronounced multi-decadal 195 



oscillation since 1980 (Fig. 2e) as has been observed in some lakes previously24, whereas deep-196 

water DO concentration declined consistently through time (Fig. 2f).  197 

While surface-water DO concentration changes were generally well predicted by 198 

solubility changes, deep-water DO changes were more strongly associated with changes in water 199 

clarity and water-column density differences (Figs. 4 and S2). For example, water clarity losses 200 

exceeding 1 m were associated with substantial reductions in deep-water DO saturation (Fig. 201 

S2). Mechanistically, increases in phytoplankton biomass or dissolved organic matter (DOM) 202 

reduce water clarity while increasing oxygen-consuming respiration19, 22, 25. Increases in 203 

phytoplankton biomass and DOM are often caused by land use change and recovery from acid 204 

deposition, respectively26. However, there was no overarching decline in water clarity across 205 

study lakes. Indeed, 51% of lakes had clarity increases and 49% had decreases, and only 39% of 206 

lakes exhibited both water clarity loss and DO saturation loss (Fig. 4a). 207 

Deep-water DO decreased substantially in lakes where the water column density 208 

difference between surface and deep waters increased by more than ~0.5 kg m-3 (Fig 4b; Fig. 209 

S2b). Strong increases in the density difference indicate intensified stratification that reduces 210 

vertical mixing and replenishment of deep-water DO from the atmosphere, and may reduce 211 

nutrient upwelling to surface waters3, 15. Water column density differences increase due to water 212 

clarity losses as well as other factors that increase heat gain in near-surface waters, including 213 

climate warming26 and atmospheric stilling27. Increased water column density differences may 214 

also be associated with earlier onset of seasonal stratification and thus more time for oxygen 215 

consumption before the summer sampling period22. We found that changes in water-column 216 

density differences were best explained by changes in deep water temperature and climate 217 

characteristics (Fig. S3). Despite no overarching among-lake trend in water clarity or deep-water 218 



temperature, stratification strength increased in 84% of lakes that stratified, with 61% of basins 219 

exhibiting both increased density difference and DO saturation loss (Fig 4b). Warming surface-220 

water temperatures combined with unchanging deep-water temperatures (Fig. 1a) increases the 221 

density difference in lake water columns (median rate: 0.10 kg m-3 decade-1). We observed 222 

unchanging deep-water DO in lakes where both clarity and stratification were unchanged (Fig. 223 

4c, d). Therefore, we anticipate further DO losses in deep waters of lakes where water clarity 224 

continues to decline or thermal stratification intensifies, whether due to atmospheric warming, 225 

stilling, or both 26, 27.  226 

 Despite a wide range of lake and catchment characteristics, the overall trend of temperate 227 

lake deoxygenation is clear, with climate changes and water clarity losses contributing to 228 

declines in lake DO concentration at rates ~2.5-10 times greater than those observed in the global 229 

oceans6, 7. We find deep-water lake habitats are especially threatened, and deep-water DO trends 230 

may portend future losses of cold-water and oxygen-sensitive species2, increased internal 231 

nutrient loading which exacerbates eutrophication3 and the formation of harmful algal blooms5, 232 

and potentially increased outgassing of stored methane4. While already rapid, future losses in 233 

lake DO may accelerate due to continued anthropogenic modifications of the environment, 234 

including eutrophication22, salinization28, and hydrological management28. While many lakes 235 

have undergone active management to reduce nutrient loads, in part to mitigate phytoplankton 236 

growth and deep-water oxygen loss28, our findings suggest such actions will likely require more 237 

rigorous efforts in the future to counter the effects of climate and land use change. 238 

239 
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Figures and Figure Captions: 378 

Fig. 1 | Trends in dissolved oxygen and temperature. a-c, Density plots of trend magnitudes 379 

for a temperature (°C decade-1), b DO concentration (mg L-1 decade-1) and c DO percent 380 

saturation (% decade-1). Red distribution indicates surface water trends and blue indicates deep-381 

water trends. The x-axis range for each plot covers two standard deviations from the median, or 382 

approximately 95% of data. Vertical dashed lines indicate median trends, and the zero trend is 383 

highlighted with a black vertical line.  384 

 385 

Fig. 2 | Solubility effects and changes in temperature and DO concentration through time. 386 

a, b, Observed vs. predicted change in DO concentration (mg L-1) due to solubility for surface 387 

(a) and deep (b) waters. Solid black line is the 1:1 line and the blue line is loess smoothed, while 388 

the gray regions are 95% confidence intervals. c-f, Smoothed curves of GAMM models, showing 389 

deviation from the mean model predictions for selected response variables with year as the 390 

predictor variable. Gray regions represent one standard error from the predicted line for c, 391 

temperature (°C) and d, DO (mg L-1) through time for surface waters. The red line represents 392 

lakes where both surface temperature and DO were increasing (n = 87) and the blue line is all 393 

other lakes (n = 332). e, Temperature and f, DO for deep waters. 394 

 395 

Fig. 3 | Interaction of productivity and temperature in surface waters. a, Predicted 396 

probability of a lake having both increasing surface temperature and DO concentration from a 397 

fitted logistic regression model at three different mean surface water temperatures: 21°C (blue), 398 

25°C (black), 28°C (red) b, Predictions of DO trends from a fitted multiple regression model for 399 



chlorophyll (used as a surrogate for primary productivity) at these same temperatures (legend 400 

same as a) c, The interaction of water clarity (measured as Secchi depth in m) and surface-water 401 

temperature (°C) and their effects on surface DO (mg L-1) from fitted generalized additive mixed 402 

models (GAMM) d, Most lakes exhibited increasing surface temperatures and decreasing DO 403 

concentration consistent with solubility effects, but a subset of lakes (n = 87) have both 404 

increasing surface temperature and DO concentration.  405 

 406 

Fig. 4 | Effect of changes in water clarity and density difference on deep-water DO 407 

saturation change. a, Change in % saturation versus change in water clarity (Secchi depth). b, 408 

Change in % saturation versus change in water column density difference between surface and 409 

deep waters. The number of lakes in each quadrant in a and b are indicated by text. c, Predictions 410 

of change in % saturation from a fitted multiple regression model for change in water clarity at 411 

three density changes. d, Predictions of change in % saturation from a fitted multiple regression 412 

model for change in density difference at three clarity changes. Note that for both c and d the 413 

origin sits at no change in either predictor. 414 

415 
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Supplemental information 416 

There are seven supplemental information tables and four supplemental information 417 

figures. Tables S1 and S2 are referenced in text. Table S3 describes data contributors for this 418 

project and Table S4 provides location and trend information for each lake. Trend data were not 419 

reported for a) two lakes where providers did not provide permission to publish data but that 420 

were included in trend analyses (Annecy and Geneva; ‘NP’ in table S4), b) lakes had less than 15 421 

years of data at a given depth (not shown in table), or c) deep-water trends in lakes that did not 422 

thermally stratify (‘NA’ in table S4). In one lake (T Bird), epilimnetic water was artificially 423 

aerated and this depth layer was excluded from analysis. Table S5 presents statistics associated 424 

with spatial autocorrelation analyses. Table S6 describes trends over the entire population of 425 

lakes versus a sub-sample of lakes after accounting for the large numbers of samples obtained in 426 

lake-rich regions. Table S7 describes trends and uncertainty in trends over two time periods for 427 

subsets of lakes having data for at least 80% of years: 1980-2017 and 1990-2017. Fig. S1 428 

presents the results of GAMM analysis of trends zoomed out to visualize distribution of residuals 429 

for surface and deep-water temperature and dissolved oxygen trends. Fig. S2 presents the partial 430 

dependency plots for the top predictors of changes in deep-water DO percent saturation as 431 

determined by a random forest analysis. Fig. S3 presents partial dependency plots for the top 432 

predictors of changes in water column density difference between surface and deep waters as 433 

determined by a random forest analysis. Fig. S4 presents the locations of lakes used in this study 434 

(n=393).  435 

 436 



Figure S1 | Results of GAMM analysis of trends zoomed out to visualize distribution of 437 

residuals. a, Surface-water temperature (°C) b, Deep-water temperature (°C) c, Surface-water 438 

DO (mg L-1) and d, Deep-water DO concentration (mg L-1). 439 

 440 

Figure S2 | a-f, Partial dependency plots from a random forest algorithm of deep-water change 441 

in % dissolved oxygen saturation (Δ Sat) in the last five years of record relative to the first five 442 

years of record for each lake. Plots are ordered by predictor variable importance, decreasing in 443 

importance from the upper left to lower right (a to f). Vertical red lines indicate zero change in 444 

predictor variable and hash marks on the x-axis indicate lake distribution deciles. Partial 445 

dependencies indicate the relationship between predictor and response variables when holding 446 

other variables at their mean value. Lakes that experienced no change in either water clarity or 447 

density difference between surface and deep waters exhibited little change in deep-water 448 

saturation (see also, Fig. 4). 449 

 450 

Figure S3 | Drivers of the change in density difference between surface and deep waters. a-f, 451 

Partial dependency plots from a random forest algorithm of deep-water change in water column 452 

density difference in the last five years of record relative to the first five years of record for each 453 

lake. Plots are ordered by predictor variable importance, decreasing in importance from the 454 

upper left to lower right (a to f). Vertical red lines indicate zero values for predictor variable and 455 

hash marks on the x-axis indicate lake distribution deciles. Partial dependencies indicate the 456 

relationship between predictor and response variables when holding other variables at their mean 457 

value.  458 

 459 



Fig. S4 | Locations of lakes used in this study (n=393).  460 

461 
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Methods: 462 

Overview 463 

 Our methods here describe how we 1) compiled and quality-checked data, 2) interpolated 464 

and delineated water layer strata, and 3) statistically analyzed these data. Our statistical analyses 465 

focused on characterizing long-term trends in climate characteristics (air temperature, wind 466 

speed, precipitation, and short-wave radiation), DO concentration and saturation, water 467 

temperature, and deep-water habitat quality; identifying and characterizing potential non-468 

linearity in DO concentration and water temperature through time; characterizing the relationship 469 

between DO concentration changes and solubility, chlorophyll, and land use; identifying the 470 

predictors of changes in deep-water DO saturation, and characterizing meteorological drivers of 471 

surface temperature trends. These methods are described in detail in the sections below. 472 

Data compilation and quality control 473 

 We compiled lake temperature and DO concentration water column measurements from a 474 

wide range of government, university, and not-for-profit sources (Fig. S4 and Tables S3 and S4). 475 

To assess long-term trends in temperature and DO concentration, we required profiles be made at 476 

least once annually during the peak summertime stratification (defined as the late summer 477 

period, July 15 - August 31 for northern hemisphere lakes and January 15 - February 28 for 478 

southern hemisphere lakes) offshore (e.g., nearest the deepest location in each lake) for at least 479 

15 years. In some larger lakes (n = 6 lakes), we used profiles from two separate locations if the 480 

lake had more than one distinct basin and treated these as separate waterbodies. For some 481 

analyses other than long-term trend analyses we included lake time series data less than 15 years 482 

long, but always at least 10 years in duration (described below). 483 



We conducted quality control on the compiled data as follows. We first removed 484 

impossible values, defined as those outside the range 0-40 for both temperature (units: °C) and 485 

DO concentration (units: mg L-1). We then removed profiles from consideration if our initial 486 

quality control step process removed greater than 95% of the profile or if the profile had less 487 

than three distinct depth points. To reduce the potential impacts of DO measurements made 488 

when sensors sat on or in sediments, we removed the deepest measurement for individual 489 

profiles if the maximum depth for that profile exceeded the maximum depth of 90% of the 490 

remaining profiles for a given lake. 491 

Not all profiles surveyed the entire water column. Some lakes had some profiles where 492 

the shallowest depth was greater than 0 (meaning near-surface measurements were not made), 493 

yet temperature measurements showed the nearest surface measurements were within the 494 

epilimnion. In these cases, we made the assumption of uniform DO and temperature from the 495 

surface to the shallowest measurement and added a 0 m depth point. We did this by either 1) 496 

changing the minimum depth in the profile to 0 if it was less than 0.5 m, 2) adding a 0 depth 497 

point and assigning temperature and DO values equal to that of the minimum depth point if the 498 

minimum depth point was greater than or equal to 0.5 m but less than or equal to 3 m. If the 499 

minimum depth was greater than 3 m, we excluded the profile from analyses. If there were 500 

multiple values of either temperature or DO for a given depth, the mean value at this depth was 501 

used. These operations and all further analyses were conducted in R version 3.4.229. 502 

In total, the above QA steps removed 2,040 profiles out of a total of 25,023 (8.2%). After 503 

processing and removing eight non-temperate lakes, we had 22,574 DO profiles with 504 

corresponding temperature profiles. There was a median of 2.1 profiles per year (range: 1-38) 505 

and 23 years of data per lake (see also, Table S4). 506 



Profile interpolation and strata delineation 507 

In order to generate a dataset with consistent depth resolution within and among lakes, 508 

we interpolated each temperature and DO profile from depth 0 m to the deepest depth of each 509 

profile at intervals of 0.5 m using the pchip function of the R package pracma30. This 510 

interpolation procedure preserves the overall shape of the profile by preventing overshooting of 511 

data values30. Following interpolation, we calculated temperature and stability characteristics 512 

using the R package rLakeAnalyzer31. We delineated the epilimnion and hypolimnion using the 513 

meta.depths function (slope = 0.1, seasonal = FALSE), which calculates the top and bottom 514 

depths of the metalimnion31. If the range of temperatures through the profile is less than 1°C, the 515 

meta.depths function does not return values for the metalimnion (i.e., the profile is not 516 

considered stratified). 517 

Many lakes did not have a well-defined hypolimnion. To identify those with a 518 

hypolimnion, we first removed lakes where the meta.depths function failed to calculate a bottom 519 

metalimnion depth for more than 10% of profiles. We then calculated the mean of the maximum 520 

profile depths across all profiles for each lake, to get a mean profile depth for the lake. If the 521 

mean value of the bottom of the metalimnion for a lake was shallower than the calculated mean 522 

profile depth for that lake, it was considered to have a hypolimnion. We defined “surface waters” 523 

as all depths shallower than or equal to the top metalimnetic depth and “deep waters” as all 524 

depths deeper than the bottom depth of the metalimnion. 525 

Characterizing trends in dissolved oxygen and temperature 526 

We calculated the mean surface- or deep-water temperature and DO concentration and 527 

percent saturation. For each lake, we calculated the mean of surface- or deep-water DO 528 



concentration or temperature for all profiles in a given year (in our defined late-summer period) 529 

to obtain a mean annual value. We then calculated the percent DO saturation from temperature, 530 

DO concentration, and lake elevation data32. Mean annual surface- and deep-water temperature 531 

and DO concentration measurements were then used to calculate long-term trends for surface 532 

waters (n = 393 lakes; median number of years per lake: 24) and deep waters (n = 260; median 533 

number of years: 24). All trends were calculated using the nonparametric Sen’s slope in the R 534 

package openair33. For trend analysis, we only used lakes with at least 15 years of data. 535 

For deep-water trends, lakes that were essentially anoxic (average hypolimnetic DO < 0.5 536 

mg L-1) had trend magnitudes that clustered near 0 relative to other lakes. This was not 537 

unexpected as lakes with essentially no hypolimnetic DO have little potential to lose additional 538 

DO. When calculating median trends and for graphical depiction of trends (Fig. 1), we removed 539 

these lakes (n = 69; difference = 191). 540 

We conducted several analyses to examine the potential of variability in lake data 541 

through time (i.e., not all lakes sampled all years of observation) or variability in space (i.e., 542 

some regions sampled much more heavily than others) to influence overall population level 543 

trends (see following sections and Tables S5-S6).  544 

Spatial autocorrelation and effects of lake clusters 545 

Because the lakes included in this study were not uniformly dispersed over all continental 546 

land masses, we examined the potential of large numbers of lakes in relatively concentrated 547 

regions to drive overall patterns. To do this, we first examined spatial autocorrelation in trends in 548 

lake temperature and dissolved oxygen concentration using Moran’s I in the R package lctools34, 549 

35. This statistic ranges from -1 for data that are perfectly dispersed to +1 for data that are 550 



perfectly autocorrelated. Values near zero suggest randomly distributed data. We observed weak 551 

but significant spatial autocorrelation in some variables (Table S5; Moran’s I values ranging 0.02 552 

to 0.27).  553 

Following this analysis, we examined the potential for the large numbers of lakes in some 554 

regions to dominate overall trends we reported. We tested for potential bias by examining trends 555 

for a subset of lakes. We identified four regions in the US with high numbers of lakes (Maine = 556 

113 lakes, New Hampshire = 38 lakes, Missouri = 41 lakes, and Minnesota = 84 lakes). For each 557 

of these clustered regions, we randomly subsampled 10% of the lakes. After this random 558 

subsetting, we found that the overall trends are similar to the trends obtained from all lakes (see 559 

Table S6). These results demonstrate that our observed population-level trends are not driven 560 

solely by trends observed in our lake-rich regions. While our analysis focuses on temperate 561 

lakes, we obtained data from a small number of non-temperate lakes (n=8). Including these non-562 

temperate lakes in our analysis (Table S6) did not change our overall results.  563 

Uncertainty estimates and temporal variation in trends 564 

We conducted an analysis to compare trends, confidence intervals, and significance of 565 

trends over two time periods: 1980-2017 (n = 80) and 1990-2017 (n = 197) to assess whether 566 

different lake observation years influenced the overall trends in DO concentration and 567 

temperature we observed. For each time period, we used a subset of lakes that had data for at 568 

least 80% of years within the defined time period. Following established methods18, we 569 

calculated a yearly anomaly in temperature and dissolved oxygen for each lake as the difference 570 

between each year’s observation and the long-term mean. We then averaged these anomalies 571 

across all lakes and used linear regression to calculate the slope, significance, and confidence 572 

intervals of these averaged anomalies (Table S7). 573 



Characterizing trends in climate characteristics 574 

 We examined trends in air temperature, total precipitation, wind speed, and shortwave 575 

radiation using the ERA-5 reanalysis from the European Centre for Medium-Range Weather 576 

Forecasts (ECMWF)36. This data set provides a single gridded global product with a resolution 577 

of 0.25° latitude by 0.25° longitude over the period 1979-2019 available as monthly averages (air 578 

temperature, wind speed, and shortwave radiation) or totals (precipitation). We used ECMWF 579 

time-series data from the gridded location closest to each lake and over the two-month period 580 

around when lakes were sampled (July-August for Northern hemisphere lakes, January-February 581 

for Southern hemisphere lakes). We calculated temporal trends in mean summer air temperature, 582 

mean summer wind speed, summer total precipitation, mean summer shortwave radiation, mean 583 

winter air temperature, mean spring air temperature, mean fall air temperature using the same 584 

methods we used to examine lake temperature and DO trends (see above). We then conducted a 585 

multiple regression analysis to assess which of these predictor variables (trends in air 586 

temperature, total precipitation, wind speed, or shortwave radiation) best explained surface-water 587 

temperature trends.  588 

Trends in climatic variables over the temperate zone 589 

 We delineated gridded latitude and longitudes at 2° intervals across the entire temperate 590 

zone over land masses only as well as over large regions, including Asia (defined by longitude ≥ 591 

29.3°; latitude 23.5° to 60°) Europe and North America (longitude < 29.3°; latitude 23.5° to 60°), 592 

South America and western Africa (longitude < 0°; latitude ≤ -23.5° to -60°); and southern 593 

Africa, Australia, and Oceania (longitude ≥ 0°; latitude -23.5° to -60°). We then used data from 594 

the ERA-5 reanalysis (see ‘Characterizing trends in climate characteristics’ in Methods for 595 

details) to calculate trends in climate variables over each of these regions (Table S1).   596 



Multiple regression analysis of drivers of surface water temperature trends 597 

 We conducted a multiple regression analysis of the meteorological drivers of observed 598 

surface water temperature trends. Predictors in the analysis included: summer air temperature 599 

trend, summer total precipitation trend, summer wind speed trend, summer shortwave radiation 600 

trend, winter air temperature trend, spring air temperature trend, fall air temperature trend, and 601 

mean winter temperature (as a proxy for ice cover18). We z-score standardized all variables to 602 

facilitate comparison of model coefficients across variables having different units37. We verified 603 

that multicollinearity was not a problem by checking that the variance inflation factor was well 604 

below ten for all variables38. We used the leaps R package to select subset models including all 605 

predictors and two-way interactions, and selected the fitted model having the lowest AIC39. 606 

Coefficients and p-values for the selected model appear in Table S2.  607 

Characterizing trends in deep-water habitat quality 608 

We used TDO311 to quantify trends in oxythermal habitat relevant for cold-water 609 

organisms. TDO3 represents the minimum temperature in the water column where DO 610 

concentration was greater than or equal to 3 mg L-1 and has been used to describe habitat 611 

availability for cold-water fisheries11. To calculate trends in TDO3 we excluded lakes where the 612 

DO concentration was higher than 3 mg L-1 across all depths in all profiles. For the remaining 613 

lakes, we calculated TDO3 for each profile. If a given profile did not have DO below 3 mg L-1, we 614 

assigned it the minimum temperature in the profile. We then calculated an annual mean TDO3 for 615 

the late summer period and excluded lakes that had ≤ 15 years of data. This left 369 lakes where 616 

DO went below 3 mg L-1 at least once. 617 

Non-linearity in DO and temperature through time 618 



 We conducted a generalized additive mixed model (GAMM) analysis to characterize 619 

overall response of lake temperature and DO concentration through time and to identify any non-620 

linearity. GAMMs fit a smooth function of the predictor variables showing the relationship of the 621 

predictors to the response variable40. We conducted separate analyses for four response variables, 622 

surface-water temperature, surface-water DO concentration, deep-water temperature, and deep-623 

water DO concentration. For each GAMM, our only predictor variable was the year, resulting in 624 

models that show the change in the response variable through time. We used the gamm4 function 625 

of the gamm4 package to fit these models using the default thin plate spline for smooth terms41. 626 

Gamm4 uses penalized regression splines of moderate rank for the smooth function. For two of 627 

these models we used a normal error distribution. Because residuals for the deep-water 628 

temperature analysis were skewed, we used a gamma distribution. Residuals in the deep-water 629 

DO analysis were also skewed, but because there were a large number of 0 values we used a 630 

Tweedie distribution instead of a gamma distribution. We limited this analysis to data from 1970 631 

and later and included all lakes with data in the specified time period (total lake n = 419). To 632 

account for the non-independent nature of the repeated measurements through time within each 633 

individual lake, the slope and intercept were allowed to vary randomly by lake42. 634 

 We next conducted a GAMM to understand how surface water DO concentration 635 

responded to temperature and productivity (n = 419 lakes). We used Secchi disk depth as a 636 

surrogate for productivity19. We included fixed effects of mean summer surface water 637 

temperature, mean Secchi depth, and the interaction of these two terms in the model. We 638 

included a random intercept and slope by year within each lake and included a corresponding 639 

year fixed effect. 640 

Relationship between dissolved oxygen concentration changes and solubility 641 



 To determine the relative importance of solubility in explaining changes in DO 642 

concentration, we calculated the expected change in DO concentration due to solubility alone 643 

and compared this amount to the observed DO change. To do this, we first calculated the 644 

difference between the observed mean DO concentration across the last five years and the first 645 

five years of record for each lake, requiring a minimum of ten years of data per lake (n = 415 646 

lakes for surface (Fig. 2a); n = 259 lakes for deep (Fig 2b)). We then calculated the expected 647 

change due solely to solubility and compared observed to expected DO changes. Specifically, we 648 

calculated the mean percent saturation in the first five years by first calculating the mean DO 649 

saturation for each water column layer (surface or deep waters) and then calculated the mean of 650 

all of these values. We then used an analogous approach to calculate mean temperature, DO 651 

concentration, and mean DO concentration at 100% saturation in the last five years of record for 652 

each lake. Once we calculated these values, we multiplied the mean DO concentration at 100% 653 

saturation by the decimal value of percent saturation in the first five years of record. This product 654 

represents the expected DO concentration if the percent saturation in the last five years of record 655 

remained the same as it was in the first five years of record. In other words, we removed the 656 

effect of temperature so that if all changes were due solely to solubility, observed changes in DO 657 

concentration would be identical to this value.  658 

Relationship between dissolved oxygen trends and chlorophyll 659 

 We used multiple regression to test if chlorophyll concentration and surface-water 660 

temperature were predictors of lakes having both increasing surface DO concentration and 661 

temperature trends. We first calculated the long-term mean late-summer surface-water 662 

(epilimnetic) chlorophyll concentration, which was available for 162 lakes having at least ten 663 

years of chlorophyll measurements. We next predicted DO concentration trends using 664 



chlorophyll and mean surface-water temperature as independent variables. We first fit the linear 665 

regression models, starting with a full model that included the interaction of chlorophyll and 666 

temperature. We then fit all subset models and selected the model with the lowest AIC value43. 667 

Using this selected model, we predicted DO concentration trends at three different mean 668 

epilimnetic temperatures (21, 25, and 28°C) across the observed values for chlorophyll. 669 

Relationship between dissolved oxygen trends and land use 670 

 We used logistic regression to better understand the drivers of increasing DO 671 

concentration in lakes with increasing surface-water temperatures, using land use/land cover data 672 

to model the probability of this phenomenon44. Logistic regression predicts the probability of a 673 

binary response outcome for different values of predictor variables. Predictors in our logistic 674 

regression included the percent of agriculture and developed land cover in the watershed and the 675 

mean surface-water temperature over the last ten years of record because these land use 676 

characteristics have been associated with increased growth of some phytoplankton taxa in 677 

warmer lakes5, 21. Our binary response was: either a lake had both increasing surface temperature 678 

and DO concentration (1) or it did not (0). We tested for all two-way interactions and all main 679 

effects. We used the National Land Cover Database 2011 to derive land cover metrics for US 680 

lakes45. We considered any land falling into any of the developed classes as developed 681 

(Developed – Open Space, Developed – Low Intensity, Developed – Medium Intensity, 682 

Developed – High Intensity). We tested the goodness of fit of the final model using the Hosmer-683 

Lemeshow test, available in the ResourceSelection R package (function hoslem.test)46. This test 684 

showed an acceptable goodness of fit (P = 0.166). The final number of lakes for analysis that had 685 

both land cover data and sufficient data to calculate trends was 326.  686 

Identifying the predictors of changes in deep-water DO saturation 687 



 We first used a random forest algorithm to obtain predictors of the observed change in 688 

percent saturation (i.e., drivers beyond pure solubility effects) in deep waters47. We used the 689 

percent increase in mean squared error as a measure of predictor variable importance. We 690 

conducted the random forest algorithm analysis using the randomForest package48. For each 691 

analysis, we only used lakes that had no missing values for any of the predictor variables (n = 692 

224 lakes). 693 

For the random forest algorithm, the response variable was the change in mean DO 694 

percent saturation in the last five years of record relative to the first five years of record for each 695 

lake (Δ Sat). A positive Δ Sat indicated an increase in percent saturation while a negative Δ Sat 696 

indicated a decrease in percent saturation. Predictor variables included mean hypolimnetic DO 697 

percent saturation, DO concentration, temperature, and thickness of the hypolimnion (ln 698 

transformed), mean Secchi depth, ln of mean lake depth, log10 of residence time, change in 699 

hypolimnetic thickness, change in hypolimnetic temperature, change in Secchi depth, and change 700 

in the density difference between surface and deep waters. Mean lake depth and residence time 701 

were obtained from the HydroLakes Database49. We calculated the density difference across the 702 

water column using rLakeAnalyzer to calculate densities for each interpolated depth point in 703 

each water column profile31. If a given profile was stratified, we then used the mean epilimnetic 704 

density and the mean hypolimnetic density and calculated the difference between these densities. 705 

If a given profile was not stratified, we took the mean density across the top two meters and the 706 

mean density across the bottom two meters and calculated the difference between these densities. 707 

We also included trends in the following ERA-5 meteorological variables: summer, fall, and 708 

winter air temperature, summer shortwave radiation, and summer wind speed. Finally we 709 

included mean winter air temperature as a proxy for ice cover18. 710 



Following the above analysis, change in the density difference between surface and deep 711 

waters came out as an important predictor. Although this could be explained by increased surface 712 

water temperatures driven by meteorological variables, it is possible that other changes, such as 713 

water clarity25, could also explain changes in density difference. To disentangle the drivers of 714 

changes in water column density differences, we conducted another RF using the same predictor 715 

variables as the above analysis but changing the response variable to the change in the density 716 

difference. We did not include the response variable from the first analysis (Δ Sat). The six most 717 

important variables are presented in Fig. S3.  718 

Based on results of the RF analysis, we conducted a multiple regression analysis to 719 

predict change in percent saturation (Δ Sat) for different levels of predictor variables (ln of mean 720 

lake depth, change in the density difference across the water column, and change in Secchi 721 

depth). We used a subset of lakes where mean deep-water DO concentration exceeded 0.5 mg/L 722 

to avoid lakes with little potential to lose DO. Predictor variables were selected because they 723 

were the three most important variables identified by RF, except we substituted ln mean lake 724 

depth for ln deep layer thickness. This substitution was made because models using ln of deep 725 

layer thickness demonstrated substantial non-linearity in plots of residuals against fitted values. 726 

Models built with ln mean lake depth greatly improved these patterns and these two variables 727 

were correlated (r = 0.51). We first fit the multiple regression models starting with a full model 728 

that included all predictors and two-way interaction terms. We then fit all subset models and 729 

selected the model with the lowest AIC value43. Using this selected model, we predicted Δ Sat at 730 

three different values of each of the two predictors change in Secchi depth (P < 0.001) and 731 

change in water column density difference (P < 0.001), with ln mean lake depth held at the 732 

median value. 733 



 734 

Data Availability: 735 

Many of the datasets analyzed during this study are publicly available on-line and associated 736 

links can be found in supplementary Table S3. Derived statistics are publicly available via the 737 

Environmental Data Initiative (EDI) repository at 738 

https://doi.org/10.6073/pasta/ac8b05bb0da19032b3df3efc21f83874. Most lakes are included 739 

here, but we note that due to the collaborative nature of this project and a wide range of data 740 

provenance, it was not possible to include every lake in this repository. Data not otherwise 741 

already publicly available are available upon request from the corresponding author pending 742 

permission from the appropriate data provider. 743 
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