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Abstract 

This article proposes a summary-statistics-based power analysis --- a practical method for 

conducting power analysis for mixed-effects modelling with two-level nested data (for both 

binary and continuous predictors), complementing the existing formula-based and simulation-

based methods. The proposed method bases its logic on conditional equivalence of the summary-

statistics approach and mixed-effects modelling, paring back the power analysis for mixed-

effects modelling to that for a simpler statistical analysis (e.g., one-sample t test). Accordingly, 

the proposed method allows us to conduct power analysis for mixed-effects modelling using 

popular software such as G*Power or the pwr package in R and, with minimum input from 

relevant prior work (e.g., t value). We provide analytic proof and a series of statistical 

simulations to show the validity and robustness of the summary-statistics-based power analysis 

and show illustrative examples with real published work. We also developed a web app 

(https://koumurayama.shinyapps.io/summary_statistics_based_power/) to facilitate the utility of 

the proposed method. While the proposed method has limited flexibilities compared to the 

existing methods in terms of the models and designs that can be appropriately handled, it 

provides a convenient alternative for applied researchers when there is limited information to 

conduct power analysis.  

 

Key words: Mixed regression; random-effects models; hierarchical linear model; multilevel-

modelling; summary-measures approach. 
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Translational abstract 

For applied researchers, statistical power analysis with mixed-effects modelling (or multilevel 

modelling) poses a big challenge, because it requires substantive expertise on modelling, use of 

special software, and a number of input parameters which are usually not available in published 

work. In fact, despite the number of research papers on this topic, we found that applied researchers 

rarely use appropriate statistical power analysis recommended by experts. To improve the current 

state of practice, this article proposes an easy and practical method to conduct statistical power 

analysis for mixed-effects modelling, called summary-statistics-based power analysis. While the 

proposed method has limited flexibilities (e.g., it can be applied only to two-level nested data), it 

has greater advantages over traditional power-analysis methods (formula- and simulation-based 

power analysis) in terms of usability and practicality. In fact, the proposed method can determine 

appropriate level-2 sample size of a new study by using only a t value and level-2 sample size from 

a previous study. Moreover, the sample size calculation can be easily conducted using popular 

software such as G*Power or the pwr package in R. A series of statistical simulations demonstrate 

the validity and robustness of the summary-statistics-based power analysis. We also provide 

illustrative examples with real published work. To further ease the demand for applied researchers, 

we developed a web app (https://koumurayama.shinyapps.io/summary_statistics_based_power/) 

that automatically performs the proposed method.  
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 With the proliferation of diverse research methodologies (e.g., multi-site data, intensive 

longitudinal data), the need for mixed-effects modelling (also called "multilevel modelling" or 

"hierarchical linear modelling) is ever growing in psychology. This class of methods effectively 

deals with dependency of data (e.g., nested data), allowing researchers to flexibly model the effects 

of different levels of predictors (Goldstein, 2010; Hox, 2010; Raudenbush & Bryk, 2002; Snijders 

& Bosker, 2012).  

One of the major practical challenges in mixed-effects modelling for applied researchers is 

sample size determination, which is typically carried out with a power analysis. With simpler 

statistical analysis such as a t-test, power analysis can be performed by using popular software 

such as G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) or the pwr package in R (Champely, 

2018). To conduct power analysis for mixed-effects modelling, on the other hand, there are 

generally two classes of methods. Formula-based power analysis applies analytic formulae to 

calculate statistical power (e.g., Raudenbush & Liu, 2000; Snijders & Bosker, 1993). As the 

formulae are normally complicated (except for very simplified situations), researchers often need 

to use specialized statistical packages (e.g., PINT; Bosker, Snijders, & Guldemond, 2003). The 

second method, simulation-based power analysis, computes statistical power of mixed-effects 

modelling based on Monte-Carlo simulation. This normally requires a specialized package (e.g., 

simr package in R; Green & MacLeod, 2016; MLPowSim; Browne, Lahi, & Parker, 2009; 

clusterPower; Reich et al., 2012), or researchers can also write their own customized code using 

general purpose statistical language (e.g., R).  

Importantly, however, both formula- and simulation-based power analyses require many 

intricate parameters which are specific to mixed-effects modelling. In fact, one of the key 

challenges of power analysis in mixed-effects modelling lies in the fact that statistical power 

depends on many parameters that are often hard to expect. For example, Multilevel Power Tool 

(Mathieu, Aguinis, Culpepper, & Chen, 2012; https://aguinis.shinyapps.io/ml_power/), an online 

app that computes statistical power of a cross-level interaction effect in multilevel data (based on 

simulation), requires 12 inputs: average level 1 sample size, level 2 sample size, intraclass 

correlation for the independent variable, six fixed effects, and variance components of intercept, 

slope, and within-cluster residuals. PINT, a power calculation program of two-level multilevel 

models based on an analytic formula (Bosker, Snijders, & Guldemond, 2003), requires the 

variance/covariance matrix of predictors separately at the within- and between-cluster levels. Even 

in a simple situation such as a clustered randomized design with balanced data, researchers need 

to know variance components in addition to effect size (Raudenbush & Liu, 2000). When 

researchers want to conduct a power analysis based on a previous study on a similar topic, these 

parameters may not be reported. Even if researchers have access to the entire data (e.g., researchers 

use their own pilot data or open data available online), understanding, computing, and entering 

these parameters into software requires extensive care and expertise. 

Given the complication, it is not surprising that researchers seem to avoid statistical power 

analysis of mixed-effects modelling in empirical literature. We performed a literature review for 

the papers published in Psychological Science, which introduced a “Research Disclosure 

Statements” section in January, 2014, mandating authors to provide the justification of their sample 

size, including statistical power analysis (Eich, 2013). With this policy, researchers are now 

required to provide justification for the sample size in the method section. We collected papers in 

Psychological Science that conducted mixed-effects modelling (hierarchical linear modelling or 

multilevel modelling; some researchers used different names such as random-effects regression) 

as the main part of the analysis, and examined whether there was any mention of statistical power 
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analysis. We focused on the papers published after January 2015 as we thought it would take time 

for Research Disclosure Statements (effective since January 2014) to consolidate in published 

papers. Of the 135 papers published until August 2019 that used mixed-effects modelling as the 

primary analysis 1 , only 4.4% of the papers conducted a proper statistical power analysis 

considering the dependency of the data with specialized software (simr, Mplus, etc.; none of the 

studies used a customized code). 1.5% referred to past work on the power analysis of mixed-effects 

modelling (e.g., Brysbaert & Stevens, 2018) to justify sample size. Other 20.0% of the papers 

reported quantitative statistical power analysis but authors did not mention how they considered 

the dependency of data (e.g., reported a “standard” power analysis based on Cohen’s d, r, etc.). 

The rest of the papers (74.1%) did not report (or refer to) any quantitative power analysis --- 17.8% 

of the papers mentioned past similar work to justify the sample size (e.g., the sample size is similar 

to or bigger than the relevant work in the past) and 56.3% of the papers provided only obscure 

reasons (e.g., the research group tried to recruit as many participants as possible by the end of the 

term) or even little justifications. These numbers are quite similar to those reported by Arend and 

Schäfer (2019), who examined reporting practice of statistical power analysis of mixed-effects 

modelling in other major journals of psychology between 2000 and 2016 (i.e. Journal of Abnormal 

Psychology, Journal of Applied Psychology, Journal of Educational Psychology, and Journal of 

Personality and Social Psychology). They showed that only 4.8% of authors performed a 

quantitative computation of power considering the dependency of the data. 20.5% mentioned 

power but it was based on informed guesses without quantitative estimation. 64.8% did not 

mention statistical power at all. 

The purpose of the current article is to provide a new, practical power analysis method for 

mixed-effects modelling of nested data, called summary-statistics-based power analysis. The 

proposed method is complementary to the existing methods of power analysis (i.e. formula- and 

simulation-based power analysis) with its own strengths and weaknesses. Importantly, the 

proposed method can effectively address the above-mentioned challenge for applied researchers, 

potentially facilitating the use of power analysis for mixed-effects modelling. Our idea is based on 

the fact that, under certain conditions, t values (or p values) computed in mixed-effects modelling 

are equivalent to or approximated to t (or p) values obtained using a one sample t test or correlation 

analysis of the aggregated data of the same dataset (called the "summary-statistics approach"). 

This means that researchers can conduct a power analysis of mixed-effects modelling using 

popular software (e.g., G*Power, pwr package in R) by treating these t values reported in a 

previous study using mixed-effects modelling as if they were the output of a one-sample t test or 

a correlation analysis.  

In the following, we first provide an illustrative example to demonstrate the equivalence of 

mixed-effects modelling and the one-sample t test of aggregated data under certain conditions. We 

then delineate the basic logic of the proposed summary-statistics-based power analysis, followed 

by a comparison of the proposed method with formula- and simulation-based power analyses. 

Afterwards we evaluate the robustness of the proposed method with statistical simulations. Finally, 

we show empirical examples and development of a web app which makes it easier for applied 

researchers to implement the proposed summary-statistics-based power analysis 

(https://koumurayama.shinyapps.io/summary_statistics_based_power/).  

Conditional Equivalence of Mixed-effects Modelling and a t test on Aggregated Data 

 
1 Some papers reported multiple studies within a paper. We included a paper if any of the studies in the paper used 

mixed-effects modelling as the primary analysis.  
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 Mixed-effects modelling is often regarded as the gold standard to handle multilevel 

(nested) data, and the literature tends to emphasize the advantage of mixed-effects modelling over 

simpler statistical analysis on aggregated data. In fact, unlike statistical analysis of aggregated data, 

mixed-effects modelling makes full use of the information in the nested data all at once, and 

therefore, it is reasonable to posit that mixed-effects modelling is better informed than the analysis 

on aggregated data. However, it is not well recognized that mixed-effects modelling produces 

approximately identical results to a simpler statistical test (e.g., one-sample t-test) on aggregated 

data under certain conditions.  

To illustrate this, think about a hypothetical dataset in which 10 data points (Level 1; L1) 

are nested within 12 participants (Level 2; L2). For each participant, 5 data points are from a 

control condition (coded as -0.5) and 5 data points are from an experimental condition (coded as 

0.5). Overall means for the experimental and control condition are 19.2 (SD = 3.99) and 17.9 (SD 

= 3.89), respectively (SDs were computed across all data points). The data and code are available 

on the Open Science Framework (https://osf.io/d4mub/). This example treats participants as level-

2 but the following logic applies to any type of two-level nested data such as participants nested 

within study sites (e.g., schools, companies).  

 Because the data are clustered, we apply mixed-effects modelling to the data, using the 

experimental condition as the independent variable (predictor). Specifically, we examine the 

following model. 

 

ijijjjij exuuy ++++= )()( 110000               (1) 

 

where yij is the dependent variable of i th data point of j th participant, u0j and u1j are random 

intercepts and slopes of participants, and γ00 is the overall intercept and γ10 is the overall slope of 

experimental effect. xij is a L1 (effect coded) independent variable representing the experimental 

condition of the i th data point of the j th participant. We assume that the focal level-1 predictor 

has a random slope --- this is an important condition to prevent potential inflation of Type-1 error 

rate (Barr, Levy, Scheepers, & Tily, 2013; Brauer & Curtin, 2018). eij is a random error. We 

assume that errors are normally distributed and independent from each other: eij ~ N(0, σ2), where 

σ2 is error (or, within-cluster) variance, meaning that random errors have a simple structure (e.g., 

there is no autocorrelation within participants). Random intercepts and slopes follow a multivariate 

normal distribution: Var(u0j) = τ00 (random intercept variance), Var(u1j) = τ11 (random slope 

variance) and Cov(u0j, u1j) = τ10 (covariance between random intercept and random slope). The 

primary effect of interest is the L1 effect γ10 (i.e. the effect of the experimental condition). 

Normally, parameter estimates and standard errors are computed using an iterative procedure. 

However, when (1) cluster size and (2) variance of the independent variable are identical across 

clusters (which is the case in this example), an analytic formula to compute the standard error of 

the γ10 is available as follows (Snijders, 2001, 2005): 
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Here, J = level-2 (L2) sample size, and n = level-1 (L1) sample size per cluster (or cluster size). 

Therefore, the total sample = Jn., S2
X is the within-cluster variance of xij and in this example, S2

X = 

0.25. t value for γ10 can be computed by dividing the parameter estimates of γ10 by the standard 

https://osf.io/d4mub/
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error.  

When we apply the model (1) to the data (using lme4 package in R with restricted maximum 

likelihood estimation), the results showed that the estimated γ10 (i.e. fixed effect of intervention) 

was 1.25, which corresponds to the raw mean difference between the conditions, with t (11) = 1.32 

and p = 0.21.  

Alternatively, you can aggregate the data at the participant level (i.e. compute the means 

of the intervention and control conditions for each participant) and conduct a paired-samples t test 

(J = 12) to examine the effect of the experimental condition. This paired-samples t test is equivalent 

to a one-sample t test using difference scores between the conditions. This is a common approach 

in experimental psychology or neuroscience literature in which trials are nested within participants 

--- researchers frequently compute the mean for each participant per condition and compare the 

conditions using a t-test or ANOVA. This analytic approach to aggregated data is often called by-

participant analysis (when level-2 unit is participants; e.g., Murayama, Sakaki, Yan, & Smith, 

2014), two-step procedure (Achen, 2005), or summary-statistics (or summary-measures) approach 

(Ahn, Heo, & Zhang, 2015; Frison & Pocock, 1992; Matthews, Altman, Campbell, & Royston, 

1990).  

Critically, the t test with summary-statistics approach shows exactly the same results, t (11) 

= 1.32 and p = 0.21, indicating that these two analytic approaches are equivalent. In fact, when the 

two aforementioned conditions are met (i.e. cluster size and the variance of x are constant across 

clusters), mixed-effects modelling and summary-statistics approach are mathematically 

equivalent. We show the mathematical proof in Appendix2. Note also that, in this specific example, 

the equivalence holds (i.e. the results stay the same) even if we used a method that adjusts degrees 

of freedom and/or standard errors for small sample size such as the Kenward-Roger correction 

(Kenward & Roger, 1997).  

The above example focused on the case of comparing two conditions, i.e. the independent 

variable was binary. What if the focal independent variable is continuous? Here we assume that 

independent variables are all centered within clusters, which is a common and appropriate option 

to dissociate level-1 from level-2 effects (Enders & Tofighi, 2007). Mixed-effects modelling takes 

into account the fact that regression slopes are different across clusters, and estimates a single 

overall within-cluster regression slope as well as the variance of the slopes between clusters. If the 

overall regression coefficient is statistically significant, researchers will conclude that the 

independent variable is related to the dependent variable.  

A parallel summary-statistics approach is to run a regression analysis for each cluster --- if 

researchers have 12 clusters, for example, they run 12 regression analyses predicting the dependent 

variable from the independent variable. They can then test whether the average of the regression 

coefficients is different from zero using a one-sample t test. This analysis has been common in 

experimental psychology, in which researchers frequently run trial-level regression or correlation 

analysis for each participant (Lorch & Myers, 1990; Monin & Oppenheimer, 2005; Murayama et 

al., 2014). Similarly, in neuroimaging analysis, researchers often apply a linear regression model 

(more precisely, a general linear model) to individual data to estimate regression coefficients for 

each participant, which are then subject to a one-sample t test to examine whether the coefficients 

are significantly different from zero across participants (Monti, 2011). In fact, this is the procedure 

 
2 Some studies demonstrated that mixed-effects modelling and mixed-effects analysis of variance  (ANOVA) are 

mathematically equivalent (Barr et al., 2013). But these studies consider ANOVA applied to hierarchical (long-format) 

data themselves, not the aggregated data. This is not the equivalence of mixed-effects modelling and summary-

statistics approach as described here. 
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currently adopted by Statistical Parametric Mapping (SPM), widely used neuroimaging software.  

Importantly, even when xij is a continuous variable, as demonstrated mathematically in 

Appendix, Equation (2) is asymptotically true, and mixed-effects modelling and the summary-

statistics approach produce almost identical t values under the same conditions (i.e., cluster size 

and the within-cluster variance of x are identical across clusters). Note that this equivalence is 

further generalized to a situation in which there are other (non-orthogonal) L1 predictors with 

random slopes (see Appendix for proof).  

Summary-statistics-based Power Analysis for Sample-size Determination with Mixed-

effects Modelling 

 The close relation of the test statistics between the mixed-effects modelling and summary-

statistics approaches provides us with a simple approach to compute statistical power: Summary-

statistics-based power analysis. Imagine that there is a published study or a pilot study that 

researchers conducted, and they want to determine a L2 sample size (e.g., number of participants 

in case of a multi-trial experimental study or a diary study) for their new study based on that 

information. They are interested in a level-1 fixed-effect (γ10) in Equation (1). With our proposed 

approach, the researchers simply need the t value (or p value) associated with this fixed effect (γ10) 

and the L2 sample size J from the previous study to compute an approximate statistical power. 

This information is so basic as to be readily available from most published papers 3  and yet 

sufficient to conduct a power analysis for that fixed-effect.  

The summary-statistics-based power analysis is summarized in Table 1. Specifically, once 

researchers obtain the information on the t-value and the L2 sample size, they would need to 

convert the t value to Cohen’s d as if the t value were obtained from a one-sample t test with the 

sample size = J (Step 1). This Cohen’s d can be then used to conduct a power analysis of one-

sample t test with G*Power, pwr, or other software (Step 2; it is also possible to use an available 

formula to determine a sample size with one-sample t test). Put simply, they can run a power 

analysis by regarding the L1 statistical test in mixed-effects modelling as a one-sample t test. The 

fundamental idea is that statistical power analysis for mixed-effects modelling can be substituted 

with that of the summary-statistics approach, because the two approaches provide equivalent 

statistical test results when the conditions are met4. This procedure is effective even when there is 

more than one L1 predictor.  

The proposed summary-statistics-based power analysis is primarily meant to conduct a 

power analysis based on the information from relevant prior work. It is possible to conduct a power 

analysis based on a pre-defined effect size (in that case, researchers should simply skip Step 1 in 

Table 1), such as minimal clinically important difference (Jaeschke et al., 1989), but this approach 

should be used with caution, which we will detail in the General Discussion. 

Importantly, while using prior work is one of the common procedures for power analysis, 

 
3 We can also compute the t value even if the original study only reported the beta value and its standard error; we 

simply need to divide the beta by the standard error to obtain a t value. 
4 Mathematically speaking, the sufficiency of the t value to conduct a power analysis for L2 sample size stems from 

the fact that the t value is completely proportional to √J as shown in Equation (2). This means that, once we obtain 

a t value from prior work, we can update standard error estimates and the non-centrality parameter by changing L2 

sample size J without knowing the other parameters (i.e. γ10, τ10, σ2, n, and sx
2). Then we can use an existing formula 

(e.g., Cohen, 1988) to calculate a desired sample size to achieve a specific power given a pre-defined Type-1 error 

rate α. This alternative method allows researchers to directly conduct power analysis, bypassing the summary-statistics 

approach as described in Table 1. However, we prefer taking the proposed steps in Table 1 because these steps provide 

applied researchers with (1) a clearer understanding of what they are doing, and (2) more accessibility through the use 

of existing easy-to-use software for power analysis. 
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applied researchers should keep in mind its potential problems and measures to remedy them. First, 

power analysis based on prior work assumes that there is a high degree of similarity between the 

previous study and future study. When researchers aim to do a replication study or a pilot study, 

this is not a big issue. But when researchers plan sample size by looking at the past relevant work, 

the degree of similarity between the past work and planned work (design, population, etc.) has 

influence on the validity of sample size estimates. There are many sources of divergence (e.g., 

differences in study design, included predictors, study population, etc.) and to the extent that the 

prior work is dissimilar with the planned study, power estimates would become inaccurate. If 

researchers feel that previous studies are not similar enough, it is best to conduct a pilot study with 

the exact procedure. This sounds costly but it can save researchers from potential interpretive 

difficulty when the main study does not produce a statistically significant effect. 

The second issue is that the results from the past work include uncertainty (i.e. sampling 

errors). To address the issue, various approaches have been proposed (e.g., Du & Wang 2016; 

McShane & Böckenholt, 2016; Pek & Park, 2019). One simple method is a safeguard power, in 

which researchers are encouraged to use the lower boundary of the effect size confidence interval 

(e.g., 60% CI) as a protection against the potential underestimation of the effect size (Perugini et 

al., 2014). Summary-statistics-based power analysis can easily incorporate this idea. Specifically, 

sampling error of the t value computed from a past study always follows a non-central t distribution 

regardless of the sample size and sample variance of the study. As such, instead of computing the 

effect size confidence interval, researchers can conduct a safeguard power analysis by deriving a 

confidence interval of the t value. For example, if a previous study reported a t value of 2.40 (df = 

60), we can suppose that the sampling distribution of the t value follows a non-central t distribution 

with the non-centrality parameter 𝛿 = 2.40 (df = 60), without knowing any other outputs from the 

study. Its 60% CI is [1.56, 3.29], and as such, researchers can use t (60) = 1.56 as input to calculate 

appropriate sample size based on the proposed method. 

 The third issue is publication bias. Publication bias generally overestimates effect size (and 

associated test statistics) and therefore, conducting a power analysis based on prior work may risk 

underestimating sample size. To address the issue, others provided a likelihood function of the 

non-centrality parameter (i.e. t value) when publication bias exists (Anderson et al., 2017; Taylor 

& Muller, 1996). By applying the formula to the non-centrality parameter obtained in a prior study, 

researchers can obtain an adjusted non-centrality parameter that accounts for the uncertainty and 

publication bias. There is a Web App (https://designingexperiments.com/shiny-r-web-apps/) and 

an R package (BUCSS; Anderson & Kelley, 2020) that automatically compute the adjusted non-

centrality parameter. This correction method fits well with the proposed summary-statistics-based 

power analysis in mixed-effects modelling. Specifically, researchers can simply enter the non-

centrality parameter (i.e. t value) of mixed-effects modelling results from a previous study to 

compute an adjusted non-centrality parameter using the software, and then use the obtained value 

as the input of the summary-statistics-based power analysis to plan an appropriate sample size. To 

our knowledge, the issue of publication bias in power analysis has not been sufficiently discussed 

in the literature of mixed-effects modelling but the method described here provides a possible 

solution. 

 More Complex Models 

 We have thus far focused on a simple model in which there are only L1 predictors. Here 

we extend the idea, considering a more complex model in which there are Level-1 predictors, 

Level-2 predictors, and cross-level interactions. Let’s first consider the following full model: 
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γ10 is the overall slope of the level-1 predictor xij (L1 effect), γ01 is the main effect of the level-2 

predictor wj (L2 effect), and γ11 is the cross-level interaction between xij and wj (L12 effect). Again, 

as customary, we assume that L1 predictor xij is centered within clusters and has random slopes 

u1j.    

 In this full model, L2 effect is similar to a regression predicting cluster-averaged scores of 

the dependent variable from the L2 predictor. Likewise, L12 effect is conceptually similar to a 

regression predicting within-cluster slopes from the L2 predictor. As such, we may treat the 

statistical test of L2 and L12 effects in mixed-effects modelling as similar to the test of regression 

coefficients using clusters as the unit of analysis. This logic suggests that, for L1 as well as L2 and 

L12 effects, the summary-statistics approach is still possible with a full model specified in 

Equation (3). Note that the same conceptual idea applies even if there is more than one L2 and L12 

effect --- in this case, the focal L2 effect or L12 effect can be seen as a partial regression coefficient 

after controlling for the other L2 or L12 effects. The statistical test for the partial regression 

coefficient is essentially a test of the regression coefficient with residuals after explaining the other 

variables. As such, we can still consider the focal L2 or L12 effect as stemming from regression, 

except that we need to adjust the degrees of freedom based on the number of the other L2 or L12 

effects (see Algina & Olejnik, 2003). 

What about the L1 effect? One important difference from the previous simple case is that, 

the interpretation of L1 effect γ10 is dependent on the L2 predictor Wj. That is, as Equation (3) 

indicated, γ10 is the effect of L1 predictor when L2 predictor Wj is zero. Therefore, with the 

summary statistics approach, a statistical test for L1 effect is essentially equivalent to the statistical 

test of the intercept term obtained from the regression analysis predicting within-cluster slopes 

from the L2 predictor (i.e. the regression to estimate L12 effect). The same logic applies when 

there is more than one L1/L2 predictor. This means that we can still treat the statistical test of L1 

effect as similar to a one-sample t test across clusters, although we need to adjust for the degrees 

of freedom based on the number of the cross-level interactions related to this L1 effect.  

Under the same conditions of invariant cluster size and within-cluster variance of the L1 

predictor, we can analytically derive approximate formulae to compute the standard errors of these 

fixed effects (L1 effect, L2 effect, and L12 effect), and we can prove that the summary-statistics 

approach described above would give approximately identical test statistics to those obtained from 

mixed-effects modelling. This is the case even when there is more than one L1 and/or L2 predictor 

(under the condition of invariant cluster size and within-cluster variance/covariance matrix of the 

L1 predictors). Appendix shows these formulae and the proof of equivalence. 

Summary-statistics-based power analysis with complex models 

Given the equivalence of mixed-effects modelling and the summary-statistics approach in 

the complex model, we can extend the proposed method to plan L2 sample size based on past work 

for such complex models (Table 1). Again, the fundamental idea is that we can substitute the power 

analysis of mixed-effects modelling with that of the summary-statistics approach based on well-

known effect size metrics (i.e. Cohen’s d, r). For the power analysis of L1 effect, the procedure is 

the same: We should simply regard the t value from the past work as that from a one-sample t test. 

Then we can convert the t value into Cohen’s d (Step 1), with which we can conduct a power 

analysis using a standard software such as G*Power or pwr or available formula (Step 2). The 

single difference is that we need to adjust for the number of the cross-level interactions that involve 

the L1 predictor of interest (Step 1 and Step 3; see Table 1 for precise procedure). 
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 For the power analysis of L2 effect, we first consider the t value of the mixed-effects 

modelling from the past work as if it were obtained from a test of simple correlation (or partial 

correlation in case of multiple L2 effects) between the L2 predictor and cluster-average scores of 

the dependent variable. Note that we use the correlation metric, rather than the regression 

coefficient, to quantify the relationship. Power analysis for correlation and that for regression 

produce identical or almost identical results and as such, choice of the metric has little impact on 

the actual power calculation. However, correlation has more intuitive metric than unstandardized 

regression coefficient, and is easier to conduct power analysis with available software. In fact, 

based on the available formula, we can then easily convert the t value (along with the L2 sample 

size information) back to correlation r (Step 1). Then we can simply use the r value as effect size 

input to conduct a power analysis of correlation using standard software or available formula to 

determine L2 sample size for a new study (Step 2). Similarly, power analysis of L12 effect starts 

with the idea that the t value of the mixed-effects modelling can be regarded as if it were obtained 

from a test of simple correlation between the L2 predictor and within-cluster slopes. Using the 

same formula, we can easily convert the t value (along with the L2 sample size information) to 

correlation r (Step 1). Then we can use r as effect size input to conduct a power analysis of 

correlation using standard software or the available formula (Step 2). In both cases, it is more 

accurate to adjust the number of the L2 or L12 predictors (Step 1 and Step 3; see Table 1 for precise 

procedure). 

When Determining Cluster Size in Addition to L2 Sample Size 

 The proposed approach provides researchers with a relatively easy and accessible way to 

determine L2 sample size based on past work. However, the estimated L2 sample size with this 

approach is deemed valid only when cluster size is the same between the past study and the planned 

study (or when the planned cluster size is larger than the past study; in such a case, the proposed 

method will provide a conservative sample size). This is because changing cluster size is likely to 

change the stability of within-cluster regression coefficients, resulting in the change of the effect 

size Cohen's d. This limitation compromises the potential value of the summary-statistics-based 

power analysis.  

However, there is a way to expand the summary-statistics based power analysis to address 

this issue. Consider a simple model as described in Equation (1) in the first place. As indicated in 

Equation (2), t value is the function of (1) fixed effect γ10, (2) cluster size (n), (3) number of clusters 

(J), (4) random slope variance (τ11), and (5) the ratio of the within-cluster variance and the observed 

variance of the independent variable (σ2/sX
2). When there is more than one L1 predictor, the last 

element (σ2/sX
2) is substituted by σ2/sX

2(1-Rx
2), where Rx

2 is the R2 when the focal L1 predictor is 

regressed upon the other L1 predictors (see Appendix for the formula). Therefore, in addition to t 

value and L2 sample sizes, if estimated random slope variance (τ11) and some basic information 

(estimated L1 fixed-effect γ10 and cluster size n) are available, we can compute σ2/sX
2 (or σ2/sX

2(1-

Rx
2), when there is more than one level-1 predictor). Then, we can investigate the impact of 

changing cluster size (n) on the t value using the same equation. This procedure allows us to 

estimate a new adjusted t value and associated Cohen's d if cluster size had been different in the 

prior work. Based on this new Cohen's d, we can conduct a power analysis using the available 

software or formula. In essence, with the additional information (e.g., τ11), we can estimate the 

most inaccessible information in published work (σ2/sX
2 or σ2/sX

2(1-Rx
2)) from the t value, allowing 

us to conduct statistical power analysis in a relatively easy manner5.   

 
5 Once we obtain the formula to compute effect size from the combination of L2 sample size and cluster size, it would 
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The same strategy applies to a complex model as described in Equation (3), and expanded 

models that have additional level-1 and/or level-2 predictors to Equation (3). Even with such 

complex models, we can estimate the most inaccessible information σ2/sX
2 or σ2(1-Rx

2)/sX
2 based 

on some additional information. According to the analytic formula derived in Appendix, if the 

focal effect is the L1 effect, like the simple model we discussed above, the additional information 

we need is only random slope variance (τ11) as well as some basic information (i.e. estimated focal 

fixed effect γ10 and cluster size n) from the prior work. When the focal effect is the L2 effect or 

L12 effect, we (unfortunately) need further information: the variance of the focal level-2 predictor 

(SW
2), and in case where there is more than one level-2 predictor, the proportion of the variance in 

the focal level-2 predictor explained by the other level-2 predictors (RW
2). The information is 

obtainable if previous work reported descriptive statistics and correlation matrix of the level-2 

predictors. 

For the purpose of illustration, we arbitrarily generated a single dummy dataset based on 

Equation (3) (cluster size = 32; L2 sample size = 30), which we regarded as data obtained from 

hypothetical past work, and drew power curves for L1, L2, and L12 effects using both summary-

statistics-based and simulation-based power analysis. For simulation-based power-analysis, power 

curves were drawn by simulating the statistical power for each combination of the cluster size and 

L2 sample size (with simr package in R; replication = 5,000 for each combination). The bold green 

line in Figure 1 (cluster size = 32) shows a power curve based on the proposed approach (solid 

line) and simulation-based approach (dotted line) when cluster size is the same as the hypothetical 

prior work (32). Other power curves concern the situation when the cluster size is different from 

the hypothetical prior work (thus summary-statistics-based power analysis requires more 

information to draw these curves as noted above). The graph indicates that both summary-

statistics-based and simulation-based power analysis produce very similar power curves. 

Although summary-statistics-based power analysis allows us to determine cluster size with 

additional information, the workaround described here is cumbersome or error-prone given the 

additional computations. To ease the use of the summary-statistics-based power analysis in such 

cases, we developed an online app. We will illustrate the app with real data examples later (see 

“Online App and Illustrative Examples” section).  

Strengths and Weaknesses: Comparison of Three Power analysis Methods 

 Summary-statistics-based power analysis is not meant to replace the existing formula- and 

simulation-based power analysis. Rather, they have complementary strengths and weakness, and 

different statistical assumptions. Table 2 summarizes the comparison of the three classes of power 

analysis methods for mixed-effects modelling.  

Practical aspects 

All of the three power analysis methods (i.e. formula-, simulation-, and summary-statistics-

based power analyses) can be used to determine sample size using the information from similar 

previous work. On the other hand, some researchers may want to conduct power analysis with a 

pre-defined effect size. In this situation, the summary-statistics-based method can still compute 

statistical power. However, its capacity is limited to the determination of L2 sample size only (see 

General Discussion), while traditional methods would be more comprehensive (although they 

require more input).  

Formula- and simulation-based power analyses require researchers to use software 

 
also be possible to work out an optimal design which maximizes the statistical power given a budgetary constraint 

(Rutterford et al., 2015; van Breukelen & Candel, 2012). 
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specialized for power analysis in multi-level modelling (e.g., PINT or simr). Alternatively 

researchers can write a customized code to run simulations. On the other hand, summary-statistics-

based power analysis can be conducted by standard power analysis software that many researchers 

are familiar with such as G*Power or pwr package in R. When researchers are interested in 

determining cluster size, computational steps before using these software are cumbersome (see the 

section “When Determining Cluster Size in Addition to L2 Sample Size”) but we developed a web 

app to automate the process (introduced later). In general, summary-statistics-based power analysis 

can be conducted with a smaller number of input values, in comparison to the other methods.  

One critical limitation of the summary-statistics-based power analysis is that they can only 

handle a relatively simple mixed-effects model: two-level linear model with nested data. For 

example, the summary-statistics-based power analysis cannot be applied to a model with 

categorical or ordinal outcomes (i.e. generalized linear mixed-effects modelling). Although we 

believe that the proposed method can still give a rough estimate of statistical power, its 

performance should be empirically evaluated. Summary-statistics-based power analysis cannot 

handle the case in which there is more than one crossed random effect (cross-classified model). In 

fact, in such a case, t value from prior work does not contain sufficient information to calculate 

statistical power with varying sample size. Formula-based power analysis has slightly better 

flexibility. For example, when independent variables are binary and data are balanced, researchers 

can conduct formula-based power analysis for cross-classification models (e.g., Westfall, Kenny, 

& Judd, 2014) and three-level models (e.g., Dong & Maynard, 2013). Simulation-based power 

analysis is most flexible in this regard, and can run power analysis for all of the existing mixed-

effects models in theory, although researchers may need to write a customized simulation script in 

some situations.  

There is a hidden practical cost of the simulation-based power analysis: computational time. 

To perform a simulation-based power analysis, researchers need to run numerous replications to 

obtain a power value. To draw a power curve to find an appropriate sample size, this process needs 

to be repeated by systematically changing sample sizes, each of which could take a few hours. If 

researchers want to test different combinations of parameters, the same simulation needs to be 

repeated. On the other hand, both formula- and summary-statistics-based power analyses can 

produce a power curve within a second. 

Statistical Assumptions    

Summary-statistics-based power analysis is essentially a version of formula-based power 

analysis. Therefore, these two methods have similar statistical assumptions, and if the assumptions 

are met, they provide precise power estimates. We already elucidated some of these statistical 

assumptions when explaining the equivalence of the summary-statistics approach and mixed-

effects modelling, but here we elaborate on the assumptions in more detail.  

First, both formula-based and summary-statistics-based power analyses assume constant 

cluster size across clusters (although some work on formula-based power analysis provides 

formulae to adjust sample size in case of unequal cluster size; e.g., Manatunga et al., 2001). When 

researchers expect heterogeneous cluster size across clusters, researchers may use the expected 

average or harmonic-mean of cluster sizes as a proxy. Previous simulation studies showed that 

formula-based power analysis is reasonably robust for the violation of this assumption, unless 

cluster size is extremely heterogeneous (Candel et al., 2008; van Breukelen et al., 2007). In a 

similar manner, our simulation in a later section also showed that the summary-statistics-based 

power analysis is quite robust for such a violation. 

Second, formula- and summary-statistics-based power analyses can deal with continuous 
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predictors but assume that predictors have equal variance across clusters. To our knowledge, we 

are not aware of statistical simulation studies that directly addressed the robustness of the formula-

based power analysis against the violation of this assumption when predictors are continuous. 

However, in the simulation we will conduct in a later section, we showed that summary-statistics-

based power analysis is reasonably robust for the moderate violation of this assumption (and 

therefore we can expect that formula-based power analysis is also reasonably robust for the 

violation). 

There are three related assumptions that are specific to summary-statistics-based power 

analysis. First, summary-statistics-based power analysis has an implicit assumption that the 

variance of independent variables is not directly related to cluster size. Although this is a 

reasonable assumption in most applied studies, there is one exception: research that includes time 

as a predictor variable, such as growth curve modelling (i.e. adding time points naturally changes 

the variance of the time predictor). In such models, if researchers want to determine an optimal 

number of time points (i.e. cluster size) rather than L2 sample size only, we can still apply the 

method but we should modify the procedure to take into account the change in variance of the time 

variable when adding or subtracting time points. Second, summary-statistics-based power analysis 

assumes that predictors are cluster-mean centered (or have equal means across clusters). Finally, 

summary-statistics-based power analysis is based on a formula that assumes that all L1 predictors 

have random slopes. That said, when random slopes are dropped due to the fact that slopes do not 

vary across clusters (most common reason for not including random slopes), summary-statistics-

based power analysis should still give accurate power estimates.  

On top of these assumptions, of course, standard assumptions for mixed-effects modelling 

apply to summary-statistics-based power analysis (e.g., normality of random effects and L1 errors, 

homoscedasticity, independence of L2 random effects and L1 errors). L1 errors are assumed to be 

independent (this is the assumption for lme4 package in R). This is often violated when data are 

longitudinal and measurements are taken close together in time. Formula-based power analysis 

basically has the same standard assumptions especially for the models that can be dealt with using 

specialized software packages. Finally, both formula- and summary-statistics-based power 

analysis methods assume that researchers will analyze data using restricted maximum-likelihood 

(REML) estimation, which is normally preferrable to maximum-likelihood (ML) estimation due 

to the fact that ML potentially has larger underestimation bias in the standard errors estimates 

(McNeish & Stapleton, 2016). 

Simulation-based power analysis, on the other hand, can loosen most of these assumptions 

in principle. This flexibility is a big advantage of simulation-based power analysis (Arend & 

Schäfer, 2019). On the other hand, this considerable flexibility also means that researchers need to 

make many educated decisions (with certain assumptions) --- researchers need to deliberately 

specify various information to run power analysis with such a complicated design or data. When 

researchers expect that cluster size will be different across clusters, for example, they need to 

decide how to generate (or which distribution should be used to generate) cluster sizes for each 

simulation. Similarly, if researchers plan to use continuous predictors, they need to decide the way 

to generate these predictors for each simulation.  It should also be noted that, for some type of 

complex models, software availability may be limited. For example, simr in R cannot handle a 

model with a complex covariance structure of L1 errors. 

With rare exceptions, mixed-effects models are known to underestimate standard errors 

when L2 sample size is small (McNeish & Stapleton, 2016). Therefore, both formula- and 

summary-statistics-based power analyses generally give somewhat overestimated statistical power, 
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when researchers plan to take into account small-sample bias using an existing correction method 

(e.g., Kenward-Roger correction method) in the main data analysis. In such cases, researchers may 

wish to oversample slightly to make up for inflated statistical power. Alternatively, researchers 

can use simulation-based-power analysis with a correction method. However, the Kenward-Roger 

correction method (one of the most popular and well-performing correction methods) sometimes 

requires considerable computation time (Kuznetsova, Brockhoff, & Christensen, 2017); therefore, 

this option may not be practical.  

Evaluating the Robustness of the Summary-statistics-based Power Analysis 

Like formula-based power analysis, the summary-statistics-based power analysis is 

asymptotically accurate when the statistical assumptions described above are met. In reality, 

however, these assumptions are rarely met. Here we evaluate the robustness of the proposed power 

analysis by focusing on the two assumptions --- constant within-cluster variance of predictor and 

constant cluster size. Although other statistical assumptions are also important, we focused on 

these two assumptions because these are the major assumptions that are not routinely assumed in 

mixed-effects modelling and are often violated in real data. To evaluate the robustness, we 

compared the summary-statistics-based power analysis with simulation-based power analysis 

which took into account the violations of these assumptions. We used a complex model in Equation 

(3) so that we can evaluate the robustness of the proposed method in a relatively broad context. 

Simulation 1 

Simulation 1 Method.  We first simulated 500 datasets from a data generation model based 

on Equation (3) with cluster size n = 32 and L2 sample size J = 30, and regarded the simulated 

datasets as 500 separate pilot test datasets. We then applied mixed-effects modelling to each of the 

(hypothetical) pilot datasets. Next, based on the obtained results, we estimated a power curve for 

L1, L2, and L12 effects respectively, once using the summary-statistics-based method and again 

using a simulation-based method (with the simr package in R, replication = 1,000; Satterthwaite 

approximation was used to define degrees of freedom for the mixed-effects model). For the 

summary-statistics-based power analysis, we only used the t value obtained from the mixed-effects 

modelling and L2 sample size J = 30 as input to obtain a power curve when cluster size n = 32. To 

obtain power estimates with different cluster sizes, the summary-statistics-based power analysis 

used further information specified in the previous section.  

Given the excessive computation time of repeating the simulation method, in this 

simulation, we only looked at the estimated power of three different L2 sample sizes (J = 20, 30, 

and 40) combined with three different cluster sizes (n = 22, 32, and 42) for each hypothetical data, 

and used only one set of parameters to generate hypothetical datasets. Specifically, for the 

simulation to examine the comparability of the L1 effect: standardized L1 effect = 0.20; 

standardized L2 effect = 0.20; standardized L12 effect = 0.20; random intercept variance = 0.6; 

and random slope variance = 0.3. For the simulation to examine the comparability of L2 effect: 

standardized L1 effect = 0.20; standardized L2 effect = 0.45; standardized L12 effect = 0.20; 

random intercept variance = 0.3, random slope variance 0.6. For the simulation to examine the 

comparability of L12 effect: standardized L1 effect = 0.20; standardized L2 effect = 0.20; 

standardized L12 effect = 0.45; random intercept variance = 0.3; random slope variance = 0.3. For 

all models, error variance was set to 1.0 and correlation between the random intercept and slope 

was set to 0.3. These parameter values were deliberately chosen in order not to have a floor or 

ceiling effect of power estimates and to have visible change in power estimates as a function of 

sample size. 

There were three different conditions for the data generation model. The first condition 
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generated data under the restrictions that cluster size and predictor variance are constant across 

clusters (n = 32, and predictor variance = 1). This condition serves as a baseline to evaluate the 

performance of the other conditions --- this condition theoretically produces the same power 

estimates across the two methods of power analysis. In the second condition, the independent 

variable xij in the hypothetical pilot dataset was generated from a normal distribution with mean = 

0 and standard deviation = 1, meaning that the observed (not the population) variance of the 

independent variable is different across clusters. In the simulation-based power analysis, we need 

to specify the data points of the independent variable in the simulation model that evaluates 

statistical power. In this condition, simulation-based power analysis used the same normal 

distribution to define the data points of xij in the simulation model. In the third condition, cluster 

size was varied across clusters while the mean cluster size was still the same as the other conditions 

(i.e. n = 32). Specifically, cluster size for each cluster was varied --- 3 repeats of the following 10 

numbers: 14, 18, 22, 26, 30, 34, 38, 42, 46, and 50. Again, simulation-based power analysis 

requires us to specify the individual cluster sizes in the simulation model when they are 

heterogeneous across clusters. By arbitrarily setting up cluster sizes of the hypothetical pilot 

dataset as 3 repeats of the same 10 numbers, we circumvented the issue. Specifically, when we 

estimated the power with L2 sample size = 20 or 40, we simply omitted or added these 10 numbers 

to specify the simulation model in the simulation-based power analysis. This means that we used 

an idealistic scenario to increase the precision of the simulation-based power analysis. 

In sum, this simulation produced 500 (hypothetical pilot datasets) x 3 (effect in focus: L1, 

L2, or L12) x 3 (conditions) = 4,500 hypothetical pilot datasets, which were analyzed both by the 

summary-statistics- and simulation-based (replication = 1,000) power analyses to compare the 

results. For each hypothetical pilot dataset, both methods produced nine power estimates with three 

different levels of L2 sample sizes (J = 20, 30, and 40) combined with three different cluster sizes 

(n = 22, 32, and 42). Therefore, the simulation method ran 4500 x 1000 x 3 x 3 = 40,500,000 

models to obtain power estimates. The simulation was run on the Laboratory of Neuroimaging 

(LONI) Pipeline system provided by the University of Southern California Mark and Mary Stevens 

Neuroimaging and Informatics Institute (Rex, Ma, & Toga, 2003).  

To evaluate the similarity of power estimates from these two methods, we computed (1) 

the average power for each method and (2) the root-mean square error (RMSE) defined as follows: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑜𝑤𝑒𝑟𝑠𝑢𝑚𝑚𝑎𝑟𝑦 − 𝑃𝑜𝑤𝑒𝑟𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)2
𝑅

𝑅
 

 

R denotes the number of pilot data generated (i.e. 500) and Powersummary and Powersimulation 

are the power estimates based on the summary-statistics- and simulation-based power analyses.  

Simulation 1 Results. The results are summarized in Table 3. Overall, summary-statistics-

based power analysis produced comparable results with the simulation-based power analysis. In 

the baseline condition, where cluster size and predictor variance are constant across clusters, 

summary-statistics-based power analysis should show very similar power estimates with 

simulation-based power analysis. In fact, we saw little discrepancy between the proposed and 

simulation-based methods in the average power and RMSEs (0.009 – 0.019). Given the general 

equivalence of the two approaches, the observed discrepancy is likely due to sampling errors in 

the simulation method. In fact, with 1,000 replications of the simulation-based power analysis, the 

standard error of a proportion estimate is maximally 0.016 (when true proportion is 0.50). 
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Critically, the results were robust even under conditions where predictor variance or cluster 

size was varied across clusters. On average, both methods showed very similar power estimates, 

indicating that the proposed method is not biased in a systematic manner. RMSEs are mostly below 

0.025, although the discrepancy was slightly larger when both L2 sample size cluster sizes were 

small and cluster size was varied (maximum = 0.030). In comparison to the baseline condition, 

RMSEs became larger only by 0 – 0.012. The robustness of the summary-statistics-based power 

analysis is consistent with the previous observations that cluster size heterogeneity does not have 

much impact on the statistical power estimates (e.g., van Breukelen et al., 2007).  

Simulation 2 

Simulation 2 Method. The first set of simulations showed that summary-statistics-based 

power analysis is robust to violation of the two critical assumptions: constant within-cluster 

variance of predictors and constant cluster size. However, the simulation was limited in that it 

focused only on a fixed set of parameters to generate hypothetical pilot datasets. This is due to the 

considerable computational demands of simulation-based power analysis, which make it 

practically infeasible to run a similar simulation by factorially combining different parameter 

values.  

 To examine the effects of the different parameter values on power accuracy while 

minimizing the computational demand, we conducted the second simulation using the following 

procedure. Specifically, for each hypothetical pilot data generation, we randomly sampled the 

parameters of the data generation model from the following range (using a uniform distribution): 

For the models testing L1 effect, L2 sample size J = [20, 48]; cluster size n = [20, 60]; standardized 

L1 effect = [0.10, 0.40]; standardized L2 effect = [0.20, 0.50]; standardized L12 effect = [0.20, 

0.50]; random intercept variance = [0.6, 1.2]; random slope variance = [0.5, 1.0]; correlation 

between random intercepts and random slopes = [0, 0.5]. Error variance was fixed to 1.0. For the 

models testing L2 effect and those testing L12 effect, the ranges were almost the same except for 

the random slope variance = [0.3, 0.6]. These ranges were chosen deliberately so that overall 

statistical power would not hit the floor or ceiling in the majority of cases. We generated 1,000 

hypothetical pilot datasets and then applied summary-statistics- and simulation-based (replication 

= 1,000) power analyses, estimating the power of three different L2 sample sizes (J - 10, J, and J 

+ 10, where J is the L2 sample size of the hypothetical data) combined with three different cluster 

sizes (n – 10, n, and n + 10, where n is the cluster size of the hypothetical data). This procedure 

resulted in 9,000 (1,000 x 3 x 3) pairs of power estimates for L1 effect from the two methods with 

varying parameter values. An additional 9,000 pairs of power estimates were obtained for L2 effect, 

and another 9,000 pairs of power estimates were obtained for L12 effect. 

We then regressed the difference of the power estimates between summary-statistics- and 

simulation-based power analyses onto the parameter values. This analysis reveals the impacts of 

parameters in the data generation model on the discrepancy of power estimates in the two power-

analysis methods. We examined two types of power estimate differences. The first type is the 

relative difference (Powersummary - Powersimulation), which allows us to investigate the factors that 

contribute to a systematic overestimation or underestimation of power. The second type is absolute 

difference (|Powersummary - Powersimulation|), which allows us to examine the factors that contribute 

to absolute deviation of the two power estimates. This index is conceptually similar to RMSE. 

The independent variables of the regression analysis were (1) L2 sample size of the 

hypothetical (original) dataset (J), (2) cluster size of the hypothetical (original) dataset (n), (3) 

random intercept variance, (4) random slope variance, (5) standardized L1 effect, (6) standardized 

L2 effect, (7) standardized L12 effect, (8) correlation between random intercepts and random 
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slopes, (9) L2 sample size to estimate power relative to the original sample size (-10: J – 10, 0: J, 

+10: J + 10), (10) cluster size to estimate power relative to the original sample size (-10: n-10, 0: 

n, +10: n +10). All the independent variables were centered so that the intercept represented the 

overall discrepancy of power estimates between summary-statistics- and simulation-based power 

analyses. 

 Simulation 2 had two conditions: the condition of heterogeneous within-cluster variance of 

the predictor, and the condition of heterogeneous cluster size. The within-cluster variance of the 

predictor was determined in the same way as the previous simulation. For the heterogeneity of 

cluster size, we tried to increase the variation of cluster size in comparison to the first simulation. 

Variation of cluster size is often quantified using a coefficient of cluster size variation (CsV), 

which is computed by dividing the standard deviation of cluster sizes by mean cluster size. In the 

Simulation 1, heterogeneous cluster size condition had the CsV of 0.32 in the generated pilot data. 

In the current simulation, we further tried to increase the CsV by sampling individual cluster sizes 

from a uniform distribution with a relatively wide range (minimum cluster size = 4): In the 

simulated hypothetical pilot dataset, the average CsV was 0.56. To determine the individual cluster 

size to estimate power in the simulation-based method, we used the same approach so that the 

distribution of the cluster size would become as similar as possible between the hypothetical pilot 

dataset and simulated models. 

 Simulation 2 Results.  The regression results are summarized in Table 4. To quantify the 

stability of parameter estimates, we also showed 95% CI (we corrected for the standard errors to 

take into account the fact that the same hypothetical data produced 9 pairs of power estimates). In 

short, the results confirmed the robustness of the summary-statistics-based power analysis for both 

conditions. For L1 effect, overall discrepancy was very small (for relative power difference, -

0.0002 and -0.0009; for absolute power difference, 0.0095 and 0.0098). For both relative 

difference and absolute difference, none of the predictors had strong effects on the discrepancy. 

For example, L1 effect size showed a negative effect of -0.0039 on the absolute difference in power 

in the variant cluster size condition. This means that the absolute power difference between the 

two power analysis methods increased by 0.00039 when (standardized) L1 effect size is smaller 

by 0.1.  

For L2 effect, overall discrepancy was very small (for relative difference, -0.0008 and -

0.0013; for absolute difference, 0.0117 and 0.0124). None of the predictors had strong effects, 

although the effects seem to be slightly larger than the L1 effect overall. For example, random 

intercept SD had a positive effect of β = 0.0125 on relative power difference in the varied cluster 

variance condition. This means that summary-statistics-based power analysis tended to 

overestimate the statistical power by 0.00125 when random intercept SD increased by 0.1 (i.e. as 

large as the SD of errors).  

For L12 effect, again, overall discrepancy was very small (for relative power difference, 

0.0004 and -0.0004; for absolute power difference, 0.0119 and 0.0146). Most of the predictors did 

not have strong effects. The biggest effect seems to be that of the standardized L12 effect on 

relative power difference, which showed β= -0.0543 in the varied cluster size condition. This 

suggests that summary-statistics-based power analysis tends to underestimate power by 0.00543 

in comparison to the simulation-based method when standardized L12 effect size increases by 0.1. 

Simulation 3 

Simulation 3 Method.  In the last simulation, we evaluated the performance of the proposed 

method in a similar manner to Simulation 1 (i.e. fixed set of parameters), but with a relatively 

adverse condition. Specifically, we ran a set of simulations under a condition in which cluster sizes 
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were vastly different, predictor variance was varied across clusters, and L2 sample size to estimate 

power was set to low values (10, 15, and 20).  

The simulation procedure was almost identical to Simulation 1 with the following changes. 

First, we simulated 1,000 (instead of 500) hypothetical datasets to evaluate the performance of the 

proposed method more accurately (the number of replications for the simulation-based power 

analysis stayed the same, i.e. 1,000). Second, we reduced the L2 sample size of the hypothetical 

dataset from 30 to 15, and estimated power for three different L2 sample sizes: 10, 15 and 20. 

Third, we created and focused only on a condition in which both cluster size and within-cluster 

predictor variance were varied across clusters. Fourth, we used the same procedure as Simulation 

2 to determine cluster sizes of the hypothetical datasets, and cluster sizes to estimate power, with 

the aim to increase the variation of cluster size. The average CsV in the hypothetical pilot datasets 

was 0.55.  

Finally, we slightly changed the parameters of the data generation model (for hypothetical 

datasets) to obtain statistical power estimates that were not close to the boundary (i.e. 0.00 and 

1.00). This was necessary, as the reduction of L2 sample size inevitably decreases overall statistical 

power. More specifically, the following values were used. For the simulation to examine the 

comparability of the L1 effect: standardized L1 effect = 0.30; standardized L2 effect = 0.20; 

standardized L12 effect = 0.20; random intercept variance = 0.6; and random slope variance = 0.3. 

For the simulation to examine the comparability of L2 effect: standardized L1 effect = 0.20; 

standardized L2 effect = 0.6; standardized L12 effect = 0.20; random intercept variance = 0.6; 

random slope variance = 0.3. For the simulation to examine the comparability of L12 effect: 

standardized L1 effect = 0.20; standardized L2 effect = 0.20; standardized L12 effect = 0.6; random 

intercept variance = 0.3; random slope variance = 0.3. Other parameter values were identical to 

those used in Simulation 1.  

Simulation 3 Results.  Results are reported in Table 5. Overall, despite the adverse 

condition, the proposed method showed reasonably good performance across different 

combinations of L2 sample size and cluster size, generally indicating the robustness of the 

summary-statistics-based power analysis. Of particular interest was the case when L2 sample size 

was small (i.e. 10). Our two major observations were as follows. First, on average, the proposed 

method showed very similar statistical power to the simulation-based power analysis. Second, 

when L2 sample size was small, RMSE increased up to 0.034 (for L1 effect) to 0.048 (for L12 

effect); This was a ~0.02-0.03 increase from the baseline model in Simulation 1. Together, these 

results demonstrate the robustness of the summary-statistics-based power analysis, even with 

strong violations of the assumption of equal cluster size, and with the modest violation of the 

assumption of equal predictor variance. The results also suggest that, when dealing with small 

sample size data, researchers need to bear in mind the possibility that a power estimate based on 

the proposed method may not be very accurate (i.e. it is better to oversample to be on a safe side).  

In sum, these simulation studies demonstrate the reasonable robustness of the summary-

statistics-based power analysis even when critical statistical assumptions are violated. The 

discrepancy between the proposed and simulation-based methods do not seem to be strongly 

impacted by the nature of the prior data (i.e., true parameters that define hypothetical pilot data). 

Even under the conditions of unequal within-cluster variance of predictor and cluster size (up to 

CsV = 0.55-0.56), power estimates by the proposed method did not systematically differ from 

those by the simulation-based method on average, although RMSE became slightly higher when 

sample size was small. 

Online App and Illustrative Examples 
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 Applied researchers can use summary-statistics-based power analysis just by following 

Table 1. When determining cluster size as well as L2 sample size, the computation is cumbersome. 

To ease the use of the summary-statistics-based power analysis, we developed an online app 

(Figure 2; https://koumurayama.shinyapps.io/summary_statistics_based_power/) by which 

researchers can easily conduct a priori power analysis by entering necessary information taken 

from pilot or prior work. The app allows researchers to conduct L2 sample size determination for 

L1, L2, and L12 effects by entering a t value and L2 sample size. The app also automatically 

adjusts for degrees of freedom when there is more than one predictor (Table 1). Critically, if 

additional input is available (e.g., τ11), the app can conduct power analysis with different cluster 

sizes (not varying across clusters). Below, we illustrate how we can conduct a priori power analysis 

of mixed-effects modelling using the app based on two empirical papers. 

Hackel and Zaki (2018) 

The study examined whether reciprocity was influenced by the wealth of the target using 

an economic game. The procedure is rather complicated but in short, at the final stage of the 

experiment, participants decided whether they wanted to share their endowment with other players 

who interacted with the participants ("givers"). Some of the givers were wealthier than others. 

Eighty-seven participants made a decision for 20 trials, 10 times for wealthy and 10 times for less 

wealthy givers (these givers were different across participants). The givers’ players also exhibited 

different levels of generosity at an early stage of the experiment, which served as another 

continuous predictor variable. To test their hypothesis, they fitted a mixed-effects model with trials 

as level-1 and participants as level-2, predicting percentage shared with the giver on each trial as 

a function of giver wealth (higher wealth = 1, lower wealth = −1), giver generosity (centred within 

clusters), and their interaction. Consistent with their hypothesis, giver wealth significantly 

influenced the shared percentage, b = 0.036, t (77.17) = 5.40, p < .01, suggesting that wealthy 

givers were more likely to be reciprocated. 

 Given the lack of the detailed information in the paper, such as intraclass correlation, it is 

challenging to perform power analysis using existing software. However, the summary-statistics-

based power analysis can easily compute a desired sample size if researchers were to conduct a 

similar study with the same number of trials. The computed Cohen's d for the L1 effect of the giver 

wealth based on summary statistics is relatively large, d = 0.58. Based on this effect size, the app 

indicated an appropriate sample size of 26 to achieve 80% statistical power. It is also easy to do 

the power analysis that takes into account the uncertainty of the t value reported in the study and 

publication bias by additionally using BUCSS package in R (Anderson & Kelley, 2020), which we 

mentioned earlier. Here, we conducted another power analysis with assurance = 80% and with the 

assumption that there was a publication bias (i.e. studies with p > .05 had not been published). 

Assurance is the percentage of times the sample size planning approach will be successful in 

reaching or exceeding the intended level of statistical power, taking into consideration of the 

uncertainty (i.e. sampling error) of previous results. Entering t = 5.40 and N = 87 as input (into the 

function to compute power based on a one-sample t test), BUCSS showed that the t value should 

be corrected to 4.469. Using this corrected value as an input, our app produces power curve and 

indicated an appropriate sample size of 37 to achieve 80% statistical power (Figure 2).  

Eckerlein et al. (2019) 

 The study administered a learning diary to university students in which they responded to 

a set of questions about the upcoming psychology exam every day during the 14-day exam 

preparation period. Overall, data from 115 participants were analysed, with the average 

assessments per participant = 10.5 (SD = 3.0, range = 3 -14). The main dependent variable was the 
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daily report of invested effort (“I tried especially hard today”; ICC = 0.18) and the main 

independent variable was daily report of motivational difficulties in the learning process (“Today 

I struggled to keep my study motivation on a high level”). They also assessed the quantity of 

motivation regulation and quality of motivation regulation as individual differences (i.e. L2 

variables) in a pre-test. One of the main hypotheses was that the negative within-person 

relationship between motivational difficulties and invested effort would be moderated by the 

quantity and quality of motivation regulation: the negative within-person relationship would be 

weaker for those who had high quantity and/or quality of motivation regulation (i.e. a positive 

cross-level interaction effect). 

 They conducted mixed-effects modelling in which daily invested effort was predicted by 

daily motivational difficulties and time of assessment at the within-person level. Random slopes 

were specified for both predictors. They further included the quantity of motivation regulation and 

quality of motivation regulation as two simultaneous L2 predictors, both to predict the random 

intercept (L2 effect) and the random slopes of the daily motivational difficulties (L12 effect). All 

the variables were z-standardized before the analysis. Partially supporting their hypothesis, there 

was a significant positive cross-level interaction effect between motivational difficulties and 

quality of motivational regulation, β = 0.07 (SE = 0.03), p < .05. On the other hand, quantity of 

motivation regulation did not significantly predict the random slope, β = 0.01 (SE = 0.03). 

 The information is sufficient to conduct summary-statistics-based power analysis for a new 

study that aims to test a similar cross-level interaction effect. Specifically, using the L2 sample 

size (115), the estimated t value from SE (0.07/0.03 = 2.33), and the number of cross-level 

interactions related to the focal L1 effect (2), the web app indicated that L2 sample size = 168 is 

required to achieve the statistical power of 80% (effect size r = 0.22), provided that average cluster 

size stays the same (i.e. 10.5).  

More importantly, the study also reported the random slope variance of the effects of 

motivational difficulties (0.05) and the correlation between the two L2 variables (r = 0.49). 

Entering the information (i.e. τ11 = 0.05, RW
2 = 0.492 = 0.2401, and SW

2 = 1 as all variables were 

standardised) as well as the average cluster size (10.5) as additional input, summary-statistics-

based power analysis now allows us to compute statistical power as a function of both L2 sample 

size and cluster size. For example, if one were to force all students to complete the learning diary 

every day (i.e. cluster size = 14), the required sample size would reduce to 153 to achieve the 

statistical power of 80%. A reproduced power curve as a function of L2 sample size and cluster 

size based on the entered information is presented in Figure 3.  

Note that the output from the last analysis includes an adjusted t value = 2.445 and its 

degrees of freedom = 112. The adjusted t value is a hypothetical t value if the cluster size were 14. 

This value is useful when a researcher wants to conduct power analysis for a different cluster size 

that takes into account the uncertainty of prior data or publication bias. For example, if a researcher 

wants to do a safeguard power analysis (Perugini et al., 2014) using the lower bound of the 60% 

confidence interval (this is conceptually similar to doing power analysis with assurance = 80%), 

the researcher should first compute the lower bound of the 60% confidence interval using the (non-

central) t distribution with  df = 112 and non-centrality parameter = 2.445. This is equal to t = 

1.602. Then using the new t value, the researcher can draw a power curve with varying L2 sample 

size using the app again. In the current example, the required L2 sample size (with cluster size = 

14) is 349 to achieve 80% of statistical power --- much higher than when not considering the 

uncertainty. 

General Discussion 
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For applied researchers, currently-available methods for power analysis of mixed-effects 

modelling (i.e. formula- and simulation-based power analyses) can be complicated as they require 

substantial expertise and a lot of input information, which may not be readily available. The present 

manuscript proposed a simple and practically-useful alternative method, called summary-

statistics-based power analysis for mixed-effects modelling of nested data. The proposed method 

only needs a t value and L2 sample size from a previous study or pilot data to plan L2 sample size 

for a new study. Even if one were to plan cluster size and L2 sample size altogether, summary-

statistics-based power analysis requires minimal additional information from the previous study 

(e.g., τ11). The proposed method can be implemented in popular power-analysis software (e.g., 

G*Power, pwr), and we also provided a web app to further ease the usage of the method 

(https://koumurayama.shinyapps.io/summary_statistics_based_power/). Our simulation results 

demonstrated that the summary-statistics-based power analysis is generally robust to violations of 

critical underlying assumptions (i.e., homogeneity of within-cluster variance and homogeneity of 

cluster size). While summary-statistics-based power analysis has less flexibility (e.g., only L2 

sample size can be determined based on a pre-defined effect size) than formula- and simulation-

based power analyses, it has a complementary benefit of usability and practicality, providing an 

attractive power analysis option for applied researchers. 

Summary-statistics-based power analysis and the summary-statistics approach 

As the name indicates, summary-statistics-based power analysis takes advantage of the fact 

that the summary-statistics approach (i.e. aggregating the 1st level by summary statistics before the 

2nd level analysis) is mathematically equivalent to mixed-effects modelling under certain 

conditions. Summary-statistics approach has been recurrently discussed as an alternative to mixed-

effects modelling (Achen, 2005; Austin, 2007; Dowding & Haufe, 2018; Feldman, 1988; Frison 

& Pocock, 1992; Lorch & Myers, 1990; Saxonhouse, 1976; Wishart, 1938). Random-effect meta-

analysis can also be considered as a version of this summary-statistics approach (Borenstein, 

Hedges, Higgins, & Rothstein, 2008). However, there has been limited discussion on how this 

approach can be applied to statistical power analysis for mixed-effects modelling (for a similar 

idea in a limited context, see Lefante, 1990). The current manuscript is an attempt to make an 

explicit connection between these seemingly disjointed issues. 

Considering the proposed power analysis method in the context of the summary-statistics 

approach further highlights its strengths and weaknesses. For example, recent studies have made 

note that applied researchers using mixed-effects modelling frequently face the issue of non-

positive definite covariance matrices of random effects (Brauer & Curtin, 2018; McNeish & Bauer, 

2020). This issue is often ignored in simulation-based power analysis --- in the simr package in R, 

for example, the program checks the statistical significance for each replicate regardless of whether 

estimates lie inside the parameter space. Mixed-effects models also run the risk of failing to obtain 

appropriate parameter estimates due to non-convergence (this is especially the case when sample 

size is small). On the other hand, the summary-statistics approach does not suffer from such issues 

because it does not directly estimate random effect components and does not require complicated 

estimation procedures. As such, in situations where simulation-based power analysis produces an 

overwhelming number of non-positive definite covariance matrices and/or non-convergence 

errors, summary-statistics-based power analysis may be a good alternative for researchers. Also, 

in the context of big data analysis, mixed-effects modelling may not be practically useful given 

the considerable computation time. Here again, the summary-statistics approach can be an 

attractive and efficient alternative given the little computational demand (see also Beckmann, 

Jenkinson, & Smith, 2003, for the utility of this method in the context of neuroimaging analaysis), 
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and the proposed method would be a practical solution to compute statistical power.  

Of course, the summary-statistics approach has its own limitations, and these limitations 

reflect the limitations of the proposed power analysis method. One notable limitation is that the 

summary-statistics approach is accurate only when certain assumptions are met. As such, the 

proposed power analysis method is also accurate only when its assumptions are met. We already 

laid out the assumptions earlier and highlighted two critical assumptions --- constant within-cluster 

variance of predictors and constant cluster size. Our simulation studies, however, showed that 

summary-statistics-based power analysis is reasonably robust for the violation of these 

assumptions. Future studies should examine the robustness of the proposed method when there is 

an even more extreme violation of the assumptions. It is also worth noting that research on the 

summary-statistics approach has provided a solution to the violation of these two assumptions in 

the proposed power analysis. When cluster size is different across clusters, for example, 

researchers can integrate summary statistics by taking into account the sampling variability of the 

clusters (Achen, 2005; see also Goldberg et al., 2005 for “weighted t-statistics”). Dowding and 

Haufe (2018) called this method the sufficient summary-statistics approach. This fact suggests that 

it is theoretically possible to extend the proposed summary-statistics-based power analysis to 

analytically derive appropriate sample size when these assumptions are not met. We have not 

explored this possibility in the current manuscript, but future studies should benefit from 

considering such an extension. 

Using the proposed power analysis with a pre-defined effect size  

 There are situations in which researchers want to use a pre-defined effect size to conduct 

power analysis, rather than relying on prior relevant data. Although summary-statistics-based 

power analysis is primarily developed to conduct power analysis with prior work, it also allows 

researchers to use a pre-defined effect size as input when researchers are interested in L2 sample 

size. This is because the proposed method computes Cohen's d (defined in relation to one-sample 

t test) or r in the course of estimating statistical power. Specifically, instead of estimating Cohen’s 

d or r by using the output from prior work (e.g., t value), researchers can simply set a pre-defined 

Cohen’s d or r based on a theoretical or practical consideration (new Step 1), and then conduct a 

priori power analysis as if planning to conduct a one-sample t test or correlation analysis based on 

these effect sizes (Steps 2 and 3 in Table 1) using G*Power or pwr package in R. Note that a 

similar procedure can be used when researchers want to show the minimum effect size that can be 

detected given specific power and L2 sample size values (sensitivity analysis).  

This approach seems simple and attractive. However, there are two (related) critical 

limitations that researchers should bear in mind. Specifically, (1) this approach can only provide 

an L2 sample size to achieve a specified power, and (2) the effect sizes Cohen’s d or r used in the 

proposed approach are the effect sizes of the observed (not the true) relationship, which can be 

influenced by cluster size. To see the reason why, and to appropriately use this approach, we need 

to precisely understand the meaning of effect size measures used in summary-statistics-based 

power analysis. For example, Cohen’s d that we use in the summary-statistics-based power 

analysis is the effect size of the averaged regression slopes considering the observed between-

cluster differences of the slopes (e.g., individual differences in the slopes among participants). 

Both γ10 (L1 fixed-effect slope) and d are effect size estimates, but the meaning is substantially 

different: While γ10 represents the effect size of within-cluster relations (i.e. expected within-

cluster change when the independent variable increases by one), Cohen’s d evaluates the 

magnitude of γ10 against observed between-cluster differences. Even when the overall within-

cluster regression slope γ10 is small, if there are little observed between-cluster differences in the 
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slopes, Cohen’s d can be substantially large. Similarly, even when the overall within-cluster 

regression slope γ10 is large, if there are large observed between-cluster differences in the slopes, 

Cohen’s d can be small. In other words, Cohen’s d in the summary-statistics-based power analysis 

can be interpreted as representing the generalizability of the observed effect across clusters (e.g., 

generalizability across participants), rather than the strength of the association between the level-

1 predictor and the dependent variable. Therefore, when defining a Cohen’s d, researchers should 

ask “how stable the observed L1 effect would be across clusters?” rather than “how strong L1 

effect is within a cluster?”.  

Importantly, Cohen’s d defined in this context concerns the between-cluster stability of the 

observed L1 effect, which is a function of both true between-cluster and within-cluster variances. 

For example, when there are only a few trials in an experiment, even if the true within-person 

regression slope is invariant across participants (i.e. no true between-cluster variance: large 

stability across clusters), we still observe substantial individual differences of within-person 

regression slopes due to trial-level sampling errors. In that case, Cohen’s d becomes smaller. In 

other words, Cohen’s d in the summary-statistics-based power analysis implicitly takes into 

account the cluster size, and that is why this approach can be applied only to determine L2 sample 

size. This issue is the same for the power analysis of L2 and L12 effects. Unlike L1 effect, the 

interpretation of these effects is relatively straightforward and consistent with the corresponding 

effect sizes (γ01 and γ11): the magnitude of the association between the L2 predictor and the 

observed intercepts or slopes. However, the magnitude of the association is dependent on the 

cluster size. In fact, when cluster size is small, the magnitude of the association would be 

attenuated due to L1 sampling errors. Therefore, r in the summary-statistics-based power analysis 

also implicitly accounts for the cluster size of data. Therefore, we recommend that researchers use 

this approach only when cluster size is large, such that it is relatively easy to calibrate an effect 

size of the observed summary statistics (i.e. cluster average scores)6.  

Practical Guideline 

 Summarizing all the discussions made in the manuscript, we provide the following practical 

guidelines on when we should (and should not) use summary-statistics-based power analysis.  

1. Summary-statistics-based power analysis should only be used when the planned model is 

within the scope of the method as described in Table 2. For example, the proposed 

method cannot be used when one plans to use a three-level multilevel model or a model 

with time being a predictor (e.g., growth curve models). Although the proposed method is 

based on the assumption of equal within-cluster predictor variance and cluster size across 

clusters, our statistical simulation showed that the method is reasonably robust to 

violations of these assumptions. 

2. When using a pre-defined effect size to do a power analysis (or a sensitivity analysis), the 

proposed power analysis should be used only when it is relatively easy to interpret effect 

size based on cluster-average scores (e.g., cluster size is sufficiently large).  

3. When using prior relevant work as input for a power analysis, researchers should ensure 

that the prior work has sufficient similarity with the planned new study in the first place. 

When necessary, researchers should also use the previously-developed correction 

 
6 It is also important to emphasize that this does not mean that Cohen’s d or r used in the proposed method is 

meaningless --- our argument is that we need to accurately interpret the metric. For example, in the illustrative example 

we discussed at the beginning, it is natural for researchers to use summary-statistics approach to analyze the data, and 

then Cohen’s d is the effect size metric that should be reported. Indeed, it is common that researchers compute Cohen’s 

d for aggregated data; our discussion reveals the nuances for this commonly-reported effect size metric. 
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methods to counter potential uncertainty and publication bias in the prior data.  

Concluding remark 

Applied researchers often consider mixed-effects modelling as overly complicated and 

difficult to understand. This class of analysis is indeed complicated and requires substantial 

expertise to appropriately analyze complex data. Accordingly, power analysis for mixed-effects 

modelling is also often regarded as complicated. At the same time, researchers tend to overlook 

the fact that such advanced statistical methods are actually built upon, and sometimes even reduced 

to, a set of simpler analyses that we are more familiar with. We believe that conceptualizing mixed-

effects modelling this way (i.e. summary-statistics approach) would considerably help applied 

researchers understand the complicated modelling at a deeper level, and can even provide insights 

into various issues that are commonly deemed challenging. We are hoping that the current article 

provides one good case for such an argument --- a demonstration of how this “simple” perspective 

promotes our understanding and usage of power analysis in mixed-effects modelling. 
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Table 1 Summary-statistics-based power analysis to determine L2 sample size based on prior work 

or pilot study 

 L1 effect L2 effect 
L12 cross-level 

interaction 

    

Input from prior 

work/pilot 

 

t, J, pL12 t, J, pL2 t, J, pL12 

Core idea 

 

Regard t as being 

from a one-sample 

t test (with sample 

size = J - pL12 ) 

Regard t as being from 

a correlation test (with 

sample size = J – [pL2 – 

1]) 

Regard t as being from 

a correlation test (with 

sample size = J – [pL12 – 

1]) 

    

Step 1 

 

Convert t to 

Cohen’s d 

Convert t to Pearson’s 

correlation r 

Convert t to Pearson’s 

correlation r 

 
   

    

Step 2 

(with G*Power, pwr, 

etc.) 

Input effect size d 

to conduct a 

power analysis of 

one-sample t test. 

Input effect size r to 

conduct a power 

analysis of correlation. 

Input effect size r to 

conduct a power 

analysis of correlation. 

    

Step 3 

 

Add pL12 to the 

required sample 

size 

Add pL2 - 1 to the 

required sample size 

Add pL12 - 1 to the 

required sample size 

Description 

(Information 

obtained from the 

prior work/pilot) 

t = t value of the effect of interest 

J = Number of L2 sample size 

pL2 = Number of L2 main effects (including the L2 predictor of interest) 

pL12 = Number of L12 cross-level interaction terms related to the L1 

effect of interest (including the cross-level interaction effect of interest) 

 

 

 

 

 

 

12LpJ

t
d

−
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2

2
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1 tpJ
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L +−−
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1 tpJ
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Table 2  Comparison of three classes of power-analysis methods 

 Formula based Simulation based Summary-statistics based 

Power analysis based on previous 

similar work 

Yes Yes Yes 

Power analysis based on pre-

defined effect size 

Yes Yes Yes but only for L2 sample size 

determination. 

Main Packages Specialized software: e.g., PINT 

(Boskers et al., 2003), Optimal 

Design (Raudenbush, 1997; 

Spybrook et al., 2011) 

Specialized software: e.g., simr 

(Green & MacLeod, 2016), 

MLPowSim (Browne et al., 2009), 

clusterPower (Reich et al., 2012) 

Standard power analysis software: 

G*Power (Faul et al., 2007) pwr 

(Champely, 2018) 

Required input Extensive (e.g., all variance 

components, within-cluster predictor 

variance) and often not reported in 

previous work. 

Extensive (e.g., all variance 

components, individual data points 

of predictors) and often not reported 

in previous work. 

Minimum and normally reported in 

previous work (e.g., a t value). But 

additional input (e.g., τ11) is needed 

when planning a cluster size. 

Continuous predictors Yes but limited software availability. Yes but limited software availability. Yes.  

Assumptions of L1 predictors In theory the method is not 

constrained by the assumptions of L1 

predictors. But available software 

typically assumes constant within-

cluster variance and mean-centering 

within clusters. The within-cluster 

variance needs to be specified. 

There is no assumption of L1 

predictor. Predictor values need to be 

simulated from a certain distribution 

that researchers find reasonable.  

The method assumes constant 

within-cluster variance and cluster 

means of L1 predictor but the 

variance does not need to be 

specified. The model should 

include random slopes of L1 

predictors when they exist. 

Homogeneous cluster size Assumed. If violated, average or 

harmonic mean may be used. 

Not assumed. Individual cluster sizes 

need to be simulated from a certain 

distribution that researchers find 

reasonable.  

Assumed. If violated, average or 

harmonic mean may be used. 

Complex L1 error structure Difficult to address with the existing 

software 

Can be modelled, but software 

availability is limited. 

Difficult to address. 

Complex models (e.g., cross-

classified model, three-level 

model) 

Yes but only for limited designs Yes but limited software availability. No 

Computational time Little Extensive Little 
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Table 3 Power estimates computed by the summary-statistics- and simulation-based power analyses, when pilot datasets are simulated 

by a model specified by Equation (3) with L2 sample size = 30 and cluster size = 32 (Simulation 1).  
  Invariant cluster size/predictor variance  Varied predictor variance  Varied cluster size 

   Average power    Average power    Average power   

L2 size cl. size  Summary Simulation RMSE  Summary Simulation RMSE  Summary Simulation RMSE 

Level-1 effect                

20 22  0.609 0.613 0.014  0.618 0.620 0.017  0.597 0.582 0.021 

20 32  0.647 0.653 0.013  0.657 0.661 0.015  0.638 0.644 0.015 

20 42  0.669 0.675 0.014  0.678 0.684 0.015  0.662 0.669 0.015 

30 22  0.753 0.751 0.012  0.758 0.756 0.015  0.741 0.723 0.022 

30 32  0.784 0.784 0.011  0.788 0.788 0.012  0.774 0.773 0.010 

30 42  0.800 0.800 0.010  0.804 0.805 0.011  0.792 0.795 0.011 

40 22  0.833 0.830 0.010  0.834 0.830 0.013  0.820 0.805 0.021 

40 32  0.856 0.854 0.009  0.856 0.855 0.010  0.845 0.844 0.009 

40 42  0.868 0.867 0.009  0.868 0.867 0.009  0.858 0.859 0.009 

Level-2 effect                

20 22  0.422 0.427 0.019  0.436 0.436 0.017  0.425 0.417 0.023 

20 32  0.457 0.460 0.018  0.472 0.474 0.019  0.462 0.466 0.021 

20 42  0.478 0.480 0.018  0.494 0.496 0.018  0.483 0.489 0.020 

30 22  0.557 0.562 0.016  0.574 0.576 0.016  0.560 0.552 0.023 

30 32  0.593 0.595 0.016  0.611 0.610 0.016  0.597 0.601 0.018 

30 42  0.614 0.614 0.016  0.631 0.631 0.016  0.618 0.622 0.017 

40 22  0.649 0.652 0.014  0.667 0.667 0.014  0.651 0.642 0.022 

40 32  0.683 0.685 0.013  0.700 0.700 0.014  0.685 0.686 0.016 

40 42  0.701 0.700 0.014  0.718 0.717 0.013  0.703 0.705 0.014 

Cross-level effect                

20 22  0.418 0.420 0.018  0.412 0.414 0.020  0.413 0.397 0.030 

20 32  0.454 0.456 0.019  0.448 0.450 0.021  0.451 0.453 0.021 

20 42  0.475 0.477 0.019  0.470 0.474 0.019  0.474 0.479 0.020 

30 22  0.551 0.552 0.017  0.547 0.549 0.020  0.546 0.533 0.027 
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  Invariant cluster size/predictor variance  Varied predictor variance  Varied cluster size 

   Average power    Average power    Average power   

L2 size cl. size  Summary Simulation RMSE  Summary Simulation RMSE  Summary Simulation RMSE 

30 32  0.587 0.589 0.016  0.585 0.587 0.018  0.586 0.588 0.018 

30 42  0.607 0.608 0.016  0.606 0.609 0.018  0.608 0.612 0.018 

40 22  0.640 0.642 0.013  0.640 0.643 0.018  0.638 0.624 0.025 

40 32  0.674 0.676 0.013  0.675 0.678 0.015  0.674 0.675 0.016 

40 42  0.692 0.691 0.013  0.695 0.697 0.014  0.694 0.697 0.015 

Note:  cl. size = cluster size; Summary = Summary-statistics-based power analysis; Simulation = Simulation-based power analysis; 

RMSE = root-mean square error 
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Table 4 Relative and absolute difference of power estimates between the summary-statistics- and simulation-based power analyses 

regressed on true parameters to generate hypothetical pilot datasets (Simulation 2).  

  Varied predictor variance  Varied cluster size 

  relative difference  absolute difference  relative difference  absolute difference 

Predictors  Beta 95% CI  Beta 95% CI  Beta 95% CI  Beta 95% CI 

Level-1 effect             

Intercept  -0.0002 [-0.0005,  0.0000]   0.0095 [ 0.0093, 0.0097]  -0.0009 [-0.0012, -0.0006]   0.0098 [ 0.0096,  0.0101] 

Original L2 N   0.0000 [ 0.0000,  0.0001]   0.0000 [-0.0001, 0.0000]   0.0000 [ 0.0000,  0.0001]  -0.0001 [-0.0001,  0.0000] 

Original cluster size   0.0000 [-0.0001,  0.0000]   0.0000 [ 0.0000, 0.0000]   0.0000 [ 0.0000,  0.0001]   0.0000 [ 0.0000,  0.0000] 

Random intercept SD  -0.0019 [-0.0036, -0.0001]  -0.0002 [-0.0019, 0.0015]   0.0003 [-0.0018,  0.0024]  -0.0006 [-0.0024,  0.0011] 

Random slope SD   0.0010 [-0.0011,  0.0031]  -0.0001 [-0.0021, 0.0019]   0.0020 [-0.0007,  0.0047]  -0.0013 [-0.0034,  0.0009] 

L1 effect size  -0.0028 [-0.0057,  0.0002]  -0.0019 [-0.0049, 0.0011]  -0.0039 [-0.0074, -0.0005]  -0.0024 [-0.0055,  0.0007] 

L2 effect size   0.0026 [ 0.0001,  0.0052]  -0.0006 [-0.0032, 0.0019]  -0.0017 [-0.0048,  0.0013]   0.0018 [-0.0009,  0.0044] 

L12 effect size   0.0015 [-0.0016,  0.0046]   0.0009 [-0.0021, 0.0039]   0.0002 [-0.0037,  0.0040]   0.0002 [-0.0029,  0.0034] 

random effects cor.   0.0003 [-0.0015,  0.0020]   0.0004 [-0.0013, 0.0021]   0.0009 [-0.0012,  0.0030]  -0.0005 [-0.0023,  0.0013] 

Relative L2 N in 
power analysis 

  0.0003 [ 0.0002,  0.0003]  -0.0001 [-0.0001, 0.0000]   0.0003 [ 0.0002,  0.0003]  -0.0001 [-0.0001, -0.0001] 

Relative cluster size in 
power analysis 

  0.0000 [-0.0001,  0.0000]   0.0000 [ 0.0000, 0.0000]   0.0001 [ 0.0001,  0.0002]   0.0000 [-0.0001,  0.0000] 

Level-2 effect             

Intercept  -0.0008 [-0.0014, -0.0003]   0.0117 [ 0.0115,  0.0120]  -0.0013 [-0.0019, -0.0007]   0.0124 [ 0.0121,  0.0127] 

Original L2 N  -0.0001 [-0.0002, -0.0001]  -0.0001 [-0.0001, -0.0001]  -0.0001 [-0.0002, -0.0001]  -0.0001 [-0.0001, -0.0001] 

Original cluster size   0.0000 [ 0.0000,  0.0001]   0.0000 [ 0.0000,  0.0000]   0.0000 [ 0.0000,  0.0001]   0.0000 [ 0.0000,  0.0000] 

Random intercept SD   0.0125 [ 0.0090,  0.0159]  -0.0023 [-0.0040, -0.0006]   0.0089 [ 0.0048,  0.0130]  -0.0049 [-0.0070, -0.0028] 

Random slope SD   0.0014 [-0.0057,  0.0084]   0.0003 [-0.0030,  0.0037]  -0.0023 [-0.0103,  0.0058]  -0.0013 [-0.0053,  0.0028] 

L1 effect size  -0.0017 [-0.0077,  0.0044]  -0.0003 [-0.0031,  0.0025]  -0.0067 [-0.0133,  0.0000]  -0.0029 [-0.0063,  0.0005] 

L2 effect size  -0.0345 [-0.0396, -0.0294]   0.0071 [ 0.0046,  0.0097]  -0.0250 [-0.0306, -0.0195]   0.0077 [ 0.0047,  0.0106] 

L12 effect size  -0.0053 [-0.0157,  0.0050]  -0.0042 [-0.0091,  0.0008]   0.0081 [-0.0039,  0.0200]  -0.0006 [-0.0066,  0.0055] 
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  Varied predictor variance  Varied cluster size 

  relative difference  absolute difference  relative difference  absolute difference 

Predictors  Beta 95% CI  Beta 95% CI  Beta 95% CI  Beta 95% CI 

random effects cor.  -0.0003 [-0.0038,  0.0031]   0.0014 [-0.0003,  0.0032]  -0.0019 [-0.0058,  0.0020]  -0.0007 [-0.0027,  0.0013] 

Relative L2 N in 
power analysis 

  0.0001 [ 0.0001,  0.0001]  -0.0001 [-0.0002, -0.0001]   0.0001 [ 0.0000,  0.0001]  -0.0001 [-0.0001, -0.0001] 

Relative cluster size in 
power analysis 

  0.0002 [ 0.0002,  0.0002]   0.0000 [ 0.0000,  0.0000]   0.0003 [ 0.0003,  0.0003]   0.0000 [-0.0001,  0.0000] 

Cross-level effect             

Intercept   0.0004 [-0.0002,  0.0009]   0.0119 [ 0.0117,  0.0122]  -0.0004 [-0.0012,  0.0003]   0.0146 [ 0.0142,  0.0150] 

Original L2 N  -0.0001 [-0.0002, -0.0001]  -0.0001 [-0.0001, -0.0001]  -0.0002 [-0.0003, -0.0001]  -0.0001 [-0.0001,  0.0000] 

Original cluster size  -0.0001 [-0.0001,  0.0000]   0.0000 [-0.0001,  0.0000]   0.0000 [ 0.0000,  0.0001]  -0.0001 [-0.0001,  0.0000] 

Random intercept SD   0.0015 [-0.0021,  0.0052]   0.0002 [-0.0017,  0.0020]   0.0030 [-0.0022,  0.0082]   0.0001 [-0.0030,  0.0031] 

Random slope SD   0.0123 [ 0.0045,  0.0200]  -0.0106 [-0.0144, -0.0068]   0.0131 [ 0.0026,  0.0237]  -0.0098 [-0.0162, -0.0033] 

L1 effect size   0.0003 [-0.0062,  0.0068]   0.0007 [-0.0024,  0.0038]   0.0021 [-0.0063,  0.0105]   0.0005 [-0.0044,  0.0055] 

L2 effect size   0.0001 [-0.0056,  0.0058]  -0.0009 [-0.0037,  0.0019]  -0.0020 [-0.0097,  0.0057]  -0.0007 [-0.0052,  0.0039] 

L12 effect size  -0.0438 [-0.0548, -0.0327]   0.0156 [ 0.0100,  0.0213]  -0.0543 [-0.0700, -0.0385]   0.0095 [-0.0001,  0.0190] 

random effects cor.   0.0026 [-0.0014,  0.0065]  -0.0002 [-0.0022,  0.0017]  -0.0005 [-0.0058,  0.0049]  -0.0009 [-0.0041,  0.0023] 

Relative L2 N in 
power analysis 

  0.0001 [ 0.0000,  0.0001]  -0.0001 [-0.0002, -0.0001]   0.0000 [ 0.0000,  0.0001]  -0.0001 [-0.0001,  0.0000] 

Relative cluster size in 
power analysis 

  0.0000 [ 0.0000,  0.0001]   0.0000 [-0.0001,  0.0000]   0.0004 [ 0.0003,  0.0004]  -0.0001 [-0.0001, -0.0001] 
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Table 5 Power estimates in Simulation 3 (small sample size, varied cluster-size/predictor variance) 

computed by the summary-statistics- and simulation-based power analysis. Pilot data are generated 

from a model specified by Equation (3) with L2 sample size = 15 and cluster size = 32.  

  Varied cluster size/predictor variance 

   Average power  

L2 size cl. size  Summary Simulation RMSE 

Level-1 effect     

10 22  0.593 0.593 0.034 

10 32  0.642 0.639 0.030 

10 42  0.669 0.668 0.025 

15 22  0.758 0.759 0.025 

15 32  0.795 0.793 0.020 

15 42  0.815 0.810 0.019 

20 22  0.842 0.840 0.019 

20 32  0.869 0.865 0.016 

20 42  0.882 0.877 0.015 

Level-2 effect     

10 22  0.468 0.485 0.038 

10 32  0.490 0.498 0.034 

10 42  0.502 0.506 0.032 

15 22  0.628 0.643 0.031 

15 32  0.649 0.656 0.026 

15 42  0.660 0.662 0.025 

20 22  0.725 0.736 0.024 

20 32  0.743 0.746 0.020 

20 42  0.753 0.751 0.020 

Cross-level effect     

10 22  0.379 0.374 0.048 

10 32  0.420 0.417 0.042 

10 42  0.445 0.440 0.042 

15 22  0.523 0.531 0.045 

15 32  0.567 0.567 0.039 

15 42  0.593 0.590 0.035 

20 22  0.620 0.628 0.040 

20 32  0.661 0.661 0.035 

20 42  0.684 0.681 0.031 
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Figure 1. Power curves of L1, L2, and L12 effects with a complex model obtained from simulation-based power analysis (dotted line) 

and summary-statistics-based power analysis (solid line) using a simulated dataset (cluster size = 32; L2 sample size = 30). Model: 

ijijjjij exuwjuwjy ++++++= )()( 1111000100  . 
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Figure 2. Web app to conduct a priori power analysis based on the summary-statistics-based power 

analysis (https://koumurayama.shinyapps.io/summary_statistics_based_power/).  
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Figure 3. Power curve for a cross-level interaction as a function of L2 sample size (number of 

participants) and cluster size (assessments of learning diary), based on the information reported by 

Eckerlein et al. (2019).  
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Appendix 

Snijders & Bosker (1993) derived general formulae for the standard errors of estimated 

regression coefficients in two-level designs using the generalized least squares (GLS) estimator. 

However, as far as we are aware, Snijders & Bosker (1993) (and other studies) did not provide a 

specific closed-form expressions to evaluate standard errors for specific models like the ones we 

discussed in the current article.  

In this Appendix, we first explain how the standard errors of estimated regression 

coefficients can be generally expressed based on Snijders & Bosker (1993), and then discuss how 

the closed-form formulae of standard errors can be derived for several specific models. Specifically, 

we first derived the closed-form formulae for a mixed-effects model that includes only one L1 

predictor (i.e. Equation 1). We then extend it to a model that includes two L1 predictors, and a 

model that includes two L1 predictors and one L2 predictor. Importantly, for each of the models, 

based on the closed-form expressions of the standard errors, we also demonstrate the mathematical 

equivalence between mixed-effects modelling and the summary-statistics approach. Finally, to 

discuss the generality of the argument, we further extend these models to the ones that include 

more than one predictor at each level. Note that the formulae we derived to compute standard 

errors are only asymptotically correct. It is well known that the GLS estimator underestimates SEs 

when sample size is small (Kenward & Roger, 1997; Littell, 2002). The purpose of the appendix 

is not to derive the accurate formula for SEs, but to show the mathematical equivalence when 

certain conditions are met. The discussion for the issue associated with small sample size can be 

found in the main text. 

As noted in the article, here we assume that variance/covariance matrix of the L1 

independent variables (number of L1 independent variables = 𝑝1) is the same across clusters, and 

cluster size (n) is equal across clusters. However, we will also discuss the case when these 

restrictions are not imposed toward the end. For the purpose of simplicity, it is also assumed that 

the same set of L2 independent variables (number of L2 independent variables = 𝑝2) are used to 

explain random slopes of each of the L1 predictors. In addition, without loss of generality of 

discussion, we assume that L1 independent variable 𝑥𝑖𝑗  is within-cluster deviation score 

(i.e.  centering within clusters) and that L2 independent variable 𝑤𝑗 is cluster-mean centered. In 

other words, mean of 𝑥𝑖𝑗 is zero for jth cluster and mean of  𝑤𝑗 is also zero. Let 𝑿𝒋
∗ = (𝟏, 𝑿𝒋) be 

𝑛 × (𝑝1 + 1) data matrix for L1 independent variables in 𝑗th cluster that include the focal variable, 

and let 𝑾∗ = (𝟏,𝑾) be 𝐽 × (𝑝2 + 1) data matrix for L2 independent variables including the focal 

variable. For both 𝑿𝒋
∗ and 𝑾∗, elements in the first column are all ones (= 𝟏) to denote intercepts. 

Synthesizing different equations (i.e. Equations 22, 25, 30 and 31) provided by Snijders & 

Bosker (1993) and assuming random effects (co)variances are known, a general form of expected 

variances-covariances matrix of estimated regression coefficients by GLS estimator (denoted as  

𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆)) can be expressed as 

 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) =
1

𝐽
(𝑻 +

𝜎2

𝑛
[𝒆𝒆′ + 𝜮𝒘]

−1)⊗ (µµ′ + 𝜮𝑩)
−1,   (A1) 

where 𝑻 is the random effects variance-covariance matrix, 𝑛 is cluster size, 𝐽 is L2 sample size, 

𝜎2 is an error (or, within-cluster) variance, 𝒆 is a vector that includes mean of L1 independent 

variables for jth cluster (i.e. 𝒆 = (1, 𝑥̅1.𝑗, ⋯ , 𝑥̅𝑝1.𝑗)′), 𝜮𝒘 =  𝑐𝑜𝑣(𝑿𝒋
∗) within 𝑗th cluster (i.e. (𝑝1 +

1) × (𝑝1 + 1) within cluster sample variance-covariance), µ is a vector that includes mean of L2 

independent variables (i.e. µ = (1, 𝑤̅1𝑗, ⋯ , 𝑤̅𝑝2𝑗 ) ′) , and 𝜮𝑩 = 𝑐𝑜𝑣(𝑾
∗)  (i.e. (𝑝2 + 1) × (𝑝2 +

1) between cluster sample variance-covariance). ⊗ denotes a Kronecker product. Recall that 

mean of 𝑥𝑖𝑗 is zero for jth cluster and mean of  𝑤𝑗 is also zero,  indicating 𝒆 = (1, 𝟎′)′ and µ =
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(1, 𝟎′)′.  
Because random effects (co)variances (i.e. 𝑻 and 𝜎2) are generally unknown, they are usually 

estimated by maximum likelihood methods under the normality assumption. Estimated GLS 

estimator (denoted as  𝑐𝑜𝑣(𝛄̂)) is approximately equivalent to the GLS estimator as cluster size 𝐽 
tends to infinity (i.e. 𝑐𝑜𝑣(𝛄̂) ≈ 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆)). 
 

A Model That Includes Only One L1 Independent Variable (i.e. Equation 1) 

 

Closed Form Expression for Standard Errors  

With Equation A1 we can obtain the closed form expression of standard errors for a model 

that includes only one L1 independent variable (i.e. Equation (1)). In this case, 𝑝1 = 1 (for a vector 

of the focal L1 variable 𝑿𝒋) , 𝑝2 = 0, 𝑻 = (
𝜏00 𝜏01
𝜏01 𝜏11

), 𝒆 = (1,0)′, 𝜮𝒘  = 𝑐𝑜𝑣(𝟏, 𝑿𝒋) = (
0 0
0 𝑠𝑥

2) 

(where 𝑠𝑥
2 is a within-cluster sample variance of the focal L1 independent variable), µ = 1, 𝜮𝑩 =

0. Substituting these values into Equation A1 gives 

𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) =
1

𝐽
((
𝜏00 𝜏01
𝜏01 𝜏11

) +
𝜎2

𝑛
(
1 0
0 𝑠𝑥

2)
−1

)⊗ (1 + 0)−1 =
1

𝐽
(
𝜏00 +

𝜎2

𝑛
𝜏01

𝜏01 𝜏11 +
𝜎2

𝑛𝑠𝑥
2

). (A2) 

Therefore, the standard errors of estimated regression coefficient (γ10) can be evaluated by the 

square root of the (2,2) element of 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆): 

         𝑆𝐸(𝛾10) =  
√
𝜏11+

𝜎2

𝑛𝑠𝑥
2

𝐽
.   (A3) 

This formula is the same as Equation 2, which is also shown in Snijders (2005). 

Equivalence with Summary-Statistics Approach 

We are now ready to prove the mathematical equivalence between mixed-effects modelling 

and the summary-statistics approach. For the purpose of simplicity, we assume that the focal L1 

variable 𝑥𝑖𝑗 is binary like the example we discussed in the article (i.e. mindfulness intervention) 

but as noted later, the results can be easily generalised to a continuous L1 independent variable 

(which is briefly discussed later). Let µ𝑗𝐸 − µ𝑗𝐶  be a population mean difference between 

intervention and control conditions for 𝑗 th cluster, and let 𝛽1𝑗  be 𝑗 th population regression 

coefficient when outcome 𝑦𝑖𝑗  is regressed on the intervention variable 𝑥𝑖𝑗  in 𝑗th cluster. If the 

cluster size is the same between two conditions, 𝛽1𝑗 is mathematically equivalent to the µ𝑗𝐸 − µ𝑗𝐶 . 

Therefore, the summary-statistics approach, which conducts a paired-samples t test to examine the 

effect of intervention, can be viewed as an approach that tests the null hypothesis for population 

mean of 𝛽1𝑗  (denoted as 𝐸(𝛽1𝑗) = 𝑎10), i.e. 𝐻0: 𝑎10 = 0. With this point in mind, the relation 

between 𝛽1𝑗 and 𝑎10 can be modelled as the form of the level-2 equation in the standard mixed-

effects model as 

𝛽1𝑗 = µ𝑗𝐸 − µ𝑗𝐶 = 𝑎10 + 𝑢1𝑗,  (A4) 

where 𝑢1𝑗  is a deviation term and 𝑣𝑎𝑟(𝑢1𝑗) = 𝑣𝑎𝑟(𝛽1𝑗)=  𝜏11 . However, we cannot actually 

observe the population value of 𝛽1𝑗  and usually estimate it by mean difference of observed 

outcomes (i.e. 𝑦̅𝑗𝐸 − 𝑦̅𝑗𝐶). The relation between 𝛽1𝑗 and its estimates (denoted as 𝛽̂1𝑗 = 𝑦̅𝑗𝐸 − 𝑦̅𝑗𝐶) 

can be formulated by introducing a sampling error (denoted as 𝑒𝑗) as  

𝛽̂1𝑗 = 𝑦̅𝑗𝐸 − 𝑦̅𝑗𝐶 = 𝛽1𝑗+ 𝑒𝑗,   (A5) 
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where 𝑣𝑎𝑟(𝑒𝑗) = 𝑣𝑎𝑟(𝛽̂1𝑗|𝑥𝑖𝑗) =
𝑣𝑎𝑟(𝑦𝑖𝑗|𝑥𝑖𝑗)
∑ 𝑥𝑖𝑗

2𝑛
𝑖=1

=
𝜎2

∑ 𝑥𝑖𝑗
2𝑛

𝑖=1

=
𝜎2

𝑛𝑠𝑥
2  , from the standard formula of 

variance-covariance of estimated regression coefficients by ordinary least squares (OLS) (i.e. in 

the situation where outcome 𝑦𝑖𝑗 is regressed on 𝑥𝑖𝑗 to estimate 𝛽1𝑗). Note that 𝑠𝑥
2 is the observed 

variance of the focal predictor, and is 0.25 in the current case where an intervention variable is 

binary. 

   Combining Equation A4 and Equation A5 we obtain: 

𝛽̂1𝑗 = 𝑎10 + 𝑢1𝑗 + 𝑒𝑗.        (A6) 

Because of the standard assumption that 𝑢1𝑗  and 𝑒𝑗  are independent (i.e. 𝑐𝑜𝑣(𝑢1𝑗 ,  𝑒𝑗) = 0) ,  

𝑣𝑎𝑟(𝛽̂1𝑗) = 𝑣𝑎𝑟(𝑢1𝑗 + 𝑒𝑗) = 𝑣𝑎𝑟(µ1𝑗) + 𝑣𝑎𝑟(𝑒𝑗) =  𝜏11 + 𝜎
2 /[𝑛𝑠𝑥

2] . Therefore, in the 

summary-statistics approach with a paired-samples t test, a test statistic can now be expressed as 

𝑡 =
𝑎̂10

𝑆𝐸(𝑎̂10)
=

1
𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1

√
𝑉(𝛽̂1𝑗)
𝐽

=

1
𝐽
∑ (𝑦̅𝑗𝐸 − 𝑦̅𝑗𝐶
𝐽
𝑖=1 )

√
 𝜏11 + 𝜎

2 /𝑛𝑠𝑥
2

𝐽

 .     (A7) 

Obviously, the denominator of this equation is mathematically equivalent to the one provided in 

Equation A3. Considering the relation 𝛾10 = 𝑎̂10 =
1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1 =

1

𝐽
∑ (𝑦̅𝑗𝐸 − 𝑦̅𝑗𝐶
𝐽
𝑖=1 ) , t-statistics 

from two different approaches thus become equivalent. Even if 𝑥𝑖𝑗  is continuous, because the 

condition 𝛾10 = 𝑎̂10 =
1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1  is unchanged, both standard errors and t-statistics for testing the 

null-hypothesis are mathematically equivalent between 𝛾10 (i.e. mixed-effects modelling) and 𝑎̂10 

(i.e. summary-statistics approach). 

 

A Model That Includes Two L1 Independent Variables (i.e. Equation 1 with a Covariate) 

Closed Form Expression for Standard Errors  

   A mixed-effects model for this case can be expressed as 

𝑦𝑖𝑗 = (𝛾00 + µ0𝑗) + (𝛾10 + µ1𝑗) 𝑥1𝑖𝑗 + (𝛾20 + µ2𝑗) 𝑥2𝑖𝑗 + 𝑒𝑖𝑗, (𝐴8) 

where 𝑥1𝑖𝑗 denotes the focal L1 variable and 𝑥2𝑖𝑗 is a L1 covariate. 𝛾00, 𝛾10 and 𝛾20 are overall 

intercept and slopes. 𝑼 = (µ0𝑗 , µ1𝑗 , µ2𝑗)  is a vector of random effects that has the moment 

assumption 

 𝐸(𝑼) = 𝟎     𝑐𝑜𝑣(𝑼) =  𝑻 = (

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

).      (A9) 

 

In this case,  𝑝1 = 2, 𝑝2 = 0, 𝒆 = (1,0,0)
′, 𝜮𝒘 = 𝑐𝑜𝑣(𝟏, 𝑿𝟏𝒋, 𝑿𝟐𝒋) = (

0 0 0
0 𝑠𝑥1

2 𝑠𝑥12
0 𝑠𝑥12 𝑠𝑥2

2

) , µ = 1, 

𝜮𝑩 = 0. Therefore, according to Equation A1, 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) becomes 

 

𝑐𝑜𝑣(𝛄𝐺𝐿𝑆) =
1

𝐽

(

 
 
(

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

) +
𝜎2

𝑛
(

1 0 0
0 𝑠𝑥1

2 𝑠𝑥12
0 𝑠𝑥12 𝑠𝑥2

2

)

−1

)

 
 
⊗ (1 + 0)−1 
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=
1

𝐽
((

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

) +
𝜎2

𝑛
(

1 0 0
0 𝑠𝑥2

2 /(𝑠𝑥1
2 𝑠𝑥2

2 − 𝑠𝑥12
2 ) −𝑠𝑥12/(𝑠𝑥1

2 𝑠𝑥2
2 − 𝑠𝑥12

2 )

0 −𝑠𝑥12/(𝑠𝑥1
2 𝑠𝑥2

2 − 𝑠𝑥12
2 ) 𝑠𝑥1

2 /(𝑠𝑥1
2 𝑠𝑥2

2 − 𝑠𝑥12
2 )

)) 

=
1

𝐽

(

  
 

𝜏00 +
𝜎2

𝑛
𝜏01 𝜏02

𝜏01 𝜏11 +
𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )
𝜏12 −

𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
)

𝜏02 𝜏12 −
𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
) 𝜏22 +

𝜎2

𝑛𝑠𝑥2
2 (1−𝑟𝑥12

2 ) )

  
 

,     (A10) 

 

where 𝑟𝑥12 = 𝑠𝑥12/𝑠𝑥1𝑠𝑥2 denotes sample correlation, and 𝑟𝑥12
2  is equivalent to the proportion of 

variance explained when 𝑥2 is regressed on 𝑥1 and vice versa. Standard errors of estimated overall 

intercept (γ00) and intercepts (γ10 and γ20) can now be evaluated as the square root of the diagonal 

elements of 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) and therefore, the standard errors of the focal variable is: 

   𝑆𝐸(𝛾10) =  
√
𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )

𝐽
 .   (A11) 

Equivalence with Summary-Statistics Approach 

Let 𝛽0𝑗, 𝛽1𝑗, and 𝛽2𝑗 , be the 𝑗 th population intercept and regression coefficients when 

outcome 𝑦𝑖𝑗  is regressed on the two L1 independent variables in the 𝑗th cluster. They can be 

expressed using their overall means (𝑎00, 𝑎10, 𝑎20) and corresponding deviations 𝛽0𝑗 = 𝑎00 + 𝑢0𝑗,  

𝛽1𝑗 = 𝑎10 + 𝑢1𝑗  and 𝛽2𝑗 = 𝑎20 + 𝑢2𝑗 , where 𝑼 = (𝑢0𝑗, 𝑢1𝑗 , 𝑢2𝑗)′ and 𝑐𝑜𝑣(𝑼) =

(

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

). On the other hand, estimates 𝛽̂0𝑗, 𝛽̂1𝑗 and 𝛽̂2𝑗 can be expressed as the sum of 

population values and sampling errors as 𝛽̂0𝑗 = 𝛽0𝑗+ 𝑒0𝑗 , 𝛽̂1𝑗 = 𝛽1𝑗+ 𝑒1𝑗  and 𝛽̂2𝑗 = 𝛽2𝑗+ 𝑒2𝑗 , 

where  

𝑐𝑜𝑣(𝒆𝒋) = 𝑐𝑜𝑣(𝜷̂𝒋|𝑥𝑗) = 𝑣𝑎𝑟(𝑦𝑖𝑗|𝑥1𝑖𝑗, 𝑥2𝑖𝑗)(𝒙𝒋
∗′𝒙𝒋

∗)−𝟏= 𝜎2 (

𝑛 0 0
0 𝑛𝑠𝑥1

2 𝑛𝑠𝑥12
0 𝑛𝑠𝑥12 𝑛𝑠𝑥2

2

)

−1

 

=
𝜎2

𝑛

(

 
 

1 0 0

0
1

𝑠𝑥1
2 (1−𝑟𝑥12

2 )
−

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )

0 −
𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )

1

𝑠𝑥2
2 (1−𝑟𝑥12

2 ) )

 
 

,      (A12) 

for 𝒆𝒋 = (𝑒0𝑗, 𝑒1𝑗, 𝑒2𝑗)′ , 𝜷̂𝒋 = (𝛽̂0𝑗 𝛽̂1𝑗, 𝛽̂2𝑗)′, 𝒙𝒋
∗ = (𝟏, 𝒙𝟏𝒋, 𝒙𝟐𝒋). 

   Combining the relations described above, the focal regression coefficient 𝛽1𝑗 = 𝑎10 + 𝑢1𝑗 

becomes 𝛽̂1𝑗 = 𝑎10 + 𝑢1𝑗 + 𝑒1𝑗 . Because of the assumption that 𝑢𝑝𝑗  and 𝑒𝑝𝑗 (𝑝 = 0,1,2)  are 

independent,  𝑣𝑎𝑟(𝛽̂1𝑗) = 𝑣𝑎𝑟(µ1𝑗) + 𝑣𝑎𝑟(𝑒1𝑗) = 𝜏11 + 𝜎
2 /[𝑛𝑠𝑥1

2 (1 − 𝑟𝑥12
2 )]. Therefore, in the 

summary-statistics approach averaging 𝛽̂1𝑗 over clusters to evaluate an intervention effect, a test 

statistic for 𝐻0: 𝑎10 = 0 can now be expressed as 
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𝑡 =
𝑎̂10

𝑆𝐸(𝑎̂10)
=

1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1

√
𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )

𝐽

  .     (A13) 

Obviously, a denominator of this equation is equivalent to the one provided in the Equation A11. 

Considering the relation 𝛾10 = 𝑎̂10 =
1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1 , t-statistics are equivalent between 𝛾10  (i.e. 

mixed-effects modelling) and 𝑎̂10 (i.e. summary-statistics approach). 

 

A Model That Includes Two L1 Independent Variables and One L2 Independent variable 

 

Closed Form Expression for Standard Errors  

In this case, a mixed-effects model can be expressed as 

𝑦𝑖𝑗 = (𝛾00 + 𝛾01𝑤𝑗 + µ0𝑗) + (𝛾10 + 𝛾11𝑤𝑗 + µ1𝑗) 𝑥1𝑖𝑗 + (𝛾20 + 𝛾21𝑤𝑗 + µ2𝑗) 𝑥2𝑖𝑗 + 𝑒𝑖𝑗   (A14) 

where 𝑥1𝑖𝑗 denotes the focal L1 independent variable, 𝑥2𝑖𝑗 is a L1 covariate, and 𝑤𝑗 is a (cluster 

mean centered) L2 variable for 𝑗th cluster. 𝛾00, 𝛾10 and 𝛾20 are overall intercept and slopes (𝛾10 is 

the L1 effect of the focal variable) and 𝛾01, 𝛾11 and 𝛾21 are regression coefficients from 𝑤𝑗 in each 

level-2 equation. More specifically, 𝛾01 is the main effect of the L2 variable (i.e. L2 effect) and  

𝛾11 is the cross-level interaction between the focal L1 predictor and the L2 variable (i.e. L1 effect).  

𝑼 = (µ0𝑗 , µ1𝑗, µ2𝑗) is a vector of random effects that has the same moment assumption as Equation 

A9. If there is no level-1 covariate (𝑥2𝑖𝑗), this version of the model is equivalent to the Equation 3. 

In this case, 𝑝1 = 2, 𝑝2 = 1, 𝒆 = (1,0,0)
′ , 𝜮𝒘  = 𝑐𝑜𝑣(𝟏, 𝑿𝟏𝒋, 𝑿𝟐𝒋) = (

0 0 0

0 𝑠𝑥1
2 𝑠𝑥12

0 𝑠𝑥12 𝑠𝑥2
2

) , 

µ = (1,0)′ , 𝜮𝑩 = 𝑐𝑜𝑣((𝟏,𝑾)) = (
0 0
0 𝑠𝑤

2)  (𝑠𝑤
2  is a between cluster sample variance of 𝑤 ). 

Therefore, according to Equation A1, 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) becomes 

𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) =
1

𝐽

(

 
 
(

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

) +
𝜎2

𝑛
(

1 0 0
0 𝑠𝑥1

2 𝑠𝑥12
0 𝑠𝑥12 𝑠𝑥2

2

)

−1

)

 
 
⊗ ((

1 0
0 0

) + (
0 0
0 𝑠𝑤

2))

−1

 

=
1

𝐽

(

 
 
 
 
𝜏00 +

𝜎2

𝑛
𝜏01 𝜏02

𝜏01 𝜏11 +
𝜎2

𝑛𝑠𝑥1
2 (1 − 𝑟𝑥12

2 )
𝜏12 −

𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1 − 𝑟𝑥12
2 )
)

𝜏02 𝜏12 −
𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1 − 𝑟𝑥12
2 )
) 𝜏22 +

𝜎2

𝑛𝑠𝑥2
2 (1 − 𝑟𝑥12

2 ) )

 
 
 
 

⊗(

1 0

0
1

𝑠𝑤2
) 

=
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1

𝐽

(

 
 
 
 
 
 
 
 

𝜏00 +
𝜎2

𝑛
0

0
1

𝑠𝑤
2 (𝜏00 +

𝜎2

𝑛
)

𝜏01 0

0 𝜏01/𝑠𝑤
2

𝜏02 0

0 𝜏02/𝑠𝑤
2

𝜏01 0

0 𝜏01/𝑠𝑤
2

𝜏11 +
𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )
0

0
1

𝑠𝑤
2 (𝜏11 +

𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )
)

𝜏12 −
𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
) 0

0
1

𝑠𝑤
2 (𝜏12 −

𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
))

𝜏02 0

0 𝜏02/𝑠𝑤
2

𝜏12 −
𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
) 0

0
1

𝑠𝑤
2 (𝜏12 −

𝜎2

𝑛
(

𝑟𝑥12
2

𝑠𝑥12(1−𝑟𝑥12
2 )
))

𝜏22 +
𝜎2

𝑛𝑠𝑥2
2 (1−𝑟𝑥12

2 )
0

0
1

𝑠𝑤
2 (𝜏22 +

𝜎2

𝑛𝑠𝑥2
2 (1−𝑟𝑥12

2 )
)

)

 
 
 
 
 
 
 
 

(A15) 

Standard errors of estimated fixed effects can be evaluated as the square root of the diagonal 

elements of  𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆). Therefore,  

𝑆𝐸(𝛾01) =  
√
1
𝑠𝑤
2 (𝜏00 +

𝜎2

𝑛
)

𝐽
,    𝑆𝐸(𝛾10) =  

√
𝜏11 +

𝜎2

𝑛𝑠𝑥1
2 (1 − 𝑟𝑥12

2 )

𝐽
, 𝑆𝐸(𝛾11) =  

√

1
𝑠𝑤
2 (𝜏11 +

𝜎2

𝑛𝑠𝑥1
2 (1 − 𝑟𝑥12

2 )
)

𝐽
  

(A16) 

Again, standard errors for L2, L1 and L12 effects correspond to 𝑆𝐸(𝛾01), 𝑆𝐸(𝛾̂10) and 𝑆𝐸(𝛾11). 

If substituting 𝑟𝑥12  to 0 in these formulae, we can obtain formulae when there is no level-1 

covariate (𝑥2𝑖𝑗) in the model (i.e. Equation 3). 

Equivalence with Summary-Statistics Approach 

Let 𝛽0𝑗, 𝛽1𝑗, and 𝛽2𝑗 ,be 𝑗th population intercept and regression coefficients when outcome 

𝑦𝑖𝑗  is regressed on the two L1 independent variables in the 𝑗 th cluster. By incorporating L2 

predictors, population linear intercept (𝛽0𝑗) and slopes for the focal L1 independent variable and 

a L1 covariate (𝛽1𝑗, 𝛽2𝑗) can be expressed using a linear combination of  intercept terms (𝑎00, 𝑎10, 

𝑎20), slope terms (𝑎01𝑤𝑗, 𝑎11𝑤𝑗 , 𝑎21𝑤𝑗) with L2 variable 𝑤𝑗 , and deviation terms (𝑢0𝑗 , 𝑢1𝑗, 𝑢2𝑗): 

𝛽0𝑗 = 𝑎00 + 𝑎01𝑤𝑗 + 𝑢0𝑗 , 𝛽1𝑗 = 𝑎10 + 𝑎11𝑤𝑗 + 𝑢1𝑗  and 𝛽2𝑗 = 𝑎20 + 𝑎21𝑤𝑗 + 𝑢2𝑗 , where 𝑼 =

(𝑢0𝑗 , 𝑢1𝑗 , 𝑢2𝑗)′ and 𝑐𝑜𝑣(𝑼) = (

𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

) . On the other hand, estimates 𝛽̂0𝑗, 𝛽̂1𝑗  and 

𝛽̂2𝑗 can be expressed as the sum of population values and sampling errors as 𝛽̂0𝑗 = 𝛽0𝑗+ 𝑒0𝑗 ,

𝛽̂1𝑗 = 𝛽1𝑗+ 𝑒1𝑗 and 𝛽̂2𝑗 = 𝛽2𝑗+ 𝑒2𝑗, where 𝑐𝑜𝑣(𝒆𝒋) is expressed as the Equation (A12) for 𝒆𝒋 =

(𝑒0𝑗, 𝑒1𝑗, 𝑒2𝑗)′. 

   Combining the relations 𝛽0𝑗 = 𝑎00 + 𝑎01𝑤𝑗 + 𝑢0𝑗 and 𝛽1𝑗 = 𝑎10 + 𝑎11𝑤𝑗 + 𝑢1𝑗 leads to 

𝛽̂0𝑗 = 𝑎00 + 𝑎01𝑤𝑗 + 𝑢0𝑗 + 𝑒0𝑗  and 𝛽̂1𝑗 = 𝑎10 + 𝑎11𝑤𝑗 + 𝑢1𝑗 + 𝑒1𝑗. Because of the assumption 

that 𝑢𝑝𝑗  and 𝑒𝑝𝑗 (𝑝 = 0,1,2)   are independent, 𝑣𝑎𝑟(𝛽̂0𝑗|𝑤𝑗) =  𝑣𝑎𝑟(µ0𝑗) +  𝑣𝑎𝑟(𝑒0𝑗) = 𝜏00 +
𝜎2

𝑛
 and 𝑣𝑎𝑟(𝛽̂1𝑗) =  𝑣𝑎𝑟(µ1𝑗) +  𝑣𝑎𝑟(𝑒1𝑗) = 𝜏11 + 𝜎

2 /[𝑛𝑠𝑥1
2 (1 − 𝑟𝑥12

2 )].  In the summary 

statistics approach, as noted in the article, L2 effect is the regression coefficient when the regressor 

𝛽̂0𝑗 is regressed on 𝑤𝑗; L1 effect is the intercept when the regressor 𝛽̂1𝑗 is regressed on 𝑤𝑗; L12 

effect (cross-level interaction) is the regression coefficient in the same regression model. With this 

in mind, test statistics for 𝐻0: 𝑎01 = 0  (L2 effect), 𝐻0: 𝑎10 = 0 (L1 effect) and 𝐻0: 𝑎11 = 0 (L12 

effect) can now be expressed as 
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𝑡 =
𝑎̂01

𝑆𝐸(𝑎̂01)
=

𝑐𝑜𝑣(𝛽̂0𝑗,𝑤𝑗)/𝑠𝑤
2

√𝑣𝑎𝑟(𝛽̂0𝑗|𝑤𝑗)(𝒘𝒋
∗′
𝒘𝒋
∗)(2,2)
−𝟏

=
𝑐𝑜𝑣(𝛽̂0𝑗,𝑤𝑗)/𝑠𝑤

2

√𝜏00+
𝜎2

𝑛

𝐽𝑠𝑤
2

  ,     (A17) 

𝑡 =
𝑎̂10

𝑆𝐸(𝑎̂10)
=

1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1

√𝑣𝑎𝑟(𝛽̂1𝑗|𝑤𝑗)(𝒘𝒋
∗′
𝒘𝒋
∗)(1,1)
−𝟏

=

1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1

√
𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )

𝐽

  ,     (A18) 

𝑡 =
𝑎̂11

𝑆𝐸(𝑎̂11)
=

𝑐𝑜𝑣(𝛽̂1𝑗,𝑤𝑗)/𝑆𝑤
2

√𝑣𝑎𝑟(𝛽̂1𝑗|𝑤𝑗)(𝒘𝒋
∗′
𝒘𝒋
∗)(2,2)
−𝟏

=
𝑐𝑜𝑣(𝛽̂1𝑗,𝑤𝑗)/𝑆𝑤

2

√
𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑟𝑥12

2 )

𝐽𝑠𝑤
2

  ,     (A19) 

Where 𝑨(𝑟,𝑠) denotes (𝑟, 𝑠) element of an arbitrary matrix 𝑨. Obviously, denominators of these 

equations are equivalent to the ones provided in the Equation A16. Considering the relations 𝛾01 =

𝑎̂01 = 𝑐𝑜𝑣(𝛽̂0𝑗, 𝑤𝑗)/𝑠𝑤
2 , 𝛾10 = 𝑎̂10 =

1

𝐽
∑ 𝛽̂1𝑗
𝐽
𝑖=1 , and 𝛾11 = 𝑎̂11 = 𝑐𝑜𝑣(𝛽̂1𝑗, 𝑤𝑗)/𝑠𝑤

2 , t-statistics 

for these three tests are equivalent between 𝛾 (i.e. mixed-effects modelling) and 𝑎̂ (i.e. summary-

statistics approach). 

 

When There Are Two or More L1 and L2 Variables 

 

When two or more independent variable are included at both L1 and L2 equations, taking 

the same steps with the previous cases, standard errors of L2 (𝑆𝐸(𝛾01): for cluster variable 𝑤1) , 
L1 (𝑆𝐸(𝛾10): for intervention variable 𝑥1) and L12 effects (𝑆𝐸(𝛾11): 𝑥1 ×𝑤1) can be generally 

expressed as 

 

𝑆𝐸(𝛾01) =  
√

1

𝑠𝑤1
2 (1−𝑅𝑤1

2 )
(𝜏00+

𝜎2

𝑛
)

𝐽
   𝑆𝐸(𝛾10) =  

√
𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑅𝑥1

2 )

𝐽
   𝑆𝐸(𝛾11) =  

√
1

𝑠𝑤1
2 (1−𝑅𝑤1

2 )
(𝜏11+

𝜎2

𝑛𝑠𝑥1
2 (1−𝑅𝑥1

2 )
)

𝐽
  (A20) 

 

where 𝑠𝑥1
2  is the sample variance of intervention variable 𝑥1, and 𝑅𝑥1

2  is the proportion of variance 

explained when intervention variable 𝑥1 is regressed on other level-1 covariates. Likewise, 𝑠𝑤1
2  is 

the sample variance of focal level-2 cluster variable 𝑤1, and 𝑅𝑤1
2  is the proportion of variance 

explained when focal level-2 cluster variable 𝑤1 is regressed on other level-2 covariates. With the 

closed expressions for standard errors, we can also prove that t-statistics obtained from the mixed-

effects modelling and summary statistics approach are equivalent in the same manner 

(mathematical proof omitted here). 

 

Variable Cluster Size and Predictor Variance 

 

When cluster size and variance-covariance structure of the L1 predictors are not invariant 

across clusters, 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) can be expressed as: 

 

𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) =
1

𝐽
(
1

𝐽
∑ (𝑇 +

𝜎2

𝑛𝑗
[𝑒𝑒′ + 𝛴𝑤𝑗]

−1
)𝑁

𝑗=1 ⊗ (µµ′ + 𝜮𝑩)
−1),   (A21) 
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where 𝛴𝑤𝑗 is within cluster variance for the 𝑗th cluster and nj is the cluster size for the jth cluster 

(complete derivation omitted here). Importantly, 𝑐𝑜𝑣(𝛄̂𝐺𝐿𝑆) (and standard errors) has the form in 

which all elements include 𝐽  in the denominator. This suggests that the proposed summary-

statistics-based method to estimate statistical power is still reasonably valid even when predictor 

variance and cluster size are invariant across clusters, as long as researchers are interested in 

determining the L2 sample size only (which was demonstrated in the simulation in the article). 


