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sarcopenia and frailty’
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Gene–nutrient interactions (GeNuIne) collaboration, a large-scale collaborative project, has
been initiated to investigate the impact of gene–nutrient interactions on cardiometabolic dis-
eases using population-based studies from ethnically diverse populations. In this project, the
relationship between deficiencies of vitamins B12 and D, and metabolic diseases was
explored using a nutrigenetic approach. A genetic risk score (GRS) analysis was used to
examine the combined effect of several genetic variations that have been shown to be asso-
ciated with metabolic diseases and vitamin B12 and D deficiencies, respectively. In Sri
Lankan, Indonesian and Brazilian populations, those carrying a high B12-GRS had an
increased risk of metabolic diseases under the influence of dietary protein, fibre and carbo-
hydrate intakes, respectively; however, in Asian Indians, genetically instrumented metabolic
disease risk showed a significant association with low vitamin B12 status. With regards to
nutrigenetic studies on vitamin D status, although high metabolic-GRS showed an inter-
action with dietary carbohydrate intake on vitamin D status, the study in Indonesian
women demonstrated a vitamin D GRS–carbohydrate interaction on body fat percentage.
In summary, these nutrigenetic studies from multiple ethnic groups have provided evidence
for the influence of the dietary factors on the relationship between vitamin B12/D deficiency
and metabolic outcomes. Furthermore, these studies highlight the existence of genetic het-
erogeneity in gene–diet interactions across ethnically diverse populations, which further
implicates the significance of personalised dietary approaches for the prevention of these
micronutrient deficiencies and metabolic diseases.

Keywords: Gene–nutrient interactions collaboration: Genetic risk score: Micronutrient
intake: Gene–diet interaction: Cardiometabolic diseases

Metabolic diseases such as obesity and diabetes are
vastly growing epidemics prevalent in both developed
and developing countries, affecting all ages, genders, eth-
nicities and socioeconomic groups(1,2). Metabolic

diseases have been shown to reduce the quality of life
for the individual by leading to severe and potentially
life-threatening consequences, such as CVD, cancers,
hypertension and musculoskeletal disorders(3,4). Even
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though the main influences of metabolic diseases are life-
style factors such as diet and exercise, a substantial
amount of evidence is emerging in the field of genetic epi-
demiology, suggesting that an individual’s genetic profile
may also play a key role in the development of these dis-
eases(5–9).

Several studies have shown that healthy lifestyle may
modify the association between genetic risk and metabolic
disease-related traits(10–16). Although some studies have
shown that increased physical activity levels and healthy
diet can attenuate the effect of genetic variants on meta-
bolic traits, other studies have shown conflicting results(17),
which could be attributed to genetic heterogeneity and dif-
ferences in the dietary patterns across multiple ethnic
groups(7,18,19). Majority of the gene–lifestyle interactions
have focused on metabolic disease-related outcomes(20–
23) and only a few have focused on vitamins B12 and D,
two critical vitamins which have been shown to be asso-
ciated with age-related cardiometabolic diseases(24).

Genetic studies have implicated several gene loci asso-
ciated with vitamin B12 and D concentrations(25–28).
Several Mendelian randomisation studies have explored
the relationship between genetically instrumented vita-
min B12 and D concentrations and metabolic
disease-related outcomes; however, the findings have
been inconsistent(29–32). The aim of this paper is to pro-
vide an overview of ethnic-specific findings from gene–
nutrient interactions (GeNuIne) collaboration that used
a nutrigenetic approach to investigate the relationship
between metabolic disease-related traits and vitamin
B12/D status, where the effects of macronutrient intake
such as carbohydrate, fat and protein intake on these
relationships were explored.

Role of British Nutrition Foundation Drummond Pump
Priming Award in gene–nutrient interactions

collaboration

Given that the genetic profile varies across various ethnic
groups(33,34), it is crucial to explore gene–diet interactions
in multiple ethnicities, which will enable us to personalise
diet according to each ethnic group(23,35). To address this
issue, the GeNuIne Collaboration was initiated in 2013
to implement nutrigenetic studies on metabolic
disease-related traits using population-based studies
from multiple ethnic groups in lower-middle income
countries(6,7). The British Nutrition Foundation
Drummond Pump Priming award was the seed funding
for the initiation of the GeNuIne Collaboration, where
the funds were used to establish a collaborative network
with academic institutions in India(12), Brazil(36),
Turkey(22), Thailand(37), Sri Lanka(38), Indonesia(39),
Morocco and Pakistan. In addition, the Newton Fund
British Council Researcher Links travel grants were
obtained to carry out pilot studies in lower-middle
income countries. Given that there were no nutrigenetic
studies that had explored the relationship between meta-
bolic diseases and vitamin B12/D status, the GeNuIne
Collaboration was established to address this missing
gap in nutritional science(7,40).

Use of genetic risk scores as instruments for
micronutrient deficiencies and metabolic diseases

Genome-wide association studies have discovered thou-
sands of genetic variants associated with metabolic dis-
eases(41–45) and vitamin B12

(25,46)/D(27,47) status, respectively;
however, the individual SNPs explain only a small propor-
tion of variation for obesity and diabetes, with limited abil-
ity for predicting disease risk. Given that these complex
traits are influenced by several genetic variants, with each
having a small effect on these traits, combining the effect
of several variants as a polygenic score can provide a better
understanding of disease risk than single variant
approaches(48–50). The idea of grouping individual SNPs
into genetic risk scores (GRSs) has been used to predict
and quantify a discrete increment in the overall risk of dis-
eases, as well as capturing the overall variance in a trait(51).
There are several approaches for generating a GRS such as
weighted and unweighted methods(52). Fundamentally, a
GRS is constructed by summarising genotype data across
multiple genetic variants. The most commonly used
method is summing the number of alleles that confer risk
across all loci (zero, one or two). Employing the GRS
approach for predicting disease risk has advantages over
analysing the effect of individuals SNPs as it decreases
the drawback of multiple testing, maximises statistical
power and widens the scope of generalisability of genetic
associations(48,51). Previous studies have emphasised the
potential of GRS for predicting the risk of complex dis-
eases. Given that there were no previously reported effect
sizes in lower-middle income countries, the nutrigenetic
studies from the GeNuIne Collaboration used an
unweighted GRS method(53) which was calculated for
each participant by adding the number of risk alleles for
metabolic diseases and micronutrient deficiencies, respect-
ively. A value of zero, one and two was assigned to each
SNP, which indicates the number of metabolic
disease-related risk alleles and vitamin B12/D lowering
risk alleles, respectively. These values were then calculated
by adding the number of risk alleles across each SNP. The
risk allele score was then divided by the median into two
groups: participants carrying a lower number of risk alleles
and those with a higher number of risk alleles.

Findings from gene–nutrient interactions collaboration

Impact of genetic and dietary factors on vitamin B12
status and metabolic diseases in ethnically diverse

populations

Several epidemiological studies have shown associations
between metabolic diseases and micronutrient deficien-
cies including vitamin B12

(54–56); however, the findings
have been inconsistent due to high level of confounding.
Given that genetic associations are less prone to con-
founding(26,30), studies conducted as part of the
GeNuIne Collaboration used a nutrigenetics approach
to examine this relationship (Fig. 1).

South Asians have been shown to exhibit increased
visceral fat and waist circumference, hyperinsulinaemia
and insulin resistance; this has been termed the ‘South
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Asian phenotype’(57,58). Although there is a strong gen-
etic component to developing the ‘South Asian
Phenotype’, consuming an unhealthy diet and leading a
sedentary lifestyle can further contribute to this pheno-
type(12). A cross-sectional nutrigenetic study in nine hun-
dred Asian Indians demonstrated that metabolic-GRS,
that was developed using metabolic disease-related gen-
etic variants (Table 1), was associated with vitamin B12
levels, where carriers of more than one risk allele for
the GRS had significantly lower vitamin B12 concentra-
tions, compared to those carrying zero risk alleles(59)

(Fig. 2). This finding suggests that genetically instrumen-
ted metabolic disease could be a risk factor for vitamin
B12 deficiency with implications on the possible targeting
of relevant obesity prevention strategies. However, a
cross-sectional nutrigenetic study in one-hundred and
nine Sinhalese adults aged 25–50 years showed that vita-
min B12-GRS, that was developed using vitamin
B12-related genetic variants (Table 1), was associated
with central obesity under the influence of protein con-
sumption(38). Given that the daily intake of protein is
low in Sri Lankan adults(60,61), these findings may have
significant public health implications in terms of revising
dietary guidelines for this population, which could pre-
vent central obesity and its related complications.

Countries in Southeast Asia, especially Indonesia,
have undergone rapid epidemiological and nutritional
transitions over the past few decades(62). Indonesia has
the seventh largest number of diabetic patients (about

10 million)(63) and non-communicable diseases are esti-
mated to account for 73 % of all deaths of which, CVD
contributed to 35 % followed by cancers (12 %) and dia-
betes (6 %). In a cross-sectional study of one-hundred
and seventeen Indonesian women(39), those with high
B12-GRS (comprising nine B12-related SNPs) and con-
suming a low fibre diet (4⋅90(SD 1⋅00) g daily) had signifi-
cantly higher haemoglobin A1C levels compared to those
with low B12-GRS (Fig. 2). This study suggests that gen-
etically instrumented low B12 levels might be a risk factor
for the development of metabolic diseases such as type 2
diabetes.

Brazil is a developing country that is undergoing rapid
economic, demographic and behavioural transition(64–66)

which has resulted in an increased prevalence of CVD,
one of the leading causes of mortality(67). Studies have
also reported unhealthy dietary patterns which are char-
acterised by higher intakes of processed foods, refined
grains and sugar sweetened beverages(68). The first nutri-
genetics study on vitamin B12 status in Brazil(36) was a
cross-sectional study in one-hundred and thirteen adoles-
cents (10–19 years old), recruited from a public school in
the city of Goiânia, Goiás, Brazil. The study demon-
strated that those who had high carbohydrate intake
and high B12-pathway-related genetic risk had signifi-
cantly higher oxidised-LDL concentrations compared
to those with low genetic risk suggesting the impact of
genetically instrumented B12 status on cardiovascular
risk factors.

Fig. 1. Objective, study design and the expected results of the nutrigenetic studies from the GeNuIne Collaboration. Genetic
associations are represented by one-sided arrows with unbroken lines and interactions between GRS and dietary intakes on
metabolic traits and vitamin D/B12 status are shown as one-sided arrows with broken lines. The association of the
metabolic-GRS with vitamin B12/D status and metabolic traits, respectively, and the association of vitamin B12/D-GRS with
vitamin B12/D status and metabolic traits, respectively, were tested. In addition, the effect of dietary factors on these genetic
associations was examined.
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Given that high fibre and protein diets are recom-
mended for preventing metabolic disease outcomes(69–71),
the gene–diet interaction findings observed in these nutri-
genetic studies will have significant public health implica-
tions, where people carrying risk alleles for vitamin B12
deficiency could be advised to alter their diet according
to their ethnic background.

Impact of genetic and dietary factors on vitamin D
status and metabolic diseases in ethnically diverse

populations

Vitamin D is a fat-soluble vitamin and a secosteroid pro-
hormone that plays a crucial role in calcium absorption,
immune function and protecting bone, muscle and heart
health(72–74). Deficiency of vitamin D has been found to
contribute to the development of various cardiometa-
bolic conditions such as obesity, diabetes and hyperten-
sion(75,76). However, the association between vitamin D
deficiency and these cardiometabolic conditions has not
been firmly established. The application of a nutrigenetic
approach to establish the link between vitamin D status
and metabolic diseases is favoured over observational
studies since genetic associations are less affected by
confounding(26).

A recent review from the GeNuIne Collaboration team
has identified seventy-three peer reviewed articles demon-
strating ninety-two significant ethnic-specific associations
between genes related to the synthesis and metabolism
of 25-hydroxyvitamin D (25(OH)D) and metabolic
disease-related outcomes such as obesity and diabetes
traits(27). Similarly, there are also studies which have
shown associations between metabolic disease-related
genes and 25(OH)D concentrations(28,77). Using these
disease-specific genetic variations, the studies from
GeNuIne Collaboration used a nutrigenetic approach to
examine the link between vitamin D status and metabolic
diseases. In addition, the studies investigated the com-
bined effects of multiple genetic variants using GRSs
instead of the common single gene variant method in
order to increase the statistical power to detect gene–diet
interactions(48,51). In this nutrigenetic approach, the stud-
ies tested whether dietary factors influenced the associa-
tions between vitamin D status and metabolic diseases.

The first nutrigenetic study of vitamin D and meta-
bolic diseases was implemented in Asian Indians(78). In
this study, five hundred and forty-five Asian Indians
were randomly selected from the Chennai Urban Rural
Epidemiology Study, where two hundred and nineteen
were normal glucose tolerant individuals, one hundred

Table 1. Details of the SNPs that were examined in each ethnic group

Population Study design Vitamin B12-related SNPs Metabolic disease-related SNPs

Sri Lankan Cross-sectional
study(38)

Methylenetetrahydrofolate reductase [MTHFR] – rs1801133
Carbamoyl-phosphate synthase 1 [CPS1] – rs1047891
Cubulin [CUBN] – rs1801222
CD320 molecule [CD320] – rs2336573
TCN2 – rs1131603
Citrate lyase β-like [CLYBL] – rs41281112
FUT2 – rs602662
Transcobalamin 1 [TCN1] – rs34324219
Fucosyltransferase 6 [FUT6] – rs778805
Methylmalonyl-CoA mutase [MUT] – rs1141321

Fat mass and obesity-associated
[FTO] – rs9939609 and rs8050136
Melanocortin 4 Receptor [MC4R] –
rs17782313 and rs2229616
Transcription factor 7-like 2 [TCF7L2]
– rs12255372 and rs7903146
Potassium voltage-gated channel
subfamily J member 11 [KCNJ11] –
rs5219
Calpain 10 [CAPN10] – rs3792267,
rs2975760 and rs5030952

Brazilian Cross-sectional
study(36)

Fucosyltransferase [FUT2] – rs602662
Transcobalamin 2 [TCN2] – rs1801198
5-Methyltetrahydrofolate-homocysteine methyltransferase or
methionine synthase [MTR] – rs1805087
5-Methyltetrahydrofolate-homocysteine methyltransferase
reductase or methionine synthase reductase [MTRR] – rs1801394
Betaine-homocysteine S-methyltransferase [BHMT] –rs3797546
and rs492842
MTHFR – rs1801131
MTHFR – rs1801133
Catechol-o-methyl transferase [COMT] –rs4680 and rs4633

Indian Case–control
study(59)

– FTO – rs9939609 and rs2388405

Indonesian Cross-sectional
study(39)

MTHFR – rs1801133
CPS1 – rs1047891
CUBN – rs1801222
CD320 – rs2336573
TCN2 – rs1131603
FUT2 – rs602662
TCN1 – rs34324219
FUT6 – rs778805
MUT – rs1141321

FTO – rs9939609 and rs8050136
MC4R – rs17782313 and rs2229616
TCF7L2 – rs12255372 and
rs7903146
KCNJ11 – rs5219
CAPN10 – rs3792267 and rs5030952

K. S. Vimaleswaran438

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665121002822 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665121002822


and fifty-one were with pre-diabetes and one hundred
and seventy-five had type 2 diabetes. The study showed
a significant interaction between metabolic GRS and
carbohydrate intake on 25(OH)D, where individuals
consuming a low carbohydrate diet (≤62 % of total
energy intake) and those having lesser number of meta-
bolic risk alleles had significantly higher levels of 25
(OH)D. However, among individuals who had a higher
carbohydrate intake (>67 %), despite having lower num-
ber of metabolic risk alleles, did not show a significantly
higher 25(OH)D concentrations. These findings demon-
strate that individuals carrying a low genetic risk of
metabolic diseases are likely to have higher 25(OH)D
levels if they consume a low carbohydrate diet (Fig. 3).
Given that previous studies have reported that Asian
Indians have lower 25(OH)D concentrations(79–81),
these findings suggest that, even if the metabolic genetic
risk is lower, following the dietary carbohydrate recom-
mendations (50–60%) is required to improve the vitamin
D status in this Asian Indian population.

To date, only a few studies have examined the influ-
ence of SNPs on 25(OH)D levels in populations within
Southeast Asia(82). The study from GeNuIne
Collaboration focused on Minangkabau women from
Padang, the capital of West Sumatra. The
Minangkabau ethnic group is of particular interest
given that the Minangkabau people have the largest

matrilineal family structure in the world(83–86). A nutrige-
netic study to investigate the relationship between vita-
min D status and metabolic traits in a cohort of one
hundred and ten Minangkabau women from urban and
rural areas of Padang was conducted(87). The study iden-
tified a significant interaction between the vitamin
D-GRS and carbohydrate intake (g) on body fat percent-
age, where individuals who consumed a high carbohy-
drate diet (mean(SD): 319 g daily(SD 46)) and carried >2
vitamin D-lowering risk alleles had significantly higher
body fat percentage than those with ≤2 risk alleles
(Fig. 3). These findings are biologically plausible as vita-
min D has been shown to mediate the impact of reduced
consumption of carbohydrate through its direct action on
pancreatic β-cell function(88). Given that percent body fat
is a better predictor of cardiovascular risk factors(89), and
that the main source of energy for the Minangkabau is
carbohydrates, where rice, banana, cassava, maize,
sweet potato, sago, noodles, glutinous rice and mung
bean are part of their daily meals(86), these findings, if
replicated, may have a significant public health implica-
tion in preventing CVD in Minangkabau women by
developing dietary intervention strategies to reduce the
intake of carbohydrates.

There are ethnic differences in body fat composition
given the complex interaction between the genes, lifestyle
and culture. Understanding of ethnic differences may

Fig. 2. Results from the vitamin B12-related nutrigenetic studies in South Asians and Southeast Asians. (a) A nutrigenetic study
in Asian Indians(59): metabolic disease risk increasing alleles ranged from 0 to 3. The white bars indicate individuals with 0 risk
alleles and the black bars indicate individuals carrying ≥1 alleles. Individuals who carried 1 or more risk alleles had significantly
lower B12 concentrations compared to individuals carrying 0 risk alleles (P = 0⋅018). (b) A nutrigenetic study in Southeast
Asians (Indonesia)(39): individuals who carried nine or more risk alleles for vitamin B12 deficiency (high B12-GRS) had
significantly higher HbAC1 concentrations (ng/ml) in the lowest tertile of fibre intake (g) (mean(SD): 4⋅90(SD 1⋅00) g) compared to
those with eight or less risk alleles for vitamin B12 deficiency (low B12-GRS). GRS: genetic risk score; HbAC1, haemoglobin
AC1.

Nutrigenetics, micronutrients and metabolic diseases 439

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665121002822 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665121002822


lead to the implementation of effective approaches to rec-
ognise and prevent metabolic diseases across different
ethnic groups. It is important that the findings from
these studies are replicated before consideration is given
to personalised dietary advice for individuals carrying a
higher genetic risk of vitamin D deficiency.

Strengths and limitations

Firstly, the studies from the GeNuIne Collaboration are
the first nutrigenetic studies to evaluate the relationship
of vitamin B12/D status with metabolic disease risk in
ethnically diverse populations. Secondly, the construc-
tion of the GRSs instead of a single-SNP approach had
increased the statistical power to identify gene–diet inter-
actions(51). Thirdly, the use of a comprehensive, validated
food frequency questionnaires collected by trained nutri-
tionists increased the accuracy of dietary data collection.
The study does have several limitations that should be
acknowledged. The studies had a cross-sectional study
design, and hence, causality cannot be inferred. Given
that the studies were a pilot, the sample size was small;
however, the studies were sufficiently powered to identify
significant gene–diet interactions. Even though the study
used a validated food frequency questionnaire, bias due
to self-reported dietary intake information cannot be

excluded. Age was adjusted in all the regression analyses;
however, it is possible that the unmatched age in cases
and controls, especially the study in Asian Indians,
might have introduced a bias in the study.
Furthermore, other confounders such as sex, BMI, dis-
ease status, socioeconomic status and locality, wherever
appropriate, were adjusted in all our analyses; but
residual confounding due to unknown factors cannot
be excluded(90). In addition, these studies investigated
only a limited number of the increasingly identified
metabolic-associated SNPs, thus there is a need to utilise
a comprehensive panel of genetic variants to construct
the GRS. Finally, the studies were conducted in specific
ethnic groups and hence, the findings cannot be general-
ised to the countries.

From nutrigenetics to genotype-based dietary
recommendations

Although remarkable improvements have been achieved
in epidemiological studies in the field of nutrigenetics,
future research should focus on understanding the meta-
bolic pathways underlying gene–diet interactions.
Therefore, science that identifies the connection between
compounds in food and diet, and genetic susceptibility is
needed. Food scientists and nutritionists have described a

Fig. 3. Results from the vitamin D-related nutrigenetic studies in South Asians and Southeast Asians. (a) A nutrigenetic study in Asian
Indians(78): interaction between metabolic GRS and carbohydrate intake (%) on log 25(OH)D. White bars indicate individuals with GRS
≤1 risk allele; black bars indicate individuals with GRS >1 risk allele. Among individuals with low carbohydrates intake, those with <1
risk allele had significantly higher 25(OH)D concentrations compared to those with >1 risk allele (P = 0⋅003). (b) A nutrigenetic study in
Southeast Asians (Indonesia)(87): interaction between the vitamin D-GRS and dietary carbohydrate intake (g) on body fat percentage
(%) (Pinteraction = 0⋅049). Those who were on the highest tertile of carbohydrate intake and carried >2 risk alleles had significantly higher
body fat percentage compared to individuals carrying ≤2 risk alleles (P = 0⋅016). GRS: genetic risk score.
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new discipline called ‘Foodomics’, which is defined as the
application of new methodologies, or ‘omics’, to improve
individual health(91,92). This field has helped to identify
the interactions of bioactive compounds from the diet
at the molecular and cellular levels to provide evidence
on their health benefits, and to understand variations
and differential response to nutrition interventions.

Another approach is nutrigenomics, which investigates
the effect of diet and its bioactive components on gene
expression(93). This field of research will help in under-
standing how diet interacts with the metabolic pathways,
which may have a role in diet-related diseases. Although
nutrigenetics investigates gene–diet interaction or in
other words, explores how the genes (at the levels of
SNPs) cause the disease in response to a particular
diet(34). The knowledge from these two fields will help
in designing optimal diets that allow health maintenance
and disease prevention in an individual(91).

Besides personalised nutrition, precision nutrition is
another approach, which is aimed to develop more com-
prehensive nutritional recommendations based on the
interaction between internal and external parameters of
an individual’s environment throughout life(15,94,95).
Precision nutrition takes into account the genetic factors,
dietary habits, food behaviour, physical activity, the
microbiota and the metabolome(96–99). For implementing
precision nutrition, the underlying science should be
translated so that clinicians and other health care provi-
ders understand the scientific basis of heterogeneity in
metabolic diseases and can deliver precision nutrition
interventions to people with such chronic diseases. In
addition, policy makers will need to understand the
underlying science, so that they can enforce the use of
precision nutrition in the implementation of policy
recommendations and public health interventions.
Although nutrigenetic and nutrigenomic studies hold
immense promise for preventing metabolic diseases and
micronutrient deficiencies, there are several challenges
that need to be overcome(100,101).

In summary, clear guidance from nutrigenetics studies
is required for the implementation of personalised nutri-
tion(102) and foodomics(92), which can only be achieved
by using large and well powered studies, examining vari-
ous ethnic groups, considering the variety in dietary pat-
terns globally and conducting additional testing for other
modifiable factors such as physical activity.

Conclusions

The studies from GeNuIne Collaboration have provided
evidence for the influence of the dietary factors on the
relationship between vitamin B12/D deficiency and meta-
bolic outcomes(36,39,40,59,78,87) and highlighted the exist-
ence of genetic heterogeneity in gene–diet interactions
across ethnically diverse populations. These differences
in gene–diet interactions implicate the significance of per-
sonalised approaches for the prevention of vitamin B12
and D deficiencies and metabolic diseases. In terms of
implementing ethnic-specific personalised dietary strat-
egies, for Sri Lankans, Indonesians and Brazilians who

are carrying a high B12-GRS, it would be possible to pre-
vent the development of metabolic diseases by modifying
their dietary daily intakes of protein, fibre and carbohy-
drate, respectively. For Asian Indians with low
metabolic-GRS, a low carbohydrate diet can improve
the vitamin D status, and for Southeast Asian women,
reducing the intake of carbohydrate-rich foods can over-
come the genetic risk of obesity.

It is important that these gene–diet interactions are
replicated, before public health recommendations can
be enforced. Furthermore, prospective genotyping
should be considered in future studies to avoid an imbal-
ance in the frequency of genotype between groups, which
might confound the findings, and to increase statistical
and discriminatory power(103). Also, it is important to
further investigate whether people with increased weight
require more vitamin B12/D containing foods, for the
possibility of implementing micronutrient deficiency
screening programmes in the population. If low vitamin
B12/D concentrations stimulate metabolic diseases
through a dietary influence, it is important that mechan-
istic studies are carried out to determine how vitamin
B12/D interacts with adipose tissue metabolism or how
epigenetic mechanisms contribute to the epidemic of
metabolic diseases(104). These functional studies are
highly warranted before applying personalised dietary
strategies to prevent or treat these micronutrient deficien-
cies and metabolic diseases.
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