
On the range of future Sahel precipitation 
projections and the selection of a sub-
sample of CMIP5 models for impact 
studies 
Article 

Accepted Version 

Monerie, P.-A. ORCID: https://orcid.org/0000-0002-5304-9559,
Sanchez-Gomez, E. and Boé, J. (2017) On the range of future 
Sahel precipitation projections and the selection of a sub-
sample of CMIP5 models for impact studies. Climate 
Dynamics, 48 (7-8). pp. 2751-2770. ISSN 0930-7575 doi: 
10.1007/s00382-016-3236-y Available at 
https://centaur.reading.ac.uk/100408/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/s00382-016-3236-y 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


1 

On the range of future Sahel precipitation projections and 1 

the selection of a sub-sample of CMIP5 models for impact 2 

studies 3 

Paul-Arthur Monerie1; Emilia Sanchez-Gomez2; Julien Boé2. 4 

1 CECI UMR 5318 - CNRS/CERFACS, Toulouse, France; previously at Centre de Recherches en 5 

Climatologie, UMR6282, CNRS/University of Burgundy, Dijon, France. 6 

2 CECI UMR 5318 - CNRS/CERFACS , Toulouse, France  7 

 8 

 9 

 10 

Manuscript Click here to download Manuscript Monerie_etal.doc 

Click here to view linked References

http://www.editorialmanager.com/cldy/download.aspx?id=257589&guid=7af96253-bd79-4b36-8038-2c520335f4c5&scheme=1
http://www.editorialmanager.com/cldy/download.aspx?id=257589&guid=7af96253-bd79-4b36-8038-2c520335f4c5&scheme=1
http://www.editorialmanager.com/cldy/viewRCResults.aspx?pdf=1&docID=6378&rev=2&fileID=257589&msid={3ABB04C2-7DAB-4BFA-883A-A703D2BF2444}


2 

 11 

Abstract 12 

  The future evolution of the West African Monsoon is studied by analyzing 32 CMIP5 models under the rcp8.5 13 

emission scenario. A hierarchical clustering method based on the simulated pattern of precipitation changes is used to 14 

classify the models. Four groups, which do not agree on the simple sign of future Sahel precipitation change, are 15 

obtained. We find that the inter-group differences are mainly associated with the large spread in (i) temperature increase 16 

over the Sahara and North Atlantic and in (ii) the strengthening of low and mid-level winds. A wetter Sahel is 17 

associated with a strong increase in temperature over the Sahara (>6°C), a northward shift of the monsoon system and a 18 

weakening of the African Easterly jet. A dryer Sahel is associated with subsidence anomalies, a strengthening of the 19 

600 hPa wind speed, and a weaker warming over the Northern Hemisphere. Moreover, the western (central) Sahel is 20 

projected to become dryer (wetter) during the first months (last months) of the rainy season in a majority of models. We 21 

propose several methods to select a sub-sample of models that captures both the ensemble mean pattern and/or the 22 

spread of precipitation changes from the full ensemble. This methodology is useful in all the situations for which it is 23 

not possible to deal with a large ensemble of models, and in particular most impact studies. We show that no 24 

relationship exists between the climatological mean biases in precipitation and temperature and the future changes in 25 

the monsoon intensity. This indicates that the mean bias is therefore not a reliable metric for the model selection. For 26 

this reason, we propose several methodologies, based on the projected precipitation changes: The “diversity” method, 27 

which consists in the selection of one model from each group is the most appropriate to capture the spread in 28 

precipitation change. The “pattern selection” method, which consists in the selection of models in a single group allows 29 

to select models for the study of a specific pattern of precipitation change, for example the one that is the most 30 

representative of the full ensemble. 31 

 32 
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 33 

1. Introduction  34 

           Observational studies show that the 1970s and 1980s were abnormally dry in the Sahel (L'Hote et al., 2002; 35 

2003; Dai et al., 2004; Nicholson et al., 2012ab). Since the 1990s, Sahel rainfall has experienced a limited precipitation 36 

recovery (Ozer et al., 2003; Nicholson, 2005; Lebel and Ali, 2009), especially from August to October (Sanogo et al., 37 

2015). A recent study based on numerical modeling suggests that the recovery is due to changes in atmospheric 38 

greenhouse gases (GHGs) and aerosols concentration (Dong and Sutton, 2015). It could thus be expected that the recent 39 

Sahel precipitation intensification might continue as the GHGs concentration increases. Based on studies using the 40 

CMIP3 and CMIP5 databases (Coupled Model Intercomparison Phase 3 and 5), the 4th and 5th IPCC (Intergovernmental 41 

Panel on Climate Change) assessment reports however concluded that a high level of uncertainty in future changes in 42 

Sahel climate exists (Solomon et al., 2007; Barros et al., 2015).  43 

 44 

 Sahel precipitation is inextricably linked to the West Africa Monsoon (WAM). Studies based on CMIP3/5 45 

projections show that the WAM response to global warming is highly model-dependent. As a consequence, model based 46 

projections of WAM and Sahel climate are highly uncertain. This is particularly problematic for the assessment of 47 

socio-economic impacts, since in order to capture correctly the uncertainties (model formulation, internal variability, 48 

emission scenario), a large ensemble of models is necessary, as well as different realizations and scenario emissions 49 

should be considered. The CMIP5 multi-model ensemble consists in more than 40 climate models, with generally 50 

several realizations (or members), and for 4 different Representative Concentration Pathways (RCPs). It is virtually 51 

impossible for most groups working on dynamical downscaling and/or impacts, given limitations in computing 52 

resources and/or data storage capacity, to deal with such a large ensemble. Sub-sampling is necessary and given the 53 

major inter-model differences regarding the future evolution of Sahel precipitation, it is particularly complex in this 54 

context. 55 

The need for an adequate sub-ensemble of models is becoming more and more frequent, since in the recent years an 56 

increasing number of multi-disciplinary impact studies have emerged: they are based on crop models (Sultan et al., 57 

2014); on hydrological models (Li et al., 2015); on land-cover and land use models (Xue et al., 2012); on malaria 58 

(Caminade et al., 2014) and meningitis modeling (Abdussalam et al., 2014); among others. The African countries will 59 

be indeed affected by global warming in many areas and will face important adaptation challenges. In this study, we 60 

propose different approaches to define an optimal sub-sample of models (composed by a small number of models, 61 
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which is able to provide a mean pattern and inter-model spread of precipitation change close to them of the CMIP5 62 

ensemble), based on the models response in Sahel precipitation under global warming. 63 

 64 

 The first step of the study is focused on the analysis of the diversity of CMIP5 future projections for Sahel 65 

precipitation. Precipitation is projected to increase (decrease) over the central (western) Sahel in both CMIP3 and 66 

CMIP5 multi-model ensembles (Fontaine et al., 2011b; Monerie et al., 2012; 2013; James and Washington, 2013; 67 

Biasutti, 2013; James et al., 2015). In a recent study, Park et al. (2015) suggest that the discrepancies in future Sahel 68 

projections can be explained by differences between Northern and Southern Hemisphere surface warming. Here, we 69 

revisit this question with an original statistical approach, based on hierarchical clustering applied to the projected 70 

patterns of Sahel precipitation change.  71 

 72 

Sahel precipitation change uncertainty is caused by multiple competing physical mechanisms that impact the 73 

interannual-to-multidecadal variability of Sahel precipitation. Additionally, the Tropical Atlantic is a region of large 74 

model uncertainties: state-of-the-art climate models exhibit large systematic errors (Richter and Xie, 2008; Richter et 75 

al., 2012) and large uncertainties exist in the relative roles of internal and external factors in shaping climate change. 76 

The review of Druyan (2011) highlights that the studies based on CMIP3 projections often show opposite results, 77 

ranging from a significant increase to a significant decrease in Sahel precipitation at the end of the 21st century. 78 

Different physical mechanisms have been proposed to explain the opposite responses found in coupled models. On the 79 

one hand, a wetter Sahel is associated with increased land-sea temperature contrast (Haarsma et al., 2005) between the 80 

Gulf of Guinea and the Sahara, and with a strengthening of the Tropical North Atlantic/Tropical South Atlantic 81 

temperature gradient (Hoerling et al., 2006; Park et al., 2015). On the other hand, the Tropical Ocean warming may 82 

induce an increase in moist static energy at upper levels, affecting then the vertical stability of the atmosphere, leading 83 

to a drying over the Sahel, in a way analogous to the impacts of El Niño Southern Oscillation on the global tropical 84 

atmosphere (Giannini et al., 2010).  Our objective is to better understand the physical mechanisms responsible for the 85 

major inter-model spread in Sahel precipitation change. We also investigate whether the future model responses are 86 

linked to present-day climatological biases in Sahel precipitation. This question is of interest, since some models sub-87 

sampling approaches are based on the models ability to simulate the mean historical climate (as in Buontempo et al., 88 

2015), making the implicit hypothesis that models with smaller biases provide more reliable future projections. 89 

   90 

In a second step, we test several methods for the selection of a subset of CMIP5 models in the context of Sahel 91 
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precipitation changes. The main objective is to find a small subset of models that both reproduces the ensemble mean 92 

and inter-model spread of the full CMIP5 ensemble. 93 

 94 

The main scientific questions addressed in this study can be summarized as follows:   95 

1. Which are the main responses in future Sahel precipitation and the associated physical mechanism in CMIP5 models 96 

at the monthly time-scale?  97 

2. Is the large inter-model spread in future precipitation changes linked to present-day climate characteristics? 98 

3. Is it possible to define a subset of models, representative of the full ensemble in terms of ensemble mean and spread? 99 

 100 

 The paper is organized as follows: In section 2 we describe the methodology and the data used. The mean 101 

changes in Sahel rainfall are analyzed in section 3. Section 4 focuses on models biases and proposes different methods 102 

for model selection. Finally we conclude in section 5 with a summary and a discussion of our results.   103 

 104 
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 105 

2. Data and Methodology 106 

2.1 Data  107 

Observed precipitation for the 1979-2010 period from the GPCP v2.2 data set is used with a 2.5o x 2.5o 108 

horizontal grid resolution. GPCP is a merged analysis that incorporates precipitation estimates from microwave data, 109 

infrared data, and surface rain gauge observations (Adler et al., 2003). Surface temperature, wind and sea level pressure 110 

for the period 1979-1999 come from the ERA-Interim (ERAI) reanalysis (Dee et al., 2011). Compared to ERA-40 111 

(Uppala et al., 2005), ERAI provides an improved representation of the hydrological cycle over the tropics (Uppala et 112 

al., 2008), a more realistic stratospheric circulation and better temporal consistency of the reanalysis fields (Dee et al., 113 

2011).  114 

 115 

Two sets of numerical experiments from the CMIP5 archive (Taylor et al., 2012) are analyzed: the historical 116 

ensemble (hereinafter HIST, forced by both historical natural and anthropogenic forcings); and the RCP8.5 ensemble 117 

(noted RCP85, based on the most extreme scenario whose radiative forcing reaches 8.5 W/m2 in 2100; see Meinshausen 118 

et al., 2011). We selected the models for which the necessary variables to this study are available for both HIST and 119 

RCP85, which leads to an ensemble of 32 models (see the figure 1 for the model names). 120 

 121 

In this work, mean model biases are estimated from the JAS (July-August-September) differences between 122 

HIST and GPCP or ERAI on the 1979-1999 period. The models response to global warming is defined as the difference 123 

between RCP85 in the 2060-2099 period and HIST on the 1960-1999 period. Models outputs, GPCP precipitation and 124 

ERAI variables have been interpolated on the same 2.5° latitude by 2.5° longitude grid to facilitate the analysis. One 125 

member is considered for each of the 32 models for both the HIST and RCP85 experiments. Throughout this work, the 126 

multi-model response is considered as robust if at least 80% of the models agree on the sign of the change. 127 

 128 

 129 

 130 

2.2 Model classification 131 

Future projected changes in Sahel precipitation from the 32 CMIP5 models are classified with a hierarchical 132 

clustering algorithm (Jain et al., 1999). The spatial pattern to be classified is the JAS RCP85 - HIST differences in 133 

precipitation over a Sahelian box defined as 20°West - 20°East and 10°North – 20°North (including both the Western 134 

and Central box in Fig. 2a). The spatial correlation matrix is then computed (32 x 32 size). The hierarchical clustering is 135 

performed following the ward minimum variance method (Ward, 1963), based on the spatial correlation amongst the 136 
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models. The position at which two models are connected on the tree characterizes their disagreement. Four groups of 137 

models are empirically defined based on the classification shown in Figure 1, noted GR1, GR2, GR3 and GR4 138 

hereinafter. The semi-empirical choice of the number of clusters rests on a compromise, aiming to avoid clusters of very 139 

small size (whose properties could be strongly impacted by an outlier), and to have a sufficient number of groups to 140 

capture correctly the discrepancies in Sahel precipitation changes.  141 

 142 

Precipitation changes are expected to be consistent within each cluster, which is not the case for the full 143 

ensemble. The goal of this classification is to facilitate the understanding of the diversity of projected precipitation 144 

changes in the Sahel by CMIP5 models. 145 

 146 

Two outliers are identified by the classification: two GFDL models (gfdl_esm2g and gfdl_esm2m), whose 147 

responses are largely different from the other models, and finally they are included in any group. As in Pennell and 148 

Reichler (2011), Masson and Knutti (2011) and Knutti et al. (2013), models from the same institution generally belong 149 

to the same cluster (i.e. HADGEM, GFDL, IPSL, CMCC, MIROC, GISS, ACCESS and MPI). These similarities are 150 

due to the fact that models from the same center sometimes only differ in resolution (ipsl_cm5a_mr and ipsl_cm5a_lr 151 

for example), and generally share large portions of numerical code or even identical component (e.g. ocean, atmosphere 152 

or land models)  (Masson and Knutti, 2011). 153 

 154 

In the following section, changes in precipitation, temperature, pressure and winds over West Africa for the four groups 155 

of models defined above are studied.  156 
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3. Characterization of projected changes in the Sahel 157 

3. 1. Water budget  158 

Future changes in JAS Sahel precipitation (P), evaporation (E) and P-E budget for the four groups of models 159 

identified by hierarchical clustering are depicted in Figure 2. The intra-cluster mean is computed and the result is 160 

considered as robust when at least 80% of models within the cluster agree on the sign of the change. GR1 exhibits a 161 

large increase in rainfall (> 2 mm/day) over the entire northern Sahel (Fig. 2a). Over the adjacent ocean, evaporation 162 

slightly increases (Fig. 2e) yielding to a positive P-E budget, indicating an enhancement of moisture flux convergence 163 

(divergence), over the Sahel (Gulf of Guinea). This pattern has been widely documented in the past, and is associated 164 

with a strengthening of the land-ocean temperature contrast (Maynard et al., 2002; Haarsma et al., 2005; Skinner et al., 165 

2012), and inhomogeneous ocean temperature changes within the Tropical Atlantic basin (i.e. the Tropical North 166 

Atlantic warms more than the Tropical South Atlantic, as reported in Hoerling et al., 2006). GR2 simulates a slight 167 

increase in precipitation over the central Sahel, and a decrease in precipitation over the Senegal (Fig. 2b). An important 168 

increase in precipitation along the maritime Inter-Tropical Convergence Zone (ITCZ) is also robust. GR2 also exhibits a 169 

strong increase in E over the adjacent ocean and west of central Africa (Fig. 2f). The resulting P-E budget is strongly 170 

negative over the Gulf of Guinea, and no robust changes are observed over the Sahel (Fig. 2j). Therefore, in GR2 the 171 

change in precipitation over the Sahel is not associated with a change in moisture flux convergence, suggesting that it 172 

might be linked to local changes in moisture recycling (the evaporation is moisture-limited rather than energy-limited in 173 

the semi-arid Sahel). GR3, which is the most populated cluster, shows a robust increase in P over the north-central 174 

Sahel and a decrease over its western part (Fig. 2c). The patterns for E and P changes are similar over the continent, but 175 

differ over the ocean, where E increases more strongly (Fig. 2c and Fig. 2g). The P-E budget increases (decreases) over 176 

the central (west) Sahel (Fig. 2k), indicating an increase (a decrease) in moisture flux convergence. These changes in 177 

the water budget have been already documented by Fontaine et al. (2011b), Monerie et al. (2012; 2013), James and 178 

Washington (2013), Biasutti (2013) and James et al. (2015): GR3 is the dominating response in the CMIP5 full-179 

ensemble. The response for GR4 consists in a slight decrease in P over both the continent and the ocean (Fig. 2d). E 180 

decreases over the central Sahel but increases over the Gulf of Guinea area (Fig.2 h). No robust changes are found for 181 

the P-E budget over the continent, whereas a robust decrease in P-E occurs over the Gulf of Guinea (Fig. 2l).  182 

In summary, four main types of projected precipitation changes over the Sahel can be extracted from the 183 

CMIP5 full-ensemble: a strong increase in precipitation (>2 mm/day, GR1), a zonal dipole with an increase (a decrease) 184 
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in precipitation over the western (central) part (GR2 and GR3, but with a small increase in precipitation over the central 185 

Sahel in GR2); and finally a decrease in P over the entire domain (GR4). These patterns are consistent with the large 186 

spread in the WAM changes simulated by CMIP3 models (Druyan, 2011), and illustrate the strong uncertainties in 187 

Sahel precipitation projections. In the next section we analyze the atmospheric dynamics associated with the P, E and P-188 

E changes described above. 189 

 190 

3.2 Atmospheric circulation and temperature 191 

Figures 3a-d show the projected changes in 2m temperature (T2m hereinafter, shading), sea level pressure 192 

(SLP, contours) and wind at 950 hPa (arrows) for the four groups of models. From Figure 3, it is evident that the 193 

magnitude of T2m changes is different among the groups. However, the spatial patterns of warming present large 194 

similarities, with stronger increases in temperature over the continent than over the ocean, which act to increase the 195 

land-sea temperature gradients (Fig. 3a-d). The associated dynamics show a marked decrease in SLP over northern 196 

Africa, together with a strengthening of the south-westerlies (as shown in Haarsma et al., 2005) for the 4 groups of 197 

models. Over the Sahara, the SLP decreases, indicating a deeper heat low, which favors the strengthening of low-level 198 

winds. The main inter-group differences concern the intensity of the warming and of the wind strengthening.  199 

     At global-scale, surface temperature increases more in the northern Hemisphere than in the Southern 200 

Hemisphere for the four groups, which could act to enhance precipitation over the Sahel (Park et al. 2015). This inter-201 

hemispheric differential warming in JAS is considered here only over the Atlantic Ocean, and computed as the RCP85-202 

HIST difference of SSTs averaged between 75°W and 10°E, minus the global tropical SST change (the global tropical 203 

domain is 180°W-180°E; 30°S-30°N). Results for the four groups of models are shown in Figure 4. The major 204 

differences amongst the groups are located north of 40°N. GR1 and GR3 exhibit a stronger strengthening of the inter-205 

hemispheric SST gradient over the Atlantic than GR2 and GR4.  Interestingly, GR1 and GR3 are the groups that project 206 

an increase in Sahel precipitation (Fig2a and Fig2c). This result is consistent with Park et al. (2015), who have shown 207 

that the strengthening of this inter-hemispheric gradient is one of the main causes of the models discrepancies in Sahel 208 

precipitation changes. 209 

The low-level warming leads to stronger temperature gradients in GR1 and GR3 than in GR2 and GR4. This is 210 

consistent with a stronger increase in low-level winds and decrease in SLP, leading to larger increases in Sahel 211 
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precipitation in GR1 and GR3 than in GR2 and GR4. The land-ocean temperature gradient increases in all the group of 212 

models and cannot explain the decrease in precipitation for GR4 and the very weak increase for GR2.  213 

This difference in projected Sahel precipitation may be due to the upper-level wind dynamics, represented by 214 

the Tropical Easterly Jet (TEJ) and the African Easterly Jet (AEJ), which are known to influence Sahel precipitation 215 

(Nicholson, 2008). A southward shift of the AEJ displaces the rain-belt southward, reducing the rainfall over the Sahel 216 

(Grist and Nicholson, 2001) and the TEJ strength is significantly correlated with Sahel precipitation (Grist and 217 

Nicholson, 2001). According to Cook (1999) and Patricola and Cook (2008), the AEJ can also reduce rainfall by 218 

transporting moisture away from the Sahel.  The impact of the AEJ and TEJ on the precipitation change is however not 219 

straightforward. Precipitation impacts soil moisture and surface warming, leading to a change of the meridional 220 

gradients of surface moisture and temperature that displaces the AEJ (Thorncroft and Blackburn, 1999). More intense 221 

precipitation also results in a stronger local deep meridional overturning circulation with upper-level northerlies that 222 

accelerate the TEJ. A feedback therefore exists between the AEJ (TEJ) and Sahel precipitation. We thus do not 223 

conclude on a direct impact of the jets on the precipitation change. 224 

Following this, we investigate the low to upper levels dynamics considering the latitude-height cross-sections 225 

of the zonal wind component. The Sahel domain (from 10°W to 10°E) is selected to compute longitudinal averages. The 226 

intra-cluster mean for each group is shown in Fig. 3e-h. During the JAS rainy season, all the groups simulate a 227 

strengthening of the surface winds (from equator to 15°N and between 1000 to 850 hPa) (Fig. 3e-h). The strengthening 228 

of the westerlies is larger for GR1 and GR3, likely because of the greater warming over northern Africa (Fig. 3a and c). 229 

The low-level winds also accelerate in response to increased latent heating due to the increased rainfall and low-level 230 

moisture. At mid-level (600 to 400 hPa), the AEJ moves northward for GR1, as shown by the positive (negative) 231 

anomalies south (north) of the wind core at 600 hPa and 15°N (Fig. 3e). No robust changes in the AEJ speed are 232 

obtained for GR3 (Fig. 3g). This could be due to the choice of the cross-section, centered on the Greenwich meridian, 233 

whereas for GR3 there is a zonal dipole of precipitation change and thus likely, a non-homogeneous zonal response. 234 

The two others groups agree on an increase in the AEJ speed and on its southward shift (negative anomalies south of the 235 

AEJ core) (Fig. 3f and h).  236 

At upper level, the TEJ, whose core is located generally at 200 hPa, exhibits a strengthening and a 237 

displacement southwards for GR1 and GR3 (Fig. 3e and Fig. 3g). For GR2 and GR4, the TEJ speed decreases at all 238 

latitudes range. This is consistent with the increase in precipitation, as shown previously in the literature (Nicholson, 239 

2008). 240 
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 The projected responses in T2m, SLP and zonal wind vertical structure are generally consistent among the groups of 241 

models in terms of spatial pattern, but with differing intensities (Fig. 3). The main differences are associated with 242 

different changes in the vertically-integrated moisture flux convergence, represented by the P-E budget (Fig. 2i-l). The 243 

latter are due to the competing effects of the feeding of moisture through the low-levels winds (Fig.3e-h) and the export 244 

of moisture through the mid-level winds (Fig. 3e-h). GR1 models simulate a northward shift of the monsoon flow, a 245 

weakening and a northward shift of the AEJ. On the contrary, GR2 and GR4 models simulate a strengthening of the 246 

AEJ, in consistency with a decrease in precipitation in GR4 and with no northward displacements of the monsoon 247 

system in GR2.  248 

For GR3, there are no evident changes in mid-level winds. This group exhibits zonally contrasted changes in 249 

precipitation (increase/decrease in the central/western Sahel) and the box centered on the Greenwich meridian is not 250 

suitable for the analysis of this pattern. Therefore, in the following section 3.3, we consider two areas to characterize the 251 

projected changes: the western and central Sahel (Fig. 2a, gray boxes).  252 

  253 

3.3 Seasonal cycle 254 

The increase in precipitation noted in Fig 2a-d may be associated with a change in the seasonal cycle of the 255 

WAM. For example, Biasutti (2013) showed from an ensemble of CMIP5 models that a pattern of precipitation similar 256 

to the one of GR3 is associated with a decrease in precipitation over the western Sahel in June-July, and an increase in 257 

precipitation over the central Sahel in September-October. To investigate further this question, we analyze the latitude-258 

seasonal cycle diagrams of the water budget, zonal winds at 600 hPa (AEJ) and 400 hPa vertical wind velocity over the 259 

western Sahel (20oW-0oE) and central Sahel (0oE-20oE) domains. Figures 5 and 6 show the projected changes in P (Fig. 260 

5a-d, Fig. 6a-d) and P-E (Fig. 5e-h, Fig. 6e-h) over the western and central Sahel respectively. Zonal wind at 600 hPa 261 

(Fig. 5i-l, Fig. 6i-l) and 400 hPa vertical wind velocity (Fig. 5m-p, Fig. 6m-p) changes are also displayed in the same 262 

format. 263 

  First, we analyze the changes in the seasonal cycle over the western box (Fig. 5). GR1 simulates a strong 264 

increase in precipitation from July to October over the Sahel and in boreal winter south of the equator (Fig. 5a). This 265 

change is associated with an increase in moisture convergence (Fig. 5e), a monsoon system located northward in JAS, 266 

as shown by the northward shift of the AEJ (Fig. 5i), and with ascending (subsiding) anomalies north (south) of 10°N 267 
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(Fig. 5m). GR2, GR3 and GR4 project a decrease in P over the Sahel (Fig. 5b-d), but the timing in P changes is 268 

different, varying from the March to August period for GR2 to the July to October period for GR4. These changes are 269 

associated with a decrease in moisture flux convergence (Fig. 5f-h) and with an increase in the AEJ strength (Fig. 5j-l). 270 

There is an evident subsiding anomaly for GR2, GR3, and GR4 (Fig. 5n-p). These findings obtained for GR2, GR3 and 271 

GR4 (i.e., a decrease in rainfall over western Sahel, subsidence anomalies and AEJ speed increases) are consistent with 272 

Monerie et al. (2012; 2013) and James et al. (2015).  273 

On the central Sahel, an increase in precipitation is seen from July to December for GR1 (Fig. 6a), GR2 (Fig. 274 

6b) and GR3 (Fig. 6c). GR4 exhibits a decrease in precipitation from April to October and an increase at the end of the 275 

year. A wetter Sahel during the late rainy season appears to be a robust feature of climate change, as shown in Biasutti 276 

(2013), Seth et al. (2013) and Kitoh et al. (2013). The moisture flux convergence given by P-E is consistent with these 277 

precipitation changes (Fig. 6e-h), except for GR2, for which there is no robust change, suggesting that precipitation 278 

change is closely related to the change in local evapotranspiration and thus in moisture recycling (Fig. 6f). The increase 279 

in precipitation at the end of the rainy season could also be associated with a delay in the phase of the Atlantic SST 280 

seasonal cycle (Biasutti and Sobel, 2009; Dwyer et al., 2014). 281 

    The zonal wind associated with the AEJ weakens and shifts northward during the entire year for GR1. This is 282 

consistent with an increase in Sahel precipitation, as shown in Grist and Nicholson (2001) for the anomalous wet years. 283 

The AEJ also shifts northward in GR2, GR3 and GR4 from October to January (Fig. 6i-lf). The AEJ strengthens in JAS 284 

for GR2 and GR4, which are projecting a decrease in precipitation during this season. GR3 does not exhibit any robust 285 

change of the AEJ speed in JAS. The 400 hPa vertical velocity field shows a northward shift of the location of the air 286 

ascendance, and thus of the monsoon system from August to September for GR1, GR2 and GR3 (Fig. 6mno). There is 287 

also a weak negative anomaly of 400 hPa vertical velocity in September-October for GR4 (Fig. 6p). 288 

   In summary, three groups (GR2, GR3 and GR4) project a decrease in precipitation over the western Sahel 289 

(associated with a strengthening of subsidence and AEJ speed), but the timing throughout the year is different. Three 290 

groups (GR1, GR2 and GR3) also exhibit a northward shift and a strengthening of the monsoon system in September-291 

October. The decrease (increase) in precipitation over the western (central) Sahel is thus a robust behavior in the CMIP5 292 

simulations. The precipitation change is more robust in May-June-July and September-October than in July-August-293 

September when focusing on a particular domain. The spread is thus stronger in JAS and for the entire Sahel. 294 

 295 
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4. Selecting a subset of models representative of the CMIP5 ensemble 296 

 In the previous sections, four groups of models have been defined and studied in terms of Sahelian 297 

precipitation changes. They are characterized by very different precipitation responses, which indicate that it is not 298 

straightforward to select a subset of few models representative of the full CMIP5 ensemble. This is of particular 299 

importance from a practical point of view for many applicative studies (McSweeney et al., 2012; 2015; Buontempo et 300 

al., 2015). It is indeed virtually impossible for most dynamical downscaling studies or impact studies, that generally 301 

require high temporal and spatial resolutions, to deal with the entire CMIP5 ensemble, because of limitations in 302 

computing resources and/or data storage and treatment capacity. 303 

 For example, Guan et al. (2015) have shown that daily values of precipitation are needed for impact studies on 304 

crop yields since they strongly depend on the rainfall frequency and intensity, and on the timing and duration of the 305 

rainy season. As in most impact studies, it is preferable in this case to use Regional Climate Models (RCMs) than 306 

GCMs (Vizy and Cook, 2012; Crétat et al., 2014; Sylla et al., 2015) because of the higher spatial resolution (Wehner et 307 

al. 2010; Li et al. 2011) and improved convective schemes (Li et al., 2012). Because RCMs are very computationally 308 

expansive and require large amount of data as input, it is very difficult to downscale all the GCMs to take into account 309 

all the uncertainties. It would also be difficult to deal with all the necessary associated simulations with crop models. 310 

 In practice, most impact or dynamical downscaling studies are therefore based on a limited sample of GCMs. 311 

The choice of GCM is very important, in order to avoid biases in the characterization of the climate change signal 312 

and/or the uncertainties due to climate models. The selection of GCMs is however in practice often ad-hoc and not 313 

necessarily based on solid scientific ground.  314 

 315 

  In this section we propose and test several approaches to select a few models within the whole CMIP5 316 

ensemble considered in this work. The selection of a sub-ensemble of models is often based on their performance in 317 

simulating the mean climate in present conditions, characterized by a given metric, by comparing models to 318 

observations (e.g. Lee and Wang, 2014). This approach assumes, at least implicitly, that the reliability of future 319 

projections is linked to the accuracy of the models in simulating the current climate.  However, this relationship is not 320 

straightforward. To investigate this issue, we first focus on the model mean errors in Sahel precipitation and air surface 321 

temperature.  322 

 323 

In a second stage, we will also explore alternative methodologies for model selection, based only on the 324 

models’ projections (section 4.2 and section 4.3) and on the classification presented in Figure 1. 325 
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 326 

   4.1 Relationship between the mean model biases and the projected response 327 

 328 

In this section, we study whether the different groups of models that have been defined based on future 329 

precipitation changes are characterized by different biases in the present climate.  330 

Figure 7 shows the JAS differences between the observations (GPCP) or reanalysis (ERAI) and the intra-group 331 

mean for the four groups of models (Fig. 1). The differences with GPCP precipitation are computed on the 1979-1999 332 

period and are shown in Figure 7a-d. The four groups show similar precipitation biases with the ITCZ located too south, 333 

resulting in a positive (negative) bias of rainfall over the Gulf of Guinea (western Africa). GR1, GR2, GR3 and GR4 are 334 

characterized by robust negative biases, with some differences in the magnitude of the biases.  335 

 336 

Figure 7e-h shows the global T2m biases compared to ERAI on the 1979-1999 period in JAS. In the Tropical Atlantic 337 

region, biases are generally similar for each group of models. A cold bias is present over the Northern Hemisphere 338 

oceans, and also over the north of Africa. The Tropical Atlantic ocean shows a strong bias (>+3.5degC in the south-339 

eastern part), due to an incorrect representation of the Atlantic cold-tongue in JAS, as reported in Okomura et al. (2011) 340 

and Richter and Xie. (2008), and also to deficiencies in simulating continental precipitation and surface winds (Richter 341 

et al. 2012). It has been shown that the WAM is linked to the surface temperature gradient between the Sahara and the 342 

Gulf of Guinea (Nicholson et al., 2013), which is too weak in climate models and this forces the WAM system to be 343 

located too southward. Warm North Atlantic SSTs are also linked to larger precipitation (Martin et al., 2014). The 344 

biases are spatially similar in the four groups of models, but with different intensities. In particular, a colder North 345 

Atlantic is depicted by GR2 models, consistent with a stronger dry bias over the Sahel (Fig. 7f). 346 

 347 

In summary, slight differences in mean biases in precipitation and T2m can be found among the four groups of models, 348 

in particular over the Atlantic Ocean and the Sahel. It is however difficult to interpret the inter-group differences in 349 

terms of response (characterized in section 3) to global warming based on present-day biases. Figure 8 shows an 350 

alternative classification of the 30 CMIP5 models considered in this work (32 climate models minus the two outliers), 351 

but in this case based on the correlation amongst the 30 spatial patterns of present-day errors in Sahel precipitation 352 

using GPGP as reference. Models belonging to the same group for the projections-based classification (Fig. 1) are 353 

indicated by the same color code in Figure 8. The two classifications lead to very different clusters, suggesting that the 354 

spatial structure of the projected changes are not directly related to the model mean biases for Sahel precipitation, as 355 
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also found in Knutti et al. (2010) in a different context. This analysis confirms that the present-day biases in 356 

precipitation and temperature are not good metrics of the respective credibility of the models in terms of future 357 

precipitation changes, for this particular case. 358 

  359 

 The intensity of the biases might be different with another references. The warm bias in the equatorial Atlantic 360 

and the cold bias in the North Atlantic are however systematic (Roehrig et al., 2013) and are partly responsible for the 361 

systematic southward shift of the ITZC in coupled models (Richter and Xie, 2008). We thus argue that the main 362 

conclusion of the this section is not sensitive to the choice of the reanalysis. 363 

 364 

 It has been shown that variations in Sahel precipitation are related to SSTs anomalies over the North Atlantic 365 

(Knight et al., 2006; Zhang and Delworth, 2006; Ting et al., 2009; Mohino et al., 2011; Martin et al., 2014), the Indian 366 

Ocean (Bader and Latif, 2003), and the Mediterranean Sea (Rowell, 2003; Fontaine et al., 2010; Gaetani et al., 2010; 367 

Polo et al., 2011). It is also known that future precipitation changes in Sahel may be influenced by changes in SST 368 

(Hoerling et al., 2006; Giannini et al., 2010; Park et al., 2015). Sahel precipitation change in a given model might 369 

therefore be affected by how this particular model simulates the teleconnections with SSTs over near and remote 370 

oceans. This metric has already been used to select the “best” models in larger ensemble (Gaetani and Mohino, 2013; 371 

Martin et al., 2014). However, this methodology presents a caveat: Sahel-SSTs teleconnections are not stationary 372 

(Fontaine et al., 2011a), and the results may depend on the reference period used to compute the teleconnection. 373 

Furthermore, the teleconnections can be also affected by global warming. For this reason, we have decided not to use 374 

this metric for model selection. 375 

 376 

 377 

4.2 Model selection based on the classification of the projected response 378 

   379 

 The metrics based on models present-day performances tested in section 4.1 are not suitable to select a sub-380 

sample of models to study future precipitation changes in the Sahel, as the responses to anthropogenic forcing are not 381 

necessarily connected to present-day biases. Here we propose other approaches that only use the information from 382 

future climate projections. The aim of the model selection is then to select a sub-sample of models considered more 383 

realistic: i) to define a small sub-ensemble of models, ii) with an ensemble mean of precipitation changes in the Sahel 384 

comparable to the one of the full ensemble and/or iii) that correctly captures the inter-model spread of the full CMIP5 385 
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ensemble. Two metrics are thus defined: the mean precipitation change in the Sahel, computed as the multi-model 386 

ensembles average, and the inter-model spread, defined as the multi-model standard deviation computed locally for 387 

each grid point within the domain. 388 

 389 

Based on the previous classification (section 2.2), we propose three different approaches for model selection:  390 

 391 

(1) A “pattern selection” method that consists in the selection of models that simulate a pattern of precipitation 392 

change of particular interest. For example, it may be useful to select a sub-sample of models whose precipitation change 393 

pattern is as close as possible to the CMIP5 multi-model mean. Models in GR3 match this condition, since the GR3 394 

intra-group mean is the dominant response in the full CMIP5 ensemble. We therefore test this method with the GR3 395 

models. 396 

 397 

(2) A “diversity” method based on the random selection of models within the four groups, with the same 398 

number of models selected in each group. This method aims to keep the large range of responses from the full CMIP5 399 

ensemble. 400 

 401 

 (3) - A “random” method that consists in the simple random selection of a subset of models from the entire 402 

CMIP5 ensemble, without taking into account the classification in four groups. Contrary to (1) and (2), this approach 403 

does not require a preliminary analysis and is not associated with particular variables and/or domains of interest. It 404 

could be used as a baseline selection approach to assess the improvement of the other subsampling methods based on 405 

the model classification described above (the “pattern selection” and “diversity” method).  406 

 407 

The three approaches are tested for sub-samples of 4 and 8 models respectively. The results are compared to 408 

the CMIP5 multi-model mean change (computed from the RCP85-HIST differences of the 30 CMIP5 models). To 409 

ensure the robustness of the results, the model selection is carried out n times following a Monte Carlo procedure; hence 410 

n ensemble means are computed. Here we chose n = 30000 for the subsample of 4 models (there are 27405 411 

combinations of 4 models selected within 30); and n = 500 000 for 8 models (there are almost 6 million combinations of 412 

8 models but n is kept lower for computational reasons). From the n realizations, we can then build a probability 413 

distribution function that determines if the new sub-ensemble averages present an anomaly of the same sign as the 414 

whole CMIP5 multi-model mean. The anomaly is considered as robust when at least 95% of the n ensemble-means 415 
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(from 4 or 8 models) agree on the sign of the whole CMIP5 multi-model mean change.  416 

 417 

The results of the 3 sub-sampling approaches for 4 and 8 models are shown in Figure 9. With 4 models, the “pattern 418 

selection” method reproduces fairly well the pattern of precipitation change of the full ensemble (Fig. 9a). Less 419 

successful, the “diversity” and the “random” methods reproduce the increase in precipitation only over the central Sahel 420 

(Fig. 9bc). The same conclusions can be drawn for the sub-ensemble of 8 models, but with an agreement on more grid 421 

points compared to the 4 models sub-ensemble (Fig. 9d-f).  422 

 423 

After this first analysis, the “pattern selection” method (based on GR3) is the most successful since it reproduces both 424 

the increase in precipitation over the central Sahel and the decrease in precipitation over Senegal.   425 

 426 

We investigate now whether it is also the case for the inter-model spread, by computing the difference between the 427 

average of the n spreads from the n Monte Carlo tests and the full CMIP5 inter-model spread (in color in Fig. 9g-l). The 428 

“diversity” and the “random” methods lead to a spread very similar to the one of the full CMIP5 ensemble, both for the 429 

4 models (Fig. 9gi) and 8 models (Fig. 9jl) subsets. The “pattern selection” clearly underestimates the spread of the full 430 

CMIP5 ensemble (more than 30% over West Africa), and especially over the Western Sahel and the Gulf of Guinea 431 

(more than 60%). This could be expected since the “pattern selection” approach only selects the models whose 432 

precipitation change pattern is similar to the one of the full CMIP5 ensemble, which leads to a large underestimation of 433 

the full inter-model spread. 434 

 435 

The standard deviation of the n spreads is also shown (purple contours). This is a measure of the robustness of the 436 

spread generated by all the Monte Carlo realizations for the 3 approaches. Figure 9g-l shows that the “spread of the n 437 

spreads” is similar among the methods (none of the methods produces dramatically stronger inter-ensemble spread).  438 

 439 

In summary, the most successful approach turns out to be the “diversity” method that i) captures correctly the mean 440 

precipitation changes over the Sahel of the full ensemble with only 4 models and ii) leads in average to an inter-model 441 

spread comparable with the one from the full CMIP5 ensemble.  442 

 443 

 444 

4.3 Selection of an optimal sub-sample of models 445 
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 We have shown that our model classification can be useful as a basis of the “diversity” method for model 446 

selection. However, this does not guarantee that a particular sub-sample of either 4 or 8 models obtained with the 447 

“diversity” approach would be the optimal one to capture both the mean pattern and inter-model spread of the whole 448 

CMIP5 ensemble. In this section we provide the optimal sub-sets of models (4 or 8) representative of the full CMIP5 449 

ensemble. As previously discussed, this could be very practical for dynamical downscaling studies on the Sahel 450 

interested by precipitation changes, and also impact-oriented analyzes. It is also interesting to investigate if the 4 or 8 451 

models from the optimal ensemble belong to the same group, or to different groups amongst the 4 identified in this 452 

work. 453 

To find the optimal subsets we use the “random” selection approach described in section 4.2 in which n random 454 

selections of 4 or 8 models (30000 for 4 models and 500000 for 8 models) are done. We define a metric that evaluates 455 

both the similarity of each sub-sample of models with the full ensemble in terms of mean precipitation change pattern  456 

(MCMIP5) and spread (SPCMIP5) in JAS. For each random sample of 4 or 8 models we calculate the mean precipitation 457 

change (RCP85-HIST, named Mn) and its inter-model spread (SPn). We consider a Sahelian box (gray box in Fig. 10a) 458 

as a target to evaluate the similarity to MCMIP5 and SPCMIP5 the ensemble mean and spread of the full ensemble. Then we 459 

compute the spatial root-mean-square error (RMSE) between Mn and MCMIP5 and SPn and SPCMIP5 within the Sahelian 460 

box. This leads to RMSE(Mn) and RMSE(SPn) respectively. The metric (Fn) is then defined as the sum of both 461 

standardized RMSE(Mn) and RMSE(SPn). The final metric, Fn, allows sorting the n sub-ensemble of models from the 462 

“best” sub-ensemble of models that exhibits the minimum value of Fn to the “worst” sub-ensemble of models. 463 

Figure 10 shows the MCMIP5 – Mn and SPCMIP5 – SPn differences for the “best” and “worst” sub-ensemble of 4 (left) and 464 

8 models (right). Fig. 10a-d shows that the “best” sub-set of 4 (Fig. 10ac) and 8 (Fig. 10bd) models simulates future 465 

changes much closer to MCMIP5 than the “worst” sub-ensemble. This is also the case for the inter-model spread, when 466 

comparing Figures 10eg and 10.fh. The results are better with 8 models than with 4 models (Fig. 10ab and Fig. 10ef) 467 

indicating that a too small sub-sample of models could limit the possibility of representing accurately MCMIP5 and 468 

SPCMIP5. 469 

The “best” (in the very limited sense previously described) sub-ensembles are composed by bnu_esm, mpi_esm_mr, 470 

giss_e2_r and hadgem2_cc for 4 models; and by giss_e2_r_cc, ccsm4, mpi_esm_lr, cnrm_cm5, bcc_csm1_1, 471 

miroc_esm, cesm1_bgc and haadgem2_cc. The worst sub-set of models are miroc_esm, miroc_esm_chem, miroc5 and 472 

the csiro_mk3_6_0 for 4 models, and gfdl_cm3_0, csiro_mk3_6_0, cnrm_cm5, miroc_esm, bnu_esm, fgoals_g2, 473 

miroc_esm_chem and miroc5 for 8 models. 474 
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 Based on Fig. 1 the “best” sub-ensemble of 4 models contains one model from GR2, two from GR3 and one from GR4, 475 

whereas the “best” sub-ensemble of 8 models is built from 2 models from GR1, 1 from GR2, 3 from GR3 and 2 from 476 

GR4. This may seem contradictory to the results from the previous section, which concludes that the “diversity” 477 

approach is the more appropriate to define a sub-ensemble of models. This can be explained by the fact that we have 478 

selected in this section only the optimal sub-sets with the best performing Fn metric. However, if we examine the 479 

probability density function of Fn, we find that most subset of models associated with values of Fn included in the tenth 480 

percentile correspond to subset of models in which one model of each of the 4 groups is selected (not shown). On the 481 

contrary, regarding the 90th percentile of Fn, the worst sub-ensembles are generally obtained when there is an over-482 

representation of one group of models (for example, the “worst” ensemble of 8 models is composed by the five GR1 483 

models).    484 
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5. Conclusion 485 

Current climate models show large uncertainties in future projections of the WAM and Sahel precipitation, sometimes 486 

even opposite responses. In the first part of this work, we classified the future Sahel precipitation projections from 32 487 

CMIP5 models to define four groups of models, which allowed us to extract the main types of model responses to 488 

facilitate their physical characterization and analyze their robustness. In the second part of the study, we used the 489 

previous classification and different methodologies to identify sub-sets of 4 or 8 models (amongst 30 CMIP5 models) 490 

representative of the full ensemble, in terms of the ensembles mean and inter-model spread. The aim is to be able to 491 

provide to other communities (e.g. statistical and dynamical downscaling, impact modelers) a reduced but meaningful 492 

set of models, much more easy to manage, to facilitate their applicative research. 493 

Concerning the CMIP5 models classification and the characterization of the main responses over the Sahel, our findings 494 

can be summarized as follows: 495 

 The methodology for model classification is based on a hierarchical clustering algorithm (Jain et al. 1999). The 496 

similarity criterion is based on the spatial pattern of precipitation change, defined as the differences RCP85 497 

(2060 -2099) minus HIST (1960-1999) in JAS. We obtained four groups of models (GR1-GR4) with robust 498 

intra-group pattern of precipitation changes. They are characterized by robust and specific changes in 499 

precipitation, water budget, temperature and atmospheric dynamics.  500 

 GR1 shows a large and robust increase in precipitation over the entire Sahel in JAS. GR2 exhibits a moderate 501 

increase in precipitation over the central Sahel. GR3 projects a decrease in precipitation over the western Sahel 502 

and an increase over the central Sahel. Finally GR4 projects drier conditions over the entire Sahel. This large 503 

variety of precipitation changes is consistent with other studies based on CMIP-type ensembles, as summarized 504 

in the review of Druyan (2011) for the CMIP3 models. We show that, in the climate change context, the Sahel 505 

precipitation response is not spatially homogeneous. The western Sahel is projected to become drier in three 506 

groups of models (GR2, GR3 and GR4) for the whole JAS period. Projections for the central Sahel show an 507 

increase in precipitation, especially during the months of the monsoon withdrawal (September-October) in 508 

three groups of models (GR1, GR2 and GR3). 509 

 The increase in precipitation in the central Sahel is explained by a strong warming over the Sahara (> 6°C) and 510 

a strengthening of the North-Tropical Atlantic SST gradient. In GR1 and GR3 the heat low is deeper, pushing 511 
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the monsoon system northward along with a strengthening of the southwesterly winds. In GR2 the monsoon 512 

circulation strengthens but does not move northward. A drier western Sahel is associated with less moisture 513 

convergence and more subsidence.  514 

 During the latest months of the rainy season (SON), the increase in precipitation over the central Sahel is 515 

driven by changes in SSTs (Biasutti and Sobel, 2009) and by an increase in local moisture recycling (that 516 

dominates the P-E change in October) (Monerie et al., 2016). The CMIP5 models are more or less influenced 517 

by either of these mechanisms, as suggested by the large discrepancy in the contribution of P-E changes in the 518 

total precipitation change (Fig. 6a-h). 519 

 We suggest that the inter-model differences can be explained by two factors: (i) the amplitude of the surface 520 

meridional land-ocean and North Atlantic-tropical Atlantic temperature gradients; and (ii) the strengthening of 521 

the low and mid-level zonal wind. It is however difficult to determine the role of the AEJ, since there is a 522 

positive feedback between the AEJ and precipitation over the Sahel. Therefore, further work is necessary to 523 

address the respective roles of changes in the surface temperature gradient between the Sahara and the North 524 

Atlantic, and the changes in the mid-level zonal wind. This can be helpful for improving the WAM 525 

representation in models and to reduce the uncertainties in models responses under global warming.  526 

The CMIP5 atmosphere-ocean-general circulation model (AOGCM) simulations used in this study do not take into 527 

account the dynamic vegetation and land use feedback. We should keep in mind that the Sahel experiences strong 528 

feedbacks between land and precipitations (Koster el al. 2004). This can potentially lead to a miss-estimation of 529 

projected precipitation changes, especially during the late rainy season (Wang and Alo, 2012).  530 

Furthermore, the CMIP5 climate models suffer from several biases due to the models coarse resolution and 531 

underestimation of regional orography (Wehner et al. 2010; Li et al. 2011). The present results have thus to be 532 

confirmed with RCMs and global GCM simulations using finer grids. To do so, it is first necessary to select the GCM 533 

simulations that will be used to force the RCMs (dynamical downscaling) or that will be statistically downscaled. The 534 

selected set of global simulations has to be representative of the full CMIP5 in terms of ensemble mean and spread in 535 

Sahel precipitation change, otherwise the impact studies can not document and explore the signal and uncertainty 536 

provided by the ensemble of CMIP5 climate models. The methods for the selection of sub-sample of models tested in 537 

this study are of interest in this context. 538 
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 539 

Regarding the model selection, the approaches that we propose can be applied to other areas and variables of interest. In 540 

our particular case, our conclusions are: 541 

• We show that over the Sahel, future precipitation changes in summer are not strongly associated with present-day 542 

biases. For this reason, we propose a selection criterion based on the projections instead of on the mean historical 543 

climate simulations. The objective is then not to select a subset of models judged to be more realistic, but to select a 544 

small subset of models representative of the full ensemble. This could be particularly useful for studies in which 545 

computational resources and/or data storage and/or treatment capacity are a limiting factor, which is the case for most 546 

dynamical downscaling or impact studies. 547 

• The “best” sub-ensemble of models, in terms of similarity with the full CMIP5 ensemble mean and spread, turns out to 548 

be composed by the bnu_esm, mpi_esm_mr, giss_e2_r and hadgem2_cc models.  549 

• In section 4.3, we propose alternative solutions that may be useful for example if data from the above mentioned 550 

models are not available at the time frequency necessary for the study of interest. They are based on the model 551 

classification presented in this work. The best method basically consist of selecting one or two models in each of the 552 

four groups, which allows more freedom in the choice of the models, and ensure a good representation of both the mean 553 

and spread of the full ensemble. When using the methods described in the section 5 for impact studies it is crucial to use 554 

consistent physical packages between RCM and the forcing GCM to ensure that the downscaled field will not be the 555 

result of a change of the parametrization but of the forcing field with a higher resolution (Saini et al., 2015). If not the 556 

downscaled fields will not be representative of the CMIP5 ensemble. 557 

 558 

 559 

 560 
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Captions 573 

 574 

Figure1: The model “family tree” from CMIP5 models for the RCP85-HIST change in Sahel precipitation, shown as a 575 

dendrogram (a hierarchical clustering of the pairwise distance matrix for precipitation, see text). Models on the same 576 

branch simulate similar patterns in precipitation changes. Models from the same group share the same color. 577 

 578 

Figure2: Projected changes in JAS (a-d) precipitation (mm.day-1), (e-h) evaporation (mm.day-1) and (i-l) P-E budget 579 

(mm.day-1) for the four groups of models (one group per column) identified by the clustering. The present climatology 580 

(HIST) is displayed with red contours and the RCP85-HIST differences by color shading. Hatching represents the grid-581 

points where at least 80% of the models agree with the sign of the intra-group ensemble mean within each groups (5 for 582 

GR1; 7 for GR2; 13 for GR3; 5 for GR4) 583 

 584 

Figure3: Projected changes RCP85-HIST in JAS (a-d) 2m temperature (°C) (shading), sea level pressure (hPa) (blue 585 

contours) and 950 hPa winds (m.s-1) (green arrows) for the four groups of models. The winds anomalies are displayed if 586 

at least 80% of the models agree on the sign of the intra-cluster mean. (e-h) Latitude-height cross section (average from 587 

10°W to 10°E) of zonal winds (m.s-1) for the RCP85-HIST projected changes (shading). The present climatology 588 

(HIST) for zonal winds is displayed with red contours.  Hatching represents the grid-points where at least 80% of the 589 

models agree with the sign of the intra-cluster mean (5 for GR1; 7 for GR2; 13 for GR3; 5 for GR4).  590 

 591 

Figure 4: Changes in Atlantic SST gradient, computed as the zonally-averaged RCP85-HIST difference over the 592 

Atlantic Ocean (75°W – 10°E) minus the SST tropical warming (180°W-180°E; 30°S-30°N) in JAS. The intra-cluster 593 

mean is computed for GR1 (brown line), GR2 (blue line), GR3 (green line) and GR4 (red line). Shadings represent the 594 

intra-cluster standard deviation. 595 

 596 

Figure5: Time-Latitude diagram from January to December for RCP85-HIST projected changes averaged over the 597 

western Sahel (20°W-0°W) in (a-d) precipitation (mm.day-1), (e-h) P-E (mm.day-1), (i-l) 600 hPa zonal wind (m.s-1) and 598 

(m-p) 400 hPa omega (Pa.s-1) for the four groups of models. The present climatology (HIST) is displayed with red 599 

contours and the HIST-RCP85 differences by the shading. Hatching represents the grid-points where at least 80% of the 600 

models agree with the sign of the intra-cluster mean (5 for GR1; 7 for GR2; 13 for GR3; 5 for GR4).  601 

 602 

Figure6: Same as the figure 5 but for the central Sahel (from 0° to 20°E). 603 

 604 

Figure7: Mean model bias in JAS (a-d) precipitation computed as HIST-GPCP (in mm.day-1) represented by the 605 

shading. Observed precipitation (GPCP) is also displayed (red contours). Mean model bias of global T2m in JAS 606 

computed as HIST-ERAI reanalysis (e-h) (in °C). Hatching represents the grid-points where at least 80% of the models 607 

agree with the sign of the intra-cluster mean bias.  608 

 609 

Figure8: The model "family tree" from the CMIP5 models for biases in Sahel precipitation, shown as a dendrogram (a 610 

hierarchical clustering of the pairwise distance matrix for precipitation). The spatial pattern used to compute the 611 

correlation matrix is the JAS precipitation bias (HIST-GPCP). Models on the same branch simulate similar biases in 612 

precipitation. Colors indicate models belonging to the clusters defined in Fig.1 according to the classification on the 613 

projected response.    614 

 615 

Figure9: Mean precipitation changes (mm.day-1) of the 30 CMIP5 models (models in color in Figure 1b, shading) and 616 

the probability to reproduce its sign, when randomly selecting (a-c) 4 models and (d-f) 8 models (hatching). The 617 

probability is computed with a Monte Carlo approach. Hatching shows the points where at least 95% of the n draws 618 

agree on the sign of the CMIP5 pattern. Here, n is equal to 30 000 (500 000) for 4 models (8 models). The spread of the 619 

intra-group precipitation change is computed when using (g-i) 4 models and (j-l) 8 models, the difference  (in %) 620 

between the mean spread computed from the n draws and the spread of the full CMIP5 ensemble is displayed in colors 621 

and the spread computed from the n values of spread is indicated by the purple lines (mm.day-1). The “pattern selection” 622 

method consists of selecting 4 or 8 models in GR3, the “random” method randomly selects 4 or 8 models within the full 623 

CMIP5 ensemble, and the “diversity” method selects 1 or 2 models from each group of models in Fig.1. 624 

 625 

Figure10: Differences of ensemble mean JAS precipitation changes (RCP85-HIST; mm.day-1) between the full CMIP5 626 

ensemble, and the best ensemble of (a) 4 models, (b) 8 models, and the “worst” ensemble of (c) 4 models and (d) 8 627 

models. Differences of JAS mean precipitation (mm.day-1) between the spread of the RCP85-HIST CMIP5 data-set 628 

projection minus the spread of RCP85-HIST projection of the “best” ensemble of (e) 4 models, (f) 8 models and the 629 

“worst” ensemble of (g) 4 models and (h) 8 models. 630 
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 633 

 634 

 635 
 636 

 637 

Figure1: The model “family tree” from CMIP5 models for the RCP85-HIST change in Sahel precipitation, shown as a 638 

dendrogram (a hierarchical clustering of the pairwise distance matrix for precipitation, see text). Models on the same 639 

branch simulate similar patterns in precipitation changes. Models from the same group share the same color. 640 

 641 
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 647 

 648 

Figure2: Projected changes in JAS (a-d) precipitation (mm.day-1), (e-h) evaporation (mm.day-1) and (i-l) P-E budget 649 

(mm.day-1) for the four groups of models (one group per column) identified by the clustering. The present climatology 650 

(HIST) is displayed with red contours and the RCP85-HIST differences by color shading. Hatching represents the grid-651 

points where at least 80% of the models agree with the sign of the intra-group ensemble mean within each groups (5 for 652 

GR1; 7 for GR2; 13 for GR3; 5 for GR4) 653 
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 724 

Figure3: Projected changes RCP85-HIST in JAS (a-d) 2m temperature (°C) (shading), sea level pressure (hPa) (blue 725 

contours) and 950 hPa winds (m.s-1) (green arrows) for the four groups of models. The winds anomalies are displayed if 726 

at least 80% of the models agree on the sign of the intra-cluster mean. (e-h) Latitude-height cross section (average from 727 

10°W to 10°E) of zonal winds (m.s-1) for the RCP85-HIST projected changes (shading). The present climatology 728 

(HIST) for zonal winds is displayed with red contours.  Hatching represents the grid-points where at least 80% of the 729 

models agree with the sign of the intra-cluster mean (5 for GR1; 7 for GR2; 13 for GR3; 5 for GR4).  730 
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 733 

 734 
 735 

Figure 4: Changes in SST Atlantic gradient, computed as the zonally-averaged RCP85-HIST difference over the 736 

Atlantic Ocean (75°W – 10°E) minus the SST tropical warming (180°W-180°E; 30°S-30°N) in JAS. The intra-cluster 737 

mean is computed for GR1 (brown line), GR2 (blue line), GR3 (green line) and GR4 (red line). Shadings represent the 738 

intra-cluster standard deviation. 739 
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 741 

 742 

Figure5: Time-Latitude diagram from January to December for RCP85-HIST projected changes averaged over the 743 

western Sahel (20°W-0°W) in (a-d) precipitation (mm.day-1), (e-h) P-E (mm.day-1), (i-l) 600 hPa zonal wind (m.s-1) and 744 

(m-p) 400 hPa omega (Pa.s-1) for the four groups of models. The present climatology (HIST) is displayed with red 745 

contours and the HIST-RCP85 differences by the shading. Hatching represents the grid-points where at least 80% of the 746 

models agree with the sign of the intra-cluster mean (5 for GR1; 7 for GR2; 13 for GR3; 5 for GR4).  747 
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 750 

Figure6: Same as the figure 5 but for the central Sahel (from 0° to 20°E). 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 



31 

 760 

 761 

Figure7: Mean model bias in JAS (a-d) precipitation computed as HIST-GPCP (in mm.day-1) represented by the 762 

shading. Observed precipitation (GPCP) is also displayed (red contours). Mean model bias of global T2m in JAS 763 

computed as HIST-ERAI reanalysis (e-h) (in °C). Hatching represents the grid-points where at least 80% of the models 764 

agree with the sign of the intra-cluster mean bias.  765 
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 767 

 768 

 769 
 770 

Figure8: The model "family tree" from the CMIP5 models for biases in Sahel precipitation, shown as a dendrogram (a 771 

hierarchical clustering of the pairwise distance matrix for precipitation). The spatial pattern used to compute the 772 

correlation matrix is the JAS precipitation bias (HIST-GPCP). Models on the same branch simulate similar biases in 773 

precipitation. Colors indicate models belonging to the clusters defined in Fig.1 according to the classification on the 774 

projected response.   775 
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 796 
 797 

Figure9: Mean precipitation changes (mm.day-1) of the 30 CMIP5 models (models in color in Figure 1b, shading) and 798 

the probability to reproduce its sign, when randomly selecting (a-c) 4 models and (d-f) 8 models (hatching). The 799 

probability is computed with a Monte Carlo approach. Hatching shows the points where at least 95% of the n draws 800 

agree on the sign of the CMIP5 pattern. Here, n is equal to 30 000 (500 000) for 4 models (8 models). The spread of the 801 

intra-group precipitation change is computed when using (g-i) 4 models and (j-l) 8 models, the difference  (in %) 802 

between the mean spread computed from the n draws and the spread of the full CMIP5 ensemble is displayed in colors 803 

and the spread computed from the n values of spread is indicated by the purple lines (mm.day-1). The “pattern selection” 804 

method consists of selecting 4 or 8 models in GR3, the “random” method randomly selects 4 or 8 models within the full 805 

CMIP5 ensemble, and the “diversity” method selects 1 or 2 models from each group of models in Fig.1. 806 
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 808 
 809 

Figure10: Differences of ensemble mean JAS precipitation changes (RCP85-HIST; mm.day-1) between the full CMIP5 810 

ensemble, and the best ensemble of (a) 4 models, (b) 8 models, and the “worst” ensemble of (c) 4 models and (d) 8 811 

models. Differences of JAS mean precipitation (mm.day-1) between the spread of the RCP85-HIST CMIP5 data-set 812 

projection minus the spread of RCP85-HIST projection of the “best” ensemble of (e) 4 models, (f) 8 models and the 813 

“worst” ensemble of (g) 4 models and (h) 8 models. 814 
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