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ARTICLE

ENSO diversity shows robust decadal
variations that must be captured for
accurate future projections
Bastien Dieppois 1,2✉, Antonietta Capotondi 3,4, Benjamin Pohl 5, Kwok Pan Chun 6,

Paul-Arthur Monerie 7 & Jonathan Eden1

El Niño-Southern Oscillation (ENSO) shows a large diversity of events that is modulated by

climate variability and change. The representation of this diversity in climate models limits

our ability to predict their impact on ecosystems and human livelihood. Here, we use multiple

observational datasets to provide a probabilistic description of historical variations in event

location and intensity, and to benchmark models, before examining future system trajec-

tories. We find robust decadal variations in event intensities and locations in century-long

observational datasets, which are associated with perturbations in equatorial wind-stress and

thermocline depth, as well as extra-tropical anomalies in the North and South Pacific. Some

climate models are capable of simulating such decadal variability in ENSO diversity, and the

associated large-scale patterns. Projections of ENSO diversity in future climate change sce-

narios strongly depend on the magnitude of decadal variations, and the ability of climate

models to reproduce them realistically over the 21st century.
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E l Niño-Southern Oscillation (ENSO) is the leading mode of
tropical climate variability, with impacts on ecosystems,
agriculture, freshwater supplies and hydropower production

spanning much of the globe1–3. The majority of impact studies,
including seasonal to multi-year predictions, has developed from
a canonical representation of ENSO, as characterised by sea-
surface-temperature anomalies (SSTa) in the central–eastern
Pacific4–6. However, ENSO shows large differences from one
event to another in terms of its intensity, spatial pattern, and
temporal evolution7–9. For instance, while the 1997/98 El Niño
displayed extreme SSTa in the eastern equatorial Pacific (EP-
ENSO), the largest SSTa that coincided with the 2002/03 event
was weaker and primarily confined to the central equatorial
Pacific (CP-ENSO). Differences in the longitudinal location and
intensity of ENSO events are sensitively associated with different
impacts on regional climate throughout the world10,11. Such
differences in ENSO patterns, referred to as “ENSO diversity”7,
and their representation in climate models thus strongly influence
the skill of impact-prediction systems12, and underscore the need
for an appropriate characterisation and further mechanistic
understanding of ENSO diversity, as well as its projected changes.

The post-1990s increase in the frequency of CP El-Niño
events13–15 has led some researchers to relate such changes in
ENSO patterns to the influence of global warming16. However,
decadal variations in ENSO characteristics have also emerged in
unforced climate-model simulations17,18, as well as in empirical
models19, suggesting that natural low-frequency variability may
also play an important role in the modulation of ENSO diversity.
In particular, the relative frequency of EP- or CP-ENSO has been
associated with different phases of the Pacific Decadal Oscillation
(PDO)20,21, which may itself result from the superposition of
different processes21, and the Atlantic Multidecadal Oscillation22.
CP events have also been linked to decadal variations of the
North Pacific Gyre Oscillation23,24, a result consistent with the
presence of spectral power in the decadal range for CP events25,26.
This decadal ENSO modulation may arise from changes in the
system dynamics27, from natural and/or anthropogenic external
forcing28, or occur purely by chance29,30. Whatever their nature
is, decadal variations in ENSO diversity can be expected to
obscure the detection of the climate-change signal, and influence

our assessment of 21st-century projections of ENSO diversity,
highlighting the importance of considering the system trajectory,
and not only differences between specific future and historical
periods, for those assessments.

The detection of low-frequency variations in ENSO diversity
has however been largely limited by various technical short-
comings. Most observational studies use relatively short records
(≤50 years), which are arguably of insufficient length to study
ENSO diversity, and to benchmark models7–9,31–33. Long-term
observational SST datasets are reconstructed based on the more
densely sampled recent decades, and may be biased toward the
patterns of recent events34. Century-long ocean reanalysis are
typically forced by atmospheric reanalyses, which in turn are
constrained by a limited set of observations that become
increasingly sparse in earlier periods, thus introducing large
uncertainties in the long-term characterisation of ENSO diversity.
Climate models can provide long records of ENSO, but their skill
in simulating ENSO diversity is generally limited7,9,26,33,35–37.

Furthermore, aforementioned studies are traditionally based on
several indices of tropical Pacific SSTa, designed to describe the
variability of either a canonical ENSO or two extreme ENSO
flavours32,38–41. These indices have been primarily used to classify
El Niño events, since La Niña events, which are typically asso-
ciated with weaker anomalies than El Niño events42, tend to be
located further West7, and show a more limited range of pattern
diversity43. Hence, some of these indices may neglect the existing
asymmetry between warm- and cold phases, and between CP-
and EP events. Most of these indices are significantly inter-
correlated (Fig. 1a), highlighting that they provide redundant
information on ENSO. More importantly, the probability dis-
tribution of the peak location of SSTa over the tropical Pacific
(when each index is exceeding ±0.5 °C standard deviation;
Fig. 1b), indicates that most of these indices are neither repre-
senting solely CP- and EP events, but rather different combina-
tions of both ENSO flavours.

Hence, it is essential to adopt an approach that allows for a
more flexible and precise assessment of changes in the location
and intensity of warm and cold ENSO events, by considering the
varying longitude of the largest SSTa at any given time, for both
El Niño and La Niña events (cf. Methods). This approach is not

Fig. 1 Relationships between ENSO indices, and their ability to disentangle CP and EP. a Pearson’s correlations between 13 ENSO indices (Niño boxes;38

PC-based EP- and CP-ENSO; TNI;40 EMI and iEMI;41 EP and CP;32 E and C39). Black shaded dots indicate significant correlations at p=0.05, using 1000
phase randomisations to account for serial correlations. b Probability density function (PDF) of the locations of SSTa peaks over the equatorial Pacific
(5°S–5°N; −210 to −60°W), when each ENSO index exceeds ±0.5 °C standard deviation. For each index, each row/column corresponds to a different
observational, reanalysis or satellite-derived dataset (A–F: ERSST.v5, COBESST.v2, HadSST1, SODA.si3, OISST.v2, CERA20C). Correlations are calculated
over their respective common periods (1870–2018 when using observations only, 1870–2015 when using SODA.si3, 1901–2010 when using CERA20C, and
1981–2018 when using OISST.v2). Locations of Niño boxes, as well as of the date line, are indicative.
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new. For example, the “Center of Heat Index” (CHI) provides the
basis for a more flexible framework, allowing the longitudinal
centre of SSTa to vary as a function of time instead of being
geographically fixed34,44. A similar concept was recently used to
provide a single index capturing the longitudinal shifts of ENSO-
related atmospheric convection45, and to identify the emergence
of double-peaked El Niño events46.

In addition, the classification of EP- and CP events is depen-
dent on the specific dataset used (Fig. 1b), suggesting that a
probabilistic definition that accounts for the level of agreement
among diverse datasets is needed to more robustly assess changes
in ENSO diversity. Here, we revisit this classification approach for
both El Niño and La Niña events across multiple observational
datasets, including century-long reconstructions, ocean and cou-
pled reanalyses, and high-resolution satellite-derived estimates (cf.
Supplementary Table 1) to unravel observational uncertainties,
while achieving a probabilistic description of the temporal evo-
lution of event location and intensity. The same approach is then
applied to the two latest multimodel ensembles, i.e., CMIP547 and
CMIP648 (cf. Supplementary Table 1), to evaluate model fidelity in
simulating ENSO diversity within the context of a more flexible
framework, which (i) allows for a continuum of patterns, rather
than relying on a more rigid bimodal view of ENSO; and (ii)
examines models’ performance against multiple observational
references. Historical and multicentennial preindustrial control
simulations (piControl: 400–1200 years, radiative forcing fixed at
the 1850 conditions) are used to examine the evolution of location
and intensity of ENSO events in the absence of anthropogenic
influences (piControl) or under historical radiative forcing (his-
torical), and assess model performance based on multiple metrics
(cf. Methods). A subset, including highest- and lowest-performing
models, is then selected to examine how events’ locations and
intensity evolve in the future, and whether significant changes in
those quantities can be assessed in the presence of low-frequency
modulations.

This study aims at addressing the following questions: (i) can
we robustly detect decadal variations in ENSO diversity across a
variety of observational/reanalysis products?; (ii) do models also
exhibit such low-frequency variations, and how do they impact
future scenarios?; do both El Niño and La Niña events undergo
similar evolutions? The answers to these questions will provide a
novel perspective to the assessment of ENSO 21st century pro-
jections by accounting for system trajectories that do not neces-
sarily evolve monotonically with climate change.

Results
Observed changes in the likelihood of ENSO location and
intensity. The probability distribution of ENSO location and
intensity is examined in six observational datasets, using 20-year
running periods between 1850 and 2018 (Fig. 2). The results
obtained using 10- or 30-year running windows are very similar,
but the 20-year window is found to optimise the signal-to-noise
ratio (Supplementary Fig. 1).

On average, El Niño events occur over multiple longitudinal
locations (Fig. 2a), but show stronger probability to occur either
over the central Pacific (~162–171°W; CP-Niño) or the eastern
Pacific (~89–132°W; EP-Niño). We note larger observational
uncertainty in the probability of EP-Niño (Fig. 2a), which is
substantially less likely in ERSST.v5, CERA20C, and especially in
OISST.v2, which covers a period dominated by CP events.
Comparing the statistical distribution of all observational datasets
using 20-year running windows, larger uncertainties in the
location of ENSO events are found in the early records (Fig. 2b,
grey and black histograms). Nevertheless, looking at the
agreement of high probability and the most likely location across

all datasets, we identify a coherent and progressive shift to
predominant CP-Niño events over the course of the 20th century
(Fig. 2b). This result confirms findings from previous studies,
using different approaches, on the recent increase in CP-El Niño
frequency13–15, and on the uniqueness of El Niño patterns36. La
Niña events also appear characterised by multiple preferential
locations, and show a larger degree of consistency in the
probability distribution across the different datasets (Fig. 2c).
CP-Niña events are systematically more likely than EP-Niña
events, especially in COBESST.v2 and CERA20C (Fig. 2c).
Looking at temporal changes in the statistical distribution across
all datasets, coherent low-frequency variations emerge in the most
likely locations of La Niña (Fig. 2d). CP-Niña events are more
frequent in the 1930–40s and after the 1970s than during the
1950–60s (Fig. 2d).

All observational datasets show quasi-normal distributions for
event intensity, with an average most probable intensity of
+0.84 °C and −0.92 °C for El Niño and La Niña events,
respectively (Fig. 2e, g). In all observational datasets, the
probability distribution of La Niña intensity shows relatively
small variations over time using a 20-year running window. These
variations, however, exceed the range of variability that would be
obtained in a random field (Fig. 2c, dashed lines and grey
shading), and are substantially larger using a 10-year window
(Supplementary Fig. 1j). Decadal variations in intensity are
stronger for El Niño events (Fig. 2e). The most likely El Niño
intensities display relative minima in the late 19th century, the
1920–50s, and 1980–90s, as compared with the early 20th century,
the 1960–70s and post-2000s (Fig. 2f). The reduced ENSO activity
in the 1920–1950s coincides with a period of larger disagreement
between observational datasets (Fig. 2f, grey and black histo-
grams), which could explain reduced skill in the prediction of
ENSO indices over the same period49. In addition, we note that
the upper tail of the distribution, as characterised by the
frequency of events exceeding the 90th percentile (Fig. 2f, red
histogram), is larger at the beginning of the century and after the
1970s, with a peak in the 1980–90s, which is likely associated with
the extreme El Niño events of 1982/83 and 1997/98. This result is
consistent with coral oxygen isotopic reconstructions50 and
simulated long-term future changes51. Similarly, an increase in
the frequency of extreme La Niña events is identified after the
1960s (Fig. 2h, blue histogram), and especially in recent decades,
consistently with model projections52. Importantly, however,
unlike the recent increase in the frequency of extreme La Niña
events, the intensification of El Niño events does not seem to
exceed the historical range of variability (Fig. 2f, h, blue and red
histograms).

Hence, consistent with a clustering analysis of equatorial
Pacific SSTa53, observed diversity of ENSO patterns is large, even
for La Niña events, whose diversity was questioned in previous
studies41. More importantly, ENSO diversity is clearly linked to
low-frequency variations, with progressive shifts toward more
eastward or westward locations, and more or less intense events,
which seem to substantially modulate recent trends in its
behaviour. In addition, these low-frequency variations in ENSO
location and intensity exceed the range of variations that would
occur in a random field during some periods, notably the
westward shift in the location of El Niño events (Fig. 2b, dashed
lines and grey shading), suggesting that such variations are
unlikely to occur purely by chance.

Evaluation of ENSO diversity in climate models. We compare
the simulated probability distributions of ENSO location and
intensity from 26 CMIP5 and 28 CMIP6 models to our six
observational datasets in Fig. 3.
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As seen in Fig. 2, El Niño and La Niña events show a primary
location centred around 162–171°W, and a secondary location
centred around 89–132°W (Fig. 3a, d). Yet, the range of simulated
event locations varies significantly across models and model
generations (Fig. 3b, c, e, f). Many models are capable of
simulating multiple preferential locations (Fig. 3b, c, e, f, grey
dots), and between 37 and 50% of simulations do not show
significant biases in the mean location of El Niño and La Niña
events in historical and piControl runs (Supplementary Fig. 2).
However, estimating biases in the mean location of ENSO events
can conceal the presence of asymmetrical and multi-modal
probability distribution. Indeed, only two CMIP6 models (IPSL-
CM6A-LR and UKESM1-0-LL, one of the MOHC group of
models) and one CMIP5 model (CNRM-CM5; leftmost columns
of the CNRM group of models) display a broad range of event
location that is somewhat comparable to observations (Fig. 3b, c,
e, f). Most models show highly asymmetric probability distribu-
tion, with clear tendency to favour either EP- or CP events
(Fig. 3b, c, e, f), including some extreme cases (e.g., CSIRO-Mk3-
6-0) with events always centred further west than the observa-
tional range. Such excessive westward-shifted mean location of
ENSO could be explained by anomalous westward extensions of
the equatorial SSTa in CMIP554–56 and CMIP6 models.

Simulated-intensity distributions of ENSO are mostly consis-
tent with observations, and tend to follow a quasi-normal
distribution in most CMIP5 and CMIP6 models, but clear
discrepancies emerge in the mean intensity and the probability of
extreme events (Fig. 3g–l). In approximately 50% of the
simulations, biases in the mean intensity of ENSO events are
nonsignificant for warm- and cold events, using both historical
and piControl simulations (Supplementary Fig. 2). Large and

significant overestimations and underestimations nevertheless
persist in a little less than half of the models (Supplementary
Fig. 2).

In summary, CMIP5 and CMIP6 models simulate some range
of pattern diversity for El Niño and La Niña events. However,
very few models present a range of event locations in relatively
good agreement with observations, and minimal biases in their
intensity. Most models hardly depart from an eastward or
westward location, favouring either EP- or CP events, and
presenting limited ENSO diversity. Notably, larger biases are
found for the models that produce erroneous westward exten-
sions of SSTa (cf. MIROC6, Supplementary Figs. 3–6).

Robust decadal variations in ENSO-preferred location and
intensity. Here, we use spectral analysis to examine whether
robust and significant low-frequency variations are found in the
most likely location and intensity of ENSO, in both the five long-
term observational datasets, CMIP5 and CMIP6 models. We first
examine the timescales on which ENSO behaviour varies using
maximum power spectrum (Fig. 4), a method that accounts for
nonstationarity of ENSO spectral characteristics (cf. Methods),
before comparing the observed and simulated magnitude of
decadal variations in ENSO-event location and intensity (Fig. 5).

Despite some discrepancies, all observational datasets show
significant variations on interdecadal timescale (14–32 yr) based
on the 10-yr most likely location of El Niño and La Niña events
(Fig. 4a, d). Using both historical and piControl simulations,
almost all models also produce significant decadal variability in
the most likely location of ENSO (Fig. 4b, c, e, f). In addition,
between 54 and 59 (60 and 64)% of historical (piControl)
simulations significantly simulate statistically equal decadal

Fig. 2 Observed likelihood of ENSO’s location and intensity: average distribution and temporal changes. a Average probability-density function (PDF) of
El Niño location. b Twenty-year running most likely location of El Niño (black bold lines), the percentage of agreement of high probability (i.e., PDF
exceeding 0.01 and 0.45; colour shades)across all observational datasets. c, d Same as (a, b) but for La Niña, and extreme La Niña events (i.e., intensity
lower than the 10th percentile; blue histogram). e–h Same as (a–d) but for El Niño and La Niña intensity, and average number of extreme Niño and Niña
events (i.e., intensity exceeding the 90th percentile; red histogram). On panels (a), (c), (e), and (g), dark-grey shading from the top axis indicates the
average PDF over all six reference SST datasets, and each individual dataset is displayed in coloured lines (El Niño/La Niña: ERSST.v5 [1850–2018; coral/
light blue], COBESST.v2 [1850–2018; dark red/dark blue], HadSST1 [1850–2018; red/blue], SODA.si3 [1850–2015; purple solid lines], OISST.v2
[1981–2018; magenta dashed lines], CERA20C [1901–2010; darkochid solid lines]). On panels (b), (d), (f), and (h), grey (black) histogram indicates the
percentage of observational datasets showing significantly equal distribution at p= 0.1 (0.05) according to a Kolmogorov–Smirnov test. Dashed lines and
grey shading indicate the range of variability that could be obtained in a random field at p= 0.05. Locations of Niño boxes, as well as of the date line, are
indicative. Coloured boxes delineate the period for which each dataset is used.
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variance, as compared with observations, in the locations of El
Niño and La Niña events, respectively (Fig. 5). Many models
show significant biases in the magnitude of decadal variations in
event locations (Fig. 5): (i) 39–50% of models underestimate it,
and favour either EP- (e.g., CCCma models, CNRM-CM6-1) or
CP-ENSO (e.g., CESM2); or (ii) 12–22% of models overestimate
it, and tend to simulate two extremely distinct modes in the central
and eastern Pacific (e.g., MIROC6, NorCPM1; Fig. 3b, c, e, f).

According to previous observational studies57, as well as fossil
coral oxygen-isotope records50, the observed intensity of ENSO
presents significant variability on interdecadal timescales at 16-yr
and, especially, 32-yr periods (Fig. 4g, j). CMIP5 and CMIP6 also
simulate significant interdecadal variability at these timescales
(Fig. 4h, i, k, l), in agreement with previous studies using climate
models17,18,30. Many models (40–62% in historical and piControl
simulations) display statistically equal decadal variance in the
intensity of both El Niño and La Niña (Fig. 5), in agreement with
observations. A substantial fraction of simulations (28–42% in
historical and piControl runs) significantly overestimate the
decadal variance in ENSO intensity (Fig. 5), as identified in the
Niño3+ 4 index using CCSM426 and CESM235.

Our results confirm the existence of a significant interdecadal
modulation in ENSO intensity in accordance with several
studies based on observations, proxy records, and climate

models17,18,30,34,50,57. While previous studies reported an
underestimation of decadal variability by climate models at
both global28 and Pacific Ocean58,59 scales, this statement does
not appear to be true for ENSO diversity in many CMIP5 and
CMIP6 models, when considering their nonstationary behaviour
(cf. Methods). Our results also reveal significant decadal
modulations in the maximum likelihood of ENSO locations,
which are robust and consistent in both observations and
climate models. Nevertheless, many models show recurrent
biases in simulating realistic magnitudes of decadal variance in
ENSO diversity.

Large-scale patterns linked to decadal variability in ENSO
location and intensity. To identify large-scale patterns of varia-
bility associated with spatiotemporal variations in ENSO, sepa-
rately for El Niño and La Niña years, we compute linear
regressions of pan-Pacific SSTa, wind stress, and equatorial 20 °C
isotherm depth (Z20) on the location and intensity of events,
using five long-term observational datasets and 32 historical
simulations from the IPSL-CM6A-LR large ensemble (Fig. 6). We
focus on the Pacific region, as regressed SSTa is much lower, and
often nonsignificant, in the other ocean basins. Similarly, we
choose to focus on the IPSL-CM6A-LR model because it provides

Fig. 3 Likelihood of ENSO’s location and intensity in CMIP5 and CMIP6 models. Normalised PDF of El Niño location in (a) all reference datasets, as
compared with (b) 95/250 CMIP5/6 historical runs, as well as in (c) 26/28 CMIP5/6 piControl runs. d–f Same as (a–c) but for La Niña. g–l Same as (a–f)
but for El Niño and La Niña intensity. On top of each panel and column, grey dots indicate significant multimodality at p= 0.05 according to the ACR test88,
based on 1000 bootstrap resamples. The normalised PDF is estimated using the full length of each time series, ranging from 37 years in OISST.v2 to 1200
years in some piControl simulations. Bold (thin) solid lines separate simulations from different institutions (generations, i.e., CMIP5 [grey] and CMIP6
[orange]), while dashed lines separate simulations from different models.
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a realistic range of locations and intensities for both El Niño and
La Niña events, with relatively weak model biases (Figs. 3–4). The
results obtained using other CMIP5 and CMIP6 models are very
similar, especially for patterns associated with ENSO intensity,
and approximate the skill of the SODA.si3 reanalysis (Supple-
mentary Figs. 3 and 4). In addition, regressed SSTa patterns
associated with the changes in the location of ENSO events
provide similar information than the difference between com-
posite of SSTa for EP- and CP events (Supplementary Fig. 5).

In observations, SST regressions on El Niño longitude yield an
EP-type event with the largest anomalies extending westward
along the Equator from the coast of South America (Fig. 6a). The
associated strong westerly wind anomalies extend to the eastern
Pacific, where the thermocline is significantly deeper, while slight,
but significant, easterly wind anomalies and shallower thermo-
cline are found in the western Pacific (Fig. 6a, b). These patterns
indicate that, during El Niño years, EP-Niño events are more
likely to occur when trade-winds weaken (strengthen), and the
thermocline is significantly deeper (shallower), over the eastern
(western) Pacific; meanwhile, opposite wind and thermocline
anomalies seem to favour the occurrence of CP-Niño events. This
is consistent with previous studies stressing the importance of the
initial zonal thermocline slope as a discriminating factor for the
selection of EP and CP events60. Compared with regression
patterns associated with El Niño longitude, regressions on La
Niña longitude show much stronger (weaker) signals in the
western–central (eastern) Pacific (Fig. 6a, c). However, this might
only denote that, in observation, La Niña events are more (less)

likely to occur over the central (eastern) Pacific than El Niño
events (Fig. 2a, c). As illustrated in Supplementary Fig. 5a, e, this
is also because EP-Niño events tend to extend further west than
EP-Niña events. Regressions on La Niña longitude result in a
pattern that is reminiscent of a CP-Niño pattern41, with cold
anomalies in the far eastern Pacific and warm anomalies in the
central Pacific (Fig. 6c). In this case, strong westerly wind
anomalies and deeper thermocline are found in the central
Pacific, where they may contribute to the zonal advective
feedback61, while weaker easterly anomalies and deeper thermo-
cline are present in the western Pacific (Fig. 6c, d). Such patterns
indicate that, during La Niña years, EP-Niña events are more
likely to occur when trade-winds strengthen (weaken), and the
thermocline is significantly shallower (deeper), over the eastern
(western) Pacific; on the contrary, opposite wind and thermocline
anomalies would favour the occurrence of CP-Niña.

These tropical signals are statistically significantly related to
extra-tropical SSTa (Fig. 6a, c): colder (warmer) North Pacific
SSTa is found, when El Niño events are located further east
(west), and La Niña events are located further west (east). While
these results corroborate previous study on changes in
the frequency of CP and EP events during different phases of
the PDO21,62, such North Pacific SSTa is also consistent with the
Pacific Meridional Mode63, the Victoria mode64–66, and with
changes in the intensity and location of the Aleutian Low and
North Pacific High in response to EP- and CP-Niño67. Similar
regression patterns are found in IPSL-CM6A-LR, and in other
models (Supplementary Figs. 3 and 4), which can produce

Fig. 4 Variability in ENSO’s, observed and simulated, most likely location and intensity. Maximum power spectra of the running 10-year El Niño most
likely location (i.e., the mode), as determined using continuous wavelet analysis, and using (a) five long-term observational reference datasets (left:
ERSST.v5, COBESST.v2, HadSST1, SODA.si3, and CERA20C), (b) 95/250 CMIP5/6 historical runs (middle), as well as (c) 26/28 CMIP5/6 piControl runs
(right). d–f Same as (a–c) but for La Niña. g–l Same as (a–f) but for El Niño and La Niña intensity. Only significant variability patches at p= 0.05, as
determined using 1000 Monte-Carlo simulations of the red noise-background spectrum, are shown. Dashed red lines and grey shading indicate the area
where variability can be underestimated because of edge effects, wraparound effects, and zero padding. As the continuous-wavelet analysis allows to
account for temporal changes, the maximum power spectra are estimated using the full length of each time series.
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realistic changes in zonal wind stress and thermocline depth,
associated with shifts in ENSO locations (Fig. 6e–j). Patterns
associated with changes in El Niño and La Niña locations are,
however, much more symmetric in models than in observation
(Fig. 6e–j; Supplementary Figs. 3 and 4). Like other models, IPSL-
CM6A-LR shows large internal variability in thermocline-depth
anomalies (Fig. 6g, j), with a clear tendency to underestimate
thermocline-depth anomalies during El Niño events (Supple-
mentary Fig. 6), and this could explain larger ensemble spread in
equatorial Pacific SSTa associated with shifting ENSO locations
(Fig. 6f, i). The North Pacific anomalies associated with ENSO
locations are also significant in IPSL-CM6A-LR (Fig. 6e, h), like
in many other models (Supplementary Fig. 4). These relation-
ships between ENSO and Pacific extratropical variability however
show large ensemble spread in IPSL-CM6A-LR (Fig. 6f, i),
highlighting that these relationships are highly sensitive to
internal variability, as suggested by previous studies21,68.

Looking at regressed patterns associated with event intensity,
patterns of SSTa are extending in the central–eastern Pacific, for
both El Niño and La Niña (Fig. 6k, m). In addition, we found that
observed El Niño (La Niña) events are more intense when the
mean thermocline is deeper (shallower) and the trade winds are
consistently weaker (stronger) over the equatorial Pacific
(Fig. 6k–n). Compared with the large-scale patterns associated
with ENSO locations, changes in ENSO intensity are associated
with larger wind stress and thermocline-depth anomalies over the
central–eastern equatorial Pacific (Fig. 6k–n). ENSO intensity

also appears associated with extra-tropical SST and wind
anomalies that are more symmetric about the Equator compared
with those associated with the location (Fig. 6k, m), and are
somewhat reminiscent of the extra-tropical signature of the
Interdecadal Pacific Oscillation63 (IPO). Other studies discussed
the separate importance of North and South Pacific climate
variability on ENSO intensity at interannual to decadal
timescales68,69. Although it systematically underestimates both
zonal wind-stress and Z20 anomalies compared with observations
(Supplementary Fig. 7), IPSL-CM6A-LR exhibits large-scale
anomalies associated with event intensity that are similar to
observations (Fig. 6o–t). Other models also show similar results
(Supplementary Figs. 3 and 4). Most of them simulate coherent
changes in wind stress and thermocline-depth anomalies over the
equatorial Pacific and extratropical regions that are comparable to
observations, during both El Niño and La Niña events.
Interestingly, IPSL-CM6A-LR shows very little ensemble spread
in equatorial Pacific SSTa, while the strength of extra-tropical
anomalies and equatorial thermocline responses strongly differs
from one simulation to another (Fig. 6p–t).

Impact of decadal variations on future scenarios for ENSO
diversity. We next examine ENSO location and intensity in
climate-change projections, using three models (IPSL-CM6-LR,
UKESM-1-0-LL, and CNRM-CM5) that produce realistic ranges of
event location and intensity (Fig. 3), decadal variability (Figs. 4 and

Fig. 5 CMIP5/6 bias in decadal variability of ENSO’s most likely location and intensity. a Average ratio of standard deviation (rSD) between historical
runs and observed decadal variance (>10 years) in the running 10-year most likely location and intensity of El Niño and La Niña events. b Same as (a) but
using pi-Control runs. Statistical significance is assessed by performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr segments through the
course of climate simulations and every 100-yr segments in the four longer-term observational SST datasets (i.e., 27,740≤ n≤ 209,000 replicates), to
quantify a rate of success (i.e., the number of times observations and simulations showed equal variance). Black dots highlight simulations for which the
rate of success is lower than 10%.
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5), and background climatic states (Fig. 6), during the historical
period (Fig. 7). For comparison, future scenarios of ENSO diversity
are also examined in three other models that have a less realistic
range of event location, and favour either EP- or CP-ENSO during
historical and preindustrial periods (Supplementary Fig. 8).

According to IPSL-CM6-LR and UKESM-0-LL, most ensemble
members converge to more CP-ENSO over the second half of the
21st century (Fig. 7a, b, d, e). This shift to more westward events
appears quite early in IPSL-CM6-LR, while it only emerges in the
second half of the 21st century in UKESM1-0-LL, as the ensemble
mode is dominated by decadal variations over the first half of the
21st century (Fig. 7a, b, d, e). Such decadal variations in the
ensemble mode remain stronger than potential trends throughout
the 21st century in CNRM-CM5 (Fig. 7c, f). The impact of
decadal variations in modulating potential trends in ENSO

location is even larger when looking at individual simulations
(Fig. 7a–f). For instance, different simulations of CNRM-CM5
suggest antipodal increase in the probability of CP- or EP-Niño
events in the near- and long-term future (2020–2040 and
2060–2090), depending on the phase of decadal variations
(Fig. 7a–f). Similar diverse behaviour in simulations of future
evolution of ENSO event location is found in CNRM-CM6-1,
MIROC6 and CESM2 (Supplementary Fig. 8a–f). In all cases,
future trajectories for ENSO location are strongly influenced by
the presence of decadal variations, which may themselves be
model dependent and not necessarily consistent with observa-
tions. These two factors could explain why a recent study of
ENSO uniqueness, using future CMIP5 model scenarios, and
comparing the multimodel mean over specific decades, could not
detect robust changes in ENSO diversity over the 21st century36.

Fig. 6 Large-scale patterns driving long-term variability in ENSO location and intensity. a Regressed SST (blue-to-red shades) and wind-stress (vectors)
anomalies associated with changes in El Niño location using multiple observational datasets (SST: ERSST.v5, COBESST.v2, HadSST1, SODA.si3, CERA20C;
wind stress: NOAA-20CR.v3; Z20: SODA.v2.2.4). b Same as (a) but for Z20 anomalies. c, d Same as (a, b) but for La Niña events. e–j same as (a–d) but
using the IPSL-CM6A-LR large ensemble (32 members). k–t Same as (a–j) but for El Niño and La Niña intensity. While SST and wind-stress anomalies are
displayed at the pan-Pacific scale based on the median changes in (a, c, k,m) observations, simulated regressed anomalies are assessed through (e, h, o, r)
the ensemble median and (f, i, p, s) ensemble spread (standard deviation [SD]). Z20 anomalies are estimated through the median changes between 5°S
and 5°N (b, d, l, n, g, j, q, t). Red and blue shades on the Z20 anomalies indicate the spread between the four SST observational datasets and within the
IPSL-CM6A-LR large ensemble (light to dark: maximum/minimum, 10/90th, 30/70th, and 45/55th percentiles), for El Niño and La Niña, respectively.
Group 1 (black lines) and Group 2 (grey lines) illustrate how two opposed types of equatorial Z20 anomalies influence the ensemble spread. Statistical
significance is assessed at p= 0.05 using 1000 permutations, and displayed as black contour for SSTa, and blue/red crosses for Z20 anomalies. Only
significant wind-stress anomalies at p= 0.05 are displayed.
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Nevertheless, two of the models with realistic representation of
ENSO diversity during the historical period suggest a potential
westward shift in the location of both El Niño and La Niña events
over the 21st century. Whether such changes could be attributed
to anthropogenic climate change or to internal variability would
however require using a larger ensemble.

In our subset of models, event intensity and the frequency of
extreme events both show very large decadal variations over the
historical period and in the 21st century (Fig. 7g–l). These decadal
variations are as large as any potential trends in CNRM-CM5,
UKESM1-0-LL, CNRM-CM6-1, and CESM2 (Fig. 7h, i, k, l;
Supplementary Fig. 8g, i, j, l), but these models strongly overestimate
decadal variations in event intensity (Fig. 5). In IPSL-CM6-LR (in the
second half of the 21st century; Fig. 7g, j) and MIROC6 (from the
early- to mid-20th century; Supplementary Fig. 8h, k), which show
weaker biases in the magnitude of decadal variability in event
intensity, a clear trend toward more intense events is found. Such an
intensification of ENSO events is consistent with previous findings,
using CMIP5 models, of an increased frequency of extreme El Niño51

and La Niña52, although the criterion for model selection was
different in those studies. In our approach, information on event
intensity does not discriminate between EP- and CP events, but since
EP events tend to be stronger than CP events7, the increasing ENSO

intensity seen in some of the models used here is also consistent with
previous results indicating enhanced EP-ENSO70,71. More impor-
tantly, such trends toward more intense ENSO events may remain
largely modulated by significant decadal variations (Fig. 7g–l;
Supplementary Fig. 8g–l). Indeed, as already discussed over the
historical period (Fig. 4), these decadal variations in ENSO location
and intensity exceed the range of variations that would occur in a
random field during some periods (Fig. 7; Supplementary Fig. 8),
suggesting that they cannot entirely occur by chance. This is
particularly noticeable in individual runs, where these variations are
not averaged or flattened (Fig. 7; Supplementary Fig. 8). Thus, future
changes in ENSO characteristics are not necessarily monotonic, as
often assumed, but may undergo variations that need to be better
understood and accounted for in assessments of future changes.
Indeed, due to the system’s nonlinearity, these decadal variations can
modulate the ENSO response to anthropogenic forcing, as ENSO
variations over a given period appear to be related to its own
variability over the previous decades72,73.

Discussion
To overcome existing limitations in analysing ENSO diversity,
this study uses multiple observational datasets to provide a

Fig. 7 Future scenarios for ENSO diversity in the most realistic models. Twenty-year most likely location of El Niño events in (a) the IPSL-CM6-LR, (b)
UKESM1-0-LL and, (c) CNRM-CM5 ensemble mode (black bold lines), in two contrasted individual simulations (light green and yellow lines), and the
percentage of agreement of high-probability within the full ensemble (PDF exceeding 0.01 and 0.45; colour shades). d–f Same as (a–c) but for La Niña
events. g–l Same as (a–f) but for El Niño and La Niña intensity. Grey histograms on the bottom axis of the intensity panels indicate the average number of
extreme events (as defined in Fig. 2) within the full-model ensemble. Dashed lines and grey shading indicate the range of variability that could be obtained
in a random field at p= 0.05. SSTa is estimated by removing the 1850–2014 monthly climatology and trend, to allow comparison with observations. The
same baseline period was used to estimate the 90th and 10th percentiles.
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probabilistic description of historical variations in event location
and intensity, and to benchmark models, before examining future
system trajectories. Using multiple century-long observational
datasets, CMIP5 and CMIP6 multi-model ensembles, we first
identified robust long-term changes and variability in the like-
lihood of El Niño and La Niña location and intensity. Although
the majority of models favour either EP- or CP-ENSO, we found
that ENSO diversity is closely linked to significant decadal var-
iations in both observations and climate models. These decadal
variations do not only modulate event intensity, as already
highlighted in previous studies17,18,30,57, but also affect event
location.

We identified large-scale variability patterns associated with
low-frequency changes in ENSO location and intensity that are
similar in both observations and models, despite the large models’
underestimation of equatorial zonal wind stress and thermocline-
depth anomalies. On the one hand, long-term changes in event
location are associated with zonal perturbations in equatorial
wind stress, which, according to previous studies21,62–66,68, may
be related to the North Pacific climate variability, and with sig-
nificant modulations of the thermocline response over the central
Pacific. On the other hand, low-frequency changes in event
intensity are associated with strong equatorial wind stress and
thermocline response, whose variability appears associated with
the North and South Pacific climate variability. However, disen-
tangling the complex mechanisms driving changes in the ENSO
location and intensity remains a long-standing challenge. This is
beyond the scope of this study and warrants further investigation.
Although these decadal variations appear to be statistically sig-
nificant during some periods in the observational record and in
the models, they may also arise as residuals of ENSO events74,75,
and/or be associated with influences from other ocean basins22,
which could themselves be stochastic in nature. External forcing
cannot be ruled out either, especially in the context of climate
change76.

Our analysis of a small set of climate models, representing key
features from the full range of uncertainties in terms of ENSO
diversity and its variability, suggests a tendency toward more CP-
El Niño and -La Niña over the 21st century. This result is thus in
line with a previous examination of projected changes in ENSO
diversity, using CMIP3 models, which suggested an increased
frequency of CP-El-Niño16. However, our results also highlight
that 21st-century projections of ENSO diversity, in terms of both
location and intensity, may depend on the magnitude of the
models’ decadal variations, and on the models’ skill at reprodu-
cing realistic ranges of location and intensity. This is consistent
with a recent study of ENSO uniqueness in CMIP5 models, which
was unable to detect changes in ENSO diversity over the 21st

century in the multimodel mean, and over specific decades36.
Decadal variations, which are found to be more or less pro-
nounced in different models and in different simulations of the
same model, may also influence recently reported trends in the
frequency of extreme El Niño51 and La Niña52 events over the
course of the 21st century.

This study also illustrates how the future evolution of ENSO
diversity may vary significantly from model to model, and stresses
the importance of considering the system’s trajectory, rather than
differences between fixed future and historical periods to assess
changes. This is crucial because future ENSO responses to
anthropogenic climate change may strongly depend on the
magnitude of decadal variations over the historical period, via
self-modulation processes72,73, which need to be adequately
captured in climate models. In addition, the exact evolution of the
system is very important in itself, as a monotonic change in
ENSO characteristics may result in very different impacts than
changes undergoing large decadal variation, as seen in some

models. The nature of these decadal variations of ENSO diversity
remains unclear. Large model ensembles will be key to separate
the natural and forced components of these decadal variations,
and will be considered in a future study.

Methods
Observational reference datasets. We use six observational datasets, covering all
the different ways to reconstruct long-term variability for SST, as well as different
resolutions (Supplementary Table 1). This includes three observational recon-
structions based on empirical orthogonal functions/teleconnections (EOF/EOTs),
spanning the period 1870–2018: (i) the extended reconstructed SST version 577

(ERSST.v5); (ii) the Centennial in-situ Observation-Based Estimates78

(COBESST.v2); (iii) the Hadley Centre SST data set79 (HadSST1). As the use of
EOF/EOTs might lead to underestimate ENSO diversity in the 19th and early 20th

centuries34, observational reconstructions are compared with two reanalysed SST
datasets: (i) the eight-member ensemble of ocean reanalysis generated using the
Simple Ocean Data Assimilation system with sparse observational input version 380

(SODA.si3) between 1870 and 2015; (ii) the ECMWF ten-member ensemble of
coupled climate reanalyses of the 20th century (CERA-20C81), from 1901 to 2010.
Since the use of satellite observations at the end of the 20th century is known to
result in a cold bias in HadSST1 and COBESST.v282, the optimum interpolation
SST version 283 (OISST.v2) is used for comparison between 1981 and 2018.

To examine the potential large-scale patterns associated with changes in the
ENSO spatiotemporal variability, surface wind stress was derived from surface
zonal and meridional winds for the period 1870–2015, using the NOAA-CIRES-
DOE Twentieth Century Reanalysis version 384 (NOAA-20CR.v3). The NOAA-
20CR.v3 uses SODA.si3 and HadSST1 as boundary forcing, and therefore provides
consistent atmospheric circulations for those SST datasets. Because subsurface
potential temperature data are not currently available in SODA.si3, we use
SODA.v2.2.4, with NOAA-20CR.v2 as boundary forcing, to provide the most
consistent estimate of thermocline depth, using the 20 °C isotherm depth (Z20) as
a proxy.

CMIP5/6 simulations. We use 95 ensemble members of historical simulations
from 26 CMIP5 models47, and 250 members from 28 CMIP648 models, together
with longer piControl runs (Supplementary Table 1), to evaluate how climate
models perform in simulating ENSO diversity. Each individual member of his-
torical simulations allows inferring climate variability from the mid-19th to the
early 21st century, due to changes in anthropogenic and natural forcings, while
accounting for uncertainties associated with internal variability85. Similarly,
piControl simulations enable assessing the uncertainties associated with the limited
length of reliable historical records. In addition, to discuss the implications of our
results for future scenarios of ENSO diversity, we use the highest emission scenario
or forcing level (8.5W.m−2), i.e., the Representative Concentration Pathway
RCP8.5 in CMIP5 models, and the Shared Socio-economical Pathway 5 that
updates the highest forcing level, i.e., 8.5W.m−2 (SSP5–85) in CMIP6 models. The
number of available realisations is substantially lower in future scenarios than
historical runs (Supplementary Table 1). Monthly fields of SST, zonal and mer-
idional wind-stress and potential temperature (from which we estimated the
thermocline depth from Z20) are used. To ensure consistency with the observa-
tional datasets, and to optimise the detection of changing locations and intensity in
ENSO, model simulations were all interpolated onto a regular 1.25 × 1.25° grid in
the ocean and the atmosphere.

Examining long-term variability and changes in ENSO location and intensity.
To better account for multidimensionally varying properties of ENSO, building on
the CHI concept34,44, and other recent studies37,45,46, we use a flexible framework,
which allows for a continuum of patterns, rather relying on a more rigid bimodal
view of ENSO, to estimate the location and intensity of El Niño and La Niña events.
The location of ENSO events has been defined as the longitudinal location of the
absolute maximum of SSTa, within a strip that spans the tropical Pacific from
150°E to 60°W (excluding the warm-pool region), and averaged between 5°S and
5°N over the boreal winter months (December–February). To harmonise the
results over variable grid resolutions, and reduce the noise in the signal, the
location of the absolute maximum of SSTa has been estimated using a 2° long-
itudinal smoothing (corresponding to the resolution of the coarser observational
SST dataset; cf. Supplementary Table 1). The intensity of events is given by the
value of the absolute maximum of SSTa at that location and during the same
season. While in previous studies, a threshold for SSTa intensity was set to
±0.5 °C34,44, 1 standard deviation46, or to a convective threshold45, to qualify as an
El Niño or La Niña event, here, we classify all events greater (lower) than 0 °C as El
Niño (La Niña). This allows for a better consideration of neutral- or weak-ENSO
events, and provides smoother interevent transitions, which are crucially important
when analysing low-frequency variability. Similarly, El Niño and La Niña events,
including subsequent events, are examined separately to better account for non-
linearity between warm- and cold phase of ENSO. SSTa is calculated by removing
the mean and trend of each month, before detrending the data using a locally
weighted regression (LOESS)86, which is less sensitive to outlier than linear
regressions and better suited in the presence nonlinear trends.
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We adopted a probabilistic approach to quantify the likelihood of event location
and intensity, and the degree of agreement among diverse observational datasets.
This is achieved by estimating the probability-density function (PDF) over every
20-year segments of each observational dataset, and calculating the most likely
values (i.e., the mode in statistical terms), as well as multidataset agreements of
high probability (i.e., probability exceeding 0.01 and 0.4 for event location and
intensity, respectively). Specifically, the agreement of high probability enables us to
examine the temporal evolution of the heads of PDFs across multiple datasets,
allowing for detection of multiple heads, while limiting the influence of outliers.
Here, focus is given to the results of a 20-year running window, as it is found to
optimise the signal-to-noise ratio, but very similar results are found using 10- or
30-yr running windows (Supplementary Fig. 1). We also quantify the percentage of
disagreement between them, by comparing their respective PDF using a
Kolmogorov–Smirnov (KS) test at p= 0.05 and 0.1, using the same 20-year
running window. Significance of the variations in the most likely location and
intensity of events are then tested against the variations that would be occurring in
a random field at p= 0.05. This is achieved by replicating the above procedure
using 1000 random fields, generated through autoregressive models of order 1 with
the same mean and variance as the observational field. In addition, as the most
likely location and intensity might not always be representative of changes affecting
the tails of the distribution (or extremes), we also examine the changes in the
frequency of extreme El Niño (La Niña) events, by quantifying the 20-year average
number of events exceeding (lower than) the 90th (10th) percentile across all
datasets.

Then, we further explore the long-term variability using the 10-year most likely
location and intensity of El Niño and La Niña events. Continuous-wavelet analyses
are used to estimate the maximum power spectrum over the full length of
observational and simulated records, while accounting for temporal changes87.
Using continuous-wavelet analysis enables us to account for nonstationary
significant patches of variability, which might not be significant over the full-length
of the records, and would not be identified using fast Fourier transform.
Significance of variability patches is tested at p= 0.05, based on 1000 Monte-Carlo
simulations of the red noise-background spectrum.

Testing robustness in climate models, identifying large-scale patterns, and
implications for future scenarios. We first examine whether historical and
piControl runs, from CMIP5 and CMIP6 models, are able to reproduce a realistic
range of locations and intensities for both El Niño and La Niña events, by com-
paring the simulated PDF to multiple observational datasets. This visual compar-
ison of the PDF skewness and kurtosis (or range) is combined with two statistical
tests: (i) test for multimodality, i.e., the presence of multiple peaks on the PDF,
based on kernel-density estimators and the quantification of excess mass;88 (ii) test
for difference in the mean using a two-sided student t-test (cf. Supplementary
Fig. 1). Statistical significance of these tests is calculated using 1000 permutations.

Second, we investigate whether significant decadal variability is detectable in
climate models, by comparing the simulated maximum power spectra with
observations. We then compare the simulated magnitude of decadal variability
to the observed one using the centred ratio of standard deviation

rSD ¼ 1� sdðENSOint
loc½obs�10yrÞ

sdðENSOint
loc½sim�10yrÞ ´ 100

� �
. Statistical significance is then assessed by

performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr segment
through the course of climate simulations, as compared with the period with
significant decadal variance in the four longer-term observational SST datasets,
from which the rate of success is quantified.

Third, we compare the observed large-scale patterns associated with long-term
variability in the location and intensity of El Niño and La Niña events to historical
simulations. This consists of examining the differences in the patterns of pan-
Pacific SSTa, wind stress, and thermocline depth at the Equator (5°S–5°N), which
are computed using linear regression during composite El Niño and La Niña years,
separately. Statistical significance of the regression patterns is calculated using 1000
permutations. As illustrated in Supplementary Fig. 5, regressed SSTa patterns
associated with the changes in the location of ENSO events provide similar
information than the difference between composite of SSTa for EP- and CP events.
After comparing all the simulated patterns of pan-Pacific SSTa (Supplementary
Fig. 3), we focus on a set of climate models that represents key features from the
full range of uncertainties associated with CMIP5 and CMIP6 models in terms of
ENSO diversity. In particular, we focus on the IPSL-CM6A-LR large ensemble
model, which displayed similar mean and ranges of ENSO locations and intensity,
as well as similar decadal variance to observation. Comparisons with other models
presenting similar performance (UKESM1-0-LL), and models showing a tendency
to favour EP- or CP events (CNRM-CM6-1, MIROC6), are provided in
Supplementary Figs. 4–6.

Finally, using an extended set of climate models, including three highest- and
lowest-performing models, we examine future trajectories for ENSO diversity (i.e.,
location and intensity) using RCP8.5 and SSP5–8.5 emission scenarios, using the
same procedure as for the observational datasets. Specifically, we analyse how
decadal variations can influence detection of future changes, and how the results
differ in two contrasted simulations of the same models that only vary by their
initial conditions, and depending on model performance. Once again, highest-
performing models include models that represent similar mean and ranges of

ENSO locations and intensity, as well as similar decadal variance and climatic
background conditions, to observation during the historical period. Meanwhile,
lowest performing models are models that present a tendency to favour either EP-
or CP events, as well as diverse biases in decadal variance.

Data availability
CMIP5 and CMIP6 data are publicly available at https://esgf-index1.ceda.ac.uk. Long-
term observational SST datasets, i.e., ERSST.v5, COBESST.v2, HadSST1, and OISST.v2,
are available at https://climexp.knmi.nl. SODA.si3 and SODA.v2.2.4 are respectively
available from https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html and https://
iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4.

Code availability
The code used in this study to produce the data analysed was developed in R
programming, and can be provided upon reasonable request to BD.
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