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ABSTRACT

The objective of this study is to analyse the theoretical pricing of wind power deriva-
tives, which is important for renewable energy risk management but has a problem in
the pricing due to the illiquidity of the assets and to show the application of the the-
ory to the practical implementation of the pricing. We make three contributions to the
literature. First, to the best of our knowledge, we are the first to conduct a detailed econo-
metric analysis of the wind power futures underlying, i.e., the electricity production based
on windmills, resulting in strong support of seasonality and mean reversion in the logit
transformed wind power load factors. Second, after proposing a new model of wind power
load factors based on the econometric findings, we analyse the theoretical prices of wind
power futures and call option contracts to which the good-deal bounds pricing within an
illiquid market situation is applied as well as we show the application of the theory to
the practical pricing with the illiquidity. Third, our empirical pricing analysis shows that
theoretical wind power futures prices derived using seasonal modelling more accurately
reflect reality than those derived without seasonality compared to market observations,
resulting in the importance of seasonality modelling in theoretical wind power derivatives
pricing. Because the upper and lower price boundaries represent the selling and the buy-
ing prices in the incomplete market, the pricing of the short position is more affected by
the seasonality than the pricing of the long position. Finally, we discuss the applications
of the results obtained in this study.
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1. Introduction

Wind power has become an important production type in the German electricity market and

enjoys special status together with other renewables in the course of the “Energiewende”,

i.e., the transformation to renewable electricity production.1 With the growing economic im-

portance of wind power comes challenges in operational production planning of wind farm

owners along with incentives to hedge the related financial risks.

Wind power projects, which are thus becoming an increasingly important part of the power

industry, are subject to risks related to natural phenomena such as wind speed that varies

stochastically. Thus, risk management tools for the wind power business are needed in or-

der to make the sector sustainable. For example, during the cold wave blackout in Texas on

February 15, 2021, about 16 GW of capacity was lost from renewable energy supplies, mainly

from wind production. It is therefore indisputable that there is a strong need for weather risk

management for wind power generation. Wind power risk management products generally

have sellers and buyers, with the sellers often being the financial institutions as the risk takers

and the buyers often being the wind power producers as the risk hedgers. Therefore, it is im-

portant to share the results of research on wind power risk management methods not only with

economically-minded readers, such as researchers and practitioners in financial institutions,

who may be sellers of the risk management products, but also with technologically-minded

readers such as researchers and engineers in wind power generation companies, who need to

manage wind power risks and who may be buyers of the risk management products for future

applications.

At a background to these market and industry developments, the European Energy Ex-

1Although wind power generation is an immediate and effective measure against global warming, subsidies
such as the German feed-in tariff have recently been reduced because the amount of wind power has rapidly
increased. New financing in the wind energy sector during 2010 - 2019 in Europe peaked at 32.7 ebn in 2016
and was at 19.1 ebn in 2019 (WindEurope, 2020).
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change (EEX) started offering wind power futures in October 2016. Wind power futures are

designed to allow market participants to hedge the volume risks that are related to the elec-

tricity generation by windmills. The settlement is conducted financially and the underlying

is a model-based load factor calculated by EuroWind, which uses meteorological data from

the German Weather Office (DWD) and the Central Institution for Meteorology and Geody-

namics (ZAMG) in combination with a turbine database to estimate wind power generation

in Germany and Austria. The settlement is determined by the average wind power load factor

times the total number of hours within the respective delivery period. EEX offered contracts

with weekly, monthly, quarterly, and yearly delivery periods.2

In order to actually trade wind power futures on the EEX, it is necessary to determine a

theoretical price, but there are two obstacles to reaching this goal. The first of these is the

modelling of the wind power load factor, which is the underlying variable of the wind power

futures contract. This requires a detailed econometric analysis using historical wind load factor

data. Secondly, the low illiquidity of the wind power futures market makes pricing difficult

since the market incompleteness of the illiquid contract needs to be taken into account in the

pricing approach.

In this paper, we aim to deal with these two topics. We first conduct an econometric anal-

ysis of the underlying variable of the wind power futures contract, the amount of electricity

produced by wind. We then propose a new model of wind power load factors based on our

econometric findings, and analyse theoretical prices of wind power futures and option con-

tracts by suggesting a valuation methodology which is based on the concept of good-deal

bounds for incomplete markets.

2The wind power futures were delisted at EEX in August 2020 due to the split of the Austrian and German
bidding zones and due to very low trading volumes. We believe that these low trading volumes do not reflect
the fact that there is no demand for such a contract, but mostly the reluctance of market participants to trade
something which is very difficult to assess. As such, we believe that our study might contribute to a better
understanding of wind power futures and their acceptance in the electricity industry.

2



In the current market environment, the liquidity of wind power derivatives is very low, and,

thus, an appropriate theoretical framework is needed. The pricing of weather derivatives has

been previously examined in the literature. According to asset pricing theory, the price of an

asset is represented by the expected value of the stochastic cash flows it will generate in the fu-

ture, discounted by a stochastic discount factor (SDF). When pricing traded financial assets in

liquid markets it is safe to assume market completeness, which yields a uniquely determined

SDF. However, the market for weather derivatives in general, and for wind power futures in

particular, is highly illiquid and thus the SDF is not uniquely determined. To overcome this

problem, Cao and Wei (2004) calculate the price of temperature derivatives based on a SDF

obtained from the assumed utility function and the optimal consumption of a representative

agent. Davis (2001) analyses derivatives written on accumulated heating degree days using

the SDF of an agent with a log utility function whose optimal consumption is proportional

to the payoff of the derivatives. Brockett, Wang, Yang, and Zou (2006) use mean–variance

utility and apply the indifference pricing approach to the valuation of weather derivatives.

Similarly, Lee and Oren (2009) derive an equilibrium pricing model for weather derivatives in

a multi-commodity setting, but it is assumed that all market participants are expected utility

maximisers. While these methods are powerful for pricing illiquid assets, they need assump-

tions about the specific utility function of the trader. Using a different approach, Platen and

West (2004) propose a fair pricing of weather derivatives where the growth optimal portfolio is

used as a benchmark or numeraire. However, this also makes a strong assumption with respect

to the existence of the numeraire. In contrast, the good-deal bounds approach of Cochrane and

Saa-Requejo (2000) does not rely on any such assumptions and only places exogenous con-

straints on the variance of the stochastic discount factor. Kanamura and Ōhashi (2009) apply

this approach to summer day options.

However, the pricing of wind power futures has not received a lot of attention in the lit-

erature, probably because the wind power futures were only introduced at the EEX for the
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first time in 2016. Benth and Šaltytė Benth (2009) consider wind speed futures and suggest a

pricing approach under the risk neutral measure where daily average wind speeds are dynam-

ically modelled by a continuous-time autoregressive model with seasonal mean and volatility.

Alexandridis and Zapranis (2013) present a pricing formula of futures contracts written on the

cumulative average wind speed and the Nordix wind speed index also under the risk neutral

measure. Benth and Pircalabu (2018) derive prices for wind power futures in the framework

of no-arbitrage pricing by proposing a non-Gaussian Ornstein–Uhlenbeck model for the wind

power load factor series. Finally, Benth, Di Persio, and Lavagnini (2018) construct and price a

European put-type quanto option in the wind energy markets under the assumption of the iden-

tification of the risk neutral measure with the physical measure that allows the buyer to hedge

against low prices and low wind power production. These studies assume complete markets

whose liquidity is high. But in the case of wind power futures liquidity is low and, thus, the

market is incomplete. As a way to avoid using very strong assumptions such as risk-neutral

valuation, Gersema and Wozabal (2017) propose a stylised equilibrium pricing model featur-

ing two representative agents and analyse equilibrium prices as well as the mechanics behind

risk premia for wind power futures by using monthly EEX and Nasdaq OMX wind futures.

However, their model is based on Bessembinder and Lemmon (2002) where it is assumed that

the agents’ expected utility is linearly dependent on the expected profit and the variance. This

approach requires assumptions about the utility function. Recently Rodrı́guez, Pérez-Uribe,

and Contreras (2021) designed and priced an up-and-in European wind put barrier option us-

ing Monte Carlo simulation as the average value of the simulations. Hess (2021) proposed a

new model for the pricing of wind power futures written on the wind power production in-

dex under a risk neutral measure. The existing theoretical pricing methods usually assume

complete markets which exhibit high liquidity. However, the market for wind power futures is

incomplete due to its low liquidity. In this light, it is worthwhile to apply the good-deal bounds

pricing method of Cochrane and Saa-Requejo (2000) to wind power futures. This approach is
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based on relatively weak assumptions that only place exogenous constraints on the variance of

the stochastic discount factor. Furthermore, the existing literature mentioned above including

recent studies (Rodrı́guez, Pérez-Uribe, and Contreras, 2021; Hess, 2021) does not conduct

detailed empirical analyses of wind power load factors, which are the underlying variables of

wind power futures contracts. Since wind power futures prices are based on wind power load

factors, such an analysis is one of important applied value because one cannot obtain correct

wind power futures prices without an appropriate stochastic model.

This paper focuses on theoretical wind power derivatives pricing in an incomplete market

setting, which takes the market illiquidity currently observed in the market into account, in

order to determine theoretical prices of wind power futures and wind power call options newly

designed by incorporating the seasonality of wind power generation. The contribution of our

paper is thus threefold. To support our modelling, for the first time, we first conduct a detailed

econometric analysis of the wind power load factor which is the underlying of the wind power

futures. Second, based on the econometric findings, we conduct a pricing analysis of wind

power derivatives by providing a pricing model of wind power derivatives based on good-deal

bounds within an incomplete market setting as well as we show the application of the theory

to the practical implementation of the pricing. Third, we illustrate the adverse consequences

of ignoring seasonality in the model and discuss seasonality model risk premiums by putting

our model to the data, using the wind power load factor to estimate the model parameters, and

then obtaining wind futures and call option good-deal price boundaries.

The remainder of this paper is organised as follows. Section 2 conducts an econometric

analysis of the wind power futures underlying time series, i.e., the amount of electricity pro-

duction from windmills. Section 3 proposes a new model of wind power load factors based on

the empirical findings and derives the partial differential equation of wind power derivatives

price boundaries in theory based on the idea of the good-deal bounds in incomplete markets.

Section 4 presents an empirical pricing analysis to calculate theoretical wind power derivatives
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price boundaries and examines seasonality model risk premiums driven by the differences be-

tween wind power derivatives prices with and without seasonality in the model as well as it

shows the application of the theory to the practical implementation of the pricing and discusses

the application of the results obtained in this study. Section 5 concludes.

2. Econometric Analysis

2.1. Data

The wind index data used in this paper was obtained from Eurowind. The index is reported on

an hourly basis covering the period of January 1980 through December 2017 and represents

the fraction of wind power production relative to total capacity, i.e., it is bounded between 0

and 100%. This index is referred to as “a wind power load factor”. The wind power load factor

is strongly influenced by weather conditions since the amount of electricity produced depends

on the wind speed. The minimum and maximum of the hourly series is 0.13% and 77%, re-

spectively. To match the delivery periods of the futures contracts, the index is aggregated to

weekly and monthly means. Additionally, the daily mean series is considered, since it pro-

vides further insights into the behaviour of the index. Table 1 presents descriptive statistics of

the daily average wind power load factor (DWPLF), of the weekly average wind power load

factor (WWPLF), and of the monthly average wind power load factor (MWPLF). The time

series mean is 22.29% and the standard deviation is 14.61, 10.27, and 7.02 with 13,880, 1,983

and 456 observations for the daily, weekly, and monthly series, respectively. All three series

are left-skewed and normality is rejected in every case. The empirical distribution functions

are shown in Figure 1.

Noticeable, the distributions of the considered aggregations of the wind power index have

similar characteristics as those of wind speed data in existing studies (e.g., Brown, Katz,
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Mean Median Max Min SD Skew Kurt AD

DWPLF 22.29 18.34 75.08 0.88 14.61 1.17 0.93 ≤ 0.01
logit DWPLF -1.44 -1.49 1.10 -4.72 0.88 0.25 -0.17 ≤ 0.01

deseas DWPLF 0 -0.03 2.44 -3.56 0.83 0.08 -0.15 ≤ 0.01

WWPLF 22.29 20.11 62.42 5.48 10.27 1.03 0.74 ≤ 0.01
logit WWPLF -1.34 -1.38 0.51 -2.85 0.59 0.34 -0.17 ≤ 0.01

deseas WWPLF 0 -0.01 1.48 -1.68 0.52 0.01 -0.17 0.06

MWPLF 22.29 20.99 48.96 9.54 7.02 0.98 0.92 ≤ 0.01
logit MWPLF -1.29 -1.33 -0.04 -2.25 0.39 0.44 0.06 ≤ 0.01

deseas MWPLF 0 0.00 0.85 -0.91 0.27 0.14 0.32 0.1

Table 1. Descriptive Statistics
This table presents basic descriptive statistics. Reported are the mean, median, maximum, minimum, standard

deviation, skewness, and kurtosis. To check for normality the test following Anderson and Darling (1952) is
used. The p-values are reported in the column AD.

and Murphy, 1984; Bivona, Bonanno, Burlon, Gurrera, and Leone, 2011; Alexandridis and

Zapranis, 2013). In the literature, several distributions have been fitted to average hourly

wind speed data, including the gamma distribution (Sherlock, 1951), the inverse Gaussian

distribution (Bardsley, 1980), the squared normal distribution (Carlin and Haslett, 1982), log-

normal distributions (Luna and Church, 1974; Torres and De Francisco, 1998), the Chi-square

(Dorvlo, 2002), and the Weibull distribution (Hennessey, 1978; Brown, Katz, and Murphy,

1984; Akpinar and Akpinar, 2005; Torres, Garcia, De Blas, and De Francisco, 2005; Bivona,

Bonanno, Burlon, Gurrera, and Leone, 2011, among others). Among these, the Weibull distri-

bution has proven itself to fit the average hourly wind speed data best.

Although it is tempting to transfer the results of these studies on wind speeds to the wind

power load factors, one has to keep in mind that, while being related, these are different things,

wind speed vs. the amount of electricity produced from windmills. Moreover, the support of

the wind power load factor, in the following denoted by Lt , is bounded from above by 1 (or

100%), whereas wind speeds are not. To overcome this problem, we consider a simple and

well known data logit transformation. The resulting variable can be modelled continuously
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Figure 1. Empirical Distributions

for the real numbers, which guarantees that the back-transformed fitted values lay within the

interval [0, 1]. The transformation function is given by

Xt =−log
(

1
Lt
−1
)
, (1)

where Xt denotes the respective series, i.e., DWPLF, WWPLF, and MWPLF for the daily,

weekly, and monthly series, respectively. Summary statistics of the logit-transformed series

can also be found in Table 1. Although the transformed series are more symmetric, normality

is still rejected at any common significance level. In addition to the transformation, the daily
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series are roughly split into three equally long periods to fit and analyse models independently

for each subsample. The considered periods are 1970–1992, 1993–2005, and 2006–2017.
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Figure 2. Correlogram of Raw Series
This figure shows the correlogram of the raw series DWPLF, WWPLF, MWPLF (from top to bottom).
For the logit-transformed series the correlograms exhibit similar patterns.

2.2. A mean model for wind power load factors

Figure 2 shows the empirical autocorrelations of DWPLF, WWPLF, and MWPLF. It can be

seen that all series have a cyclical pattern in the autocorrelations caused by annual seasonality

in the data. The pattern is preserved in the logit-transformed data. The seasonal pattern is

modelled continuously throughout the year by fitting the Fourier series given by

Sτ
t = aτ

0 +
K

∑
k=1

aτ
k sin

(
2πtk
hτ

)
+bτ

k cos
(

2πtk
hτ

)
, (2)
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where Sτ
t is the annual seasonal component of time series τ and aτ

0 is the time series average.

Since we have daily, weekly and monthly data, hτ is chosen to be 365.25, 52.179, and 12,

respectively. K is the number of Fourier terms and for the following is set to be 1. The har-

monic regression is preferred to an estimation using dummy variables since fewer parameters

have to be estimated. We estimate the time series average aτ
0 and the coefficients aτ

1 and bτ
1

using least squares. The estimated coefficients along with their standard errors can be found

in Table 2. A time series plot for the daily, weekly and monthly series along with the fitted

seasonal functions and the residual series can be found in Figure 3. We also present summary

statistics for the deseasonalised series in Table 1.

âτ
0 âτ

1 b̂τ
1

logit DWPLF -1.439 0.048 0.406
(≤ 0.001) (≤ 0.001) (≤ 0.001)

logit WWPLF -1.339 0.072 0.391
(0.012) (0.016) (0.016)

logit MWPLF -1.289 0.145 0.373
(0.016) (0.018) (0.018)

Table 2. Seasonal Adjustment

2.3. Results

In each estimation, the residuals resemble the deseasonalised series, which are in the following

modelled with the class of stationary ARMA(p,q) processes.3 To fit the ARMA(p,q) models

to the deseasonalised series we use the method of maximum likelihood. Further, we estimate

the optimal number of p and q with the Bayesian information criterion (BIC). Note that the

monthly series does not show a significant dependency structure and hence no time series

model is fitted. In addition to the model chosen by the information criterion, AR(1)-models
3Standard unit root tests are applied to all residual series, which are found to be stationary.
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Figure 3. Time Series Plots
This figure shows the time series plot of the logit-transformed series DWPLF (A), WWPLF (B) and
MWPLF (C), their seasonal component (thick black line), and their seasonal adjusted series (below
each original series).
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LB5 LB12 LB2
5 LB2

12 AD KPSS

Daily

full sample
ARMA(2,2) 0.11 0.21 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.24
AR(1) ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.37
1980 - 1992
ARMA(1,1) 0.04 0.02 0.03 0.10 0.02 0.25
AR(1) ≤ 0.01 ≤ 0.01 0.01 0.04 0.11 0.49
1993 - 2005
ARMA(1,3) 0.21 0.80 ≤ 0.01 ≤ 0.01 0.02 0.62
AR(1) ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.03 0.62
2006 - 2017
ARMA(1,1) 0.07 0.06 0.14 0.13 0.03 0.47
AR(1) ≤ 0.01 ≤ 0.01 0.15 0.21 0.13 0.71

weekly MA(1) 0.93 0.95 ≤ 0.01 ≤ 0.01 0.11 0.80
monthly - 0.72 0.82 0.02 0.06 0.10 0.38

Table 3. Test Results

are fitted to the daily series and its subperiods, as the AR(1)-model is particularly simple and

parsimonious.

Residuals are then investigated, to see whether they are white noise. To test for remain-

ing serial correlation we apply the Ljung–Box (LB) test (Ljung and Box, 1978). Addition-

ally, we also check for autoregressive conditional heteroscedasticity by applying the same test

to the squared residuals. Lastly, to assess the assumption of normally distributed errors we

employ the Anderson–Darling (AD)-test (Anderson and Darling, 1952) and the KPSS-test

(Kwiatkowski, Phillips, Schmidt, and Shin, 1992). Table 3 presents the p-values for each

test and model, respectively. For the daily series, the information criterion chooses higher-

order ARMA models, but the LB test finds evidence for remaining dependencies for the

ARMA(1,1) model estimated for the subperiod 1980 through 1992. However, the highest

remaining residual autocorrelations are below 0.025, so that although some remaining depen-

dencies are found, we consider the model for reasons of parsimony. Similarly, the LB test

rejects the null for all considered AR(1) models at the 1%-significance level. The remaining

significant autocorrelations are larger compared to those of the higher-order ARMA models
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and vary between 0.05 and 0.1 within the first two lags. Thus, in the spirit of parsimony

and to avoid overly complex pricing models with many free parameters, an AR(1) might be

preferred. Regarding the weekly and monthly data, the LB test does not find evidence for

remaining correlation in the data. Further discussions regarding the volatility process are pro-

vided in Appendix A.

3. The Derivatives Pricing Model

3.1. A new model of wind power load factors

The econometric analysis in Section 2 supports the modelling framework in which the logit

transformed wind load factors follow a mean-reverting process with a mean that has a sinu-

soidal yearly cycle. Let Xt represent the inverse transformation of the logit model for the load

factor Lt as in Equation (1). We propose a new model of wind power load factor (Lt) in which

Xt follows a mean-reverting process in continuous time with seasonality:

dXt = (µX(t)−λX Xt)dt +σX dvt , (3)

µX(t) = θ1 +θ2 sin(ωt)+θ3 cos(ωt), (4)

with vt being a standard Brownian motion. Note that Lt is an increasing function of Xt .
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3.2. Design of wind power derivatives

To determine theoretical prices of wind power derivatives, we define a new variable: It , the

accumulated average load factor within the contract period, which is expressed by

It =
∫ t

0
Lτdτ. (5)

The futures price D(S,X , I,T )4 is in theory determined by the underlying average wind load

factor per contract period, which is represented by the average of It at maturity T :

D(S,X , I,T ) =
IT

T
. (6)

We also consider a European wind power call option with strike price K whose theoretical

price D(S,X , I,T ) based on a wind power futures as underlying is given by:5

D(S,X , I,T ) = max
(

IT

T
−K,0

)
. (7)

Note that a quoted 1 percentage point wind power load factor is equivalent to 1 e/h.

3.3. Good-deal bounds pricing for wind power derivatives

According to asset pricing theory, the price of an asset, such as a wind power derivative, is

expressed as the expected value at the present time of the future cash flows generated by

the asset, discounted by the SDF. In the case of wind power derivatives, the future cash is

expressed in terms of D(S,X , I,T ). Therefore, the question is how to characterise and model

4As explained in the next subsection, since good-deal bounds pricing uses the stock price S as the asset of a
complete market, D includes S.

5Wind power call options have not been traded in the market so far. But when the liquidity of wind power futures
increases, it can be expected that the options will be introduced at the market.
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the SDF. We use the good-deal bounds method as one of the methods for characterising the

SDF, especially as it is applicable in illiquid markets and does not require strong assumptions

such as specific utility functions. Following Kanamura and Ōhashi (2009), we derive good-

deal bounds pricing formulas for wind power futures and options. In order to characterise

the SDF of good-deal bounds, a highly liquid market, i.e., a complete market, is required as

a reference for the illiquid market of wind power derivatives. We assume that the complete

market asset is a stock index (St) whose price follows a simple lognormal process:

dSt

St
= µsdt +σsdwt (8)

where both µs and σs are constant and wt is again a standard Brownian motion. Note that under

this formulation, the market price of risk φ for wt is given by φ = µs−r
σs

where r is a risk free rate

and that E[dwtdvt ] = ρX dt. Following the approach outlined in Kanamura and Ōhashi (2009),

we calculate the lower price boundaries of a wind power derivative Dt at time t by using the

good-deal bounds pricing. The lower boundary of the derivatives price can be obtained by

selecting the stochastic discount factor (SDF) Λt in an incomplete market so that the total

present expected value of future cash flows of xc
s and xc

T discounted by the SDF, is minimised.

Equation (10) represents the stochastic process of Λt which is the sum of the stochastic process

of the complete market SDF, Λ∗t , as shown in Equation (11) and the incomplete market noise

dzt with v as a volatility parameter. Note that dvt = ρX dwt +
√

1−ρ2
X dzt . Equation (12) is

the good-deal condition that limits the SDF with an exogenous Sharpe ratio of A.

Dt = min
{Λs,t≤s≤T}

Et

[∫ T

t

Λs

Λt
xc

sds+
ΛT

Λt
xc

T

]
, (9)

s.t.
dΛt

Λt
=

dΛ∗t
Λ∗t
− vdzt , (10)

dΛ∗t
Λ∗t

=−rdt−φdwt , (11)
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1
dt

Et

[
dΛ2

t

Λ2
t

]
≤ A2. (12)

Similarly, the upper boundaries of the prices are obtained by replacing the minimisation with

the maximisation in Equation (9). Suppose that the maximum Sharpe ratio after introducing

a new derivative is given by A. Suppose also that the stock price St and the wind power load

factor related variable Xt are given by Equations (8) and (3), respectively. Denote by Xt , the

wind power load factor related variable that determines the wind power derivatives payoff IT

at maturity T . Then, the good-deal bounds upper and lower price boundaries of wind power

load factor derivatives are given by the solutions of the following partial differential equation:

−rD+
∂D
∂ t

+
1
2

σ
2
s S2 ∂ 2D

∂S2 +
1
2

σ
2
X

∂ 2D
∂X2 +ρX σsσX S

∂ 2D
∂X∂S

+
dI
dt

∂D
∂ I

=−rS
∂D
∂S

+

(
µs− r

σs
ρX σX −µX(t)+λX Xt +η

√
A2−

(
µs− r

σs

)2

σX

√
1−ρ2

X sgn
(

∂D
∂X

))
∂D
∂X

(13)

with the terminal payoff of the futures and the call option in Equations (6) and (7), respectively,

and where η = +1 and −1 generate the lower and upper price boundaries, respectively. K

represents the strike price of the call option. Note that we set xc
s = 0 for European-type wind

power derivatives pricing. The details of the derivation of Equation (13) from Equations (9)

to (12) are offered in Appendix A of Kanamura and Ōhashi (2009). First, Equation (6) or

(7) is set to the payoff at t = T (> 0), the maturity of the derivative. The partial differential

Equation (13) is then discretised and solved backward from t = T in time to obtain the price

of the derivative at t = 0 numerically by using the finite difference method. Note that from

Equation (5) we have dI
dt = L in Equation (13). Thus the upper and lower price boundaries of

wind power load factor derivatives Dt including wind power futures and call options can be

obtained by good-deal bounds. It is important to notice that as the practical implementation of

good-deal bounds, Cochrane and Saa-Requejo (2000) suggest that traders can use the bounds

as buy and sell points. Therefore, the upper and lower boundaries of the wind power derivative
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price obtained in this calculation correspond to the selling price and the buying price of the

wind power derivative for the seller and the buyer, respectively. Lastly note that since the

marginal costs of wind power are effectively zero, wind power is at the very beginning of

the merit order curve. Therefore, time-varying demand does not really matter as long as it is

higher than wind capacity.

Based on the theory of Section 3 above, after estimating the model parameters using data,

the next section will conduct pricing analysis of wind power derivatives as well as show the

application of the theory of wind derivatives pricing to the actual implementation of the pricing

with the illiquidity.

4. Empirical Pricing Analysis

4.1. Model parameter estimation and wind power derivatives pricing

We use data covering the period from January 1, 2010 to December 31, 2017. The hourly wind

index data is transformed to the daily level by using the simple average. We use daily stock

price index data of the major German stock index, DAX, which is obtained from Bloomberg.

We now estimate the parameters of the wind power load factor model. Good-deal pricing eval-

uates the risk and return in the incomplete market from the wind power load factor by reference

to the relationship between the risk and return of the German stock market. Thus, simultane-

ous estimation of the stock price that forms a complete market and the logit-transformed wind

power generation load factor that forms an incomplete market is required. The discretised

stochastic process of the stock index is given by

∆ logSt = (β0−
1
2

σ
2
1 )+ ε1t , (14)
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and the discretised model of Xt , the inverse transformation of the logit model for the load

factor, is given by

∆Xt = α0 +α2 sin(ωt)+α3 cos(ωt)−α1Xt + ε2t . (15)

Note that εi = (ε1t ,ε2t)∼ N(µε ,Σε), µε = (0,0), and Σε =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. We simul-

taneously estimate the parameters by the method of maximum likelihood. The results are

reported in Table 4. According to the standard errors in Table 4, σ1, α0, α1, σ2, and α3 are sta-

tistically significant. Note that the results capture the mean reversion of the logit-transformed

Model Parameters β0 σ1 α0 α1 σ2 ρ α2 α3

Estimates 0.0003 1.036E-02 -0.586 0.396 0.642 -0.011 0.017 0.163
Standard Errors 0.0002 1.324E-04 0.013 0.007 0.009 0.019 0.018 0.020
Loglikelihood 6.356E+03

AIC -1.270E+04
SIC -1.271E+04

Table 4. Model Parameter Estimation with Seasonality

wind power load factor deviation from the mean because the estimate of α1 (0.396) is greater

than 0 and less than 1. The parameters (µs, σs, λX , σX , ρX , θ1, θ2, θ3) of the continuous-time

models in Equations (8) and (3) are obtained by integrating Equations (8) and (3) from t to

t +1 and comparing the coefficients with the corresponding discrete-time models. We obtain
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µS σS λX σX ρX θ1 θ2 θ3

0.0003 0.0104 0.5047 0.8085 -0.0115 -0.7465 0.0236 0.2079

Table 5. Continuous-Time Model Parameters with Seasonality

the following results:

µs = β0, σs = σ1,

λX =− ln(1−α1), σX = σ2

√
2ln(1−α1)

(1−α1)2−1
, ρX =

σ1σ2

σsσX

λX

1− e−λX
ρ,

θ1 = (λX α0)
1

1− e−λX
, θ2

θ3

=
1

B2
1 +B2

2

 λX B1 +ωB2 −(ωB1−λX B2)

ωB1−λX B2 λX B1 +ωB2

 α2

α3

 . (16)

Note that B1 = cos(ω)− e−λX and B2 = sin(ω) where we assume ω = 2π/365.25. Table 5

reports the conversion results.

We now numerically compute theoretical wind power futures prices by using the partial

differential equation in Equation (13) with the terminal payoff in Equation (6). A quoted 1

percentage point wind power load factor is equivalent to 1 e/h. For simplicity, we assume

the risk free rate to be 0.00004 (1%/year). We calculate the wind power futures price as of

December 31, 2017 with maturity January 31, 2018 as an example of peak season wind power

generation: Equation (13), when discretised, becomes a relational equation of wind power

futures prices connecting time t and time t + 1 for any time t. Since the payoff of the wind

power futures at maturity is predetermined by the contract in Equation (6), the current price

of the wind power futures as of December 31, 2017 can be obtained by solving backward for

time using Equation (13) from the value at maturity as of January 31, 2018. Figure 4 shows the

lower boundary of the wind power futures price when the incomplete market demands three

times the Sharpe ratio (A = 3φ ) in Equation (12). It can be seen that the impact of the initial
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Figure 4. Wind power futures lower price bound-
ary on December 31, 2017 for January 31, 2018 de-
livery. Note: A = 3φ .
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Figure 5. Wind power futures price boundaries on
December 31, 2017 for January 31, 2018 delivery.
Note: Dax St is 11,400 as an example.

stock price on the lower boundary of the wind power futures price is limited. Figure 5 shows

the results for the case where the initial stock price is fixed at 11,400 and A = φ (No wind

power risk premium), 2φ and 3φ , respectively. As a practical implementation of good-deal

bounds, we were able to calculate the selling price, expressed as an upper price boundary,

and the buying price, expressed as a lower price boundary, in the illiquid wind power futures

market. In addition, we observe that the price boundary level of the wind power futures price

changes according to the level of the Sharpe ratio, which represents the total return sought by

the market participants due to the low liquidity of the wind power futures. Since the logit-

transformed wind power load factor is positively related to the load factor of wind power

generation, the futures price increases as the load factor of wind power generation increases.

Considering that the final settlement price of wind power futures released by EEX for January

2018 is 35.63 (EEX, 2018a), it can be seen that the model provides a similar result. We also

compute theoretical wind power futures prices as of June 30, 2018, with delivery July 31,

2018 as an example of the off-peak season of wind power generation. The results are reported

in Figures 6 and 7. Again, considering that the logit-transformed wind power load factor is

positively related to the load factor of wind power generation, the futures price increases as
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Figure 6. Wind power futures lower price bound-
ary on June 30, 2018 for July 31, 2018 delivery.
Note: A = 3φ .
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Figure 7. Wind power futures price boundaries on
June 30, 2018 for July 31, 2018 delivery. Note: Dax
St is 11,400 as an example.

the load factor of wind power generation increases which is the same as the example of peak

season of wind power generation in Figures 4 and 5. The settlement price of wind power

futures released by EEX for July 2018 was 10.48 (EEX, 2018b). It can be seen that the model

is not too far from this observed price. Taking into account that wind resources in the summer

of 2018 were 20% to 30% down compared to the normal years because of the heatwave in

Western Europe, we can safely say that the results track well the seasonality effect of wind

power futures.

We now consider the calculation of call options written on the wind power futures. We

numerically calculate theoretical wind power call option prices on December 31, 2017 with

delivery in January 31, 2018 by using the partial differential equation in Equation (13) with

the terminal payoff in Equation (7) where we set the strike price to K = 20%: Equation (13),

when discretised, becomes a relational equation of wind power call option prices connecting

time t and time t +1 for any time t. Since the payoff of the wind power call option at maturity

is predetermined by the contract in Equation (7), the current price of the wind power call

option as of December 31, 2017 can be obtained by solving backward for time using Equation

(13) from the value at maturity as of January 31, 2018. Figure 8 shows the lower boundary of
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Figure 8. Wind power call option lower price
boundary on December 31, 2017 for January 31,
2018 delivery. Note: A = 3φ .

-5 -4 -3 -2 -1 0 1 2

Initial Converted Wind Power Load Factor (X
t
)

6

8

10

12

14

16

18

Upper Boundary Price (2*SR)

Upper Boundary Price (3*SR)

No Wind Power Risk Premium Price

Lower Boundary Price (2*SR)

Lower Boundary Price (3*SR)

Figure 9. Wind power call option price bound-
aries on December 31, 2017 for January 31, 2018
delivery. Note: Dax St is 11,400 as an example.

the wind power call option price when the incomplete market demands three times the Sharpe

ratio (A = 3φ ) in Equation (12). It can be seen that the impact of the initial stock price on

the lower boundary of the wind power call option price is limited. Figure 9 shows the results

for the case where the initial stock price is fixed at 11,400 and A = φ (No wind power risk

premium), 2φ and 3φ , respectively. As a practical implementation of good-deal bounds, we

were able to calculate the selling price, expressed as an upper price boundary, and the buying

price, expressed as a lower price boundary, in the illiquid wind power call option market. In

addition, we observe that the price boundary level of the wind power call option price changes

according to the level of the Sharpe ratio, which represents the total return sought by the

market participants due to the low liquidity of the wind power call option. One can observe

that the option price increases as the wind load factor increases because the probability of

exceeding 20%, i.e., −1.386 in Xt of the strike increases. As a second example during the

off-peak period, we consider theoretical wind power call option prices on June 30, 2018 to be

delivered at July 31, 2018. Figures 10 and 11 show similar results as for the peak wind power

season in Figures 8 and 9 in the sense of the relationship of the prices and wind power load

factors. However, the results also show that the option prices in the off peak are smaller than
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Figure 10. Wind power call option lower price
boundary on June 30, 2018 for July 31, 2018 deliv-
ery. Note: A = 3φ .
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Figure 11. Wind power call option price bound-
aries on June 30, 2018 for July 31, 2018 delivery.
Note: Dax St is 11,400 as an example.

the option prices in the peak period. This result reflects the importance of the inclusion of

seasonality modelling in wind power derivatives.

4.2. Seasonality model risk premium

In order to further examine the importance of seasonality modelling in wind power derivatives,

we consider the difference in the theoretical prices of wind power derivatives with and without

seasonality modelling. We define the seasonality model risk premium (SMRP) by

SMRPt = Dw/S−Dw/o S (17)

where superscripts w/S and w/oS represent wind power futures prices with and without sea-

sonality, respectively. For wind power futures prices without seasonality, we estimate the

converted wind load factor without seasonality in Equations (14) and (15) assuming that

α2 = α3 = 0.

We report the estimated SMRP in Figures 12 and 13 by using theoretical wind power futures
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Model Parameters β0 σ1 α0 α1 σ2 ρ

Estimates 0.0003 1.036E-02 -0.518 0.350 0.651 -0.007
Standard Errors 0.0002 1.336E-04 0.013 0.007 0.009 0.019
Loglikelihood 6.315E+03

AIC -1.262E+04
SIC -1.263E+04

Table 6. Model Parameter Estimation without Seasonality: According to the corresponding
standard errors, σ1, α0, α1, σ2, and α3 are statistically significant.

µS σS λX σX ρX θ1

0.0003 0.0104 0.4314 0.7951 -0.0075 -0.6380

Table 7. Continuous-Time Model Parameters without Seasonality

prices on December 31, 2017 to be delivered on January 31, 2018 and on June 30, 2018 to

be delivered on July 31, 2018, as examples of peak and off-peak wind power generation,

respectively. Figure 12 suggests that when the load factor of wind power generation is low,

the SMRP is big, and vice versa. In Germany, the load factor of wind power generation is high

and low in winter and summer, respectively. Thus, when hedging the wind power load factor

in the summer season with futures, it is important to consider the seasonality when modelling

the load factor from the viewpoint of the SMRP. The good-deal bounds can be interpreted as

the upper price limit being the selling price of the seller and the lower price limit being the

buying price of the buyer. Having this interpretation in mind, and observing in Figure 12 that

the upper price boundary premium is larger than the lower price boundary risk premium, one

can conclude that sellers should pay more attention to seasonal model risk. The SMRP in

Figure 13 takes on negative values because the seasonality reduces the futures prices below

the price of model without seasonality. In particular, the absolute value of the upper price

limit is larger than the absolute value of the lower price limit. This underlines the importance

of properly modelling seasonality for sellers. Since financial institutions are likely to be the

main sellers of wind power derivatives, the result provides an example of the importance of

appropriate models of derivative pricing with seasonality by financial institutions.
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Figure 12. Seasonality model risk premium on
December 31, 2017 for January 31, 2018 delivery.
Note: Dax St is 11,400 as an example and A = 2φ .
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Figure 13. Seasonality model risk premium on
June 30, 2018 for July 31, 2018 delivery. Note: Dax
St is 11,400 as an example and A = 2φ .

4.3. Applications

In this section, we discuss the applications of the results obtained in this study from three

points of view. The results show, firstly, that the futures prices observed in the EEX market

and the calculated futures prices are almost the same price level. As a robust model for wind

power derivatives pricing, our pricing method can be applied to the pricing of new wind power

derivatives, including the wind power options presented so far in this paper. The method can be

applied to the development of tailor-made risk hedging products according to the risk hedging

needs of wind power producers, e.g., a put option to hedge the risk of low wind power capacity

utilisation and a call option to hedge the risk of wind power production restriction in case of

overcapacity. In order to show the case of a put option, we design and price the following put

option. We consider a European wind power put option with strike price K whose theoretical

price D(S,X , I,T ) based on a wind power futures as underlying is given by:

D(S,X , I,T ) = max
(

K− IT

T
,0
)
. (18)
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Figure 14. Wind power put option lower price
boundary on December 31, 2017 for January 31,
2018 delivery. Note: A = 3φ .
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Figure 15. Wind power put option price bound-
aries on December 31, 2017 for January 31, 2018
delivery. Note: Dax St is 11,400 as an example.

Note K = 0.45 as an example. Figure 14 shows the lower boundary of the wind power put

option price when the incomplete market demands three times the Sharpe ratio (A = 3φ ) in

Equation (12). It can be seen that the impact of the initial stock price on the lower boundary

of the wind power put option price is limited. Figure 15 shows the results for the case where

the initial stock price is fixed at 11,400 and A = φ (No wind power risk premium), 2φ and 3φ ,

respectively. We additionally show an example of a wind power long strangle option which is

used for a hedger who wants to hedge both the risk of low wind power capacity utilisation and

the risk of wind power production restriction in case of overcapacity.

D(S,X , I,T ) = max
(

K1−
IT

T
,
IT

T
−K2,0

)
. (19)

Note K1 = 0.3 and K2 = 0.35 as an example. Figure 16 shows the lower boundary of the wind

power long strangle option price when the incomplete market demands three times the Sharpe

ratio (A = 3φ ) in Equation (12). It can be seen that the impact of the initial stock price on

the lower boundary of the wind power long strangle option price is limited. Figure 17 shows

the results for the case where the initial stock price is fixed at 11,400 and A = φ (No wind
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Figure 16. Wind power long strangle option lower
price boundary with K1 = 0.3 and K2 = 0.35 on
December 31, 2017 for January 31, 2018 delivery.
Note: A = 3φ .
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Figure 17. Wind power long strangle option price
boundaries with K1 = 0.3 and K2 = 0.35 on Decem-
ber 31, 2017 for January 31, 2018 delivery. Note:
Dax St is 11,400 as an example.

power risk premium), 2φ and 3φ , respectively. As one of the applied values of this research,

considering the low liquidity of the wind power derivatives market, we were able to show

practical examples of the design and pricing of a put option hedging the downward risk of

wind power operation and a long strangle option hedging both the upward and downward risk

of wind power operation.

The results of the present calculations show, secondly, that upper and lower boundaries can

be obtained on the prices of wind power derivatives, reflecting the illiquidity of the wind power

derivatives market. The upper boundary is considered to be the selling price and the lower

boundary is considered to be the buying price, which can be applied to the derivation of the

price in practice for each seller and buyer, respectively. If the seller of wind power derivatives

is a financial institution and the buyer of wind power derivatives is a wind power producer, the

upper price boundary obtained in this calculation is the selling price of the financial institution

and the lower price boundary is the buying price of the wind power producer, respectively.

In order to show the example, Table 8 reports the selling and buying prices of the call option

valuation on December 31, 2017 for January 31, 2018 delivery and A= 3φ in Figure 9. As one
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Initial Load Factor 0.8% 0.9% 1.1% 1.3% 1.6% 1.9% 2.2% 2.7% 3.2%
Seller’s Price 11.201 11.263 11.346 11.437 11.535 11.637 11.744 11.856 11.973
Buyer’s Price 7.197 7.247 7.315 7.392 7.475 7.562 7.654 7.750 7.852

Initial Load Factor 3.7% 4.4% 5.2% 6.2% 7.2% 8.5% 10.0% 11.7% 13.6%
Seller’s Price 12.096 12.224 12.359 12.499 12.647 12.802 12.964 13.134 13.311
Buyer’s Price 7.959 8.072 8.190 8.315 8.447 8.587 8.734 8.889 9.052

Initial Load Factor 15.8% 18.2% 21.0% 24.0% 27.4% 31.0% 34.9% 38.9% 43.2%
Seller’s Price 13.497 13.690 13.892 14.102 14.319 14.543 14.773 15.010 15.251
Buyer’s Price 9.224 9.405 9.594 9.792 9.999 10.214 10.437 10.667 10.904

Initial Load Factor 47.5% 51.9% 56.2% 60.5% 64.6% 68.5% 72.1% 75.5% 78.6%
Seller’s Price 15.496 15.743 15.992 16.241 16.489 16.734 16.975 17.209 17.433
Buyer’s Price 11.145 11.391 11.640 11.890 12.140 12.390 12.636 12.878 13.111

Table 8. Selling and buying prices of wind power call option on December 31, 2017 for
January 31, 2018 delivery with Dax St = 11,400 and A = 3φ

of the applied values of our research, we were able to show specifically the selling and buying

prices of wind power derivatives using a wind power call option, reflecting the illiquidity of

the wind power derivatives market.

Thirdly, the results show that the inclusion of seasonality in the modelling of the wind

power index is important. In particular, the results show that sellers’ prices represented by

the upper price boundary are more affected by seasonality than buyers’ prices represented by

the lower price boundary. As a caution against the simplification of derivatives pricing in

practice, the use of this sophisticated model with seasonality enables practitioners to have a

beneficial application to wind power derivatives pricing. Particularly, the proposed model is

more important when applied to financial institutions as sellers than to wind power companies

as hedgers. In order to show the example, Table 9 reports the selling price differences obtained

from the models with and without seasonality by using the result of the call option valuation

on December 31, 2017 for January 31, 2018 delivery and A = 3φ . This analysis in Table 9

shows that the seller, the financial institution, has mispriced this call option by approximately

e6 by ignoring the seasonality of the underlying asset, which is considered as one of the

applied values of our research.

28



Initial Load Factor 0.8% 0.9% 1.1% 1.3% 1.6% 1.9% 2.2% 2.7% 3.2%
Seller’s Price Difference 5.711 5.731 5.754 5.778 5.801 5.823 5.845 5.867 5.889

Initial Load Factor 3.7% 4.4% 5.2% 6.2% 7.2% 8.5% 10.0% 11.7% 13.6%
Seller’s Price Difference 5.912 5.934 5.956 5.977 5.998 6.018 6.038 6.057 6.074

Initial Load Factor 15.8% 18.2% 21.0% 24.0% 27.4% 31.0% 34.9% 38.9% 43.2%
Seller’s Price Difference 6.089 6.103 6.115 6.124 6.131 6.135 6.136 6.133 6.127

Initial Load Factor 47.5% 51.9% 56.2% 60.5% 64.6% 68.5% 72.1% 75.5% 78.6%
Seller’s Price Difference 6.117 6.103 6.087 6.066 6.042 6.016 5.987 5.955 5.923

Table 9. Selling price differences between the models with and without seasonality for wind
power call option on December 31, 2017 for January 31, 2018 delivery with Dax St = 11,400
and A = 2φ

5. Conclusions

In this paper, we analysed the theoretical prices of wind power derivatives under market in-

completeness, and analysed the importance of seasonality modelling in this context as well as

we showed the application of the theory to the practical implementation of the pricing with the

illiquidity. There are two main obstacles to the pricing of wind power derivatives: the mod-

elling of cash flows and the characterisation of stochastic discount factors in illiquid markets.

In addition, the results of our empirical analysis are also of importance for other applications,

such as enterprise risk management. As such, our study makes at least three contributions.

Firstly, this paper contributes to the modelling of cash flows in the wind power derivatives

sector. To the best of our knowledge, we conducted the first detailed econometric analysis

of the underlying’s time series, i.e., the electricity production from windmills in Germany,

resulting in strong support of seasonality and mean reversion in the logit-transformed wind

load factors. Based on the econometric findings, we propose a new wind load factor model

for wind power derivatives in which the logit-transformed wind load factor follows a mean-

reverting process in continuous time with seasonality. Second, this study contributes to the

characterisation of stochastic discount factors in illiquid markets in the theoretical pricing of

wind power derivatives. To conduct the pricing analytics of wind power derivatives, we apply
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the good-deal bounds pricing methodology within the illiquid market situation to futures and

call option contracts. Third, we provide a theoretical and empirical analysis on the impor-

tance of seasonality modelling for wind power futures. Our analysis shows that accurately

capturing the seasonal aspects of the underlying series is crucial when pricing wind power

derivatives. Our results further show that in both summer and winter, the absolute value of the

upper price boundary of the risk premiums is larger than the absolute value of the lower price

boundary. Given the interpretation that the upper and lower boundary represent the selling

and the buying price in an incomplete market, the short position is more strongly affected by

seasonality than the long position. Finally, as the discussions of the applications of the results

in this paper we showed that three results in this paper, namely, the coherence between the

calculation results and the EEX market observation results, the derivation of upper and lower

price boundaries reflecting the illiquidity of the market, and the importance of seasonality in

the calculation results, lead to the applicability of the proposed model to the development of

tailor-made wind power risk hedging products, the applicability of the model to the derivation

of prices for buyers and sellers of wind power derivatives, and the applicability of the model

to the practice of financial institutions as the sellers, respectively.

Although the price analysis of wind power derivatives in this study is based on data from

Germany, where the market for wind power and wind power derivatives is more advanced, it

could well be extended to other countries, such as the US and Japan, if data, especially wind

power derivatives data, are available. These empirical analyses will be the subject of future re-

search, pending the development of the global wind derivatives market. The risk management

of renewable energies including wind power has a comprehensive aspect that encompasses not

only economic but also technical risks depending on the type of renewable energy. As can be

seen from the wide range of journals in the reference of this paper from Energy Conversion

and Management (Dorvlo, 2002; Akpinar and Akpinar, 2005; Bivona, Bonanno, Burlon, Gur-

rera, and Leone, 2011), Wind (Hennessey, 1978), and Journal of Applied Meteorology (Luna
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and Church, 1974; Bardsley, 1980; Carlin and Haslett, 1982) as well as Energy Economics

(Benth and Šaltytė Benth, 2009; Kanamura and Ōhashi, 2009; Lee and Oren, 2009; Gersema

and Wozabal, 2017), the issue of modelling the risks of renewable energy should be seen as a

category of applied energy, beyond the scope of energy economics. In future research on risk

management of renewable energy for further promotion of renewable energy, it is important to

discuss the issue in the field of applied energy, which is a multidisciplinary field with technical

and applied aspects, not only in the existing category of energy economics.

Appendix A Further econometric analysis

For nearly every considered model we find evidence of ARCH-effects. This is indicated by the

large number of significant Ljung–Box test statistics applied to the squared residuals. Inspect-

ing the correlograms of the squared residuals suggests that there is not only annual seasonality

in the mean of each series but also in the variance. During autumn and winter the variability in

the wind power load factor increases, compared to summer and spring. The effect is more pro-

nounced when the original data series is modelled. The data transformation helps to stabilise

the variance and to diminish this effect, especially for the daily series.

Concerning the distributional assumption of the residuals, all models perform rather well.

For the models applied to the weekly and monthly series the AD-test and the KPSS-test, both,

do not reject normality. Only for the daily series does the AD-test find evidence for departures

from the normal distribution for some models. The AD-test and the KPSS-test work similarly,

but the AD-test is known to have larger power, which is enhanced by the very large sample

size of the daily series and its subperiods. Thus, we can conclude that the AD-test correctly

rejects, but only due to very small deviations from the normal distribution. To support this

argument, the kernel density estimates and the QQ-plots of the model residuals are shown in

Figure 18. For the ARMA(2,2) model applied to the daily series, the AD-test rejects at the 1%-
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Figure 18. Kernel Estimate
This figure shows the kernel density estimate and the Q-Q-plot of the standardised residuals of the
ARMA(2,2) and MA(1) fitted to the logit-transformed and deseasonalised series DWPLF and WW-
PLF, respectively, and of the logit-transformed and deseasonalised monthly series MWPLF. The
Epanechnikov kernel is used with bandwidth following Silverman’s rule. For reasons of compari-
son the normal density is printed in dashed lines.

significance level, whereas the KPSS does not reject. One can see that the density is following

closely that of the normal distribution. The same holds for the models applied to the weekly

and monthly series. We believe it is therefore reasonable to conclude that the estimated model

describes the data sufficiently well. It is crucial to emphasise that the data transformation in

Equation (1) is important for this to be the case. Depending on the application, it may have to

be considered to model the found ARCH-effects.
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