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Abstract: Application of organic amendments to soil is commonplace in domestic gardening. How-
ever, a vast array of materials could be labelled as ‘compost’ by retailers and suppliers. We investi-
gated six different amendments currently used, or available for use, in horticulture: composted bark,
composted bracken, spent mushroom compost, composted horse manure, garden waste compost
(at two different application rates), and peat. Using a controlled field experiment, we examined the
physicochemical differences between the amendments, the subsequent effects on soil characteristics,
and resultant yield and biometrics of Lavatera trimiestris. Amended soils resulted in a significantly
different multivariate soil environment and N budget when compared to the unamended control.
However, the effect on yield and plant biometrics (number of flowers, plant height, etc.) depended
on the amendment used. Application of garden compost resulted in up to a five-fold increase in yield.
However, there was no significant difference in yields in soils amended with composted bark or peat,
when compared to the unamended control. This has implications, as there is increasing pressure to
remove peat from products available to domestic gardeners. The variability in the different amend-
ments investigated in our research, in addition to the variable effects on plant growth parameters,
suggests that repeated use of a single amendment may not be best practise for gardeners.

Keywords: organic amendments; compost; peat; horticulture; gardening; garden soil; nitrogen
budget; Lavatera trimestris

1. Introduction

Both commercial and domestic horticulturalists recognise that soil organic matter
(SOM) is critical for plant production [1]. The presence of SOM can stimulate the growth
of plants sown in the medium both directly, through stimulating seed germination and
root initiation [2,3], and indirectly through improving soil characteristics favourable for
subsequent plant growth. Such as provision of nutrients, improved soil structure and water
holding capacity [3–5]. However, intensive horticultural cropping methods, combined with
poor management, can lead to depletion in SOM stocks and a decline in soil fertility and
health [6]. In agriculture and commercial horticulture, a number of practices can enhance
SOM contents including reduced tillage, residue management, crop rotations, cover crops
and organic amendments [7]. Domestic horticulturalists or gardeners, however, often
favour application of organic amendments to their soils, in part due to crop rotations and
cover crops not being practical in perennial flower beds [8].

Organic amendments can improve structure, nutrient distribution [3,5], bulk density,
pH and salinity of soil [9]. Biological breakdown of SOM liberates nutrients once held
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in organic polymers, making them available for utilisation by plants for growth [10].
Advisory literature for gardeners emphasises the importance of N as the most significant
macronutrient, and applying organic amendments can be a significant source of organic N
to garden soils (providing an alternative to inorganic fertilisers) [8,11,12].

However, the increase in nutrient supply to plants as a result of organic amendments
can be significantly different depending on the quality of the amendment used and its ap-
plication rate [4]. Selection of organic amendments that are suitable for use in horticultural
systems are often driven by the following factors: (i) they are available in large amounts;
(ii) they are as homogeneous as possible; (iii) they are low in price; and (iv) they have
minimal transport costs [13]. Alexander and Nevison [1] suggested the decision-making
priorities for gardeners primarily considered; availability, cost, effectiveness and aesthetics.
Furthermore, gardeners are “creatures of habit”; once they have identified a material they
like, they tend to utilise it repeatedly.

Gardeners recognise the potential for cost savings and environmental benefits asso-
ciated with the use of organic amendments, e.g., reduced use of fertilisers, and may not
be so driven by the cost or availability of a material, but its effectiveness. Therefore, an
understanding of the differences associated with amendment selection is vital for garden-
ers. Particularly as any of these materials could be labelled as ‘compost’ by retailers and
suppliers.

With respect to the effectiveness of an amendment, assessing the influence of amend-
ment composition on promoting yield is extremely complex and requires an understanding
of a wide range of chemical, physical and biological variables associated with the amend-
ment [14] and the effects of amendment application on the multivariate soil environment.

This research used a controlled field experiment in Wisley (UK) which had received
six years of repeated application of organic amendments. Previous work on the site has
reported that repeated application of organic amendments has impacted on individual soil
properties (e.g., pH, bulk density) over time [1]. Here, we aim to examine soil physico-
chemical properties on a multivariate basis, along with N budget, and resultant yield and
plant biometrics. All experiments were conducted within a horticultural context in order
to aid both domestic and commercial horticulturalists to make more informed decisions
when selecting organic amendments.

The hypotheses we intend to address in this research are as follows:

1. Organic amendments commonly used in horticulture are variable in terms of their
physicochemical properties (pH, bulk density, nutrient content, etc.)

2. Application of organic amendments will alter the multivariate soil physicochemical
environment and N budget, and the extent of change compared to the control will
depend on the amendment applied

3. There will be a subsequent effect of amendment application on plant production

2. Materials and Methods
2.1. Experimental Site

The study site, described by Alexander and Nevison [1], was established at the Royal
Horticultural Society’s (RHS) Deers Farm site in Wisley, UK (51.323428◦ N, −0.474392◦ W)
on a sandy loam soil (Table 1). The site consisted of 3 m × 3 m plots in a randomised
complete block alignment (8 blocks, 8 replicates) treated annually with the following
amendments: Irish moss peat (Peat); composted horse manure (HM), garden compost at
full rate (GCf) and half rate (GCh) from collected prunings and cuttings from RHS Wisley
Garden; composted bracken (Br) Pteridium aquilinum L. Kuhn blended with animal manure;
composted bark (Bk); and spent mushroom compost (M), a by-product of the mushroom
industry, which is a blend of wheat straw, gypsum and animal manure. In addition to a
control treatment where no amendments were applied.
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Table 1. Initial soil conditions (0–15 cm) of field site in year 0 (before any amendments were applied).

Mean ± Standard Error (n = 80) Method *

pH 5.90 ± 0.06 1:2 soil/deionised water
OM Content (%) 6.06 ± 0.16 Loss on ignition (LOI)

Bulk Density (g cm−3) 1.01 ± 0.01 Cylinder and driving tool
Particle Size Distribution H2O2, sedimentation and sieving

Sand (%) 79.91 ± 0.17
Silt (%) 9.29 ± 0.17

Clay (%) 10.80 ± 0.19
Extractable Nutrients (mg kg−1):

P 999.81 ± 46.60 NaHCO3 (Olsen P) extraction
K 933.00 ± 28.00 NH4NO3 extraction
B 7.31 ± 0.32 Hot water extraction

Cu 38.74 ± 2.46 EDTA ** extraction
Fe 1232.06 ± 48.7 DPTA *** extraction
Mg 422.13 ± 8.79 EDTA extraction
Mn 34.28 ± 1.85 DPTA extraction
SO4 174.82 ± 4.40 Phosphate buffer extraction
Zn 142.24 ± 21.80 EDTA extraction

* All analyses carried out according to [15] by NRM Laboratories (Bracknell, UK). ** Ethylenediaminetetraacetic acid (EDTA). *** Diethylen-
etriaminepentaacetic acid (DPTA).

The choice of materials was based on those commonly used in UK horticulture (M,
GC, Peat and HM), those widely available to UK horticulture (Bk) and material that
could be available to UK horticulture (Br). With the exception of the garden compost, all
amendments were purchased as commercial products annually, from the same suppliers.
The garden compost was generated on site using plant waste arising from and RHS
botanical garden in Wisley; plant wastes were stockpiled, shredded and then windrow
composted for 6–9 months before use (windrows turned monthly).

A 1 m path between each plot was maintained and all soil and plant sampling was
conducted in the central 2 m × 2 m portion of the plot, to minimise boundary effects.

Organic amendments were applied annually in early spring as a 5 cm layer on the
surface of the soil. This application rate was selected to mimic common practice by
gardeners and to be in line with current Royal Horticultural Society advise [12]. In order to
examine the effects of application rate, a half-rate garden compost treatment which was
applied at 2.5 cm was included. The control treatment had no amendments applied, but
plants were still sown. Amendments were promptly incorporated into the top 15 cm of soil
with the use of a tractor-mounted rotovator. In Year 0, no organic material was applied to
any plots, in order to identify any natural baseline variations.

Different horticultural plants were also grown annually from seed, in order to better
represent the garden scenario (see Supplementary Information, Table S1). However, plant
data presented in this paper were collected in year 7 when Lavetera trimestris was grown
(Table S1). All plants were hand sown by station (15 cm spacing) in spring and harvested in
the autumn. Although no amendments were applied in Year 0, plants were grown to verify
the absence of any natural baseline variation between the plots before experimentation
commenced (data not shown—see [1]).

2.2. Soil and Amendment Sampling and Analysis

Three replicate subsamples were taken from each amendment, each year, to be anal-
ysed. In the case where amendments were delivered in a bulk load, subsamples were taken
from three different places within the pile. In the case where amendments were delivered
in bags, subsamples were taken from three different bags. Results presented are the mean
of the 3 subsamples taken each year, with the exception of year 7 where the individual
results for each subsample are available.

Soil samples were taken twice in Year 7: once before the season’s organic amendments
were applied (March), and once after the season’s crops had been harvested (September).
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Plots were auger sampled at 0–15 cm depth from 3 positions within the central 2 m × 2 m,
and homogenised, before taking a subsample for analysis.

Laboratory analyses were conducted externally by NRM laboratories (Bracknell, UK)
for: pH; extractable N, P, K, B, Ca, Cu, Fe, Mg, Mn, Na, SO4, Zn; loss on ignition; and cation
exchange capacity (soils only). All analyses were conducted according to the The Ministry
of Agriculture, Fisheries and Food (MAFF, London, UK) Bulletin RB 427 [15]. Dry-bulk
density of the soil in the plots was also measured in March and September of Year 7 using
a standard cylinder and driving tool method. Samples were weighed and dried at 105 ◦C,
so that gravimetric soil moisture content could also be determined. The density of the
amendments applied was determined by NRM laboratories using H2O2, sedimentation
and sieving. Soil subsamples were also ground using a TEMA mill and analysed for total
C and N content on a Thermo Scientific Flash 2000 CN Analyser.

2.3. Plant Sampling and Analysis

Dry-bulk yield of Lavatera trimestris on each plot was measured at harvest, in Septem-
ber Year 7. Plots were harvested at ground level (no roots). Above ground, plant biomass
was weighed and a subsample was dried at 80 ◦C for 48 h to determine moisture content,
making gross wet and dry biomass available for each plot. Subsamples of above-ground
plant material from each plot were also removed for nutrient tissue analysis. Plant tissue
analyses were conducted by NRM laboratories according to the MAFF Bulletin RB 427 [15]
for total N, P, K, B, Ca, Cu, Fe, Mg, Mn, S and Zn. Plant samples were a mixture of stem
and leaves, with flowers removed.

Eight weeks after sowing, the number of plants growing on the plots were counted,
as well as the number of plants with flowers. Four plants were also selected at random
within the central 2 m × 2 m to avoid potential boundary effects. The height of these
plants was measured as well as the chlorophyll content of 3 fully developed leaves on each
plant using a Soil Plant Analysis Development (SPAD) chlorophyll meter (Konica Minolta,
Tokyo, Japan). Mean plant height and chlorophyll content was calculated for each plot.

2.4. Nitrogen Budget

A partial N budget was calculated for each plot based on N additions in Year 7
(amendment) and N removals (harvest of plant biomass N) per plot, as follows:

N budget
(

kg m−2
)
= N additions

(
kg m−2

)
− N removals

(
kg m−2

)
(1)

Plant N-use efficiency (NUE) was also calculated as follows:

NUE =

(
N additions

(
kg m−2)

N removals (kg m−2)

)
× 100 (2)

2.5. Statistical Analysis

Multivariate analysis of physicochemical properties used multidimensional scaling
(MDS) and analysis of similarity (ANOSIM) using a Euclidean distance resemblance matrix
was conducted in Primer (Version 6).

All other statistical analyses were conducted using Minitab (20.0). Statistical analysis
of single variables comprised of analysis of variance (ANOVA), with Tukey’s post hoc
testing (p < 0.05). Before ANOVA was conducted, treatments were tested for equal variance
using a Levenes test, and data were transformed if necessary to satisfy a Levenes test.

3. Results
3.1. Amendment Properties over 7 Years of Sampling

Multidimensional scaling of the amendment physicochemical data (e.g., pH bulk, C
content, etc.), and subsequent analysis of similarity (ANOSIM) show that each amendment
is significantly different from one another (Table 2).
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Table 2. Pairwise comparisons of amendments’ multivariate physicochemical properties before
application. p values according to ANOSIM. Data from 7 years of sampling amendments.

Spent
Mushroom
Compost

Garden
Compost

Composted
Bark

Composted
Bracken

Composted
Horse

Manure

Garden
Compost 0.002

Composted
Bark 0.002 0.001

Composted
Bracken 0.001 0.001 0.002

Composted
Horse

Manure
0.001 0.001 0.001 0.002

Peat 0.001 0.001 0.001 0.003 0.001

Peat, for example, was characterised by low pH, low density, and low extractable N, P
and K (Table 3), compared with garden compost which had a high pH and density, and
spent mushroom compost with a high total extractable N, P and K content. The majority
of the extractable N in spent mushroom compost was ammonia-N, and was significantly
higher than the other amendments (Table 3). Garden compost and peat had significantly
higher concentrations of nitrate-N than the other amendments (Table 3).

Table 3. Physicochemical characteristics of amendments applied. Mean of amendments ± standard error over 7 years.
Treatments that share the same letter suffix, in the same column, had no significant difference according to one-way ANOVA
and Tukey’s post hoc testing (p > 0.05).

Treatment pH Bulk Density
(g cm−3)

Total
Extractable N

(mg/kg)

Extractable
Ammonia-N

(mg/kg)

Extractable
Nitrate-N
(mg/kg)

Extractable P
(mg/kg)

Extractable K
(mg/kg

Composted
Bark 6.08 ± 0.10c 0.176 ± 0.005bc 678 ± 207b 639 ± 205b 39 ± 5b 4646 ± 298ab 3956 ± 215b

Composted
Bracken 6.99 ± 0.43bc 0.103 ± 0.008d 871 ± 245b 622 ± 215b 249 ± 115b 6584 ± 3154ab 19583 ± 6220b

Garden
Compost 8.45 ± 0.14a 0.419 ± 0.022a 3378 ± 741b 1258 ± 362b 2120 ± 556a 1666 ± 242ab 11000 ± 895b

Composted
Horse Manure 8.33 ± 0.09ab 0.135 ± 0.010cd 3172 ± 995b 3079 ± 1021b 93 ± 30b 3869 ± 624ab 68150 ± 4682a

Spent
Mushroom
Compost

7.63 ± 0.19b 0.212 ± 0.012b 18442 ± 3622a 18382 ± 3628a 60 ± 23b 6746 ± 1315a 100819 ± 9973a

Peat 4.76 ± 0.07d 0.140 ± 0.005cd 1706 ± 241b 760 ± 211b 946 ± 240a 151 ± 56b 209 ± 75b

3.2. Amendment and Soil Multivariate Analysis

The three replications for each of the peat, garden compost and composted bark
amendments resembled one another more closely than composted horse manure and spent
mushroom compost on a multivariate basis (Figure 1a). This suggests that peat, garden
compost and composted bark are more consistent/uniform amendments. Despite this,
more uniform amendments do not result in replicates of soils treated with these materials
having a closer resemblance to one another (Figure 1b).
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Figure 1. Effect of treatment on (a) amendment applied; and (b) post-application and harvest
(September Year 7). Multidimensional scaling based on Euclidean distance with 1000 restarts,
vectors labelled in grey italics. Samples: Control—no amendments applied; Bk—composted bark;
Br—composted bracken; GCf—garden compost (full rate); GCh—garden compost (half rate); HM—
composted horse manure; M—spent mushroom compost; Peat—Irish moss peat.

According to multidimensional scaling and ANOSIM, soils amended with organic
materials are significantly different to the unamended control on a multivariate basis from
year 1, with the exception of soil treated with composted bracken which was significantly
different to the control from year 2 (Table 4).
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Table 4. Pairwise comparisons of amendments multivariate physicochemical properties before
application. p values according to ANOSIM.

Pairwise Comparisons p-Values According to ANOSIM

Year Control
vs. Bk

Control
vs. Br

Control
vs. GCh

Control
vs. GCf

Control
vs. HM

Control
vs. M

Control
vs. Peat

0 0.537 0.957 0.909 0.879 0.743 0.494 0.313
1 <0.01 0.06 <0.01 <0.01 <0.01 <0.01 <0.01
2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
6 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Soils treated with different amendments are significantly different from one another
(see Supplementary Material, Table S2). Application rate of the garden compost also
resulted in soils that are significantly different to one another. However, the half-rate
application resembles the control more closely than the full-rate application (Figure 1b).

The three amendments that show the closest resemblance to one another in year 7
(composted bracken, composted bark and peat, Figure 1a) also result in soils that have a
close resemblance according to multidimensional scaling (Figure 1b). Additionally, the
spent mushroom compost, which had the least resemblance to the other amendments
resulted in soils that had the least resemblance after harvest (Figure 1), largely driven by
higher N and P content in the amendments and subsequent amended soils.

The highest absolute vectors for the soil MDS (Figure 1b) were extractable P on MDS1,
and bulk density on MDS2. Temporal trends in these two variables can be found in Figure 2.
All soils treated with organic amendments had an elevated extractable P concentration
compared to the control (Figure 2a), with spent mushroom adding the most P. Peat and
half-rate garden compost applications had the smallest effect on extractable P compared to
the control.

Application of all organic amendments resulted in a reduced bulk density compared to
the control (Figure 2b). Peat had the largest effect on bulk density and the half rate garden
compost had the smallest effect on bulk density. Temporal data for all other individual
variables can be found in the Supplementary Information (Table S3).
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3.3. Yield

Application of composted bracken, composted horse manure, spent mushroom com-
post and both rates of garden compost resulted in a significantly higher yield of Lavatera
trimestris than the unamended control (Figure 3). Application rate of the garden compost
had no significant effect on yield.

The highest yields were observed in soils treated with garden compost and composted
bracken, five times the yield obtained from the control plot. Application of peat and
composted bark, on the other hand, did not result in a significantly different yield compared
with the control (Figure 3).
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application. Error bars for standard error (n = 8). Treatments that share the same letter above the bar
are not significantly different according to one-way ANOVA and Tukey’s post hoc testing (p < 0.05).

3.4. Plant Biometrics

Eight weeks after sowing, the garden compost treatments (half and full rate) had
significantly more plants per m2 than the unamended control (Figure 4a). The peat and
composted bark treatments had significantly fewer plants than the control (Figure 4a) and
the composted bracken, horse manure and spent mushroom had no significance to the
control in terms of the number of plants per m2.

There was a significantly higher proportion of plants with flowers observed on plots
amended with spent mushroom compost, garden compost (half and full rate) and com-
posted horse manure when compared with the control (Figure 4b). There was no significant
difference in the proportion of plants with flowers between the control and plots amended
with peat, composted bark or composted bracken.

Soils amended with composted bracken, garden compost (both rates), composted
horse manure and spent mushroom compost resulted in significantly taller plants than the
control (Figure 4c). Conversely, application of peat and composted bark did not result in a
significant difference in plant height.

All amendment treatments, with the exception of peat, resulted in plants with signifi-
cantly higher chlorophyll contents than the control (Figure 4d). There was no significant
difference between the application rate of garden compost for any of the plant metrics
measured.

3.5. Plant Biomass Nutrients

Plant biomass nutrient ratios suggest that growth of Lavatera trimestris was N-limited.
The proportions of K, Mg and Ca, compared to N, were above the suggested optimum
ratios given by Knecht and Göransson [16], in most instances (Figure 5).
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3.6. Plant Nitrogen-Use Efficiency

The highest NUE was observed in composted bracken and garden compost applied at
half rate (Figure 6), which had some of the highest yields (Figure 3). The lowest NUE was
observed in the treatments that had the lowest yields (peat and composted bark). Garden
compost applied at full rate, however, despite having one of the highest yields, had the
lowest NUE.
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3.7. Nitrogen Budget

All amended treatments had a significantly higher nitrogen budget compared to the
unamended control (Figure 7). The garden compost (full rate) and the spent mushroom
compost treatments had significantly higher nitrogen budgets than all other treatments.
Application rate of the garden compost also had a significant effect on the nitrogen budget
(Figure 7).

A breakdown of the elements of the nitrogen budget can be found in the Supple-
mentary Information (Figure S1) Total N contents of the soil just before the 7th annual
application of amendments, and after amendment application and at plant harvest, was
highest in the garden compost and spent mushroom compost treatments. Application of
garden compost (full rate) and spent mushroom compost also resulted in the highest N
additions. Plants grown on garden compost treatments removed the highest quantity of N.
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4. Discussion
4.1. Physicochemical Properties of Organic Amendments Commonly Used in Horticulture

Amendments chosen for this study were based on those commonly used in UK
horticulture, and are widely available to UK horticulture, many of which have seldom
been investigated in a horticultural context. All of the materials investigated are commonly
referred to under the blanket term of ‘compost’ in the gardening community. However,
we have demonstrated here that there was a significant difference between all of the
amendments in terms of their physicochemical characteristics over the seven years we
sampled them. The amendments used had different pH values, densities and nutrient
contents, all of which will impact on the effectiveness of the material to promote plant
production and aesthetics, which are key drivers for amendment selection for gardeners [1].

Amendments from the same supplier can also be variable, a study by Benito et al. [17]
took 12 temporal samples from the same prunings compost waste facility and found
differences between samples in electrical conductivity and C:N ratio. In our study, however,
garden compost samples (along with peat and composted bark) are relatively consistent
between replicate samples in year 7. The consistency of the garden compost could be of
particular interest to gardeners, as many make their own compost in their garden Although
the feedstock changed throughout the year because the RHS Wisley garden regularly
change their plants grown, the resultant compost generated from the prunings and cuttings
from the garden remains fairly consistent. However, it is important to note that the Wisley
Garden compost does not contain any municipal waste, which may be more common in
domestic compost heaps (e.g., vegetable peelings, paper, etc.). Other amendments, such
as spent mushroom compost were less consistent. This is in concordance with Jordan
et al. [18] who observed that there was a significant difference in spent mushroom compost
sourced from different locations.
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4.2. Amended Soil Physicochemical Properties and N Budget

Amendment application can improve plant production through improvement of soil
characteristics favourable to plant growth such as pH, moisture content, soil structure
(oxygen supply) and nutrient supply [19]. We observed a significantly different multivariate
environment in soils treated with organic amendments compared with the control that
received no amendments. However, the variability in amendments in this study, discussed
above, led to a large variability in the conditions of amended soils. In essence, the extent of
change compared to the control depended on the amendment applied. The nutrient supply
depends on the quality of the residues used and its application rate [4] and therefore varies
between our treatments. For example, amendments that resembled one another prior to
application resulted in soils that more closely resembled one another post application.

The concentration of nutrients applied to the soil alone does not necessarily indicate
what is available to plants in a soil system. Imbalances in the ratios of nutrients in plant
tissue can indicate a nutrient limitation in plant growth [20]. Therefore, analysis of the plant
material itself can provide important information on the nutrient status of a horticultural
soil. Despite having received high volumes of organic amendment, Lavatera trimestris were
still growing in a potentially N-limited environment in the majority of samples, regardless
of which amendment was selected [21–23]. However, the optimum levels presented in
this research are not based on Lavatera trimestris specifically. This interpretation of plant
nutrient content was also based on the assumption that Lavatera trimestris does not take
up nutrients in quantities exceeding their requirements for growth, which may not be the
case [16].

The N budget of the soil was influenced by the amendment applied. For example,
soils that were treated with spent mushroom compost, the amendment containing among
the highest levels of N, in turn resulted in one of the highest levels of N in the soils. This
was most likely a result of an N uptake that did not match N input and thus a lower N-use
efficiency in this treatment. Despite having the highest N budget, spent mushroom compost
did not result in the highest yield, suggesting that other factors are also contributing to
yield in amended soils. The N budget, however, will not have the same implications for
N-fixing leguminous species. Therefore, selecting an amendment tailored to the plants that
gardeners intend to grow is vital.

Plant response to organic amendments is not a result of one single factor, but a
complex combination of a number of chemical, physical and biological variables [14].
Furthermore, different plant types (and even cultivars) will have different requirements.
For example, Ferreras et al. [24] found no difference in broccoli yield between controls and
plots receiving organic amendments, but there was a significant difference in lettuce yield.
This further highlights the need for greater understanding in the gardening community of
the variability in organic amendments, and that selection should be tailored to the plants
they wish to grow. Gardeners are often ‘creatures of habit’ when it comes to applying
organic amendments, if they find a material they like they stick to it. However, this practice
may not be effective if they are growing different annual plants every year or have different
species growing in different areas of their gardens, for example.

4.3. Effect of Amendment Application on Plant Production

Application of garden compost (both application rates), composted bracken, com-
posted horse manure and spent mushroom compost increased the dry-bulk yield of Lavatera
trimestris compared to the unamended control. Application of peat and composted bark,
however, did not increase yields compared to the control. Organic amendments can
stimulate seed germination and root initiation, and improve emergence [2,3]. However,
application of peat and composted bark did not result in a higher number of plants than
the control, suggesting that stimulation of seed germination is not taking place as readily
in these treatments. Furthermore, application of peat and composted bark also did not in-
crease the height of the plants compared to the control, suggesting that conditions were not
as favourable for plant growth as those in other amended plots. This is further evidenced
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by the fact that plants grown on peat also had significantly lower chlorophyll contents in
their leaves, an important indicator of plant health [25]. This finding has implications as
there is increasing pressure to phase out peat-based amendments in domestic gardening
products.

Lavatera trimestris is an ornamental plant, therefore measuring just biomass on a yield
basis may not be of interest to gardeners who are likely planting for aesthetic purposes.
Furthermore, Lavatera trimestris is also listed as an important plant for pollinators in UK
gardens by the Royal Horticultural Society [26]. Therefore, parameters such as number of
flowers are important for gardeners. Peat, composted bark, and composted bracken, did
not result in a significantly higher proportion of flowers when compared to the control.
Spent mushroom compost on the other hand had a significantly higher proportion of plants
with flowers after 8 weeks, despite not having the highest dry-bulk yield. The highlights
the need for different metrics to be considered in the examination of horticultural plants.
Nitrogen has been reported to regulate flowering time but while some studies have shown
that lower nitrogen promoted flowering, others have reported the opposite [27]. In this
research the spent mushroom compost treatment, with the highest nitrogen budget, had
the highest proportion of flowering plants.

The variability in the different amendments investigated in our research, in addition
to the variable effects on plant growth parameters, suggests that repeated use of a single
amendment may not be best practice for gardeners. Particularly as gardeners are more
likely to be growing an array of plant species in their garden, compared to agriculture. For
example, garden compost had the highest yield, but spent mushroom compost had the
highest number of flowers, suggesting a combination of the two may benefit gardeners.
Research by González et al. [28] have suggested that crop production parameters and
biological activity was improved when a combination of amendments was used, when
compared to soils treated with a single amendment.

Application rate of garden compost had a significant effect on the soil physicochemical
environment. However, application rate did not result in a significant difference in dry-bulk
yield, number of plants, proportion of flowers, plant height or chlorophyll content. In
order to improve yield, it is not just about the gross concentrations of nutrients contained
within an amendment, but the proportions of these nutrients in relation to one another.
This accounts for the fact that doubling the application rate of garden compost did not
result in higher yields. Therefore, in this case, half-rate application of garden compost is
sufficient to supply the needs of Lavatera trimestris, further evidenced by the lower NUE in
the full-rate application of garden compost. This has obvious implications for gardeners,
as reducing application rates save resources (cost, time, labour, etc.).

4.4. Further Work

This research has highlighted that there are fundamental differences between amend-
ments commonly used/available for use by gardeners, in terms of the multivariate environ-
ment they produce, the N budget and plant production. However, in order to unpack the
reasons for these differences, more analysis is required on the soils from these experimental
plots. For example, the resultant soil organic carbon from amendment application and the
microbial community structure of amended soils.

Soil organic carbon (SOC), contained in soil organic matter (SOM), is commonly
referred to as one of the most important indicators of soil quality [29]. It governs an array
of soil physical, chemical and biological processes [30,31] and therefore the soils ability
to stimulate plant growth. Decomposition of SOM is an important process for nutrient
supply to plants because it liberates nutrients once held in organic complexes, making
them available for utilisation by plants for growth [10]. However, the fate and behaviour
of SOM are also influenced, in turn, by the physical, chemical and biological properties
of the soil [28,32]. Therefore, an understanding of SOM contents and persistence of the
SOM fractions of the soil is vital in order to understand the mechanisms responsible for the
differences observed in this research.
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Soil organic matter (SOM) composition has been found to influence microbial biomass,
respiration and community structure [33] and subsequent decomposition of these materials.
Soil microorganisms play a vital role in a variety of soil functions, including decomposition,
aggregation and biogeochemical cycling [34]. It has also been suggested that microbial-
derived carbon compounds are of vital importance to SOM stability in soils [35]. Therefore,
soil microbial community structure and activities, including respiration, enzymatic activi-
ties and microbial biomass are important factors in determining soil quality [36,37], which
can be closely related to SOM content and quality of the organic amendment [34,37]. An
understanding of the microbial community will also aid our understanding of the nitrogen
budget. Due to the fact that nitrogen can be mineralised at all levels of the soil food web,
release of N will benefit from a diverse microbial community [38].

5. Conclusions

Application of organic amendments to soil is commonplace in domestic gardening.
However, a vast array of materials could be labelled as ‘compost’ by retailers and suppliers.
Here, we have demonstrated that different organic amendments can result in significantly
different results in terms of plant yield and aesthetics, which is a consequence of the
different soil environments and N budgets that the amendments create.

Gardeners are often ‘creatures of habit’ when it comes to applying organic amend-
ments, if they find a material they like they stick to it. However, the variable effects on
plant growth parameters suggests that repeated use of a single amendment may not be
best practice for gardeners. This is particularly the case when gardeners are likely to be
growing an array of plant species in their garden (some legumes, some not), and different
annual plants every year. Furthermore, gardeners are more likely to grow different species
in different areas of their gardens, so using the same material throughout may not be
appropriate. We have also demonstrated here that peat, which is being phased out of
horticultural use, did not perform as well as peat-free alternatives.
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chemical properties.
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