
Progress towards accelerating the unified
model on hybrid multi-core systems
Conference or Workshop Item

Published Version

Zhang, W., Xu, M., Evans, K., Norman, M., Morales-
Hernandez, M., Mahajan, S., Hill, A., Manners, J., Shipway, B.
and Maynard, C. (2021) Progress towards accelerating the
unified model on hybrid multi-core systems. In: PASC '21:
Platform for Advanced Scientific Computing ConferencE, 5 - 9
July 2021, Geneva, Switzerland. doi:
10.1145/3468267.3470612 Available at
https://centaur.reading.ac.uk/100834/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1145/3468267.3470612

Publisher: Association for Computing Machinery

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Progress Towards Accelerating the Unified Model on Hybrid
Multi-Core Systems

Wei Zhang
w0z@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Min Xu
xum1@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Katherine Evans
evanskj@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Matthew Norman
normanmr@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Mario Morales-Hernandez
moraleshernm@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Salil Mahajan
mahajans@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Adrian Hill
adrian.hill@metoffice.gov.uv

Met Office
Exeter EX1 3PB, UK

James Manners
james.manners@metoffice.gov.uk

Met Office
Exeter EX1 3PB, UK

Ben Shipway
ben.shipway@metoffice.gov.uk

Met Office
Exeter EX1 3PB, UK

Maynard Christopher
christopher.maynard@metoffice.gov.uk

Met Office
Exeter EX1 3PB, UK
University of Reading

Reading, UK

ABSTRACT
The cloud microphysics scheme, CASIM, and the radiation scheme,
SOCRATES, are two computationally intensive parts within the
Met Office’s Unified Model (UM). This study enables CASIM and
SOCRATES to use accelerated multi-core systems for optimal com-
putational performance of the UM. Using profiling to guide our
efforts, we refactored the code for optimal threading and kernel
arrangement and implemented OpenACC directives manually or
through the CLAW source-to-source translator. Initial porting re-
sults achieved 10.02x and 9.25x speedup in CASIM and SOCRATES
respectively on 1 GPU compared with 1 CPU core. A granular per-
formance analysis of the strategy and bottlenecks are discussed.
These improvements will enable UM to run on heterogeneous com-
puters and a path forward for further improvements is provided.

CCS CONCEPTS
• Applied computing → Earth and atmospheric sciences; •
Computing methodologies → Massively parallel algorithms.

KEYWORDS
Unified Model, CASIM, SOCRATES, GPU porting, OpenACC

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PASC ’21, July 5–9, 2021, Geneva, Switzerland
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8563-3/21/07.
https://doi.org/10.1145/3468267.3470612

ACM Reference Format:
Wei Zhang, Min Xu, Katherine Evans, Matthew Norman, Mario Morales-
Hernandez, Salil Mahajan, AdrianHill, JamesManners, Ben Shipway, andMay-
nard Christopher. 2021. Progress Towards Accelerating the Unified Model
on Hybrid Multi-Core Systems. In Platform for Advanced Scientific Comput-
ing Conference (PASC ’21), July 5–9, 2021, Geneva, Switzerland. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3468267.3470612

1 INTRODUCTION
The Unified Model (UM), developed by the United Kingdom Met
Office (UKMO), is a widely used Earth system model for numerical
weather and climate prediction. Over the last two decades, imple-
mentations of Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP) have been used to improve parallel model
performance on Central Processing Units (CPU) [17]. However,
UM computations are approaching a billion degrees-of-freedom
with complex, multiphase physics calculations and are therefore
incredibly time-consuming [12]. Further optimizing the model with
finer resolution and more accurate simulations is always attractive
for UM developers and users.

The massive parallelism provided by Graphic Processing Units
(GPUs) is prompting developers to move their models to hybrid
CPU-GPU systems. A number of climate and weather modeling
centers have accelerated the computationally intensive portions
(hot spots) of their models by porting them to GPUs to exploit data
parallelism, generally with CUDA programming or directive-based
approaches. As one example, GPU acceleration of the Weather Re-
search Forecast (WRF) SingleMoment 6-class (WSM6)microphysics

https://doi.org/10.1145/3468267.3470612
https://doi.org/10.1145/3468267.3470612

PASC ’21, July 5–9, 2021, Geneva, Switzerland Zhang et al.

scheme obtained over 140x speedup compared with the CPU se-
rial version [19]. Further optimization of WSM6 within the Model
for Prediction Across Scales (MPAS) achieved 2.38x speedup for
WSM6 on one GPU compared to 48 CPU cores [10]. Wang et al. [18]
accelerated the Rapid Radiative Transfer Model for General circula-
tion models (RRTMG) by about 18.52x on GPU compared with the
CPU-based single-threaded version. Alvanos and Christoudias [1]
implemented GPU capabilities into the chemical kinetics module in
the global Atmosphere-Chemistry model ECHAM/MESSy (EMAC),
and reached a relative speedup of 22x in their experiments.

Although performance hot spots ran much faster on GPU, the
performance improvement was diluted when incorporated within
an entire component and Earth systemmodel. For example, the GPU
acceleration of the Nucleus for European Modeling of the Ocean
(NEMO) achieved a computation speedup up to 77x, but the total
speedup was 50x [14]. Brown et al. [2] offloaded the entire Cloud
AeroSol Interacting Microphysics (CASIM) package to the GPU
using OpenACC. Their warm test case with 14,000 vertical columns
ran 6.7x faster on GPU compared with running on one single CPU
core. However, the overall speedup for the parent model, Met Of-
fice NERC Cloud Model (MONC), was only 1.4x. The performance
improvement dilution was mainly due to the substantial portions
of the model that were still running on CPU and the unavoidable
data transfer between the host and accelerator. In order to alleviate
the overhead of data exchange, some studies ported the models
completely to GPU. One example is the GPU-accelerated Princeton
Ocean Model (POM), of which the performance on 4 GPUs was
equivalent to that on 408 CPU cores [20]. Another example is the
complete porting of LASG/IAP climate system oceanmodel by Jiang
et al. [9], which achieved a 6.6x speedup on 4 NVIDIA K80 cards
compared with 4 Intel(R) Xeon(R) E5-2690 v2 CPUs. Therefore, in
order to accelerate the whole model, it is important to find the
optimal long-term strategy that not only reduces the computational
time of the hot spots, but also minimizes the data transfers between
the CPU and GPU.

Considering these results, we chose two important and computa-
tionally intensive physics components within the UM [17] to target
for performance improvements. The Suite Of Community RAdiative
Transfer codes based on Edwards and Slingo (SOCRATES) [7, 11] is
the default radiative transfer model in UM and CASIM is a recent
addition to UM cloud microphysics. CASIM performs a detailed sim-
ulation of aerosol effects and in-cloud aerosol processing. Based on
the lessons learned from Brown et al. [2], we have enabled CASIM
and SOCRATES to use the GPU still using OpenACC but with a
more substantial refactoring strategy so as to more effectively use
the GPU. We present the benefits and limitations of GPU accelera-
tion of a refactored CASIM and SOCRATES as part of a long-term
strategy with the goal of enabling the UM to utilize the accelerated
node systems (CPU-GPU).

The rest of the paper is organized as follows. Section 2 describes
the methodology and strategy of our GPU implementation. Section
3 and Section 4 present the detailed code refactorings, porting ap-
proaches and performance comparisons for CASIM and SOCRATES,
respectively. Section 5 provides a conclusion of our current opti-
mization work and discusses the future plan.

2 METHODOLOGY
The refactoring strategy to prepare CASIM and SOCRATES for par-
allel execution on GPU was based on two profiling tools to identify
computational hot spots and compare performance of evolved code
versions. The General Purpose Timing Library (GPTL) [15] displays
detailed timing information, calling tree, and how many times each
subroutine is called. The NVIDIA profiler, NVPROF, allows users to
visualize the timeline of the application’s activity on CPU and GPU.
It can also detect potential performance bottlenecks and guide us
to performance improvement opportunities.

Our strategy was to use OpenACC directives to offload the cal-
culations to GPU and manage data transfer between CPU and GPU.
The OpenACC is a directive-based approach for GPU porting and
promises less complexity and programming effort compared with
rewriting the entire program using low-level CUDA functions. Sev-
eral climate models have used OpenACC and achieved acceptable
speedup (e.g., the CAM-SE climate model in Norman et al. [13],
the NICAM atmospheric model in Demeshko et al [6], and the
LASG/IAP Climate System Ocean Model in Jiang et al. [9]). Along
with manually implementing the OpenACC directives, we also
utilized a single column abstraction (SCA) incorporation of the
CLAW compiler where appropriate [4, 5] to perform OpenACC-
specific code transformation for SOCRATES after we converted
it to a single-column structure. The CLAW compiler is a source-
to-source translator for FORTRAN codes. It transforms the CLAW
directives, a domain-specific language (DSL), to either OpenMP or
OpenACC directives to achieve performance portability in weather
and climate models.

CASIM and SOCRATES are both serial codes that rely on their
parent models, the UM and MONC, to provide parallelization. How-
ever, running UM or MONC is not efficient for agile development.
Therefore, we used two simple serial models to drive CASIM and
SOCRATES respectively and performed verification and perfor-
mance against the CPU-based original codes. All test experiments
were conducted using oneNVIDIAV100GPU and one IBMPOWER9
CPU core on Summit supercomputer, which is housed by the Oak
Ridge Leadership Facility (OLCF) at the Oak Ridge National Labora-
tory (ORNL). When compiling the model with PGI compiler, the flag
‘-fast’ was used for automatic optimization, and ‘-Mipa=inline:reshape’
was used for module inlining.

In all, our implementations of new code for GPU follows this
development cycle within SOCRATES and CASIM:

(1) Analyze: Profile the codes to identify computationally in-
tensive portions or performance bottlenecks.

(2) Parallelize and optimize: Refactor the code, reduce the
bottlenecks, and implement OpenACC directives to offload
calculations to GPU.

(3) Validation and verification: Insure the accuracy and
robustness of modeling output and performance results.

(4) Repeat as new performance bottlenecks emerge to achieve
further performance improvement.

3 THE GPU IMPLEMENTATION OF CASIM
The CASIM source code used in our experiments was cloned from
branch vn0.3.3_kid_casim_optimise with the SVN revision number
r6985 and has been tested within MONC and the Kinematic Driver

Progress Towards Accelerating the Unified Model on Hybrid Multi-Core Systems PASC ’21, July 5–9, 2021, Geneva, Switzerland

(KiD) [16]. This version has the vertical loops pushed down to the
process routines, which is different from the one used by Brown et
al. [2] in which the vertical loops were still inmicrophysics_common
subroutine and all process rates were derived point wise.

The source code is written in FORTRAN90with about 125 subrou-
tines among 50 modules, and 16,300 lines in total. KiD was used as
the parentmodel in our experiments. KiD is a serial kinematic frame-
work constraining the dynamics and isolating the microphysics.
It is publicly available at https://github.com/Adehill/KiD-A. Many
test cases are provided in KiD default repository. We chose the
most computationally intensive two-dimensional squall line case
to verify our code refactoring and compare the performance. This
case simulates lots of convective clouds. The benchmark simula-
tion on the CPU was configured with 3200 columns and 52 vertical
levels for 600 steps using 2-seconds time-step, which is a typical
time-step for CASIM in LES or Kinematic. In the UM we would
use different numbers of columns and vertical levels depending
on the simulated regions, and longer time-steps. However, from
experience refactoring code for CPU in MONC/KiD and applying
it to the UM, the speedups tend to be transferable.

3.1 Initial code refactoring
CASIM simulates the microphysics for 6 different moisture states:
vapor, cloud, rain, snow, ice and graupel. It also explicitly represents
the effect and in-cloud processing of aerosol. Generally speaking,
the microphysical processes can be divided to cold and warm micro-
physics. The cold microphysics are any processes that include snow,
ice and graupel, including mixed phase clouds. These processes can
occur below the freezing level, e.g. graupel falls to the surface and
snow melts, while warm microphysics focuses on the mechanisms
by which the cloud droplets are formed from vapor and further
grow to raindrops. The parameterizations of aerosol physics and
cold microphysics are still being actively developed and tested in
the Met Office. Therefore, presently we focus on optimizing the
simulations of warm microphysics. In our experiments, the cold
microphysics is switched off and 5 prognostics are used (vapor,
cloud mass and number, rain mass and number). However, the cold
microphysics share the same loop structure with the warm micro-
physics. Therefore, we expect that the optimization resulting from
parallelizing the loops can be extended to the whole moisture-states
and we will include the optimization of cold micropysics in our
future work.

The original calculations in CASIM are performed column by
column. The allocated variables are declared for the single column
on which CASIM is currently working. In order to work in parallel
on GPU, each allocatable array was extended by two dimensions
indexed by i and j coordinates representing the horizontal coordi-
nates of that column. CASIM uses a derived data type (DDT) to
hold the diagnostic tendencies of moisture in different states due
to different microphysical processes. This DDT was flattened to a
normal array to avoid the errors we met when transferring DDT
between CPU and GPU. Additionally, "!$acc declare create(arrays)"
was added under the declaration of all global variables to map them
to the GPU and keep their residency during the full execution. The
overview of this refactoring process is shown in Figure 1.

Figure 1: Overview of initial code refactoring over arrays

3.2 Implementation of OpenACC
The GPTL profile of the benchmark simulation is shown in Figure 2
with the nested subroutine calling structure and the runtime of rel-
atively expensive subroutines illustrated. The interface subroutine,
casim_interface, allows the parent model to pass input variables
to the entry point subroutine, shipway_microphysic, in which the
i-, j-loops call the microphysics_common subroutine, which further
calls all other CASIM subroutines using a n-loop. The i-, j-loops are
the horizontal loops working over the columns, and are safe to be
parallelized because each iteration is completely independent. The
n-loop updates the diagnostic variables at each iteration until the
moisture field reaches a converged steady state, hence it must run
sequentially. The vertical k-loops are within the subroutines located
at the lower level of the call tree. Most of them can be parallelized
except the one in the sedr_1M_2M subroutine, which determines
the sedimentation rate and has vertical data dependency.

The computationally intensive loops are deep in the call tree and
called conditionally by the n-loop for each column. Significant code
refactoring would be required to extract each one out, port them to
GPU and keep the massively parallel GPU busy. For that purpose,
we would have to reorder the loops by pulling the n-loop up and
pushing the horizontal loops down. This would lead to substantial
difficulties analyzing the data dependencies, keeping the condition-
als, and maintaining the correctness of computation. Therefore, we
offloaded the entire microphysics_common to GPU. However unlike
Brown et al. [2], we have applied a two-level parallelism approach
to further exploit the data parallelism within microphysic_common
and all other subroutines that it calls.

The first step in implementing OpenACC directives to CASIM
was to add parallel regions and simply use unified memory. We
found that the overhead of using unified memory swamped the
speedup achieved from parallelizing the loops in the cases with
large domain sizes. Therefore, we moved to the next step by using
OpenACC data directives to manage the data transfer between CPU
and GPU. The OpenACC implementation to CASIM is shown in
Figure 3 with pseudo code. The original nested horizontal looping
is split into three parts. The first part inherits the variables from
the parent model, and transfers the data from CPU to GPU through
"!$acc update device(list of variables)". The second part launches
the kernel and offloads the computation in microphysics_common

PASC ’21, July 5–9, 2021, Geneva, Switzerland Zhang et al.

subroutine to GPU. Since the related variables have been mapped to
GPU with the "!$acc declare create" clause, the "!$acc present" clause
is used to indicate the existence of the storage address on the GPU,
which avoids duplicate data copies. The third part has "!$acc update
self(list of variables)" to transfer data from GPU to CPU and transfer
back the tendencies.

The horizontal loops calling microphysics_common subroutine
are decorated with "!$acc parallel loop", which generates a number
of blocks in CUDA. The "collapse(2)" clause is used to merge two
horizontal loops into one because they are completely independent.
The n-loop ismarkedwith "!$acc loop seq" so that it runs serially. The
parallelizable inner loops and subroutines (e.g., sum_procs, condevp)
are mapped to threads by "!$acc loop vector collapse(number)" and
"!$acc routine vector", respectively. The sedr_1M_2M subroutine
is treated carefully with "!$acc routine seq" to denote the inner
calculations are done sequentially over the vertical levels.

Profiling Result CASIM.png

Figure 2: Overview of GPTL profiling results of KiD-CASIM
benchmark case on CPU

3.3 Results of the optimizations
A series of experiments over a range of domain sizes is conducted to
evaluate the optimization at different problem size. Each experiment
has the same number of vertical levels with the benchmark case,
completes 600 time steps, and is repeated 10 times. The runtime
varies 0.28-1.45% for GPU-CASIM with a range of 1.00-4.17%, and
0.16-0.51% for CPU-CASIM with a range of 0.45-1.76% on Summit.
Similar fluctuations on Titan were observed by Evans et al. [8].
There is a small difference in comparing average versus best. For
the most rigorous evaluation, we compared the performance using
the averaged wall clock time of the 10 runs. The correctness of the
modifications is verified by comparing simulation output using the
same configuration onGPU versus CPU. The differences are visually
indistinguishable in all results reported here and the root mean
square errors are within the range of 1.0E-10 to 1.0E-7. These are
considered acceptable to the physics model developers because they
are within the range of the differences between the model results
and observational data and are likely associated with roundoff
differences when performing operations on the CPU or GPU.

Figure 4 indicates that all experiments achieved considerable
speedup in themicrophysics_commonmodule within CASIM, where

Figure 3: Overview of OpenACC implementation on CASIM,
showing pseudo code.

"speedup" is defined as the ratio of the averaged CPU runtime ver-
sus GPU runtime for each configuration. As expected, the speedup
factor increases for larger domains, as GPU parallelization increases
with problem size. However, the computation time for the entire
CASIM called by the KiD interface,mphys_casim, does not decrease
dramatically. NVPROF identifies that less than 5.17% of runtime
on GPU is spent on data transfer between CPU and GPU. The API
calls are dominated by cuStreamSynchronize, which is the time
on the CPU side where the CPU is waiting for the GPU to finish the
execution. Our porting did not involve asynchronization due to the
data dependency between microphysics_common in CASIM and all
other components left on the CPU, thus the execution on the CPU
is blocked until the GPU has finished all issued tasks. However, this
time is concurrent to the time that the code is running on the GPU.
Therefore, it is not considered in performance comparison. The allo-
cation and kernel launching expense is relatively small (e.g., about
4.25% for the experiment with 3200 columns), but is not negligible.
To sum up, the overheads of data transfer, memory allocation and
launching the kernels are the main reasons for less performance
improvement achieved for the entire CASIM compared to that for
the microphysics_common subroutine. Nevertheless, porting the en-
tire microphysics_common shows substantial performance benefit
by keeping the data transfer taking up only a small fraction of the
overall time in all experiments.

Progress Towards Accelerating the Unified Model on Hybrid Multi-Core Systems PASC ’21, July 5–9, 2021, Geneva, Switzerland

Figure 4: The GPU speedup for microphysics_common and
the entire CASIM in experiments with different number of
columns

4 THE GPU IMPLEMENTATION OF
SOCRATES

SOCRATES contains both C and FORTRAN code, but the major-
ity is FORTRAN-based and has been highly optimized for parallel,
multi-core CPU computing. The source code was branched from
SOCRATES for UM11.6 with the SVN revision number r855, which
has 116 FORTRAN77 and 231 FORTRAN90 subroutines/functions,
and about 124,018 lines total, including comments. The serial dri-
ver used for SOCRATES is l_run_cdf, which is an offline testing
program that ingests meteorological and other data. SOCRATES
has multiple scientific options for calculating short-wave (SW) and
long-wave (LW) radiation. The random overlapping gas absorption
scheme is the most accurate, but also the most computationally in-
tensive scheme according to our performance profiling. Therefore,
we target the "random overlap" scheme for GPU acceleration.

The cost of the scheme scales pretty linearly with the number
of "monochromatic" calculations, i.e. the number of Exponential-
Sum Fitting of Transmission (ESFT). The LW configuration gen-
erally has more monochromatic calculations than the SW config-
uration, which is why we saw a greater cost overall for the LW
than the SW. Hence a test case for calculating LW radiation us-
ing the "random overlap" option is chosen for our experiments
as the benchmark case. This case is provided in the test suite of
SOCRATES’s repository. However, we expect to achieve similar
speedups in the SOCRATES SW case as in the LW case because
LW and SW radiation schemes share most of the subroutines, and
very few subroutines are solely used to calculate LW or SW ra-
diation. Based on the profiling results of CPU-SOCRATES, these
subroutines only take up a small amount of calculation time (i.e.,
solar_coefficient_basic and mixed_solar_source are the two subrou-
tines that are only used in the SW calculation and account for 5.7%
and 2.1% of the total time of solve_band_random_overlap respec-
tively. Two other subroutines, ir_source and adjust_ir_irradiance,
are only used in the LW calculation and use 2.2% and 4e-4% of the
total time of solve_band_random_overlap respectively).

4.1 Initial code refactoring
SOCRATES employs many FORTRAN77 features such as goto and
statement labels using numbers, which are obsolete and infeasible
for GPU porting. So we rewrote relevant code following the FOR-
TRAN90 standard and similar to the CASIM refactoring, flattened
the derived data type variables needed for access on the GPU.

4.2 Implementation of OpenACC
For SOCRATES, we used GPTL to profile a benchmark simulation
configured with 20 columns and 167 vertical levels. This configura-
tion is derived from a field experiment simulating plenty of fairly
realistic convective clouds in a Large Eddy Model. 167 levels is more
than what is used in the operational UM but not beyond the bounds
of what we might expect to use in the future. The current UM runs
bundle groups of 16 columns together in "segments" to loop through
with OpenMP as this seems to be an optimum size for efficiency,
so 20 columns is not too far from this. Besides, this experiment is
very efficient for us to verify results after code refactoring and GPU
porting. It can also be used to measure the GPU performance in a
small number of columns for some site simulations.

As shown in Figure 5, the computational expense of the entire
SOCRATES is dominated by the solve_band_random_overlap sub-
routine for gas absorption, withinwhich themix_column subroutine
is the main culprit because it contains the treatment of the vertical
overlap between different cloudy layers and is within the ESFT loop.
Three hot spots are identified under the mix_column subroutine.
They are trans_source_coeff, two_coeff_cloud, and solver_mix_direct,
which consume 27%, 12% and 36% of the total runtime of radi-
ance_calc, respectively. The two_coeff_basic and ir_source subrou-
tines are also included as targets for GPU optimization because
they have many parallelizable loops.

Unlike the GPU-based CASIM, the GPU-based SOCRATES in
present work utilizes the unified memory to share the data between
the CPU and GPU. Therefore, no explicit treatment is needed for
allocating and copying device memory, and this allows us to focus
on optimizing loops within the hot spots. Two approaches are used
to reorganize the loops and explore their GPU parallelism, thus
generating two versions of GPU-based SOCRATES for evaluation.

The first approachwe term the "PUSHUP-SOCRATES"method as
we pushed horizontal loops under the solve_band_random_overlap
up to the radiance_calc and the solve_band_random_overlap be-
came a single column model. This strategy was enacted so that
we could incorporate the CLAW SCA (see the left panel of Fig-
ure 6). This method involved heavy refactoring of the original
SOCRATES code including array demotion, argument change, sub-
routine modularization (where a subroutine is encapsulated into a
FORTRAN90 module), and loop removal. After that, as illustrated
in the right panel of Figure 6, the OpenACC implementation was
performed automatically by the CLAW compiler, which pushed the
horizontal loop back to the solve_band_random_overlap subroutine
and parallelized the inner horizontal and ESFT loops. The vertical
loops were not parallelized because the CLAW compiler could not
determine their data dependencies. All subroutines called by the
solve_band_random_overlap subroutine were treated as sequential
OpenACC routines with the "!$acc routine seq" directive added by
the CLAW compiler. In this approach, one big kernel over the ESFT

PASC ’21, July 5–9, 2021, Geneva, Switzerland Zhang et al.

and horizontal loops is generated. This kernel contains 5 levels of
nested subroutines and a total of 21 subroutines.

The second approach is termed the "PUSHDOWN-SOCRATES"
method, in which the ESFT loop in the solve_band_random_overlap
routine was pushed down and combined with vertical and horizon-
tal loops in subroutines at a lower level. In this case, the OpenACC
directives were implemented manually to parallelize the modified
loops within the hot spots. As one example, Figure 7 shows the
pseudo code blocks in the trans_source_coeff subroutine after the
ESFT loop was pushed down into it (left panel) and an OpenACC
kernel (parallel region) was created (right panel). There is a three-
level tightly nested loop in the block and two expensive intrinsic
functions (square-root and exponential functions) in the loop. There-
fore, the OpenACC parallel region was created around this loop.
In total, five kernels in five subroutines are generated. They are
two_coeff_basic, trans_source_coeff, ir_source, two_coeff_cloud, and
solver_mix_direct, respectively.

Figure 5: Overview of GPTL profiling results of l_run_cdf
SOCRATES benchmark case onCPUwith the blue line show-
ing the number of subroutine calls using 1.E4 as units. (Band:
spectral band loop, K: Exponential-Sum Fitting of Transmis-
sion (ESFT) loop, L: horizontal loop, and I: vertical loop)

4.3 Results of the optimizations
Two experiments with different spatial domain sizes are used to
evaluate SOCRATES performance on a single CPU core and a GPU.
The first experiment represents a simple field experiment with 20
columns and 167 vertical levels. The second is based on a UM global
simulation in which the entire domain is spatially decomposed
into 205 chunks. There are 1500 columns/grids in each chunk. The

Figure 6: Overview of the implementation of the CLAWSCA
on the single column solve_band_random_overlap subrou-
tine of SOCRATES

Figure 7: Overview of OpenACC implementation on loops
in the trans_source_coeff subroutine of SOCRATES

computational cost of SOCRATES highly depends on the input data,
especially cloud states. Following the experience of developing
SOCRATES in Met Office, we chose 5 chunks at random by a visual
inspection to efficiently pick up a mix of cloud to account for the
effects of different cloud amounts and vertical distributions on the
performance.

As with the CASIM performance results, the definition of the
speedup factor is also the same. Again, the mean of results from
10 runs were used to remove the performance fluctuations even
though they are relatively small (i.e., in the global experiment with
1500 columns, we found the variations are 0.25-1.63% for GPU-
SOCRATES with a range of 0.82-4.81%, and 0.12-0.24% for CPU-
SOCRATES with a range of 0.45-0.81%).

The speedup of the field experiment as a function of gangs,
workers, and vectors for the PUSHUP method is shown in Figure 8
and indicates poor performance on the GPU. As there is only one
large kernel, the number of gangs, workers, and vectors are the only
tuning parameters. Given the 4 workers and 32 vectors, increasing
the number of gangs from 1 to 80 leads to an increase of GPU
speedup from 0.52 to 1.07. Further increasing the number of gangs
from 80 to 160 does not get any performance improvement. There is
no clear trend in the GPU speedup with the increase in the number
of workers or vectors. The best performance is achieved by 80
gangs, 2 workers and 32 vectors, and is only 1.32x faster than the
serial run on the CPU. Further increasing the number of gangs and
workers leads to an out of memory (OOM) error because the big

Progress Towards Accelerating the Unified Model on Hybrid Multi-Core Systems PASC ’21, July 5–9, 2021, Geneva, Switzerland

Figure 8: GPU speedups as a function of the number of
gangs, workers and vectors (gang×worker×vector)

single kernel created in PUSHUP method quickly consumes the
GPU memory. We found similar results in the global experiment.

Figure 9 illustrates how GPU acceleration varies with the num-
ber of ESFT loops (also called as K loop in SOCRATES) for the
PUSHDOWN method for the field and global experiments. In the
field experiment with 20 columns, the GPU accelerations increase
from 2.71 to 3.24 as the number of K loops increases from 3840 to
112711. This is because more loops in the kernels will be computed
in parallel by GPUs when the number of K loops increases and the
data movement and memory usage in this experiment is not large
enough to inhibit the performance enhancement. On the contrary,
in the global experiment with 1500 columns, the data movement
and memory usage are huge and easy to reach OOM errors. In
order to reduce the risk of OOM, the K loop is unrolled into sev-
eral chunks. Based on several tests, the block size is selected as
200 to achieve the best performance. The loop unrolling increases
the number of subroutine calls, kernel launching, temporary array
allocation/deallocation, and GPU faulting when the number of K
loops increases. Therefore, as the number of K loops increases, the
speedup achieved in the global experiment decreases. When K=135,
the unrolling is not applied, and there is not much calculation to effi-
ciently use the GPU, so only 4.44 speedup is achieved. Performance
of individual kernels is also evaluated and shown in Figure 10. Most
kernels have achieved remarkable speedup, especially the kernels
in trans_source_coeff and solver_mix_direct, with 15.87x and 12.57x,
respectively. Although the GPU kernel in two_coeff_basic is slightly
slower, the average speedup for the solve_band_random_overlap
is about 9.25x. The NVPROF profiling results show that data mi-
grations of the unified memory for the PUSHDOWN-SOCRATES
dominates 5.6-9.7% of total time of OpenACC kernels depending
on the size of horizontal and ESFT loops. Less than 6% of total time
is spent on launching kernels. The overheads for GPU page faults
of the unified memory, however, can be as high as 49.2% of total
time when the size of horizontal and ESFT loops is large. Explicitly
implementing data directives or using CUDA data prefetching is a
feasible method and will become part of our future work.

Overall, the acceleration obtained in PUSHUP-SOCRATES is
much less than that in PUSHDOWN-SOCRATES. For the PUSHUP-
SOCRATES, the big kernel generated by the CLAW compiler in-
cludes multiple levels of nested subroutines, which in our exper-
iments easily reaches the bandwidth of memory, and causes an
OOM error. Besides, some non-optimal tasks other than paralleliz-
ing loops are done in this big kernel so only a small speedup is
promised by the PUSHUP method. In PUSHDOWN-SOCRATES,
small kernels with more efficient parallelism are used, hence reach-
ing better performance improvement.

(a) 20 columns

(b) 1500 columns

Figure 9: The GPU accelerations of the subroutine
monochromatic_radiance vary with the number of ESFT
(K) loops for two experiments of (a) 20 columns and (b) 1500
columns. All kernels for GPU optimization are under that
subroutine.

5 CONCLUSION AND FUTUREWORK
The cloud microphysics package, CASIM, and the radiation pack-
age, SOCRATES, are two of the most computationally intensive

PASC ’21, July 5–9, 2021, Geneva, Switzerland Zhang et al.

Figure 10: The GPU accelerations of five kernels and their
average when the number of ESFT loops is 3840 for the ex-
periment of 1500 columns.

portions of UM weather and climate simulations. We have pre-
sented a refactoring and OpenACC implementation of CASIM and
SOCRATES for acceleration using NVIDIA GPU on the OLCF’s
Summit supercomputer. Considerable speedup has been achieved
within targeted expensive kernels as well as the entire CASIM and
PUSHDOWN-SOCRATES modules. It is important to note that the
speedup is discussed by comparing the performance on one GPU
against one CPU core. The reason is that we only use the serial
model drivers for CASIM and SOCRATES on Summit at present. We
will implement the accelerated CASIM and SOCRATES to UM, then
enable the OpenACC build of CASIM and SOCRATES to be executed
on multiple GPUs using MPI, and compare the best performance
achieved by multiple GPUs and CPU cores.

The PUSHUP-SOCRATES strategy illustrated that heavy code
refactoring to organize the SOCRATES code into a single-column
structure was required so that CLAW could be applied. Although
time-consuming, it was still worthwhile as a learning experience, as
the CLAW-translated code provided good guidance tomanual imple-
mentation. The performance enhancements achieved in PUSHUP-
SOCRATES also motivate us to work closely with the CLAW de-
veloper and try other implementations of the CLAW compiler in
our single column version of SOCRATES to further improve its
performance in the future. The PUSHDOWN method also requires
significant code refactoring, although it is a little less than the
PUSHUP method. After we pushed down the ESFT loop and com-
bined loops and created kernels in deep subroutines manually, we
got a larger speedup compared to the PUSHUP method. Therefore
it is not obvious that one strategy beats the other “hands down”. For
now, our strategy is to proceed by combining automatic and manual
implementations, with efforts toward informing and improving the
DSL strategy so that it may be the better-long terms solution once
mature.

We also learned that calling multiple levels of nested subroutines
in one big kernel could cause large overhead and easily use up
the GPU registers and memory. Therefore, after pushing the loops
down and using small kernels, more acceleration was achieved

in SOCRATES. We will also apply this PUSHDOWN method to
CASIM in the future.

Although the GPU-based CASIM and SOCRATES are running
for several test cases on the GPU, there is still work to optimize
the use of a large CPU-GPU computer like Summit. As kernels
are optimized, more profiling will detect new performance bottle-
necks and thus opportunities for further performance improvement.
An important area of interest is to optimize memory access, for
example, better use of fast registers and caches in the GPU mem-
ory hierarchy. In particular, both CASIM and SOCRATES have a
large number of arrays being read several times from the global
memory in multiple loops or subroutines, which takes time. Loop
fusion and function fusion to merge several loops or subroutines
will allow the data to be first read from the global memory and then
read repeatedly from a register. Scalar replacement is also being
considered to replace intermediate variable arrays as scalars that
can be simply stored in the registers. Another important area is to
mitigate the thread divergence due to if statements. In Chakroun et
al. [3], the performance on GPU increased by 10-29% when apply-
ing refactoring compared with the original if-then-else instruction,
which is very encouraging. Reducing the number of if statements
is also necessary for us to get further optimization. However, care-
ful and time-consuming analysis and significant code refactoring
are needed and will be a focus in our future work. Specifically for
SOCRATES, further performance improvement can be achieved by
managing the data locality with explicit OpenACC data directives
and increasing memory coalescing. It is also possible to increase
the concurrency of launching kernels and the overlaps of kernel
and memcpy, i.e. the kernels in clear-sky and cloud-sky radiation
calculation can be launched asynchronously, and SW and LW radi-
ation can be computed in different GPUs simultaneously. It is also
necessary to adjust the number of gangs, workers, and the vector
length, but the optimal values are highly dependent on the specific
hardware and experiment.

For both CASIM and SOCRATES, we have not yet investigated
every aspect, for example the individual CPU and GPU capabilities
and memory bandwidth constrains. But they will be a focus during
our next steps. Besides, our work will not be limited to use only
OpenACC. We also plan to use OpenMP 4.5 to offload computations
to GPU and compare the performance difference.

ACKNOWLEDGMENTS
This research was supported by the U.S. Air Force LCMC collabora-
tion with Oak Ridge National Laboratory (ORNL). The computa-
tional resources on Summit are provided by the Oak Ridge Lead-
ership Computing Facility (OLCF) Director’s Discretion Project
ATM112. The OLCF at Oak Ridge National Laboratory (ORNL) is
supported by the Office of Science of the U.S. Department of Energy
under Contract No.DE-AC05-00OR22725. Furthermore, we would
like to acknowledge the contributions of Youngsung Kim at ORNL
for the insightful suggestions on porting algorithm development
and performance bottleneck detection. We also appreciate the great
help on CLAW implementation from Valentim Clement at ORNL.

REFERENCES
[1] Michail Alvanos and Theodoros Christoudias. 2019. Accelerating Atmospheric

Chemical Kinetics for Climate Simulations. IEEE Transactions on Parallel and

Progress Towards Accelerating the Unified Model on Hybrid Multi-Core Systems PASC ’21, July 5–9, 2021, Geneva, Switzerland

Distributed Systems 30, 11 (2019), 2396–2407.
[2] Nick Brown, Alexandr Nigay, Michèle Weiland, Adrian Hill, and Ben Shipway.

2020. Porting the microphysics model CASIM to GPU and KNL Cray machines.
arXiv preprint arXiv:2010.14823 (2020).

[3] Imen Chakroun,MohandMezmaz, NouredineMelab, andAhcene Bendjoudi. 2013.
Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm.
Concurrency and Computation: Practice and Experience 25, 8 (2013), 1121–1136.

[4] Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne, Carlos E.
Osuna, Robert Pincus, Jon Rood, and William Sawyer. 2018. The CLAW DSL: Ab-
stractions for Performance Portable Weather and Climate Models. In Proceedings
of the Platform for Advanced Scientific Computing Conference on - PASC ’18. ACM
Press, Basel, Switzerland, 1–10. https://doi.org/10.1145/3218176.3218226

[5] Valentin Clement, Philippe Marti, Xavier Lapillonne, Oliver Fuhrer, and William
Sawyer. 2019. Automatic Port to OpenACC/OpenMP for Physical Parameteriza-
tion in Climate and Weather Code Using the CLAW Compiler. Supercomputing
Frontiers and Innovations 6, 3 (2019), 51–63. https://superfri.org/superfri/article/
view/285

[6] Irina Demeshko, Naoya Maruyama, Hirofumi Tomita, and Satoshi Matsuoka.
2012. Multi-GPU implementation of the NICAM atmospheric model. In European
Conference on Parallel Processing. Springer, 175–184.

[7] J. M. Edwards and A. Slingo. 1996. Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model. Quarterly Journal of the Royal
Meteorological Society 122, 531 (April 1996), 689–719. https://doi.org/10.1002/qj.
49712253107

[8] Katherine J Evans, Richard K Archibald, David J Gardner, Matthew R Norman,
Mark A Taylor, Carol S Woodward, and Patrick H Worley. 2019. Performance
analysis of fully explicit and fully implicit solvers within a spectral element
shallow-water atmosphere model. The International Journal of High Performance
Computing Applications 33, 2 (March 2019), 268–284. https://doi.org/10.1177/
1094342017736373

[9] Jinrong Jiang, Pengfei Lin, Joey Wang, Hailong Liu, Xuebin Chi, Huiqun Hao,
Yuzhu Wang, Wu Wang, and Linghan Zhang. 2019. Porting LASG/IAP Climate
System Ocean Model to Gpus Using OpenAcc. IEEE Access 7 (2019), 154490–
154501.

[10] Jae Youp Kim, Ji-Sun Kang, and Minsu Joh. 2020. GPU acceleration of MPAS
microphysics WSM6 using OpenACC directives: Performance and verification.
Computers & Geosciences (2020), 104627.

[11] James Manners, John M. Edwards, Peter Hill, and Jean-Claude Thelen. 2015.
SOCRATES (Suite Of Community RAdiative Transfer codes based on Edwards
and Slingo) technical guide. https://code.metoffice.gov.uk/trac/socrates

[12] Christopher M Maynard and David N Walters. 2019. Mixed-precision arithmetic
in the ENDGame dynamical core of the Unified Model, a numerical weather
prediction and climate model code. Computer Physics Communications 244 (2019),
69–75.

[13] Matthew Norman, Jeffrey Larkin, Aaron Vose, and Katherine Evans. 2015. A
case study of CUDA FORTRAN and OpenACC for an atmospheric climate kernel.
Journal of computational science 9 (2015), 1–6.

[14] Sergi Palomas Martinez. 2019. Accelerating Operational Earth System Models
using GPUs: portability of NEMO diagnostics to GPU’s. (2019).

[15] Jim Rosinski. 2009. General purpose timing library (gptl): A tool for characterizing
performance of parallel and serial applications. InCray User Group (CUG). Berkley,
California.

[16] BJ Shipway and AA Hill. 2011. The Kinematic Driver model (KiD). Technical Re
(2011).

[17] Karthee Sivalingam, Grenville Lister, and Bryan Lawrence. 2015. Performance
analysis and Optimisation of the Met Unified Model on a Cray XC30. arXiv
preprint arXiv:1511.03885 (2015).

[18] Yuzhu Wang, Yuan Zhao, Wei Li, Jinrong Jiang, Xiaohui Ji, and Albert Y Zomaya.
2019. Using a GPU to accelerate a longwave radiative transfer model with efficient
CUDA-based methods. Applied Sciences 9, 19 (2019), 4039.

[19] Huadong Xiao, Jing Sun, Xiaofeng Bian, and Zhijun Dai. 2013. GPU acceleration
of the WSM6 cloud microphysics scheme in GRAPES model. Computers &
Geosciences 59 (2013), 156–162.

[20] Shizhen Xu, Xiaomeng Huang, L-Y Oey, Fanghua Xu, Haohuan Fu, Yan Zhang,
and Guangwen Yang. 2015. POM. gpu-v1. 0: a GPU-based Princeton Ocean Model.
Geoscientific Model Development 8, 9 (2015), 2815–2827.

https://doi.org/10.1145/3218176.3218226
https://superfri.org/superfri/article/view/285
https://superfri.org/superfri/article/view/285
https://doi.org/10.1002/qj.49712253107
https://doi.org/10.1002/qj.49712253107
https://doi.org/10.1177/1094342017736373
https://doi.org/10.1177/1094342017736373
https://code.metoffice.gov.uk/trac/socrates

	Abstract
	1 Introduction
	2 Methodology
	3 The GPU Implementation of CASIM
	3.1 Initial code refactoring
	3.2 Implementation of OpenACC
	3.3 Results of the optimizations

	4 The GPU Implementation of SOCRATES
	4.1 Initial code refactoring
	4.2 Implementation of OpenACC
	4.3 Results of the optimizations

	5 Conclusion and future work
	Acknowledgments
	References

