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Abstract

Improvements to scattering models are important for accurate retrievals of cloud ice.

This thesis involves analysing the internal electric fields of ice particles and using the

findings to develop and test new scattering approximations.

The discrete dipole approximation (DDA) is used to explore the internal fields and far-

field scattering properties of ice particles. We show that the field is relatively uniform

for size parameter x = 2, but for monocrystals of x = 10 there is a complex internal

structure, with focussing of the field towards the forward side. As particle complexity

is increased due to aggregation, the field becomes smoother and less focussing is seen.

For complex aggregates, the individual monomers act almost independently of one

another, suggesting simplified methods of calculating scattering. We find that the

Rayleigh-Gans approximation (RGA) and soft spheres provide a poor representation

of the internal and far fields.

A logical elaboration on RGA is a formulation permitting higher scattering orders.

This technique is evaluated, however we find convergence is restricted to a limited

subset of size parameter and shape. A new approximation for aggregates called the

Independent Monomer Approximation (IMA) is presented, where interactions between

different monomers of an aggregate are ignored. This enables time and memory reduc-

tions compared to using DDA. The IMA results are superior to RGA.

A microwave closure experiment is performed. Aggregate models are generated to

match measurements. The IMA method is used to perform scattering calculations

that are input into a radiative transfer model. Simulations are compared to measure-

ments from the ISMAR radiometer. Unlike RGA, the new method can reproduce the

measured brightness temperature depressions and polarimetric signal, but results are

sensitive to choice of particle shape. These findings are useful to guide preparations

for the Ice Cloud Imager which will measure ice in clouds and snowfall from space

following launch in 2023.
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Chapter 1

Introduction and project

background

1.1 Motivation

It is well established that clouds have a substantial influence on climate, but there are

large uncertainties associated with the radiative effects of different cloud types. Using

satellite-based remote sensing, Matus and L’Ecuyer [6] document that clouds exert a

net cooling effect on the climate over most of the planet, with net cooling from both

liquid and mixed-phase clouds. The research suggests that cirrus clouds, comprising ice

crystals and aggregate snowflakes, have an overall warming effect. However, as shown

by Zhang et al. [7], simulations of the radiative forcing of ice clouds are highly sensitive

to representation of particle size and shape. Since it is estimated that cirrus clouds

cover approximately 30% of the surface of the earth (e.g. Wylie et al. [8]), developing

our understanding of ice clouds is fundamental to improving future climate predictions.

Important quantities for climate studies include ice water content and ice water path.

The ice water content (IWC) of a cloud is defined as the mass of ice per unit volume

of air. The integral of this quantity over a column is referred to as the ice water path

(IWP) and is considered one of the essential climate variables by the World Meteo-

rological Organisation. Li et al. [9] showed that there remains a large disagreement
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between observed globally averaged IWP, and IWP modelled using different global

climate models (GCMs). Factors of 2-10 differences were found for a majority of the

GCMs used, some of which were used for the IPCC 5th Assessment Report.

Ice particles in clouds also have important hydrological impacts, contributing to rain-

fall in the midlatitudes [10], and snowfall at high latitudes. CloudSat [11] has provided

our best estimates thus far of global snowfall, using a 94 GHz cloud radar to profile

cloud vertical structure and obtain information on the constituent ice and water par-

ticles. However, there are still substantial uncertainties in converting the backscatter

from snow at this frequency into a snowfall rate, and part of this uncertainty is due

to the assumptions and approximations made about how natural snowflakes scatter

electromagnetic waves [12].

Improvements to ice cloud retrievals are required in order to gain more precise infor-

mation on cloud and hydrometeor profiles, and thus address the above uncertainties.

Comparing 5 different satellite products, Refs. [13,14] have shown that there are large

inconsistencies between retrieved IWP from the different datasets. Improved retrievals

of such properties are integral to the development of ice cloud microphysics schemes,

which will allow advancements in the representation of different processes in both

Numerical Weather Prediction (NWP) and climate models. Retrievals from remote

sensing instruments are sensitive to scattering by ice particles which are comparable

to or larger than the wavelength. The scattering behaviour becomes more complicated

in such cases, and approximations like a Mie sphere become poor [15]. Therefore, the

development of more sophisticated scattering methods for realistic, non-spherical par-

ticles is needed. This will aid accurate detection of cloud ice and snowfall from space,

which remains an area of great difficulty.

1.2 Atmospheric ice particles

There are many different crystalline phases of ice, but the most common phase obtained

when water is frozen at atmospheric pressure is ice Ih. This has a basic hexagonal ar-
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rangement, and is the reason why the thermodynamically favoured equilibrium shape

for atmospheric ice is a hexagon. The constituent particles of ice clouds vary in size

and shape depending on the temperature and supersaturation of the surrounding en-

vironment. Different growth processes complicate the crystal habits, such as diffusion,

accretion, and aggregation. Diffusion is the mechanism by which individual crystals

grow, as water vapour molecules are deposited onto the ice surface. As ice particles

grow by diffusion, new molecules will try to maintain the equilibrium shape by moving

into the hexagonal structure. At low to moderate vapour densities, the vapour can

be quickly distributed over the crystal surface and incorporated into the lattice, and

the crystal habit will not change. However, at higher vapour densities there may not

be enough time for molecules to arrange themselves in the energetically favoured way.

In such cases, convergent diffusion towards the corners may result in more complex

particle structures such as dendrites or stellar plates. More detail on ice particle habits

may be found in books such as Refs. [16,17]. As ice particles fall they may experience

riming, which is the process describing accretion of supercooled liquid droplets by the

crystals. Aggregation can occur when ice crystals fall at different speeds, resulting in

them colliding and sticking together to form complex snowflake clusters.

We will investigate a number of different idealisations of single and aggregated ice

crystals. These are:

• Hexagonal plates: Horizontally aligned hexagonal plates are frequently found in

mixed-phase layer clouds [18], and at the top of cirrus clouds [19,20], particularly

in anvil cirrus [21]. These studies found plate-like crystals with Dmax reaching

almost 1 mm, where Dmax is the maximum distance between any 2 points within

the particle.

• Hexagonal columns: Collating data from three different cloud campaigns, Um

et al. [21] concluded that hexagonal columns exist at all temperatures explored,

between −87 and 0 ◦C. However, growth is favoured between −4 and −8 ◦C [22].

During the campaigns, columns of projected Dmax values between approximately

0.025 and 1 mm were observed. In this study we look at short columns of solid
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ice, which usually occur at low ice supersaturations [23].

• Chain aggregates of plates: Aggregates of plate-like crystals occur in regions of

high electric field, such as within deep convective clouds [24–26]. These observa-

tions support laboratory measurements which recorded an increase in aggrega-

tion efficiency due to the presence of electric fields [27,28]. Vonnegut [29] showed

that polarisation due to the external field orients the individual plates such that

they align with the electric field lines. This increase in contact time results in

greater adhesion efficiency by enhancing the occurrence of sintering at the points

of contact of the monocrystals. This particle shape is a logical elaboration on

single plates and is useful to study the transition from single crystals to complex

aggregates.

• Irregular aggregates of ice crystals: These are a more complex representation

of realistic aggregates found in stratiform ice clouds and snowfall. Hobbs et

al. [30] observed dendritic aggregates of Dmax up to 1.4 cm. Such large aggregates

play a significant role in microwave scattering as they dominate radar reflectivity

when present, thus proving important for snowfall retrievals. Hence it is useful

to explore their scattering properties. In chapter 3 we present results for two

aggregates of fernlike dendrites modelled by Tyynelä et al. [3]. We also explore

aggregates generated specifically for this work in chapters 4 to 6, comprising

monomers of plates, columns, and dendrites.

1.3 Remote sensing of ice particles

Validation and testing of the capabilities of NWP and climate models relies on high-

quality global measurements of atmospheric cloud ice. This is made possible using

both active and passive remote sensing instruments. Active sensors emit electromag-

netic radiation and measure the returned signal, while passive sensors measure radiation

emitted from the earth’s surface and from hydrometeors in the atmosphere. The in-

tensity of the detected radiation is diminished from its original state due to scattering
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and absorption by particles in the atmosphere, such as the water droplets and ice crys-

tals that constitute clouds. Depending on the wavelength or frequency of operation,

remote sensors may be sensitive to different regions of a cloud. A brief overview of

some commonly used instruments is provided below.

1.3.1 Active instruments

Lidars operate at high frequencies within the visible or near-infrared region of the

electromagnetic spectrum, and thus have the capability to sample small particles. This

means the instrument can detect thin cirrus, along with providing useful information

on cloud boundaries. However, strong attenuation at these frequencies means a lidar

fails to see deep into the cloud.

Cloud radars provide an important tool for probing the cloud structure and enabling

detection of tiny water droplets and ice crystals, along with larger particles. The

instruments operate at wavelengths between about 1 mm and 1 cm. They transmit

waves with wavelengths about 10 times shorter than precipitation radars, in order to

detect the smaller sizes. Such instruments are beneficial for determining particle size

and shape, and deriving the IWC within a cloud. The two cloud radars at Chilbolton

observatory have frequencies of 35 GHz and 94 GHz, i.e. wavelengths of 8.6 mm and

3.2 mm. Exploitation of higher frequency radars for meteorological applications is

becoming increasingly possible, and Battaglia et al. [31] found that retrievals could be

significantly improved from using G-band radar with frequencies of 110 to 300 GHz.

A new 200 GHz instrument called GRaCE (G-band Radar for Cloud Evaluation) has

recently been built by RAL Space, and is currently being tested. The corresponding

shorter wavelength of approximately 1.5 mm will allow measurements of even smaller

atmospheric particles, thus facilitating more accurate estimations of IWC.
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1.3.2 Passive instruments

Passive radiometry allows for accurate measurements of the column mass of atmo-

spheric ice, since radiometers operate at a wide range of frequencies which are very sen-

sitive to scattering by ice. Efforts have been made to improve airborne and spaceborne

retrievals of IWP by measuring sub-millimetre brightness temperatures using radiome-

ters such as the Compact Scanning Submillimeter Imaging Radiometer (CoSSIR), the

Ice Cloud Imager (ICI), and the International Sub-Millimeter Airborne Radiometer

(ISMAR) [32–35]. CoSSIR was one of the pioneering airborne sub-mm radiometers,

and promising retrieval capabilities have been demonstrated using measurements from

the instrument [36]. Following on from this success, ICI will be the first operational in-

strument to cover sub-mm wavelengths, with frequencies ranging from 183 to 664 GHz.

The instrument has been specifically designed for measuring cloud ice from space, and

is due for launch on-board the MetOp-SG satellite “B” in 2023. ICI was developed by

ESA but is operated by EUMETSAT. It is expected that the combination of frequen-

cies available will allow for more accurate estimations of IWP and cloud ice effective

radius. Moreover, the instrument has the capability of measuring simultaneous hori-

zontal and vertical polarisation states from some channels, providing valuable insight

into the shape and alignment of cloud particles. The UK Met Office and ESA have

developed an airborne demonstrator instrument for ICI, named ISMAR. The ISMAR

radiometer flies on the Facility for Airborne Atmospheric Measurements (FAAM) BAe-

146 research aircraft and is useful for testing ice scattering models that could be used

within retrieval algorithms for ICI. At present the instrument covers a frequency range

of 118 to 664 GHz, but a new 874 GHz channel is currently in development. The fre-

quency range covered by ISMAR and ICI corresponds to wavelengths of 0.3− 2.5 mm.

1.4 Aims and outline of thesis

The irregular habits of realistic ice particles make scattering calculations difficult. In

the past, radiative transfer models have employed drastic simplifications of cloud ice,
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such as approximating particles by spheres or spheroids of equivalent size. However,

as particle size increases with respect to the wavelength, the particle shape and ma-

terial play a significant role in different interference patterns that are found within

the particle. Recently there have been advances in using more realistic habits for sin-

gle scattering calculations e.g. the Atmospheric Radiative Transfer Simulator (ARTS)

database (Eriksson et al. [37]). With the advent of high frequency observations, accu-

rate retrievals require continued efforts to improve our understanding of the scattering

properties of realistic ice cloud particles. This will enable better interpretations of scat-

tered electromagnetic waves, in turn allowing more precise retrievals of cloud properties

from both radars and radiometers.

The overall purpose of this thesis is to develop new methods to approximate electro-

magnetic wave scattering by ice crystals and snowflakes, and test their performance.

The goal is that the methods will be computationally cheap, but accurate enough to

be used along with radar and radiometer data. Thus, for the purpose of this work

I focus on the mm and sub-mm region of the electromagnetic spectrum, with rele-

vant wavelengths ranging from 0.3− 8.6 mm. Ideally the approximations may be used

with particles with a range of sizes, from those that are much smaller than the wave-

length e.g. frozen cloud droplets of approximately 10 µm, to particles larger than the

wavelength. Considering the previously mentioned plate-like particles with Dmax up

to 1 mm, this means the method would ideally be accurate for size parameters up to

approximately 10, where the size parameter x is defined as x = kDmax/2, and k is

the wavenumber. However, we note that snowflake aggregates often exceed these sizes,

with in-situ aircraft based measurements revealing the presence of very large aggregates

of dendritic crystals with diameters of 4 − 5 cm (Lawson et al. [38]). This discovery

is important as these particles are not included in the particle size distribution (PSD)

parameterisations currently used in NWP and climate models, such as the one devel-

oped by Field et al. [39]. Baran et al. [40] point out that these large particles must

be considered for accurate ice cloud remote sensing in the microwave region. Thus it

may be necessary to consider scattering calculations at larger size parameters, but we

do not explore such sizes in this thesis.
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By using one of the newly developed methods to perform scattering calculations that

are input into radiative transfer simulations, comparisons may be done with remote

sensing observations from ISMAR. This allows validation of cloud ice retrievals that

may be used to guide ICI preparations and provide recommendations on required

retrieval parameters. It may provide information on the ways in which the multi-

frequency capabilities of ICI could be exploited to reduce uncertainties and improve

retrievals.

The outline of the thesis is as follows. Chapter 2 summarises the basic electromagnetic

theory relevant to this study. The Maxwell equations are introduced, and descriptions

of how different scattering quantities are calculated are provided. In chapter 3 we

explore the scattering of mm and sub-mm electromagnetic waves by ice particles and

snowflakes through an investigation of their internal electric fields. As we will show, this

allows us to identify different physical effects, which in turn control different aspects of

the far-field scattering; in addition it allows us to test at a more fundamental level the

realism of approaches like RGA, by comparing the true internal field with the incident

plane wave. Chapter 4 explores the use of iterative methods to calculate scattering,

while a new approximation called the Independent Monomer Approximation (IMA)

is introduced and tested in chapter 5. The newly developed IMA method is used to

perform scattering calculations which are input into radiative transfer simulations in

chapter 6. Results are compared to observations from ISMAR. Conclusions of the work

are provided in chapter 7, along with plans for future work.
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Chapter 2

Electromagnetic scattering theory

2.1 Maxwell’s equations

The four fundamental Maxwell equations describe the properties of electromagnetic

fields, and how they interrelate with each other. Following Liou and Yang [41], the

equations are given in Gaussian (cgs) units as:

Gauss’ Law for Electricity:

∇ ·D = 4πρ (2.1)

Gauss’ Law for Magnetism:

∇ ·B = 0 (2.2)

Faraday’s Law:

∇× E = −1

c

∂B

∂t
(2.3)

Ampere-Maxwell Law:

∇×H =
1

c

∂D

∂t
+

4π

c
J (2.4)

In the above equations, E represents the electric field vector, H is the magnetic field
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vector, ρ is the charge density, J is the current density, and c is the speed of light

in vacuum. The remaining quantities are related to E and H via the constitutive

equations. In a linear, homogeneous, isotropic medium, these are given by:

J = σE (2.5)

D = εE (2.6)

B = µH (2.7)

The quantities ρ and J are from external charges and may be thought of as the sources

of the electromagnetic field. D is the electric displacement, and B is the magnetic

induction vector. The electrical conductivity is denoted by σ. The electric permittiv-

ity and magnetic permeability are given by ε and µ. A dielectric is a substance with

negligibly small conductivity, so its electric and magnetic properties are determined by

ε and µ. For non-magnetic substances, such as ice and air, we may assume they are in-

sulators with µ ≈ 1. This means the materials are defined by the complex permittivity

ε = εr + iεi, which we assume is constant throughout the medium. We can also write

ε = m2, where m is the complex index of refraction of the particle. As recommended

by Eriksson et al. [42], the permittivity parameterisation introduced by Mätzler [43]

has been used to calculate the dielectric properties of the ice particles modelled in this

study. The authors of Ref. [42] outline that the Mätzler model consolidates a number

of earlier models, and as such is currently the most accurate parameterisation available

for the microwave region. The real part of the permittivity εr, which represents phase

velocity, varies weakly with temperature. The imaginary part εi, which represents ab-

sorption of the wave in the particle, varies more strongly with temperature, and also

with frequency. In the majority of the calculations presented here, we have assumed

a temperature of −20◦C. For the ice particles in chapter 3, this results in a value of

3.1702 for εr, while εi varies between approximately 0.0002 and 0.0075. In chapter 6,

rather than assuming a temperature of −20◦C, the temperature data is obtained from

observations.
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Equations (2.1) to (2.4) show that separated positive and negative charges give rise to

an electric field. If there is a charge, there is an electric field. As this electric field

changes with time it will give rise to a rotating and therefore time-changing magnetic

field. The time-changing magnetic field gives rise to a rotating and therefore time-

changing electric field. Hence the result is a self-propagating electromagnetic wave that

does not require a medium and can travel through a vacuum. The coupled electric and

magnetic fields oscillate perpendicular to each other, and both are perpendicular to

the direction of propagation of the wave, i.e. the wave is transverse. Electromagnetic

waves can be classified by their wavelengths, and the complete range is known as the

electromagnetic spectrum.

2.2 Electromagnetic wave equation

From Maxwell’s equations we can derive the electromagnetic wave equation. If we

consider a source-free region with no charges or currents, ρ = 0 and J = 0, and the

equations reduce to:

∇ · E = 0 (2.8)

∇ ·H = 0 (2.9)

∇× E = −µ
c

∂H

∂t
(2.10)

∇×H =
ε

c

∂E

∂t
(2.11)

Taking the curl of both sides of Eq. (2.10)

∇× (∇× E) = −µ
c

∂

∂t
(∇×H) (2.12)

and using Eq. (2.11)

∇× (∇× E) = −εµ
c2
∂2E

∂t2
. (2.13)

Using the vector identity a× (b× c) = b(a · c)− c(a · b) we can write Eq. (2.13) as:
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∇(∇ · E)− (∇ · ∇)E = −εµ
c2
∂2E

∂t2
. (2.14)

Using Eq. (2.8) and rearraging, we obtain:

∂2E

∂t2
=
c2

εµ
∇2E (2.15)

or

∂2E

∂t2
=
c2

εµ

(
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2

)
, (2.16)

Thus the electric field satisfies the three-dimensional wave equation, and the velocity of

the wave is given by v = c/
√
εµ. In a vacuum, ε = µ = 1 and v = c. In a non-magnetic

dielectric, v = c/
√
ε = c/m. In other words, the wave gets slowed down by a factor of

the refractive index. A similar equation could be obtained for the magnetic field H, if

required, but we only focus on the electric field here.

x

y

z
k̂

E

B

E = E0 sin(k̂ · x− ωt)

B = B0 sin(k̂ · x− ωt)

The wave equation has a large number of solutions, such as plane waves, spherical

waves, and standing waves. The simplest solutions are plane waves, where E is uniform

over every plane perpendicular to the direction of propagation, i.e. everywhere on the

surface with constant phase φ = k·x−ωt, where k is the wave vector, whose magnitude

k = |k| = 2π/λ is the wavenumber corresponding to an incident wave of wavelength

λ, and whose direction k̂ = k/k is the direction of propagation of the wave. The

angular frequency is given by ω = ck, i.e. a point moves in direction k̂ with speed ω/k.
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E0 = E0ê is the polarisation vector for the electric field, where E0 is the amplitude

and ê is the unit vector in the direction of polarisation.

2.3 Scattering of electromagnetic waves

A variety of atmospheric particles cause scattering of radiation, including small gas

molecules, aerosols, water droplets, and ice particles. Let us consider a volume of air,

and introduce an applied incident wave, such as a radar pulse. If an ice particle is

inserted into the volume, the total electric field will be modified due to the presence of

that particle. Scattering is the term given to describe the modification of the incident

field due to the presence of a particle. Hence we may express the total field as a

combination of the incident and scattered fields, i.e. E = Einc + Esca.

The field at an observation point r can be related to all other fields using an electric

field volume integral equation of the form (e.g. Refs. [41,44,45]):

E(r) = Einc(r) +

∫
V

d3r′Ḡ(r, r′)χ(r′)E(r′), (2.17)

where V is the particle volume. The free-space dyadic Green’s function is the solution

due to a point source excitation at r′, and is given by:

Ḡ(r, r′) = [k213 +∇∇]g(r, r′). (2.18)

The scalar Green’s function g(r, r′) is:

g(r, r′) =
exp(ikR)

R
, (2.19)

where R = r− r′ and R = |R|. Eq. (2.18) can be expanded out to give:

Ḡ(r, r′) =
exp(ikR)

R

[
k2(13 − R̂R̂)− 1− ikR

R2
(13 − 3R̂R̂)

]
, (2.20)
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where R̂ = R/R, and R̂R̂ is a dyadic whose element (R̂R̂)J,J ′ = R̂JR̂J ′ for J, J ′ =

1, 2, 3. Ḡ(r, r′) has a singularity at r = r′, and for numerical calculations this must be

treated with care. One approach is to consider a small volume V0 surrounding point

r, with bounding surface denoted by S0. Then Eq. (2.17) may be split into different

parts and rewritten using integrals M̄ and L̄, associated with the small volume:

E(r) = Einc(r) +

∫
V \V0

d3r′Ḡ(r, r′)χ(r′)E(r′) + [M̄(r)− L̄(r)]χ(r)E(r). (2.21)

The integrals M̄ and L̄ are given by:

M̄(r) =

∫
V0

d3r′
(
Ḡ(r, r′)− Ḡ

st
(r, r′)

)
, (2.22)

L̄(r) = −
∫
V0

d3r′Ḡ
st

(r, r′), (2.23)

where Ḡ
st

(r, r′) is the static limit of Ḡ(r, r′):

Ḡ
st

(r, r′) = ∇∇ 1

R
= −∇

( R̂

R2

)
= − 1

R3
(13 − 3R̂R̂). (2.24)

L̄ can be converted from a volume integral to the following surface integral:

L̄(r) =

∫
V0

d3r′∇
( R̂

R2

)
=

∮
S0

d2r′
n̂′R̂

R2
, (2.25)

where n̂′ is the unit normal to the surface S0 at point r′.

M̄ is a volume integral which converges to 0 as the volume of V0 decreases. The surface

integral L̄ is referred to as the “depolarisation” dyadic (Ref. [46] chapter 3.9), and is

a term which depends on the geometry of the volume V0, but not on its size. In other

words, L̄ approaches a constant value as V0 tends to 0. As discussed in Ref. [47], L̄

can be shown to equal 4π13/3 for cubical or spherical volumes.
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2.4 Far-field scattering

We illuminate the particle with a plane wave of unit amplitude, E0 = 1, recalling that

E0 = E0ê is the polarisation vector:

Einc(r) = E0 exp(ik · r− iωt). (2.26)

It is well known that if the distance r between the detector and scatterer is large, we

can make the following far-field approximations (e.g. see Jackson [48] chapter 9, or

Mishchenko et al. [49] chapter 2):

R = |r− r′| ≈ r − r′ · n̂ (2.27)

1

R
≈ 1

r
. (2.28)

Combining the above approximations with Eqs. (2.17) and (2.20), and taking the limit

r →∞, the scattered far field can be approximated by:

Esca(r) =
exp(ikr)

r
F(n̂), (2.29)

where the scattering amplitude F(n̂) can be written:

F(n̂) = k2(13 − n̂n̂)

∫
V

χ(r′)E(r′) exp(−ikr′ · n̂)d3r′. (2.30)

The unit vector in the scattering direction is n̂ = r/r, and n̂n̂ is a dyadic. 13 is

the identity dyadic, and 13 − n̂n̂ represents the transversality of the scattered wave.

The electric susceptibility, χ(r) = (ε(r) − 1)/4π, is a complex-valued quantity which

describes the degree to which charges align within a medium as a result of an electric

field.

From a detector, we can measure waves polarised parallel to the unit vector êdet, so the
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field we sample is Edet(r, êdet) = Esca(r) · êdet. The normalised differential scattering

cross section σ(n̂, êdet) for one direction and polarisation can be calculated such that

it is independent of distance r. The vector êdet is chosen to be perpendicular to n̂, so

n̂ · êdet = 0, and we have:

σ(n̂, êdet) = r2|Edet(r, êdet)|2. (2.31)

The total scattering cross section σs represents a sum of waves scattered in all directions

in the far field, and thus may be obtained by integrating over all scattering angles:

σs =

∫
4π

σ(n̂, êdet)dΩ, (2.32)

where dΩ = sin ΘdΘdΦ is the differential solid angle for zenith and azimuthal angles

Θ and Φ.

Absorption is when the energy of the field is converted into a different form, such as

heat. The absorption cross section is:

σa = 4πk

∫
V

=(χ(r′))|E(r′)|2d3r′. (2.33)

Extinction is the removal of energy from an incident beam of light. This is caused by

a combination of scattering and absorption. Thus, the extinction cross section σe may

be written as:

σe = σs + σa. (2.34)

However, extinction may also be calculated using the optical theorem which states that

σe is proportional to the imaginary part of the scattering amplitude at zero scattering

angle, i.e. in the forward direction only. Derivations are available in books such as

Jackson [48]. We use the formulation of Draine [50]:

σe =
4π

k
=(F(n̂inc) · E∗0), (2.35)
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where F(n̂) was defined in Eq. (2.30).

The phase function is given by:

p(Θ,Φ) =
4π

σs
|F(n̂)|2 , (2.36)

and is usually averaged over Φ so that the result is a function of the scattering angle

only. The asymmetry parameter, g, is a related quantity, but with the inclusion of a

cos Θ factor:

g = 〈cos Θ〉 =
1

σs

∫
4π

|F(n̂)|2 cos ΘdΩ. (2.37)

It is used as a measure of how much a particle scatters in the forward or backward

direction. The values are between 1 and -1, where 1 means total forward scattering,

-1 means total backscatter, with values around 0 obtained when there is equal forward

and backscatter. This is the case for isotropic scatterers which distribute radiation

evenly in all directions, and also for Rayleigh scatterers which have equal forward and

backward scattering but are not isotropic.

2.5 Remote sensing theory and quantities

Radiative transfer simulations can be done with different models, such as the Atmo-

spheric Radiative Transfer Simulator (ARTS) (Eriksson et al. [51]). ARTS version 2 is

an open-source software program which supports polarised radiative transfer calcula-

tions. A single-scattering database is available to use with the software [37], but inputs

of pre-calculated scattering properties are also accepted. This flexibility means it is

possible to use arbitrary particle sizes and shapes, depending on the requirements of

the study.

Polarimetry is an important concept in remote sensing. Radiation is said to be po-

larised when there is a preferred direction of the electric and magnetic field vectors of

an electromagnetic wave. It is customary to describe the direction of polarisation as

the direction of oscillation of the electric field vector. Sunlight is an example of unpo-
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Figure 2.1: Scattering geometry for an incident wave in the direction of the z-axis,
scattered at an angle (Θ,Φ).

larised radiation, i.e. the electric and magnetic field vectors have no preferred direction.

Scattering is one method by which unpolarised light becomes polarised, with others

including reflection and refraction. Polarimetric measurements aid characterisation of

objects in the atmosphere. For example, coincident measurements at two orthogonal

polarisation states can help to determine particle shape and orientation.

To specify the polarisation states of the incident and scattered fields in this study,

we may introduce the unit vectors θ̂i, φ̂i and θ̂s, φ̂s. The direction of incidence is

k̂i = θ̂i × φ̂i, and the scattering direction is described by n̂ = θ̂s × φ̂s. The scattering

setup for a point r = (r,Θ,Φ) in the far field is depicted in Fig. 2.1 for an incident

wave in the z-direction. In that case θ̂i and φ̂i are equivalent to x̂ and ŷ.

2.5.1 Amplitude scattering matrix

In order to input our own scattering calculations into ARTS, it is necessary to com-

pute the 2 × 2 amplitude scattering matrix, S. The matrix linearly transforms the

electric field vector components of the incident plane wave into the electric field vector

components of the scattered spherical wave:
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Es · θ̂s
Es · φ̂s

 =
exp(ikr)

r

S11 S12

S21 S22


Ei · θ̂i

Ei · φ̂i

 . (2.38)

In this thesis, the convention of Mishchenko et al. [49] is adopted. Different notations

are found in the literature, e.g. Bohren and Huffman [52] refer to parallel and perpen-

dicular polarisation, where θ̂ = ê‖ and φ̂ = −ê⊥. Other authors such as Bringi and

Chandrasekar [53] refer to horizontal and vertical polarisation states, which is common

when considering radar applications. The amplitude of the outgoing spherical wave de-

creases as 1/r. Different references commonly include a factor of ik in the denominator

of Eq. (2.38), e.g. [52,54]. It is explained in the text of van de Hulst [54] that the k is

included to make S dimensionless, and the i may make certain scattering calculations

more convenient.

Once S is calculated for a particle, it is possible to compute any other scattering

quantities required. ARTS requires the phase matrix, Z, the extinction matrix, K, and

the absorption vector, a. Definitions for Z and K are available in Ref. [49], while the

equations used for a are given by Evans and Stephens [55].

2.5.2 The radiative transfer equation

Once scattering calculations are performed and input into the model, ARTS solves

the vector radiative transfer equation (VRTE). The VRTE expresses the change in

intensity of radiation along the viewing path in terms of three contributions (Eriksson

et al. [51]):

dI(f, r, n̂)

ds
= −K(f, r, n̂)I(f, r, n̂) + a(f, r, n̂)B(f, r) +

∫
4π

dn̂′Z(f, r, n̂)I(f, r, n̂′).

(2.39)

In Eq. (2.39), I is the radiance vector, ds is the pathlength element measured along

the scattering direction n̂, f is the frequency, r is the position vector, B is the Planck

function, and n̂′ represents the directions from which illumination is received. Thus,

the first term on the right hand side of Eq. (2.39) represents attenuation of radiation
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due to extinction, the second term describes the gain due to thermal emission, and

the third term describes the radiation gain due to scattering from all directions n̂′ into

the line of sight n̂. After solving Eq. (2.39), the radiances are converted to brightness

temperatures within ARTS. These may then be compared to observations, such as

those obtained from ISMAR.

2.6 Existing approaches to calculate scattering

A wide variety of methods to calculate electromagnetic wave scattering are available,

but each have their pros and cons. Some methods are accurate but too expensive,

and others are more efficient but inaccurate. Moreover, the amount of scattering that

occurs varies depending on a measure of particle size relative to the wavelength of

radiation. Mie scattering may be used to describe scattering by particles of any size,

but unfortunately is only valid for spherical particles. There currently does not exist

a single method that may be applied to scattering problems for arbitrarily shaped

particles at all sizes.

As introduced in chapter 1, we define the size parameter of a particle as x = kDmax/2.

Rayleigh scattering, which is the small particle limit of Mie theory, occurs when the

scatterer is much smaller than the wavelength of the applied wave, i.e. if x� 1. The

geometric-optics approach may be employed for large particles with x � 1. In this

model, light propagation is described using ray tracing, while diffraction and internal

interactions are ignored. Variations of the method, such as ray tracing with diffraction

on facets (RTDF; [56]), have provided accurate results for size parameters as small as

x = 18. For non-spherical particles approximately equal to the wavelength, neither of

these approaches are valid, and analytical scattering solutions are only available for

a limited number of simple shapes, such as spheres, spheroids, and infinite circular

cylinders. Thus to compute scattering properties of non-spherical particles within this

size range, such as ice crystals and snowflakes, different numerical methods are required.

Here we briefly outline the main ideas behind some of the scattering methods that

have been applied to atmospheric particles, but an extensive summary can be found in
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Kahnert [45], and Liou and Yang [41].

The finite-difference time domain method (FDTD) is a differential equation method

whereby a particle and the surrounding region are discretised into cells. The electro-

magnetic characteristics are represented by assigning values of permittivity, perme-

ability, and conductivity to each cell. The FDTD algorithm involves replacing the

derivatives in Maxwell’s curl equations by finite differences, and simulating the propa-

gation of scattered waves using a time-marching procedure. An advantage of FDTD is

that it can be used for arbitrary particle geometries. However, the method can be very

time and memory intensive as calculations must be performed over a spatial domain

that is larger than the particle.

In the T-matrix approach, the incident and scattered fields are expanded in terms of

suitable vector spherical wave functions. A transmitting matrix (or T-matrix) contains

the full information on the single-scattering characteristics of the particle, i.e. it re-

lates the scattered expansion coefficients to the incident coefficients. The advantage of

a T-Matrix formalism is that once the matrix is calculated, scattering properties can

be obtained for any orientation. Thus, averaging over random orientations can be done

relatively quickly, compared to other methods that require new solutions to be calcu-

lated for each orientation. A T-matrix can be computed using many different numerical

methods, but any scattering method using this approach is generally referred to as a

T-matrix method. The original method used for this setup is the extended boundary

condition method (EBCM) introduced by Waterman [57, 58]. T-matrix methods are

usually applied to spheroids, but can be applied to other shapes with well-defined sur-

faces, such as cylinders. They are less frequently applied to non-symmetric particles

due to convergence issues.

Another branch of numerical methods reformulates the scattering problem using inte-

gral equations. In the boundary element method (BEM), the problem is formulated

as a system of boundary integral equations which may be solved to obtain the elec-

tric field. The advantages of the method are that it can be used with complicated

geometries, and only the boundary of the particle needs to be discretised. However,
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the method has been found to be more memory intensive than T-matrix methods [59].

The discrete dipole approximation (DDA) is a volume integral equation technique, i.e.

it is a particular discretisation of the volume integral equation introduced in Eq. (2.17).

The starting point of the method is to discretise the particle into small volume elements,

each of which is excited by an electric field. Interactions between different volume

elements are calculated, enabling accurate calculations using DDA. However, including

all the interactions means the technique is computationally expensive. Researchers such

as Westbrook et al. [60] have employed the less expensive Rayleigh-Gans approximation

(RGA) in an attempt to calculate scattering properties in a more efficient manner. The

problem can be set up in the same manner as DDA, but the field at each element in

RGA is approximated by the applied field, with no interactions experienced between

volume elements. Hence RGA is applicable for cases where interactions are negligible,

i.e. when the relative refractive index is close to unity, and the phase shift across the

particle is small. DDA and RGA are described in more detail in sections 2.8.2 and

2.8.4.

2.7 Previous studies of internal fields

The volume integral equation introduced in section 2.3 expresses the total electric field

in terms of the incident field and the field inside a particle, while in section 2.4, the

far-field scattering quantities are related to the internal field. Thus, it is useful to

explore the internal fields of particles in order to obtain information on how different

physical effects influence scattering properties in the far-field.

Comparing DDA results of the far-field scattering properties of snowflakes, Tyynelä

et al. [61] found that RGA can lead to relative biases of −65%. Leinonen et al. [62]

also found that even larger biases can occur for ice particles with elevated density due

to riming. These findings suggest that the electric field inside the snowflake may be

systematically larger in magnitude than the incident wave, and we are interested in

exploring this further.
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Internal fields of spheres, spheroids and cylinders have been explored in other disci-

plines, such as nanophotonics [63,64]. In these studies, complex internal field structures

are seen, with constructive interference within the particles leading to a region of high

electric field magnitude at the shadow-side of the particle, similar to the characteristic

focussing nature of a lens. Owen et al. [65] describe the internal fields in infinitely

long dielectric cylinders with size parameters of order 40. They observed enhanced

electric fields in the forward portion of the cylinder which they ascribe to geometrical

focussing; in addition, they noted the existence of a partial standing wave pattern close

to the boundary of the scatterer. These surface waves are present over a range of size

parameters: they are greatly enhanced in magnitude at very specific size parameters

corresponding to resonances, or whispering gallery modes, where waves are internally

reflected around the perimeter of the cylinder and repeat themselves (matched phase)

after each trip; but they are also present as “partial standing waves” in the off-resonant

case. Tyynelä [66] also modelled similar extrema in wavelength-scale spherical parti-

cles. Interference features connected to these internal waves could lead to enhancement

and reduction of intensity at certain far-field scattering angles. Improved knowledge

of these processes may prove useful in the development of scattering approximations.

Some research has been done on the internal field of more irregular particles [67, 68].

Similar focussing behaviour of the field was observed for Gaussian random spheres and

debris particles, with the amount of focussing decreasing with increased shape com-

plexity [67]. It was shown by Barton [68] that internal field variations with particle

geometry lead to significant differences in far-field scattering properties. Lu et al. [69]

studied the field inside a dendritic ice crystal, using their findings to modify RGA in

such a way that scattering calculations are improved by including short-range inter-

actions between volume elements. However, few other researchers have studied the

problem for realistic ice particles to explore how these complex internal field structures

differ with shape, and the role these variations play in far-field scattering. We hope to

address the problem at a fundamental level to acquire understanding of how scattering

at radar and radiometer frequencies works.
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2.8 Methods used in this thesis

2.8.1 Effective medium approximations

Because aggregate snowflakes are not composed of solid ice, they are sometimes approx-

imated by simpler shapes such as spheres or spheroids, comprised of a homogeneous

ice-air mixture. This is achieved by changing the permittivity value of the particle.

Such an approach has the potential to simplify scattering calculations as it means

analytic solutions such as Mie theory can be used. Various effective medium approxi-

mations exist, and there are no clear guidelines to determine which is the best choice.

For modelling snowflakes, the two best known and most widely used methods are those

of Bruggeman [70] and Maxwell-Garnett [71], which are discussed in section 8.5 of

Ref. [52]. Johnson et al. [72] compared the two methods by performing microwave

calculations of brightness temperature and radar reflectivity, and found only minor

differences in the results. For the irregular aggregates of crystals studied in chapter 3,

comparisons have been done using the Maxwell-Garnett effective medium approxima-

tion. Using that method, the value of ε for the simplified model is adjusted to match

the mass of the realistic particles they are approximating. In this study we have used

spheres of equal Dmax to the aggregate, and the reduced value of effective permittivity

is determined based on the volume fraction of ice within the sphere:

• Calculate volume of aggregate vagg

• Divide by volume that sphere of equal Dmax would have, to obtain a volume

fraction f = 6vagg/πD
3
max

• Calculate average permittivity εav using that volume fraction in the Maxwell-

Garnett equation, where ε is the permittivity of solid ice, and β is related to the

shape of the ice inclusions (I use spherical inclusions, so β = 0.58, as discussed

on pg. 217 of Ref. [52]):

εav =
1− f + fβε

1− f + fβ

• Calculate scattering properties using the new permittivity value
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2.8.2 Discrete dipole approximation

The discrete dipole approximation (DDA) is a method involving the discretisation of

the volume integral equation in section 2.3. The DDA method is known to be an

accurate method for computing scattering calculations, and thus is commonly used

in atmospheric science to approximate the scattering properties of arbitrarily shaped

particles. The most widely used publicly available codes are DDSCAT [73] and ADDA

[74]. The idea behind DDA is that a particle may be discretised into an array of N

homogeneous volume elements. It is assumed that the elements can be replaced by

set of polarisable dipoles, i.e. the point scatterers are much smaller than the incident

wavelength, such that they behave as radiating dipoles. Each dipole j (= 1, . . . , N)

has a polarisation Pj = αjE
exc
j , where αj is the polarisability and Eexc

j is the electric

field incident on each dipole (the “exciting” field). The aim is to solve for Pj at every

dipole.

The original idea behind DDA (also referred to as coupled dipole approximation) has

been attributed to DeVoe [75,76], and later Purcell and Pennypacker [77]. The dielectric

polarisability, α, determines how polarised the material becomes as a result of the

applied field, representing the ease at which the positive and negative charges within

a particle are distorted. There are different ways to prescribe the polarisability αj

of the dipoles that represent the particle. The polarisability can be written in terms

of L̄ and M̄ from section 2.3 as αj13 = Vjχj(13 + (L̄j − M̄j)χj)
−1. By neglecting

M̄ (sometimes referred to as the weak form of DDA - [78]) and using L̄ = 4π13/3,

the Clausius-Mossoti polarisability is obtained. Purcell and Pennypacker employed the

Clausius-Mossoti polarisability, which was derived for homogeneous, isotropic particles:

αCM =
3d3

4π

m2 − 1

m2 + 2
, (2.40)

where d3 is the volume of the cubic dipole.

Draine [50] outlined that a radiative correction is required for finite frequencies, pre-
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senting a modified version of the polarisability as:

αRR =
αCM

1− (2/3)ik3αCM
. (2.41)

Various improvements have since been made to calculate the polarisabilities in a more

accurate way. In this work we use the lattice dispersion relation (LDR) formulation of

Draine and Goodman [79], which is also used in DDSCAT:

αLDR =
αCM

1 + (αCM/d3)[(b1 +m2b2 +m2b3S)(kd)2 − (2/3)i(kd)3]
, (2.42)

where b1 = −1.891531, b2 = 0.1648469, b3 = −1.7700004, S =
3∑
j=1

(k̂j êj)
2.

We illuminate the particle with a plane wave of unit amplitude, E0 = 1:

Einc
j = E0 exp(ik · rj − iωt). (2.43)

The position vector is given by the central position of dipole j, i.e. rj = [xj, yj, zj].

The time-dependent factor is represented by e−iωt, but since the quantities of physical

interest are always real, the factor could alternatively be chosen as eiωt provided the

same choice is used consistently. From here on in, we assume all fields are time-

harmonic, thus leaving out the exp(−iωt) component. The “exciting” electric field

Eexc
j is given by Einc

j , plus the contributions from each of the other dipoles in the

particle:

Eexc
j = Einc

j −
∑
j ′ 6=j

Ajj ′Pj ′ . (2.44)

A is a 3N×3N array commonly referred to as the interaction matrix. From Eq. (2.20)

it is clear that the interaction matrix A is equivalent to −Ḡ. Each entry Ajj ′ is a 3×3

matrix which can be calculated for j 6= j′ by:

Ajj ′ =
exp(ikR)

R

[
k2(R̂R̂− 13) +

ikR− 1

R2
(3R̂R̂− 13)

]
, (2.45)

for j, j′ = 1, . . . , N . The distance between points rj and rj′ is given by R = |R|, where

R = rj − rj′ , and R̂ = R/R is the directional unit vector between the two points. As
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in Ref. [73], we make the standard assumption that Ajj = α−1j 13, where 13 is the 3× 3

identity matrix. Thus we can write Eexc
j = AjjPj and rearrange Eq. (2.44) as:

Einc
j = AjjPj +

∑
j ′ 6=j

Ajj ′Pj ′ . (2.46)

Hence the scattering problem can be reduced to a system of 3N linear equations to

solve for the unknown dipole polarisations Pj ′ :

N∑
j ′=1

Ajj ′Pj ′ = Einc
j . (2.47)

Once the value of Pj is known for each dipole, it is straightforward to compute the

macroscopic electric field inside the volume elements (Liou and Yang [41]):

Ej =
Pj

Vjχj

, (2.48)

where Vj = d3 is the volume of the dipole. This should not be confused with the

exciting electric field Eexc
j = Pj/αj mentioned previously, which includes the field

resulting from the incident wave and contributions from the other N − 1 dipoles, but

not the field induced by the dipole on itself. For the particles in this study, the ratio

αj/Vjχj between Ej and Eexc
j is approximately 0.58.

Calculation of P requires solving a large linear system AP = Einc, where each element

of P and Einc are vectors of size 3× 1:



α−113 A1,2 . . . A1,N

A2,1 α−113 . . . A2,N

...
...

...
...

AN,1 AN,2 . . . α−113


︸ ︷︷ ︸

A=3N×3N



P1

P2

...

PN


︸ ︷︷ ︸
P=3N×1

=



Einc
1

Einc
2

...

Einc
N


︸ ︷︷ ︸

Einc=3N×1

This can be done numerically using direct or iterative methods. The direct method

involves matrix inversion, i.e. P = A−1Einc. The problem with this approach is that

the 3N × 3N matrix A has to be stored and this requires a large amount of memory,
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along with taking considerable time to solve. For a particle of N dipoles, the time

taken to solve the standard DDA linear system is between O(N2) and O(N3), and the

memory requirement is proportional to N2. To reduce memory requirements, we have

implemented a row-wise matrix-vector multiplication rather than assembling the full

matrix. As outlined in Yurkin and Hoekstra [47], many iterative solvers exist that could

be used for the computations; in this study we use the generalized minimal residual

solver (GMRES; [80]). Our implementation means we only need to store one row of size

3×3N at a time, and the memory scales asO(NM), where M is the number of GMRES

iterations, rather than O(N2). In previous literature, the fast Fourier transform (FFT)

has been employed to accelerate calculations for larger size parameters, e.g. Goodman

et al. [81]. However, in order to use this method, one must discretise a complete

periodic lattice surrounding the particle, e.g. a cubic lattice, and do calculations for

the total number of volume elements in the bounding box. This means the potential

benefits of using this method are only realised for more dense particles that occupy

the majority of the surrounding lattice. For particles of lower density, many of these

volume elements are empty. Calculations for the empty elements would not need to be

done if conventional DDA techniques were employed. The overheads of including FFT

calculations in such cases would cost more than the savings.

Iterative methods have also been employed in the literature to increase speed of calcu-

lations and reduce memory requirements, and an overview can be found in Yurkin and

Hoekstra [47]. A classical iterative procedure to solve linear equations is the Jacobi

method. Details of the method can be found in numerical mathematics books such as

Quarteroni et al. [82]. It is also discussed further in chapter 4 of this work. Singham

and Bohren [83, 84] refer to this as a scattering order formulation of the DDA, and

provide a physical interpretation of the method. The zeroth order approximation is

equivalent to the Rayleigh-Gans approximation, where only the incident field is con-

sidered and interactions between dipoles are ignored. The first order approximation

describes the field at the ith dipole resulting from single scattering from all the other

dipoles in the particle. The second order approximation describes the field resulting

from double scattering, and so on.
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A successive over-relaxation iterative method was used by Purcell and Pennypacker [77],

i.e. a Jacobi iterative method with a relaxation parameter to improve convergence. The

optimal value to use for the relaxation parameter is not trivial. The authors of Ref. [77]

state that in the calculations they presented, a value of 0.5 was ‘usually’ used.

The far-field scattering properties of a particle may be derived by formulating the

relationships outlined in section 2.4 in terms of the DDA method. The quantity Ajj ′ ·Pj

represents the electric field at dipole j′ radiated by the jth dipole. The scattered electric

field is calculated by summing the power radiated by the array of N oscillating dipoles.

Using Eq. (2.29) and Eq. (2.30), the scattering amplitude can now be written:

F(n̂) = k2(13 − n̂n̂)
N∑

j=1

Pj exp(−ikrj · n̂). (2.49)

The differential scattering cross section in Eq. (2.31) is:

σ(n̂, êdet) = k4

∣∣∣∣∣
N∑

j=1

Pj · êdet exp(−ikrj · n̂)

∣∣∣∣∣
2

. (2.50)

If n̂ = −k/|k|, then we obtain backscattering and σ(n̂, êdet) coincides with Eq. (7) in

Ref. [85].

The absorption cross section may be calculated as:

σa = 4πk
N∑

j=1

[=(Pj · Eexc∗
j )− (2/3)k3Pj ·P∗j ]. (2.51)

Combining the optical theorem in Eq. (2.35) with the scattering amplitude in Eq. (2.49),

the extinction cross section is given by:

σe = 4πk
N∑

j=1

=(Pj · E∗inc,j). (2.52)

For use within ARTS, the chosen numerical method is used to solve for the dipole
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moment P using 2 orthogonal incident polarisations θ̂i and φ̂i. These solutions are

then used to obtain the individual components of S, as described in Draine [50]:

Sml = k2
N∑
j=1

Pl
j · êm exp(−ikrj · n̂). (2.53)

l = 1, 2 represents the 2 different polarisation states of the incident wave, i.e. P1
j and

P2
j are the solutions for θ̂i and φ̂i, respectively. m = 1, 2 represents the scattered

polarisation states, such that ê1 and ê2 correspond to θ̂s and φ̂s. This solution is

valid for the azimuthally random particles considered in this study, and is calculated

for scattered polar and azimuthal angles of Θ ∈ [0◦, 180◦] and Φ ∈ [0◦, 180◦]. It is

noted that further transformations would be required if randomly oriented particles

were of interest, and the range of azimuthal angles should be extended to 360◦. Details

of these transformations are found in Mishchenko et al. [49]. Once the amplitude

scattering matrix elements are calculated, it is straightforward to obtain the phase

matrix, extinction matrix, and absorption vector required by ARTS.

2.8.2.1 Accuracy of the DDA method

Two conditions are specified by Draine and Flatau [73] to minimize errors and ensure

that the DDA formulation is valid:

1. The dipole spacing d must be sufficiently small compared to the internal wave-

length of the particle. The condition given in their study is that the number of

dipoles per internal wavelength, nλ = λ/(<(m)d), should exceed a value of 2π.

Zubko et al. [86] showed that the DDA provides highly accurate results for irreg-

ular particles with this condition. However, a more restrictive value of nλ > 4π

is recommended by Draine and Flatau for scattering phase function calculations

such as radar cross sections [87]. This value has been employed in some scat-

tering studies, e.g. Tyynelä et al. [67]. The most commonly used convention

for discretisation is to prescribe at least 10 dipoles per internal wavelength, i.e.

nλ > 10. Yurkin and Hoekstra [47] state that this constraint is a good first guess
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for many applications, but accuracy is not guaranteed, particularly for large size

parameters. Comparisons with Mie theory for solid ice spheres have shown that

in fact nλ > 42 may be required for accurate values of the backscatter cross

section, σb [85].

2. The shape of the particle must be described adequately by ensuring that N is

sufficiently large, i.e. d is small enough for the results to converge. It is unclear

from the literature how to quantify this condition, so the required N is calculated

on a case-by-case basis.

2.8.3 Rayleigh scattering

Rayleigh scattering is generally applicable if the following conditions are met:

x� 1 (2.54)

x|m| � 1 (2.55)

In this case, the particle is small enough that the applied electric field may be considered

uniform across the volume, and we can view it as an electrostatics problem. This means

the scatterer behaves like an individual dipole, which oscillates at the same frequency

as the incident field and radiates in all directions.

The most well known example of Rayleigh scattering is perhaps scattering of vis-

ible light with wavelengths of 0.4−0.7 µm by atmospheric molecules. The sizes of

these molecules are much smaller than the wavelengths of solar and infrared radiation.

Rayleigh scattering of light varies strongly with wavelength, with the intensity decreas-

ing as the inverse fourth power of the wavelength. Thus, shorter wavelength blue light

is scattered more than longer wavelength red light, explaining why the sky appears

blue. For a vertical column of atmosphere, approximately 40% of the light is scattered

in the near ultraviolet while 1% is lost in the near infrared.

In the Rayleigh limit, the amplitude scattering matrix S for a scatterer can be written:
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S11 S12

S21 S22

 = k2V α′

cos θ 0

0 1

 , (2.56)

where α′ = α/d3 is the polarisability per unit volume. For lower frequency weather

radars, such as those operating in the S-band (2 − 4 GHz) or C-band (4 − 8 GHz),

Rayleigh theory is often valid due to particles being smaller in size than the wavelengths

used by these instruments. However, for higher frequency cloud radars, ice particles

and snowflakes are large enough that they do not scatter in the Rayleigh regime. Thus

improvements to the method are required.

2.8.4 Rayleigh-Gans approximation

As the particle size increases such that the size is comparable to the incident wave-

length, the Rayleigh approximation no longer holds. For larger spherical particles, scat-

tering and absorption can be calculated using Mie theory. However, the non-spherical

shapes of ice particles and snowflakes require that different scattering methods are em-

ployed. RGA provides better results for larger sizes, and is based on the assumption

that the total amount of scattering from a particle can be calculated by dividing it

into small volume elements, and treating each element as a Rayleigh point scatterer.

The scattered incident wave can then be calculated simply by summing the individual

scattered waves from each sub element. Near-field interactions between elements are

neglected, but the far-field interference is taken into account through an appropriate

phase factor. The method is also known as the first Born approximation [54].

RGA is applicable if the refractive index is close to that of the surrounding medium,

i.e. it is “optically soft”, and if the phase shift from one side of the particle to the other

is small. In other words, the approximation is applicable if the internal interactions

within the particle are so weak that the incident field remains almost unchanged within

the particle, and thus the interactions can be neglected. It is generally accepted that
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RGA may be applied to particles that meet the following conditions:

|m− 1| � 1 (2.57)

2x|m− 1| � 1. (2.58)

Using the refractive index of solid ice gives a value of |m−1| ≈ 0.78. This is clearly less

than 1, but perhaps not “much less than 1”, as required in condition (2.57). Moreover,

the phase shift condition given in (2.58) would only be satisfied for small values of x in

the solid ice case. However, it is not clear whether the conditions could be relaxed if the

particles were fluffy snow aggregates as opposed to solid ice spheres, for example. The

lower effective refractive index of those particles may mean that RGA could provide

good results even if conditions (2.57) and (2.58) are not strictly met.

Improvements to RGA are possible using methods such as the Wentzel-Kramers-Brillouin

(WKB) approximation [88]. The WKB method is similar to RGA but with the inclu-

sion of a local phase delay corresponding to the propagation of the wave from the

particle penetration point to the interior location of the volume element. Allowing

such a phase change means that the second RGA condition given in (2.58) is not re-

quired for WKB, and thus the method has a wider range of applicability. Klett and

Sutherland [89] applied WKB to spheres and cylinders and found that the accuracy of

phase functions with increased refractive index was better than with RGA. However,

the method did not perform well for backscatter.

The RGA method is outlined as follows - For a single volume element at position r

within the particle, it is necessary to account for the change of phase between the

incident and scattered waves with direction vectors êz and êr respectively. Writing the

phase differences as δ(r) = kr · (êz − êr), we may introduce the form factor f which is

an interference function accounting for the phase differences of the whole particle, i.e.

how coherent or incoherent the scattered waves are:

f =

∣∣∣∣∣ 1

V

∫
exp(iδ(r))dr

∣∣∣∣∣
2

. (2.59)
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Summing over the entire particle of volume V , we can then write:

S11 S12

S21 S22

 = k2V α′f(θ, φ)

cos θ 0

0 1

 . (2.60)

Often the Clausius-Mossotti factor is employed with the Rayleigh-Gans approximation,

but we use α = αLDR in any results shown in this thesis, in order to be consistent with

the DDA calculations.

RGA is an example of a computationally cheap method which has limited accu-

racy. Tyynelä et al. [61] found that using RGA to approximate scattering by real-

istic snowflake shapes is an improvement to the traditional approach to parameter-

isation where particles are approximated by simple shapes and an effective medium

approximation is employed. Since RGA doesn’t include internal field interactions, the

improvements to scattering by aggregates have been attributed to the fact that the

spatial structure of ice in the particle is modelled in RGA calculations.

Rayleigh scattering of light occurs when the particle is much smaller than the wave-

length of the incident wave, and in this case δ(r) → 0 and f → 1. As the particle

size increases relative to wavelength and Rayleigh scattering no longer applies, f < 1

and the form factor changes depending on the shape of the particle, taking interfer-

ence between volume elements into account. An analytical equation for the RGA form

factor is known for a number of shapes, including spheres, spheroids, and circular cylin-

ders [52]. It is also possible to derive expressions for hexagonal prisms, as outlined in

the following sub-section.

2.8.5 Analytical RGA form factor equations for a hexagonal

prism

In a homogeneous particle, each volume element in a given slice perpendicular to the

direction of the incident wave has the same phase shift. As the RGA only includes

the interference due to phase shift and ignores interactions between elements, the form
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factor can be viewed as a summation of area integrals of thin slices of the shape. As

outlined by [54], it is possible to derive form factors for simple shapes using this concept.

Here we explore a hexagonal prism geometry. The form factor has been derived for

the separate cases where the incident wave reaches the shape along the two axes of

symmetry of the basal face. These directions are shown in Fig. 2.2.

2.8.5.1 x-direction

Consider a hexagonal prism geometry of side length r and height L, oriented as in

Fig. 2.2a. The particle is illuminated by a plane wave propagating along the x-axis in

the positive x direction. If we consider the backscatter direction, δ(r) = 2kr · êz and

the interference function in Eq. (2.59) can be written:

f =

∣∣∣∣∣ 1

V

∫
exp(2kir · êz)dr

∣∣∣∣∣
2

.

This can be re-expressed as:

√
f =

1

V

∫
x

A(x) exp (i2kx)dx.

A(x) is the area of the intersection of the prism with the plane perpendicular to the

x-axis at a particular x coordinate. This integral can be computed by decomposing

the hexagonal prism into two trapezoidal prisms, as in Fig. 2.2a, and evaluating the

integral separately for the two segments:

√
fV =

∫ 0

−
√
3r/2

A(x) exp (i2kx)dx+

∫ √3r/2
0

A(x) exp (i2kx)dx.

Looking at the first integral, it is clear that the area of a slice at x = −
√

3r/2 is

rL, and A(x) increases linearly with x until A(x) = 2rL at x = 0. Thus we can say

A(x) = (2x/
√

3r + 2)rL for the first trapezoidal prism. Applying the same method,

we can determine that A(x) = (−2x/
√

3r + 2)rL for the second prism. Using these
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−r r

(b) y direction

Figure 2.2: Basal face of the hexagonal geometry. The thick black arrows show the
direction of the incident wave in each case, travelling along the x-axis in the left panel,
and along the y-axis in the right panel. The red lines indicate how the particle was
divided up in each case, in order to perform the integral.

values, it can be shown that the form factor for the total hexagonal prism is:

f =

(
L

kV

( r
u

(1− cosu) + r sinu
))2

, (2.61)

where u =
√

3kr.

2.8.5.2 y-direction

Now consider the same geometry but with the plane wave propagating along the y-axis

in the positive y direction (Fig. 2.2b). In this case the integral is evaluated by splitting

the shape into 2 triangular prisms and a rectangular prism:

√
fV =

∫ −r/2
−r

(y + r)2
√

3L exp (i2ky)dy +

∫ r/2

−r/2

√
3rL exp (i2ky)dy+∫ r

r/2

(r − y)2
√

3L exp (i2ky)dy.
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Using the same method as before, it can be shown that when the incident wave travels

in the y direction the form factor is given by:

f =

(√
3L

k2V
(cos kr − cos 2kr

)2

. (2.62)

In the following four chapters, the results of this this thesis are presented. We begin

with a study of the internal electric fields of a variety of ice particles in the next section,

relating these to scattering properties in the far-field.
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Chapter 3

Analysis of the internal fields of

pristine ice crystals and aggregate

snowflakes, and their effect on

scattering

The work in this chapter has been published in the Journal of Quantitative Spec-

troscopy and Radiative Transfer (JQSRT) [1].

3.1 Summary of the study

The discrete dipole approximation is used to explore the internal electric fields of plane-

wave-illuminated ice particles. This is done for monocrystals and aggregates at two

different frequencies for each particle, corresponding to size parameters of x = 2 and

x = 10. For these properties the real part of ε has a value of 3.1702 for solid ice, and

the imaginary part varies between 0.0002 and 0.0075. We also present calculations for

some of the particles with a smaller size parameter of x = 0.01. The wavelength used

in those cases results in an imaginary part of ε which is of order 10−6.
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The differential scattering cross sections of the particles are also explored. In the case

of the complex aggregates, comparisons using DDA and RGA are presented, along with

results obtained using a soft sphere approximation.

3.2 Validation of the numerical method

3.2.1 Verification of DDA internal field results using BEM++

As discussed in section 2.8.2.1, the accuracy of the DDA method is sensitive to both

discretisation and shape errors. A detailed summary of previous attempts to quantify

these errors is given by Yurkin and Hoekstra [47].

To do the calculations in this chapter, a version of the DDA method was implemented

in Matlab, using the GMRES iterative solver. This was done to develop a deeper

understanding of the DDA method, to have convenient control over input geometries

and visualisation of results, and to have a basis to develop simplified approximate

methods. We note that the code used here is not highly optimised, unlike popular

open-source codes such as DDSCAT [73] and ADDA [90].

To verify the implementation of the DDA code and validate the findings presented here,

we compared a number of results to those obtained using a fundamentally different

numerical method. In the Boundary Element Method (BEM), the electric field is

obtained by formulating the problem as boundary integral equations. Groth et al. [59]

studied the performance of BEM for the problem of scattering by ice particles, using an

open source boundary element library called BEM++, developed by Śmigaj et al. [91].

In that paper they show that by using 10 mesh elements per wavelength, BEM++ gives

results for scattering and extinction efficiencies, and phase function that are accurate

to within 1%. However, the accuracy of the internal fields was not investigated. The

difference between the internal field obtained using our DDA code and the BEM++
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setup used by Ref. [59] was calculated as:

‖EDDA − EBEM‖
‖EBEM‖

× 100%, (3.1)

where EDDA,j and EBEM,j are the solutions evaluated in the centre of the jth dipole,

using DDA and BEM++ respectively. We clarify that this test is useful for validating

the code, but does not validate either of the numerical methods.

This experiment was performed for a thin hexagonal plate of solid ice, with a size

parameter of 2 and an aspect ratio of 0.1. For the calculations we use 17 elements per

wavelength for BEM++, which is better than the required BEM++ resolution specified

in Ref. [59]. The difference from Eq. (3.1) was calculated using different grid refinements

for DDA. The dipole size was determined by specifying the number of dipoles along

the smallest dimension of the particle. In the case of the thin plate, this means we

specify the number in the vertical dimension (nz). The difference obtained for various

values of nz, and their corresponding number of dipoles per internal wavelength, nλ,

was calculated. The results ranged from 1.2% for nz = 3 (nλ = 26), to 0.6% for nz = 7

(nλ = 61). This confirms that the DDA code is performing as expected, and thus we

are confident that it can be used for the x = 2 calculations in this study.

Unfortunately we could not perform analogous comparisons for x = 10, as the resources

we had available were insufficient to run BEM++ for that case. Therefore, we took an

alternative approach to examine the accuracy of DDA calculations for x = 10, outlined

in the following section.

3.2.2 Convergence of DDA internal field results with increas-

ing nλ

In this section we explore how the internal field calculations for x = 10 converge as the

number of dipoles per internal wavelength is increased.

Fig. 3.1 examines the convergence of the DDA internal field with increased grid reso-
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Figure 3.1: <(Ex) through the centre of a hexagonal plate of x = 10 and aspect ratio
0.1. The colours show different grid refinements of nz = 10, 13, 15, 17, corresponding
to nλ = 17, 23, 26, 30.

lution. The lines show the real part of the x component of the field though the centre

of a hexagonal plate of x = 10 and aspect ratio 0.1. The results for different grid

refinements of nz = 10, 13, 15, and 17 have been plotted in the figure, corresponding

to nλ = 17, 23, 26, and 30. The curves are qualitatively similar for each of the different

grid resolutions, with the main differences occurring in the field amplitudes.

We estimate the error in the internal fields by comparing our highest resolution case

of nλ = 30 to results of lower resolution, ranging from nλ = 8 to 26. The calculations

are done in an analogous manner to Eq. (3.1). We find that using a minimum of 17

dipoles per internal wavelength gives an error below 10% in the field for x = 10.

This experiment was also done for x = 2. It is noted that using the same discretisation

for x = 2 results in higher values of nλ, so greater accuracy is expected. The values

tested range between nλ = 44 and 124, uncovering much smaller errors below 0.5%. The

accuracy estimated via these tests is sufficient for exploring the qualitative properties

we are interested in here, i.e. the variation of internal field with particle size and shape,

and the effects of these changes on far-field scattering.

It is worth noting that despite the fact we are well within the commonly prescribed

criterion of nλ = 10, convergence with increasing resolution is slow. Although the

fields are very similar, the results in some regions of the particle have not completely

converged, and the relative errors do not decrease monotonically as nλ is increased.
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Yurkin et al. [92] found a similar pattern, highlighting that the issue only occurs with

shapes that cannot be modelled exactly by cubical cells. Inaccurate representation of

boundaries leads to small variations in particle shape with discretisation, which in turn

causes oscillating errors. However, this does not affect the conclusions we are drawing

in the rest of the paper.

Comparisons of the corresponding scattering cross section results for these discretisa-

tions (not shown for brevity) reveals that the error in the far field is mainly concen-

trated in the backward direction. The backscatter cross section, σb, is very sensitive

to particle discretisation, whereas scattering in other directions shows little variation

with discretisation. This result is consistent with Petty and Huang [85] who show that

smaller dipole spacing is required for accurate backscatter results. As pointed out in

section 2.8.2.1, they suggest using a value of nλ > 42 for accurate σb in the case of ice

spheres, and with our highest resolution we are only using nλ = 30. It is possible that

a finer discretisation may be needed if accurate backscatter calculations are required.

3.3 Results and discussion - Pristine monocrystals

3.3.1 Hexagonal plate

3.3.1.1 Internal field

The aspect ratio of the monocrystals is defined as the ratio between the length of the

particle in the z direction and the maximum width of the particle in the x-y plane.

Fig. 3.2 shows the magnitude of the internal electric field through the central horizontal

plane of a hexagonal plate of solid ice, with a maximum dimension (Dmax) of 1 mm and

an aspect ratio of 0.1. The plate is discretised with nz = 15, resulting in approximately

nλ = 132 and nλ = 26 for x = 2 and x = 10 respectively. The incident plane wave

propagates in the y direction, i.e. from the top of the page to the bottom, and is

polarised along the x-axis. Note that the color scales in Figs. 3.2a and 3.2b are not

the same. The plots shown for x = 2 in this chapter have a smaller range than their
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(a) x = 2 (b) x = 10

Figure 3.2: Magnitude of the internal field through the central horizontal plane of a
hexagonal plate of aspect ratio 0.1 for (a) x = 2 and (b) x = 10. The arrows show
the direction of propagation and polarisation, which are perpendicular to each other
in the x-y plane. The particle is discretised with nz = 15, resulting in (a) nλ = 132;
(b) nλ = 26.

x = 10 equivalents, in order to show some detail for the smaller size parameter. This

is the case for the majority of the internal field magnitude plots presented here, with

the exception of the complex aggregate in Fig. 3.24.

The average and peak values of the field for both size parameters are given in Table 3.1,

along with results for a smaller value of x = 0.01. For very small values of x � 1,

particles are in the Rayleigh scattering limit. In this size regime, the internal field has

approximately constant magnitude, with the maximum and average values varying by

only a factor of 1.15. For x = 2 and x = 10, the largest value of electric field is observed

close to the perimeter of the particle, at the opposite side from where the wave hits the

plate. We refer to this as the forward region of the particle. For x = 2 there is a rather

broad maximum centred at approximately 0.1 mm from the forward edge of the plate,

with the peak magnitude reaching 1.3744. For x = 10, the focussing behaviour becomes

more obvious, and the maximum magnitude also increases. There is an “O” shaped

region where the field magnitude is largest, reaching a value close to 4. Figs. 3.3 to 3.5

shows how the field changes within the hexagonal plate geometry for intermediate size

parameters between 2 and 10. The focussing pattern is a persistent feature, becoming

more prominent with increased x. Therefore, this is not a resonant phenomenon. The

maximum magnitude within the particle broadly increases with x. It is interesting to
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x = 0.01 x = 2 x = 10
Geometry Avg. |E| Max |E| Avg. |E| Max |E| Avg. |E| Max |E|
1 hex plate 0.8169 0.9414 1.0969 1.3744 1.4108 3.9786
2 hex plates 0.8136 0.9173 0.9464 1.0949 1.6021 3.0049
5 hex plates 0.8583 1.2337 0.9111 1.3866 1.5049 2.3575
Aggregate 1 0.6503 1.2430 0.6593 1.2617 0.6986 1.4302
Aggregate 5 0.6593 1.2097 0.6650 1.2212 0.6879 1.2400

Table 3.1: Average and maximum internal field magnitudes for different geometries of
x = 0.01, x = 2 and x = 10. The geometries included are the single hexagonal plate,
aggregates of 2 and 5 plates, and 2 different arrangements of 10 “fernlike dendrite”
monomers modelled by Tyynelä et al. [3]. “Aggregate 1” is the particle shown in
Fig. 3.24; “Aggregate 5” is not shown for brevity. For reference, |E| ≈ 0.58 in the
presence of the applied wave only.

note that for all size parameters shown, the magnitudes are considerably higher than

the value of |Ej | = |Einc
j αj/Vjχj | ≈ 0.58 that would result from the presence of the

applied wave only. Hence there is a strong coupling between the dipoles across the

crystal, and RGA provides a poor approximation to the field in this case.

Another interesting observation is that the inhomogeneity along the x-axis in Fig. 3.2b

resembles diffraction and interference patterns, such as those resulting from Young’s

double-slit experiments. This suggests that we are entering a regime where physical

optics approximations could be used. Geometric optics may be applied for size param-

eters much larger than the incident wavelength. However, improvements to geometric

optics methods have been shown to be accurate for x as small as 18, e.g. using methods

such as ray tracing with diffraction on facets (RTDF; [56]). Hence it is possible that

for the larger size parameters considered here, physical or geometric optics methods

may be suitable approximations to apply.

The concentration of the electric field is similar to the focussing nature of a convex

optical lens, and is caused by a change in wavelength, due to m, that takes place inside

the particle. The difference in wavelength is more pronounced through the centre of

the particle than it is close to the boundaries, resulting in a curved wave front which

focusses the field towards one side of the plate. Note that the symmetric structure

and focussing behaviour of the field also occurs if the incident wave is propagating in

the x direction, such that it encounters a corner of the plate rather than a flat side.
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(a) x = 2 (b) x = 3 (c) x = 4 (d) x = 5

(e) x = 6 (f) x = 7 (g) x = 8 (h) x = 9

Figure 3.3: Magnitude of the internal field through the central plane of a hexagonal
plate of aspect ratio 0.1 for different size parameters of x = 2 to x = 9. The incident
wave is propagating in the y-direction and is polarised along the x-axis.

Figure 3.4: As in Fig. 3.3, but for <(Ex).

Figure 3.5: As in Fig. 3.3, but for <(Ey).
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(a) x-direction; y-polarised. (b) y-direction; z-polarised.

Figure 3.6: Magnitude of the internal field through the central plane of a hexagonal
plate of aspect ratio 0.1 for x = 10. In the left panel, the incident wave is propagating
in the x-direction and is polarised along the y-axis. In the right panel, the incident
wave is propagating in the y-direction and is polarised along the z-axis.

Similarly, the symmetry and focussing remain when the wave is polarised orthogonal

to the direction shown here, i.e. in the z direction. These results can be seen in

Fig. 3.6. However, for the z polarised wave in Fig. 3.6b, the focussing occurs over a

smaller region and is less prominent than in the x polarised case, showing a maximum

magnitude that is 23% lower.

It is interesting to do some experiments to explore whether the phenomena above are

a special case resulting from the symmetry of the setup, or whether they are part of a

more general behaviour. We divide our sensitivity tests into 2 categories:

1. Experiments with k̂ in the x-y plane but not along an axis of symmetry of the

hexagon.

2. Experiments where k̂ is rotated around the x-axis to lie at an angle in the y-z

plane.

Fig. 3.7 shows the internal field when the incident wave is directed at an offset of

20◦ from the positive y-axis in the x-y plane. In this case the focussing behaviour is

still prominent, but the symmetry of the field is lost as the incident wave is no longer

directed along a particle axis of symmetry.
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Figure 3.7: Magnitude of the internal field through the central plane of a hexagonal
plate of aspect ratio 0.1 for x = 10. The incident wave is propagating in a direction
at an angle of 20◦ in the clockwise direction from the y-axis, in the x-y plane. The
polarisation direction is perpendicular to the incident wave, also in the x-y plane.

Fig. 3.8 shows the internal field magnitudes for incident angles of 20◦, 70◦, and 90◦ in

the y-z plane. Focussing behaviour is still found for the smallest angle of 20◦ in the y-z

plane (Fig. 3.8a), but the location of the focussing has moved slightly. There is a region

at the bottom of the plate towards the forward side of the particle where the field values

are large. An apparent internal reflection from the lower basal face results in the high

field values being redirected towards the top of the particle. The field corresponding

to this incident direction sees a decrease in maximum magnitude by approximately

10%, when compared to the case in Fig. 3.2b. Increasing the incident angle to 70◦ in

the y-z plane diminishes much of the focussing behaviour. In this case the maximum

magnitude decreases to a value approximately 50% lower than in Fig. 3.2b. Further

increasing the angle to 90◦, i.e. directing the incident wave from above a basal face,

the maximum magnitude is found to occur close to the centre of the particle. Although

the maximum is slightly larger than at 70◦, it is still 42% lower than the horizontally

directed case. Thus the largest fields are found when the incident wave is directed

in a more horizontal direction, hitting the sides of the particle rather than the basal

faces, even if the incident angle is not directed along an axis of symmetry. Lower field

magnitudes result when the effective size parameter in the direction of propagation is

small, as is the case for the incident wave directed at 70◦ and 90◦ in the y-z plane.

We explore the individual components of the field shown in Fig. 3.2b, where the incident
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(a) Incident wave directed at 20◦ in the y-z
plane.

(b) Incident wave directed at 70◦ in the y-z
plane.

(c) Incident wave directed at 90◦ in the y-z
plane.

Figure 3.8: Magnitude of the internal field through a hexagonal plate, when the incident
wave is directed at different angles in the y-z plane. The top of each panel shows a slice
through the central plane, and the bottom of each panel shows slices through x = 0
and y = 0. The incident wave is polarised along the x-axis.
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(a) <(Ex) (b) <(Ey)

(c) <(Ez): Central layer (d) <(Ez): Top layer

Figure 3.9: Real part of the (a) x component, (b) y component, (c, d) z component of
the internal electric field of a plate of aspect ratio 0.1 for x = 10. The incident wave
is propagating in the y-direction and is polarised along the x-axis. Panels (c) and (d)
show slices through the central and top planes, respectively. Note that in these two
panels a smaller range has been used for the colorbar.

wave is directed in the y direction and polarised in the x direction. Fig. 3.9 shows the

real part of the components of the field which are perpendicular and parallel to the

direction of propagation, i.e. the x (Fig. 3.9a) and y (Fig. 3.9b) components, for x = 10.

This is what Tyynelä et al. [67] refer to as the transverse and longitudinal components

of the field. The real part of the z component is also shown in the figure. Globally

in L2-norm Ez is 20 times smaller than Ex. Values of approximately 10−5 are found

in the central plane of the particle, with a maximum of 0.55 on the top and bottom

layers. Unlike the z component, the x and y components do not change much across

the different layers within the plate. The fields are slightly larger in the central plane

than on the top and bottom layers for the x and y components. For both Ex and
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Ey, the field through the middle layer is approximately 30% larger than on the top

and bottom layers. For Ez, the top and bottom layers have values which are 104 times

larger than in the middle layer. The structure is concentrated on the particle boundary

for Ez.

It is clear that the total field in Fig. 3.2b is a combination of two distinct waves. The

x component in Fig. 3.9a shows a curved wave front extending through the bulk of the

particle. The y component in Fig. 3.9b has a different structure resembling a standing

wave around the perimeter of the plate, comprising a series of nodes (minima) and

antinodes (maxima). It is seen in Fig. 3.9a that <(Ex) has even symmetry, whereas

the plot of <(Ey) in Fig. 3.9b has odd symmetry. The focussing of a plane-like wave

through the bulk of the crystal, plus a standing wave close to the boundary is similar to

the behaviour found in spherical and cylindrical particles larger than the wavelength in

Refs. [65,66,93]. As mentioned, we see this behaviour over a range of different values of

x in the hexagonal plate, showing that this is an “off-resonance” phenomenon. Similar

wave structures are observed for all size parameters, though it is less clear that a

standing wave is present around the perimeter for smaller size parameters as there are

fewer nodes and antinodes in these cases. Resonances may well exist at very specific

values of x, however we have not found them, and unlike the case of spheres and infinite

cylinders, there is no simple way to accurately predict the size parameters at which

they would occur.

The different components of the field within the hexagonal plate of x = 10 for a z

polarised wave have also been examined (not shown for brevity). <(Ex) and <(Ey)

display fields with a node in the central plane of the particle, oscillating in sign between

the top and bottom layers. <(Ez) displays minimum values at the particle surface and

reaches a maximum in the central plane, while the sign does not oscillate throughout

the particle.

As expected, the wave extending through the particle in Fig. 3.9a has a shorter wave-

length than in the exterior medium due to the refractive index, m, of the particle. For

wavelength-scale spherical particles, analogous studies by Refs. [94,95] found the wave-
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êinc
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Figure 3.10: Coordinate system used for the far-field scattering calculations. The
vectors corresponding to the incident field are shown in red, and those corresponding
to the scattered field are in blue. The incident direction and polarisation (k̂ and êinc)
are in the y and x directions, respectively, while the scattered vectors n̂ and êdet vary
in the x-y plane according to the scattering angle Θ.

length through the central plane to be approximately equal to the material wavelength,

i.e. λ/<(m). In our case of a hexagonal plate with a wavelength smaller than the par-

ticle size, we have estimated that the external wavelength exceeds that inside the plate

by a factor of 1.5 ± 0.2. This is slightly lower than the factor of approximately 1.78

that would result if the wavelength was dictated by the refractive index alone. This

may be because we are looking at a flat geometry where even the central points are

close to the particle boundary, so we don’t see the material wavelength.

The standing wave around the perimeter has a longer wavelength that is more compa-

rable to that of the incident wave, since it is located very close to the boundary. In this

case, we have estimated that the incident wavelength is approximately 1.3± 0.2 times

that of the standing wave. Again, this behaviour was observed in spherical particles

by Refs. [94, 95], who also found that the number of maxima or minima around the

perimeter was equal to the value of x. However, in our case we have found the number

of maxima and minima to be less than x, counting a total of 9 each in Fig. 3.9b.

3.3.1.2 Far-field scattering

It is interesting to explore the effect the two different wave structures in Fig. 3.9 have

on far-field scattering. To do this, Eq. (2.50) was used to calculate the differential

scattering cross section, σ, computed at scattering angle intervals of 1◦. Calculations
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(a) x = 2 (b) x = 10

Figure 3.11: Polar plots of the differential scattering cross section of a hexagonal plate
as a function of the propagation n̂ and polarisation êdet directions of the scattered wave.
This is calculated using all components of the field (black), only the perpendicular
component (P⊥; magenta), and only the parallel component (P‖; blue). The value at
0◦ represents forward scattering, and 180◦ is backscatter.

of σ are displayed on a polar plot as a function of scattering direction n̂ using dB, i.e.

10 log10(σ). Both n̂ and êdet are in the x-y plane. The coordinate system used is shown

in Fig. 3.10. Forward scattering is located at 0◦ on the plot, and backscatter is shown

at 180◦. It is noted that for x = 0.01 (not shown), scattering at different angles is less

sensitive to particle shape, and scattering in the forward and backward directions is

approximately equal.

Far from the source region, a scattered electromagnetic wave is transverse, i.e. the E

and H fields are perpendicular to the direction of propagation of the scattered field.

We investigate scattering calculated using different components of the internal field,

which are defined relative to the direction of the incident field k̂. The cross sections

for x = 2 and x = 10 are computed in 3 different ways: (i) using all components of the

internal field; (ii) using only the component perpendicular to the incident wave (P⊥),

i.e. in the direction of êinc; and (iii) using only the component parallel to the incident

wave (P‖), i.e. in the direction of k̂. In other words, there are geometric factors in the

scattered far-field corresponding to the perpendicular and parallel components, which

may be written as |êinc · êdet| = cos(Θ) and |k̂ · êdet| = sin(Θ), respectively. This means

that the largest contribution to far-field scattering from the perpendicular component
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will be in the forward and backward directions, while the largest contribution from the

parallel component will be at intermediate scattering angles.

Fig. 3.11 shows the result for the hexagonal plate of x = 2 and x = 10. In both cases it

can be seen that the transverse component, P⊥, contributes more to scattering near the

forward and backward directions, with a smaller contribution from P⊥ at intermediate

scattering angles close to 90◦ and 270◦. Conversely, P‖ contributes more to the total

scattering at these angles, and less in the forward and backward directions. This is

expected from Eq. (2.50), as the polarisation direction êdet is perpendicular to the

observation direction n̂.

The differential scattering cross section for the z polarised incident wave is shown in

Fig. 3.12, this time plotting the results in the y-z plane. The same conclusions are

drawn from this scenario - the transverse component (corresponding to the z compo-

nent in this case) dominates forward and backward scattering, and the component in

the direction of propagation (Py) contributes mainly to sidescatter. Thus we deduce

that the standing wave structure around the perimeter of the hexagonal plate con-

tributes predominantly to sidescattering, and the wave extending through the centre is

responsible for scattering at angles proximate to the forward and backward directions.

The results presented here help us to understand what controls the asymmetry param-

eter, g, which describes how much incident radiation is scattered in the forward and

backward directions. Therefore, the finding could be useful for developing parameteri-

sations of g for use in radiative transfer simulations.

3.3.2 Cylindrical disk and spheroid

Realistic ice particles have historically been approximated by simpler shapes such as

spheres and spheroids in order to calculate their scattering properties. Much of the

literature has shown that this method produces poor results for particles outside the

Rayleigh regime [96]. It is interesting to explore whether it is possible to gain greater

physical insight into why these methods fail to produce accurate results by modelling
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Figure 3.12: Polar plot showing the differential cross section of the plate in the y-
z plane. The incident wave is propagating in the y-direction and is polarised along
the z-axis. The value at 0◦ represents forward scattering. This is calculated using
all components of the field (black line), only the y components (along direction of
propagation; blue line), and only the z components (perpendicular to propagation
direction; green line).

different approximations to the plate.

The magnitude of the internal field is plotted for a cylindrical disk of solid ice, with

equivalent aspect ratio and Dmax to the hexagonal plate in section 3.3.1. This allows

us to look at the effect of particle shape on the structure of the field. We also look

at a solid ice spheroid of equal aspect ratio and Dmax. Fig. 3.13 shows the results for

x = 2 and x = 10. The real parts of the x and y components of the field for x = 10

can be seen in Fig. 3.14c. Overall, there are clear similarities between the structure of

the field within both of these particle shapes, compared to the hexagonal plate. The

same phenomenology applies to both geometries, and the details of the perimeter of

the particle are not critical to produce similar internal fields. The field is more uniform

for x = 2, increasing in complexity for x = 10. The focussing behaviour in the forward

region is also prominent for both the disk and spheroid. For x = 2, a slightly smaller

amount of focussing is seen in the spheroid than in the disk and the hexagonal plate.

Conversely, for x = 10, the spheroid exhibits more focussing than the other geometries.

Within the spheroidal geometry, the wave crests (in green) appear to be more curved,

extending to the the particle edge. This could be because the spheroidal shape is very

thin close to the perimeter, resulting in less interference from different layers in these
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(a) Disk (b) Spheroid

(c) Disk (d) Spheroid

Figure 3.13: Magnitude of the internal field of (a, c) a disk and (b, d) a spheroid of
x = 2, 10. Both particles have an aspect ratio of 0.1 and Dmax = 1 mm, i.e. the same
values as the hexagonal plate in section 3.3.1.

areas.

The structure of the fields within the cylindrical disk and the hexagonal plate exhibit

clear resemblances, suggesting that in terms of approximations for a hexagonal ge-

ometry, a disk may provide superior results to a spheroid. However, in terms of the

average magnitudes, the spheroid displays results that are closer to the plate, giving

values within 1% for x = 2, and 3% for x = 10. The average values for the disk differ

from the plate by approximately 4% and 13% for x = 2 and x = 10. For x = 2, the

maximum magnitudes of the disk and spheroid are within 3% and 4% of the plate,

respectively. For the larger size parameter of x = 10, both geometries have maximum

values that differ from the plate by about 10%, but the spheroidal shape results in an

overestimation while the disk gives an underestimation.
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(a) Disk <(Ex) (b) Spheroid <(Ex)

(c) Disk <(Ey) (d) Spheroid <(Ey)

Figure 3.14: Components of the internal field through the central plane of particles of
x = 10 with aspect ratio and Dmax equal to the hexagonal plate. (a) and (b) show the
real part of the x components in a disk and spheroid, and (c) and (d) show the real
part of the y components.

3.3.3 Hexagonal column

3.3.3.1 Internal field

Fig. 3.15 shows the field inside a hexagonal prism of aspect ratio 1 for x = 2 and

x = 10. Slices have been plotted through the planes x = 0 m and z = −1.2× 10−4 m,

where |E| is at a maximum for x = 10. The particle has the same value of Dmax as

the plate. It can be seen that by increasing the aspect ratio, more focussing is seen

for x = 2 compared to the plate, and the maximum field strength is approximately

20% larger. For x = 10, Fig. 3.15b shows that the increased aspect ratio results in 2

primary regions of focussing, but the maximum value of these is smaller than in the
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(a) x = 2 (b) x = 10

Figure 3.15: Magnitude of the internal field of a hexagonal column of aspect ratio 1
of (a) x = 2; (b) x = 10. Slices are shown through x = 0 m and z = −1.2 × 10−4 m.
These particles have a value of nλ = 62 and 17, respectively.

flat plate. There appears to be more destructive interference in the prism, with the

average magnitude in the plate exceeding that in the prism by a factor of 1.3.

Investigating the real part of the x and y components of the field for x = 10 shows that

these are qualitatively very similar to the field components of the plate (not shown for

brevity). The transverse component for the column exhibits a wave extending though

the particle, and the component in the direction of propagation displays a well defined

standing wave structure around the perimeter.

Fig. 3.16 shows the case equivalent to Fig. 3.15b, but with the incident wave along the

z-axis, hitting the top basal face of the prism. This corresponds to an angle of 90◦, as

discussed for the plate in section 3.3.1. For the thin plate, it was found that this setup

results in an internal field with lower maximum magnitudes than when the incident

wave is directed in the x-y plane. For the prism of aspect ratio 1, this is not the case.

Strong focussing behaviour is seen towards the forward region of the particle. Thus,

the lower field value found for the plate when the incident angle is directed at 90◦ is a

result of the aspect ratio of the particle. The effective size parameter in the direction

of propagation is small for the thin plate, resulting in a diminished field, but this is

not the case for the thick prism.
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Figure 3.16: Magnitude of the internal field in a hexagonal prism of x = 10. The
incident wave is directed along the z-axis and is polarised along the x-axis.

3.3.3.2 Far-field scattering

Polar plots of σ are displayed in Fig. 3.17 for a hexagonal column, to explore the

effect of aspect ratio on the differential scattering cross section. The overall pattern

resembles that of the thin plate with qualitatively similar P⊥ and P‖ contributions.

Quantitatively, there are some large differences, particularly in the backscatter direction

for x = 10. However, as mentioned in section 5.2, backscatter is very sensitive to

discretisation. Therefore a finer mesh resolution would be required in order to make

meaningful conclusions about changes in σb with aspect ratio.

3.3.4 Cylindrical column and sphere of same Dmax as hexago-

nal prism

In section 3.3.2 we explored the differences between the internal field of the hexagonal

plate and that of a cylindrical disk and spheroid. Analogous to this, we have compared

the taller hexagonal prism to a sphere and right circular cylinder of equivalent aspect

ratio and Dmax. Fig. 3.18 shows the results for x = 2 and x = 10. For both values of x,

it is observed that spheres have one principle region of focussing, rather than the two

maxima we observed for the hexagonal column. The cylindrical column bears a closer
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(a) x = 2 (b) x = 10

Figure 3.17: Differential scattering cross section, as in Fig. 3.11, but for a hexagonal
prism of aspect ratio 1.

resemblance to the hexagonal prism geometry in that it displays multiple regions of

large magnitude values for x = 10, although the maximum value is slightly larger for the

cylindrical column, exceeding the hexagonal geometry by approximately 6%. However,

the maximum magnitude of 6.6 found for the sphere of x = 10 overestimates the

hexagonal case by 75%. It is noted that in order to enable clearer comparisons we fixed

the range of the colour scale in Fig. 3.18d to be the same as the other shapes. Although

the sphere displays a higher maximum value, the hexagonal and cylindrical prisms

have larger average magnitudes than the sphere, by a factor of approximately 1.3.

These results show that for the larger aspect ratio of 1 considered here, the cylindrical

approximation to the hexagonal particle appears to be superior to the commonly used

spherical or spheroidal approximations. In section 3.3.2, it was found that an equivalent

aspect ratio spheroid gives a good approximation of the internal field for a smaller

aspect ratio of 0.1. However, it is shown here that as the aspect ratio increases, the

approximation becomes less accurate.
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(a) Cylinder x = 2 (b) Sphere x = 2

(c) Cylinder x = 10 (d) Sphere x = 10

Figure 3.18: Magnitude of the internal field of (a, c) a cylindrical column and (b, d) a
sphere of aspect ratio 1 for x = 2, 10.

3.4 Results and discussion - Aggregates

3.4.1 Chain aggregates of plates 1: 2 hexagonal plates

In the presence of an electric field, chain aggregates of plates can form. Connolly et

al. [26] observed that these geometries form predominantly with the prism faces of

individual crystals touching. Here we have studied two different aggregates of plates.

The first is a simple aggregate of 2 plates, and the second is an aggregate of 5 plates.

Both geometries are aligned with prism faces touching, and were generated by Ref. [97]

using a stochastic algorithm.
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(a) x = 2 (b) x = 10

Figure 3.19: Magnitude of the internal field through the central plane of an aggregate of
2 hexagonal plates for (a) x = 2 and (b) x = 10. The number of dipoles per wavelength
used in the calculations for these particles is nλ = 159 and 31, respectively.

3.4.1.1 Internal field

First we look at an aggregate of 2 plate-like particles, where each monomer is the same

height andDmax as the individual plate studied in section 3.3.1. Fig. 3.19 shows that the

aggregates of 2 plates exhibit less defined regions of focussing with smaller maximum

magnitudes than the previous geometries. For x = 2, there is very little focussing.

In Fig. 3.19b, it can immediately be seen that for x = 10 interference between the

two plates reduces the clear wavy structure and symmetry observed in the hexagonal,

cylindrical, and spheroidal monocrystals. These interactions and the resulting field

depend on the alignment of the 2 plates. If the arrangement is such that the aggregate

of 2 plates is symmetric with respect to the incident wave, the internal field is also

symmetric, as expected. An example of this can be seen in Fig. 3.20. Although the

field has a symmetric structure in this case, the focussing is still less defined and

the maximum magnitude is lower than that calculated for the single plate, suggesting

that the complexity of the particle is integral to the loss of structure, rather than the

alignment or orientation. We are interested in exploring more irregular aggregates

which are frequently observed in clouds. The result in Fig. 3.19b suggests that the

internal field within such particles may not exhibit any clear structure. To test this,

the field inside an aggregate of 5 plates was examined, followed by the exploration of

more complex aggregates in section 3.4.4.
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Figure 3.20: Magnitude of the internal field through the central plane of an aggregate
of 2 hexagonal plates with x = 10. The incident wave is propagating in the y-direction
and is polarised along the x-axis. The 2 plates are aligned such that the particle is
symmetric with respect to the incident wave.

3.4.2 Chain aggregates of plates 2: 5 hexagonal plates

3.4.2.1 Internal field

Fig. 3.21 shows the field inside an aggregate of 5 hexagonal plates, where each plate has

the same dimensions as the particle modelled in Fig. 3.2. Similarly to what was found

for the aggregate of 2 plates, this particle has a field that shows less symmetry than

the monocrystals. It is obvious that as the complexity of the geometry increases, there

is a clear reduction in magnitude and further dampening of the wavy structure. The

internal field magnitude becomes more smoothed and seems to lack the constructive

interference that locally changes the magnitude in simpler particles such as the individ-

ual plate. However, upon closer inspection, the amount of focussing varies according to

the orientation of the particle with respect to the incident wave. For example, directing

the incident wave at an angle of 140◦ in the clockwise direction from that shown in

Fig. 3.21b leads to a maximum magnitude which exceeds that shown here by almost

50%. This can be seen in Fig. 3.22. It is noted that this value is still less than that

calculated for the single plate. Overall, the focussing effect appears to be more promi-

nent in cases where the path length in the direction of propagation is longer. At 140◦,
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(a) x = 2 (b) x = 10

Figure 3.21: Magnitude of the internal field through the central plane of an aggregate
of 5 hexagonal plates for (a) x = 2 and (b) x = 10. These particles have a value of
nλ = 184 and 36, respectively.

a large amount of focussing is seen as the incident wave is directed at an angle allow-

ing passage through multiple plates with little deviation from the incident direction.

This is similar to the results for the hexagonal monocrystals, with the incident wave

directed along the z-axis. The shorter path length through the thin plate results in a

lower maximum magnitude of the internal field, while the longer path length through

the prism results in a larger field with prominent focussing behaviour.

For the orientation shown in Fig. 3.21, the average and maximum magnitudes for

the aggregate of 5 plates are quantified in Table 3.1. Since remote sensors probe an

ensemble of particle orientations, and details of the far-field patterns are sensitive to

orientation, we consider orientationally averaged far-field scattering quantities in the

following sections.

3.4.2.2 Far-field scattering

The far-field scattering results for the aggregate of 5 plates is shown in Fig. 3.23.

As in previous cases, the incident plane wave propagates in the y direction, and is

polarised perpendicular to the incident wave, along the x-axis. However, in this case

we have considered an orientationally averaged example, for different orientations in

the x-y plane. The particle is rotated at intervals of 10◦ about the z-axis, resulting
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Figure 3.22: Magnitude of the internal field through the central plane of an aggregate of
5 hexagonal plates with x = 10. The incident wave is propagating in the x-y plane, at
an angle of 140◦ in the clockwise direction from the y-axis. The polarisation direction
is perpendicular to the incident wave, also in the x-y plane.

in scattering calculations being obtained for 36 different orientations. The results

averaged over the 36 orientations are shown in Fig. 3.23. As before, the cross sections

have been computed using all components of the internal field, and also using only the

components perpendicular and parallel to the incident wave, P⊥ and P‖.

For x = 2, P⊥ is responsible for the majority of the total scattering. The transverse

component also has a larger contribution towards the total scattering value for x = 10.

Similar to the results seen for the single plate with a fixed orientation in Fig. 3.11, P⊥

contributes mainly to forward and backward scattering, and P‖ contributes more to

sidescatter. This pattern persists through orientation averaging, and is not limited to

a single particle orientation.
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(a) x = 2 (b) x = 10

Figure 3.23: Scattering in different directions by chain-like aggregate of 5 plates for
(a) x = 2 and (b) x = 10. In (a), the scattering due to P⊥ (magenta line) almost entirely
overlaps the total scattering (black), and the amount of scattering due to P‖ (blue) is
very small. For both size parameters, the results are averaged over 36 orientations in
the x-y plane.

3.4.3 Spheroids of equal Dmax and aspect ratio to plate-like

aggregates, but with effective permittivity determined

by volume fraction

Comparisons have been done with the internal field of spheroids of equal Dmax and

aspect ratio to the aggregates of plates. The permittivity of the spheroids have been

reduced according to the Maxwell-Garnett formula in Ref. [71]. This mixing ratio deter-

mines the volume fraction of ice that such a spheroid has, and subsequently calculates

the corresponding effective permittivity. Such soft sphere and spheroid approximations

have been used extensively in previous literature, so we are interested in assessing the

performance of this method.

For brevity, the internal field plots have not been included here; instead we summarise

the results briefly. In all cases examined it is found that the Maxwell-Garnett ap-

proximation overestimates the average internal field value. This overestimation ranges

between 5% and 11%. For the spheroidal approximation of 2 hexagonal plates of x = 2,

the maximum field value is also overestimated. However, as the particle size or com-

plexity is increased, the Maxwell-Garnett approximation results in underestimations
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Figure 3.24: Magnitude of the internal field of an irregular aggregate of 10 “fernlike
dendrite” monomers for (a) x = 2 and (b) x = 10. The dipole spacing is 47 µm, giving
approximately nλ = 125 for x = 2, and nλ = 25 for x = 10. Note that the range of
values in the colorbar is reduced, compared to previous cases.

of the maximum value. This is caused by the incapability of the spheroid to replicate

complex interactions within realistic particles.

3.4.4 Irregular aggregates of 10 “fernlike dendrite” monomers

Realistic snowflakes modelled by Tyynelä et al. [3] have been used to examine the in-

ternal field of more complex geometries. These particles are composed of 10 “fernlike

dendrite” monomers. Ten different arrangements of these particles were available to

us, with values of Dmax ranging from 6 − 9 mm. We plot the field of one arrange-

ment in Fig. 3.24, and include results for the average and peak fields of two different

arrangements in Table 3.1.

3.4.4.1 Internal field

In Fig. 3.24, the internal field of one aggregate is plotted for x = 2 and x = 10. Note

that the range of the colour scale has been reduced for these particles to observe more

detail in the internal field. For both values of x, the average field value is very similar

(approximately 0.65−0.7, see Table 3.1), and the magnitudes are lower than in all other

particles considered. The maximum field value is also considerably smaller than in the
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different monocrystals of equal x. The same thing was found when these calculations

were repeated for various different arrangements of 10 monomers. It can also be seen

in Table 3.1 that calculations for x = 0.01 show almost identical average and maximum

values to x = 2.

The values obtained for these particles are more similar to the value of |E| ≈ 0.58

you would see if only the applied field were present. This shows that for these fluffy

aggregates, RGA is a more realistic approximation than for monocrystals. However,

the true field is still systematically 15− 20% higher than that assumed by RGA, while

peak values are at least a factor of 2 larger. These differences in the internal field

strength lead to underestimates of scattering cross-sections by RGA, as observed by

Tyynelä et al. [61].

No focussing behaviour is obvious for x = 2 or x = 10 in the complex aggregate.

In fact, the individual crystals within each aggregate seem to be independent of each

other, acting as if they are isolated. To test this, we calculated the field of the in-

dividual crystals detached from the rest of the aggregate. If we isolate crystals, we

find the same field to within 5% of that calculated in the presence of the surrounding

crystals. There is very little coupling between different monomers in the particle - only

intramonomer. This may suggest a simplified method of computing scattering from

large complex aggregates by considering interactions only within individual monomers.

This implies that the “modified RGA” method developed by Lu et al. [98] is a rea-

sonable approximation. In that method the range of interactions between dipoles is

limited to some multiple of the minimum dimension of the particle. The method could

provide good results for the fluffy aggregates considered here, provided that the range

of interactions used is close to the scale of a monomer. This idea is developed further

and tested for a range of aggregates in chapter 5.

Our results show that if the scattering by the monomer crystals can be computed

individually, the net scattering by the aggregate can quickly be estimated using RGA,

since coupling between the monomers is small. For monomers small compared to

the wavelength, the monomer scattering could be calculated rapidly using the results
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in Ref. [99]. For larger monomers, DDA calculations could be used (but on a much

smaller scale than required to compute the scattering by the whole cluster). Our results

support the assumptions made by Hogan et al. [100] who postulated that if an isolated

monomer crystal scatters according to Gans theory with a particular dielectric factor

(related to the internal field of the monomer), then a larger aggregate composed of

several monomers could be described using RGA with that same value of dielectric

factor - i.e. neglecting inter-monomer coupling.

3.4.4.2 Far-field scattering

For the complex aggregates, we have also considered a scenario averaged over 36 ori-

entations, using the same methodology described in section 3.4.2.2 for the aggregate

of 5 plates. The polar scattering plots in Fig. 3.25 show the orientationally averaged

differential scattering cross sections. Panels (a) and (b) show the total amount of scat-

tering, along with the contributions from the perpendicular and parallel components

of the field, for x = 2 and 10. The results exhibit similar behaviour to the aggregate

of 5 plates in Fig. 3.23. As before, a significant amount of scattering in the forward

and backward directions is due to the component of the field perpendicular to the in-

cident wave, with the parallel component contributing mainly to sidescatter. For the

larger size parameter of x = 10, a comparison with the results for the aggregate of

5 plates in Fig. 3.23 shows that the influence of P‖ on the total amount of scatter-

ing is getting weaker with particle complexity. In contrast to the aggregate of plates,

there are now very few angles where P‖ dominates the total. The cross sections for

individual crystals isolated from the aggregate were also examined, showing the same

results. Therefore we suggest that the decrease in contribution from the component in

the direction of propagation occurs as a result of the reduction in homogeneity of the

particle composition, i.e. the presence of regions of air between solid ice branches.

It is worth noting that in contrast to the example of a symmetric plate, the z component

of the field for these fluffy aggregates is comparable to the y component. However, it

is not significant for the scattering quantity considered here as in Eq. (2.50) we chose
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(a) x = 2 (b) x = 10

(c) x = 2 (d) x = 10

Figure 3.25: Orientationally averaged scattering cross section at different scattering
angles by a complex aggregate for (a, c) x = 2 and (b, d) x = 10. The black lines in
all plots show the total amount of scattering. The magenta lines in the top row show
scattering due to P⊥, and the blue lines show scattering due to P‖. Panels (c) and (d)
show comparisons of the total scattering with results obtained using RGA (orange),
and an equivalent sphere approximation (purple) using the Maxwell-Garnett mixing
ratio. The DDA and RGA results are almost identical for x = 2, with the orange line
covering the black line in panel (c).
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(a) x-z plane (b) y-z plane

Figure 3.26: Polar plot showing the differential cross section of the dendritic aggregate
of x = 10 in the: (a) x-z plane. The incident wave is propagating in the x-direction
and is polarised along the z-axis. The detector is polarised in the x-z plane. (b) y-z
plane. The incident wave is propagating in the y-direction and is polarised along the
z-axis. The detector is polarised in the y-z plane. The value at 0◦ represents forward
scattering.

the detector to be polarised in the x-y plane.

We also note that as well as the results shown here, calculations were done for a z

polarised incident wave travelling in the x and y directions, with the detector chosen

to be polarised in the x-z and y-z directions, respectively. The corresponding results for

x = 10 are shown Fig. 3.26. The same conclusion applies to these cases - the component

parallel to the propagation direction is small and contributes to sidescatter, while the

transverse component is responsible for the majority of the scattering in the forward

and backward directions. Orientational averaging was not done for this case.

It is interesting to explore whether the diminishing contribution from the component

parallel to propagation is a result of the inability of such low density structures to

support a standing wave like that observed in the plot of <(Ey) for the hexagonal plate

in Fig. 3.9b. To test this, we plotted the parallel component of the field for some of the

aggregate setups considered, i.e. for different incident directions and polarisations (not

shown for brevity). It is found that there is no clear standing wave structure throughout

the aggregate in any of the cases, suggesting that the standing wave may indeed play

a key role in sidescatter. However, further work would be required to confirm whether

the decreased influence of the field component parallel to the propagation direction
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on the total amount of scattering within a complex aggregate is in fact caused by the

inability to maintain a standing wave on the perimeter.

3.4.5 Sphere of equal Dmax to aggregate, but with effective

permittivity determined by volume fraction

In a similar manner to section 3.4.3, the Maxwell-Garnett formula is used to calculate

the internal field of a sphere of equal Dmax to the aggregate of fernlike dendrites.

The plots of the field have been omitted in the interest of brevity. It is found that

approximating the aggregate by a soft sphere results in a more uniform internal field.

The symmetry of the particle leads to very slight focussing behaviour towards the

forward region, but the magnitude of the field is close to 1 everywhere, meaning the

average field value is larger than in the aggregate. The maximum magnitude value in

the sphere is lower than in the aggregate, and the minimum value is higher.

In panels (c) and (d) of Fig. 3.25, the far field scattering by the complex aggregate is

compared to the result calculated using the equivalent sphere, and also using RGA.

For x = 2, the averaged differential cross section, σ, is accurately approximated by the

equivalent sphere in the forward direction. However, the approximation overestimates

sidescatter and underestimates backscatter for this size parameter. For x = 10, the

DDA result is underestimated at almost all scattering angles by the equivalent sphere,

particularly in the backscatter direction. Such underestimates in scattering properties

as a result of soft sphere approximations are consistent with previous literature, e.g.

[101, 102], with Ref. [102] showing that horizontally aligned soft spheroids provide

better results for radar scattering by ice clouds. However, Tyynelä et al. [3] found that

soft spheroids also underestimate the backscatter cross section of realistic aggregates.

The inaccuracies that result from soft sphere and spheroid approximations are due to a

combination of 2 factors. As we just discussed, the first reason is that the internal fields

are not represented correctly, with the Maxwell-Garnett approximation leading to a

less structured field. The second reason is that the spatial structure of ice is incorrect
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when approximating a realistic particle by a spherical or spheroidal equivalent. It has

been suggested that for sparse structures such as the fluffy aggregates we are interested

in, using RGA could result in more accurate scattering calculations than soft sphere

or spheroid approximations, as in Ref. [61]. Since RGA doesn’t include internal field

interactions, these improvements to scattering by aggregates have been attributed to

the fact that the spatial structure of the particle is modelled in RGA calculations.

Fig. 3.25 (c) and (d) show σ for the aggregates of “fernlike dendrites” using RGA.

It is clear that significant improvements are indeed seen for the irregular geometries

used in this study by using RGA rather than soft sphere and spheroid approximations.

Thus, a significant amount of the error caused by those approximations is due to the

incorrect representation of the spatial structure of the particle. Internal coupling plays

a smaller role, but nonetheless a notable one. Similar to the findings in Ref. [61], large

errors between RGA and DDA are found in some directions. Underestimations of the

backscatter cross sections become more prominent with size parameter, reaching −38%

for x = 10, with errors increasing further towards sidescattering angles. Comparisons of

the internal fields of these aggregates show that the average field strength is higher using

DDA than it is using RGA. As the internal field is the same everywhere using RGA,

the structure is also noticeably different. Hence it is worthwhile exploring whether

improvements can be made to RGA in order to represent some internal structure and

improve scattering calculations. Alternative methods are discussed in the following

two chapters, starting with an iterative scattering order formulation of the DDA in the

next chapter.
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Chapter 4

Alternative scattering methods -

Part 1: Iterative methods

Simplified methods such as the Rayleigh Gans Approximation may be applied to calcu-

late the scattering properties of particles of small size parameter. RGA uses unphysical

approximations and as such is limited in the range of sizes it can be used for. In the

previous chapter, we showed that as x increases the method becomes less accurate,

and large errors are found. As DDA is computationally expensive to use on scatterers

of large x, particularly when calculations for many particles are required, we hope to

develop a new approximation which is less expensive, but still sufficiently accurate.

We begin by testing an iterative method that has been applied to arbitrary dielectric

particles in previous literature. We test the applicability of the method to scattering

by ice crystals, exploring both the internal electric fields and far-field scattering prop-

erties. We also perform tests using a newly derived parameter to improve convergence

of the method. To our knowledge, none of these tests have been done before.
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4.1 Overview of the iterative method

Recall from section 2.8.2 that in the DDA method we wish to solve a 3N × 3N system

of linear equations:
N∑

j ′=1

Ajj ′Pj ′ = Einc
j , (4.1)

where Ajj′ describes the coupling between dipoles j′ and j, Pj is the polarisation at

dipole j, and Einc,j is the electric field due to the incident wave.

This system may be solved using direct or iterative methods. The Jacobi method is

a classical iterative procedure to solve a system of linear equations. More information

on the iterative methods used here is available in numerical mathematics text books,

such as section 4 of Quarteroni et al. [82]. Using the Jacobi method, the iterative

approximation scheme corresponding to the DDA linear system may be defined as:

Pn+1
j = αj(Einc,j −

∑
j′ 6=j

Ajj′P
n
j′), for n = 1, 2, ..., P1

j = αjEinc,j, (4.2)

where αj is the polarisability, and α−1j 13 = Ajj . The iteration number is given by n.

Defining:

En+1
j = Einc,j −

∑
j′ 6=j

Ajj′P
n
j′ , for n = 1, 2, ..., (4.3)

the iterative method may also be written:

Pn+1
j = αjE

n+1
j , for n = 1, 2, ..., P1

j = αjEinc,j. (4.4)

The zeroth order solution of P1
j = αjEinc,j is an approximation saying that there is no

coupling between the dipoles and each dipole behaves as a Rayleigh scatterer, respond-

ing to only the incident field. This is equivalent to the Rayleigh-Gans approximation

of the internal field, also known as the Born approximation. A logical advancement

of the RGA is to obtain higher order solutions by using n ≥ 1 iterations. Thus, some

authors have referred to the method as the iterative Rayleigh-Gans-Born approxima-
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tion, e.g. de Hoop [103]. Singham and Bohren [84] relate the number of iterations to

successive orders of scattering. With this physical interpretation, n = 1 corresponds

to single-scattering between dipoles, i.e. the influence of scattering by each dipole on

the remaining dipoles within a particle is considered once. For n = 2, double scat-

tering is considered, and so on. Thus, this approach allows physical insight into the

importance of multiple-scattering processes between volume elements. Note that this

interpretation introduced in Ref. [84] refers to scattering orders between dipoles. If one

were to consider the dipole response to the applied field as single-scattering, n = 1

may alternatively be interpreted as a double-scattering process, with n = 2 describing

triple scattering etc. Either way, the expectation is that using higher orders will allow

the RGA limits of size parameter and refractive index to be relaxed. Acquista [104]

presented results using a second iteration and compared his findings to Mie scatter-

ing. The second iteration provided improvements to RGA, but results were only given

for spheres of x ≤ 5, and refractive indices of 1.55 and lower. The same approach

has been taken by authors such as Chiapetta [105], and Singham and Bohren [83, 84],

who applied Eq. 4.4 and referred to it as a scattering-order formulation of the DDA

(SOF-DDA).

The authors of the above literature outline that SOF-DDA is beneficial in terms of

time and memory requirements, when compared to a direct solve using DDA. A direct

solve has a memory requirement which increases as O(N2). As discussed in section

2.8.2, our row-wise implementation of DDA solved with GMRES has a smaller memory

requirement of O(NM), where M is the number of GMRES iterations. It is possible to

decrease the memory requirements by using restarted GMRES, but this may result in

slow convergence, or even prevent convergence in some cases. The attraction of SOF-

DDA is that it provides potential for further memory improvements. The memory

required by SOF-DDA is independent of the number of iterations, increasing as O(N).

This means that if M is large, SOF-DDA is more memory efficient than GMRES.

Fig. 4.1 shows the number of iterations required by GMRES to obtain a solution for

a hexagonal plate of solid ice. It is clear that GMRES requires more iterations with

increased x, meaning there will be a corresponding increase in the memory requirement.
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Figure 4.1: Number of iterations required to solve the DDA system using GMRES, for
different size parameters, x. This example is for a hexagonal plate of solid ice.

Thus we hope that by using a scattering-order formulation, we can reduce memory

requirements for larger x. The time taken to perform computations will increase as

O(NM) for both SOF and GMRES. Since it is expected that the number of GMRES

iterations required for convergence will be less than for SOF, a time improvement is

not expected by using the iterative method.

However, it is well known that convergence is not guaranteed for series of this type.

Ref. [84] outlines the reason for this issue. In the case of a particle with weak dipole-

dipole interactions, the amplitude at a given dipole is close to that of the incident

field, with much smaller contributions coming from interactions with the other dipoles.

However, if the dipole-dipole interactions are strong, then summing the interactions at a

dipole may result in field that is much larger than the incident field. The fields get larger

and larger with each iteration, and the iterative method results in a divergent solution.

Kleinman et al. [2] also point out that convergence of SOF-DDA is only guaranteed for

weak scatterers, i.e. scatterers with a refractive index close to the surrounding medium,

such that the phase shift does not vary considerably within the particle. Issues arise

for large particle sizes and refractive indices. The authors of Refs. [83,84] compare the

intensity of a sphere of x = 2.23 and show that there is a huge range in the number

of scattering orders required for convergence using different refractive indices. Using a

small refractive index of m = 1.1 + 10−4i allowed convergence within 8 orders, while
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50 orders were required for the largest explored value of m = 1.5 + 10−4i. For that

refractive index, size parameters of 2.5 gave divergent results. Particle shape also plays

a role in the convergence of the method. The authors of [83,84] look at different particle

shapes, concluding that the method is more convergent for disk-like and filamentary

particles, and less attractive for spheres and cubes.

Purcell and Pennypacker [77] use a similar equation to (4.4), but introduce a “numerical

factor” η > 0 with the purpose of improving the convergence of the method. This is a

Jacobi “over-relaxation” (JOR) scheme, and can be written as:

Pn+1
j = ηαEn+1

j + (1− η)Pn
j for n = 0, 1, 2, ..., P0 = 0. (4.5)

Setting η = 1 gives the iterative method in Eq. (4.4), which is the standard Jacobi

method and is equivalent to SOF-DDA. The physical interpretation of scattering orders

is no longer valid when the value of η is changed. The optimal value to use for the

relaxation parameter is not trivial to determine. Refs. [77] and [106] used a value of

η = 0.5, but found poor convergence for spherical particles of x > 1.5 when using a

refractive index of m = 1.33.

Eq. (4.5) is a stationary iterative method. Recalling that the diagonal part of matrix A

is equivalent to α−113, we may replace
∑

k 6=j AjkP
n
k by (A− α−113)P

n, and Eq. (4.5)

may be written:

Pn+1 = ηαEinc − ηα(A− α−113)P
n + (1− η)Pn

= ηαEinc + (13 − ηαA)Pn.

(4.6)

Convergence of an iterative method with the general form xn+1 = Mxn + y depends

on the iteration matrix M. We may introduce the spectral radius of the iteration

matrix, i.e. ρ(M), defined as the maximum absolute eigenvalue of M. Convergence of

stationary iterative methods requires that ρ(M) is less than 1, while if ρ(M) > 1 the

method will diverge:

ρ(M) = max|λ(M)| < 1. (4.7)
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In our case M = 13 − ηαA, and thus we require that ρ(13 − ηαA) < 1 in order to

attain convergence of the stationary iterative method.

Computing the eigenvalues of a large matrix is very computationally expensive. How-

ever, calculating only the maximum eigenvalue may be done more efficiently using

a numerical algorithm called the power method (e.g. section 5.3 of Ref. [82]). The

method works by initialising an arbitrary vector v(1), and performing the following

steps for iterations j = 1, 2, . . . , n:

for j = 1 : n

v(j+1) = Mv(j)

v(j) = v(j+1)/‖(v(j+1))‖

end

The value (v(j))∗v(j+1) converges to the largest eigenvalue of M, where the subscript ∗

represents the conjugate transpose. Thus the spectral radius is calculated as ρ(M) =

|(v(j))∗v(j+1)|.

If the power method algorithm converges to the spectral radius within a small number

of iterations, it may prove useful for determining whether convergence of the stationary

iterative method will be achieved, rather than running for many iterations. However,

the convergence rate of the power method depends on the ratio |λ2/λ1| between the

two largest eigenvalues λ1 and λ2, and the method may converge slowly if the two

values are similar. In such a case, the required resources will increase while no useful

information is gained. Note that a comparison of the computed norms will show that

if ‖Mv‖ > ‖v‖ at a given iteration of the power method, then the spectral radius is

greater than 1, and the stationary iterative method will not converge.

We are interested in non-spherical particles such as hexagonal plates and irregular

aggregates. We also wish to use larger refractive indices close to that of solid ice

(e.g. m = 1.7805 + 0.0021i for x = 10). From the results in the previous chapter, we

know that as the size parameter of hexagonal plates increases, strong interactions occur

between the dipoles. The dipoles tend to interact more weakly for aggregates. Thus

we suspect that the iterative method may struggle to converge for compact scatterers
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(a) σb (b) Bias in σb

Figure 4.2: (a) The backscatter cross section of a hexagonal plate of nz = 8 and aspect
ratio 0.1, using η = 1 (standard Jacobi/ SOF-DDA). The blue lines show results using
SOF-DDA with 1, 2, and 3 iterations. Results using DDA and RGA are shown in red
and black. (b) The bias in σb relative to the DDA solution for different values of x, as
defined in Eq. (4.8).

such as plates, but converge more easily for aggregates. In this chapter we examine

the performance of SOF-DDA for plates and aggregates, and explore whether any

improvements to convergence are possible by using different values of η in Eq. (4.5).

If convergence can be achieved, then it would be possible to avail of the memory

improvements offered by using SOF rather than GMRES.

4.2 Results for hexagonal plates using SOF-DDA

(η = 1)

4.2.1 Far-field scattering

Results for a hexagonal plate of aspect ratio 0.1 are shown in Fig. 4.2. The hexagonal

plate used here has a value of nz = 8, corresponding to 14 dipoles per wavelength at

x = 10, thus satisfying the commonly used criterion of using at least 10 dipoles per

internal wavelength (e.g. Yurkin and Hoekstra [47]). Fig. 4.2a shows the backscatter

cross section, σb, for size parameters between 1 and 10, calculated using 1, 2, and 3

iterations of SOF-DDA. Results using DDA and RGA are also included on the plot,

shown by the red and black lines respectively. It is clear that for small x, increasing the
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Figure 4.3: Spectral radius for different numbers of iterations of the power method
algorithm, for the hexagonal plate of x = 4 (blue) and x = 4.5 (orange).

number of iterations provides improvements to the RGA solution, with results moving

towards the DDA value. However, for x ' 4 the results diverge, and large errors are

found by using SOF-DDA.

The bias in σb compared to the DDA result is presented in Fig. 4.2b for different values

of x. The bias is calculated as:

σb,SOF − σb,DDA
σb,DDA

× 100. (4.8)

For values of x up to 4.3, the iterative result converges to the DDA solution with

increased iterations, with more iterations required for convergence as x increases. For

x = 4.4 the results have not converged within 100 iterations, but the solution does

appear to be converging slowly. It is likely that convergence would be reached with

more iterations. As x is increased further to 4.5, the solutions diverge rapidly. Fig. 4.3

shows that the spectral radius is consistent with these findings. For x = 4, ρ converges

to a value below 1, but for x = 4.5, the spectral radius is greater than 1, and therefore

the method is not convergent in this case. The lack of convergence for large size

parameters is consistent with previous literature, as discussed in section 4.1. The

results support the idea that the iterative method struggles to provide a convergent

solution for particles comprising dipoles that interact strongly with each other. We
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(a) DDA (b) SOF-DDA

(c) DDA (d) SOF-DDA

Figure 4.4: Magnitude of the internal field through the central plane of a hexagonal
plate of nz = 8 and aspect ratio 0.1. The top row shows results for x = 4, and the
bottom row represents a slightly larger size parameter of x = 4.5. The fields shown
in the left panels are calculated using DDA, and the right panels use SOF-DDA, i.e.
η = 1, with 100 iterations.

explore this further by taking a closer look at the internal fields for different x.

4.2.2 Internal field

To understand why the method struggles to provide convergent far-field scattering

solutions as the size parameter increases, we look at the internal fields. Fig. 4.4 shows

the fields using DDA and SOF-DDA for two different size parameters of 4 and 4.5.

For plates of x = 4 where convergent scattering solutions are obtained, there is no

discernible difference between the internal field using DDA and SOF-DDA. The relative

percentage error, calculated as in Eq. (3.1), has a value of less than 0.1%. Although not

shown here, the errors are also very low for smaller values of x. Note that the relative

internal field errors for the different cases shown are summarised in Table. 4.1 at the end
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of the chapter. For x = 4.5 a much larger relative error of 167% is calculated, and the

maximum field magnitude is overestimated in this case. The largest value in Fig. 4.4d

is approximately 5.5, but the colorbar axis has been fixed such that it is consistent with

the previous chapter. The overestimation of the maximum value computed with SOF-

DDA is more extreme as size parameter is increased. This supports the explanation

provided in Ref. [84] as to why the size parameter and refractive index for which SOF-

DDA converges is limited. When interactions between dipoles are strong, the field at a

given dipole resulting from summing the interactions may be larger than the incident

field, continuing to increase with each iteration. It can be seen in Fig. 4.4d that along

with overestimating the maximum field, the iterative method misrepresents the overall

field structure. This combination of errors leads to divergent results for the far-field

scattering quantities.

Increasing the resolution from nz = 8 to nz = 12 for the particle in Fig. 4.4 does not

improve the representation of the field. This agrees with the results of Haspel and

Tzabari [107], who found that increasing dipole resolution did not alleviate divergence

when using SOF-DDA. Thus, although this method is useful because of the physical

explanation of multiple scattering orders, it may not be practical for solid ice monomers

at large size parameters due to convergence issues. Nonetheless, it may still have value

at small x, because unlike RGA it can capture dipole coupling and hence polarisation

effects, and therefore may be useful for polarimetric radar problems.

4.3 Results for aggregates using SOF-DDA (η = 1)

Results presented in chapter 3 showed that aggregates tend to have more weakly in-

teracting dipoles and lower internal field magnitudes than single monomers, exhibiting

structures that are less defined. To explore whether such fields are easier to simulate

using the iterative method, we look at a variety of different aggregates. The parti-

cles used in this study were generated using the aggregation model of Westbrook et

al. [108]. The monomer size distribution was chosen to be almost monodisperse, with

only very slight variations such that differences in fall speeds allowed the aggregation
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Figure 4.5: Examples of the generated particles of 3, 5, and 7 monomers. The top row
shows aggregates of plates, the middle row shows columns, and the bottom row shows
dendrites.

process to initiate. Aggregates were generated using three different monomer habits,

as shown in Fig. 4.5. The habits used include plates of aspect ratio 0.15, columns of

aspect ratio 3, and dendritic monomers of aspect ratio 0.25. The aspect ratios were

chosen randomly, such that realistic particles were generated. For each of the monomer

habits, we generated aggregates comprising 3, 5, and 7 monomers, storing 10 particles

of each number. Each of the 10 aggregates have the same size and shape of monomers,

but with different arrangements. This means that for the study we have 30 particles

for each habit, and 90 particles in total. To our knowledge, the following results are

the first to apply SOF-DDA to aggregates.

4.3.1 Far-field scattering

The SOF-DDA method is used to calculate the scattering properties of all 90 generated

aggregates at size parameters of 2 and 10. At a small size parameter of x = 2, the

iterative method provides a convergent solution for all particles considered. The details

of those results are not shown here. Fig. 4.6 shows the bias in σb for all particles at

x = 10. The top row shows results for plates, the middle row shows columns, and

the bottom row shows dendrites. The three panels in each row represent aggregates

of 3, 5, and 7 equal-sized monomers. It is clear that only the dendritic particles
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converge for x = 10, with the rate of convergence increasing with the number of

monomers. On top of that, the maximum positive bias tends to decrease with monomer

number. In other words, an increased number of monomers means the SOF-DDA

method is less likely to overestimate backscatter. This is most likely because the

dipoles interact more weakly with increased monomers, resulting in a field with a lower

magnitude, as seen in the results of the previous chapter. These lower magnitude fields

are easier to reproduce using SOF-DDA, while the method overestimates larger fields,

leading to overestimations of far-field scattering quantities. The method generally

does not perform well for aggregates of plates and columns, with none of the 3 or 5-

monomer particles showing convergence. For these particles, convergence also improves

as the number of monomers is increased, and for 7 monomers some of the particles do

converge. For a few of the aggregates of 7 plates, it is unclear whether they are

oscillating around the correct answer and converging slowly to the solution, or if they

are just not converging at all. Calculations of the spectral radius for those particles

confirm that 5 of the 10 particles have divergent solutions.

We suspect that the SOF-DDA method overestimates the internal field for aggregates

with more compact monomers such as plates and columns. We saw in the previous

chapter that less compact dendritic monomers have lower magnitudes than plates, and

the results here imply that the iterative method is capable of representing such fields.

This is explored further in the following sub-section.

4.3.2 Internal field

The internal fields of three different aggregates are shown in Fig. 4.7. The incident

wave is in the z-direction, travelling from below the particles, and is polarised in the

x-direction. The top row shows the results using DDA, and the bottom row uses

SOF-DDA. The particles shown include an aggregate of 7 dendrites, and two different

aggregates of plates. These particles were chosen to represent the range of different

convergence properties of the far-field solution. As with all the dendritic aggregates,

the first particle has a convergent far-field scattering solution. The first aggregate of
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(a) 3 plates (b) 5 plates (c) 7 plates

(d) 3 columns (e) 5 columns (f) 7 columns

(g) 3 dendrites (h) 5 dendrites (i) 7 dendrites

Figure 4.6: Bias in σb in for the generated aggregates using SOF-DDA. The top row
shows results for aggregates of plates, the middle row shows results for columns, and
the bottom row is for the dendritic particles. Each of the colours represents a different
particle, and calculations for 10 particles are shown in each panel.
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plates shown (Figs. 4.7b and 4.7e) is a particle for which σb calculated using SOF-

DDA converges very slowly. The second aggregate of plates (Figs. 4.7c and 4.7f) has a

divergent far-field solution. These two aggregates of plates correspond to the darkest

blue line and the cyan line in Fig. 4.6c, and are labelled “7 plates A” and “7 plates B”

in Table. 4.1.

The SOF field shown for the dendritic particle is the result after 20 iterations, by

which time σb has converged to the DDA solution. The results for the two aggregates

of plates are plotted after 100 iterations. Comparisons of the DDA fields show that the

maximum magnitude is lowest in the dendritic particle, with a value of 1.78. The field

is higher within both of the aggregates of plates examined. As expected, the largest

magnitude is found within the particle that has a divergent backscatter solution using

SOF-DDA. The slowly convergent particle and the divergent particle have maximum

magnitudes exceeding the dendritic aggregate by 18% and 50%, respectively. Visual

inspection of the fields suggests that the large magnitude is due to the fact that the

two monomers towards the left side of Fig. 4.7c are in close alignment with the incident

wave. Recall from chapter 3 that such an alignment of plates leads to areas of enhanced

coupling with large field values at the forward side of the particle.

Overall, the relative errors in the internal field for the three respective particles are

0.05%, 13.63%, and 131.98%. SOF-DDA accurately reproduces the maximum field

magnitude of the dendritic particle, and the maximum magnitude of the first aggre-

gate of plates is overestimated by only a small amount of 2%. However, Fig. 4.7f shows

that SOF-DDA cannot reproduce the field within the particle with a divergent far-field

solution, and the maximum magnitude of the second aggregate of plates is overesti-

mated by a much larger 55%. This further supports the idea that SOF-DDA struggles

when internal interactions become significant. In those cases, the field is overestimated

by the iterative method, resulting in divergent far-field scattering solutions.
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(a) Max(|E|) = 1.78 (b) Max(|E|) = 2.10 (c) Max(|E|) = 2.67

(d) Max(|E|) = 1.78 (e) Max(|E|) = 2.15 (f) Max(|E|) = 4.14

Figure 4.7: Fields of three different aggregates of 7 monomers, calculated using DDA
(top row) and SOF-DDA (bottom row). In the order shown, the three aggregates
represent particles with convergent, slowly convergent, and divergent backscatter cross
section results using SOF-DDA. The corresponding relative errors in the internal field
calculated using SOF-DDA are 0.05%, 13.63%, and 131.98%. The range of values in
the colorbar are fixed to represent the DDA magnitudes, but note that case (f) exceeds
those values.

4.4 Impacts on convergence of changing η

It is interesting to examine the effect of changing the relaxation parameter η introduced

in Eq. (4.5) on the scattering properties of non-spherical particles. Fig. 4.2 shows results

for the backscatter cross section of a hexagonal plate using SOF-DDA (i.e. η = 1),

along with comparisons using DDA to see if increasing the number of iterations provides

a solution that converges to the desired result. It is clear that using η = 1 provides

good results for small x, but the results diverge for x ≥ 4. This means that although

the method may provide good results for particles in the radar regime, improvements

to convergence are required in order to use it with higher frequency instruments such

as ISMAR and ICI. We outlined that different values of η may be used in Eq. (4.5) to

improve convergence, and this is explored further in the following sub-sections.

89



(a) σb (b) σs

Figure 4.8: Bias for the hexagonal plate with x = 10, using different values of η between
0.1 and 1.

4.4.1 Results for plates using 0.1 ≤ η ≤ 1

To begin with, we compare results using different values of the relaxation parameter

with values of 0.1 ≤ η ≤ 1.

4.4.1.1 Far-field scattering

We calculate the bias in σb and σs using the JOR iterative method in Eq. (4.5) compared

to the DDA solution. Fig. 4.8 shows the results for the hexagonal plate of x = 10, using

different values of η between 0.1 and 1. It is clear that decreasing η improves the bias

in both cases, but convergence is not achieved with any of the chosen values. It appears

that if convergence is to be achieved at this size parameter, a value less than 0.1 would

be required. It is possible that the values of η used here may result in convergent

solutions for smaller values of x, but we have not explored this. Since the method fails

for all values of η considered here, we do not explore the internal fields, and instead

turn our attention to aggregates in the following section.
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4.4.2 Results for aggregates using 0.1 ≤ η ≤ 1

4.4.2.1 Far-field scattering

The far-field scattering properties of the three aggregates in Fig. 4.7 are explored, using

values of η between 0.1 and 1. Fig. 4.9 shows results for the aggregate of 7 dendrites,

and Figs. 4.10 and 4.11 show the results for the two aggregates of plates. In each case,

the bias in σb is shown in the left panel, and the bias in σs is shown in the right panel.

Although the dendritic aggregate is convergent with SOF-DDA, it is interesting to

examine the effect of using a relaxation parameter. It is clear from Fig. 4.9 that

decreasing η results in a solution that converges more slowly towards the DDA solution,

for both σb and σs. This is expected from the definition of the method, as the change

in P at every step is proportional to η.

For both of the aggregates of plates, the magnitude of the backscatter bias is much

larger than the total scattering bias. Backscatter is very sensitive to interference ef-

fects depending on the relative phases of waves scattered from different dipoles within

the particle in a single direction. Although interference is also important for total

scattering, the exact details in a given direction don’t appear to be as critical.

The bias in both σb and σs generally decreases as η is reduced, along with the peak

error decreasing. However, the solution is very sensitive to the choice of η. As with

the dendritic aggregate, using the smallest values of η = 0.1 or 0.2 results in slower

convergence than larger values of η. After 100 iterations the errors are still very large

for most of the cases. The majority of the values of η result in a solution that oscillates

around the DDA solution, and in fact none of them have provided a solution that has

truly converged within 100 iterations. Nonetheless, using η < 1 does generally prevent

the far-field solution from diverging when the number of iterations is increased.
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(a) σb (b) σs

Figure 4.9: Bias in σb and σs for one of the aggregates of 7 dendrites, using different
values of η between 0.1 and 1.

(a) σb (b) σs

Figure 4.10: Bias in σb and σs for one of the aggregates of 7 plates with x = 10 (i.e.
dark blue line in Fig. 4.6c), using different values of η between 0.1 and 1.

(a) σb (b) σs

Figure 4.11: Bias in σb and σs for one of the aggregates of 7 plates with x = 10 (i.e.
cyan line in Fig. 4.6c), using different values of η between 0.1 and 1.
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(a) Max(|E|) = 0.99 (b) Max(|E|) = 2.65 (c) Max(|E|) = 3.43

(d) Max(|E|) = 1.78 (e) Max(|E|) = 2.10 (f) Max(|E|) = 2.97

Figure 4.12: Fields of three different aggregates of 7 monomers, calculated using η = 0.1
(top row) and η = 0.6 (bottom row). The results are calculated using 20 iterations for
the dendritic aggregate, and 100 iterations for the aggregates of plates.

4.4.2.2 Internal field

Fig. 4.12 shows the internal fields for the three aggregates using two different values

of η. The top row shows results using η = 0.1 and the bottom row uses η = 0.6. The

relative percentage errors for these cases are also provided in Table. 4.1.

The results presented for the dendritic particles were calculated using 20 iterations,

since after 100 iterations the differences in the fields calculated using all values of η

considered here are negligible. It is shown in Fig. 4.12a that the maximum field value

calculated using DDA in Fig. 4.7a is underestimated after 20 iterations, when a value

of η = 0.1 is used. Using a larger value of η = 0.6 reproduces the DDA field accurately

(Fig. 4.12d). The relative errors corresponding to these two cases are 36.88% and

0.29%, respectively. The errors in the internal fields are correlated to the far-field

biases in Fig. 4.9. The larger error and underestimated field magnitude using η = 0.1

results in a larger bias of −40% in the far-field calculations after 20 iterations, while

the biases in σb and σs are very small for η = 0.6.

The internal fields of the aggregates of plates in Fig. 4.12 were calculated after 100
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Figure 4.13: Examples of the real and imaginary parts of ηKl computed at different
size parameters, represented by the solid and dashed lines, respectively. Each colour
represents a different particle, as indicated in the figure legend. Values are plotted for
the single hexagonal plate, an aggregate of 7 dendrites, and an aggregate of 7 plates.

iterations. The relative error is over 30% for both aggregates when η = 0.1, and the

maximum field is overestimated by slightly less than 30%. When η = 0.6, Fig. 4.12e

shows that the field within the first aggregate of plates is accurately represented after

100 iterations, with an error less than 2%, and the same maximum value as the DDA

result in Fig. 4.7b. The field within the second aggregate has an error of 17%, and the

maximum value is still overestimated, but by a smaller amount of 11% (Fig. 4.12f). The

faster rate of convergence for η = 0.6 gives an improved representation of the internal

field for both aggregates of plates after a fixed number of 100 iterations. This results

in more accurate far-field solutions, with smaller biases in both σb and σs in Figs. 4.10

and 4.11. Ideally we want to choose the optimum value of η to ensure convergence,

but to approach the solution as quickly as possible. Thus in the following subsection

we derive and test an expression to choose the optimal value of η.

4.4.3 Results for plates using the relaxation parameter of Klein-

man et al. [2]

To explore the relaxation parameter η further, we look at other applications of the

JOR method. Kleinman et al. [2] take a similar approach to solve a simpler Helmholtz

scattering problem, i.e. the unknown is a scalar field rather than a vector field. They

derive an expression for the relaxation parameter by choosing the value of η that
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(a) σb (b) σs

Figure 4.14: Bias in σb and σs for the hexagonal plate, using ηKl. The colours represent
different size parameters, as labelled in the figure legend.

minimises the residual error after one iteration. We have determined the analogous

specification for our Maxwell problem, in the hope that this technique can be applied

to the type of problems we are interested in, improving the convergence of the iterative

method. The derivation of the relaxation parameter in this case is given in appendix

A, and the resulting expression which we will call ηKl is:

ηKl =
(Einc,AEinc)

α‖AEinc‖2
. (4.9)

4.4.3.1 Far-field scattering

Eq. (4.9) is used to calculate the relaxation parameter for the hexagonal plate. Up

until now, we have only looked at real values of η, while the values of ηKl used here

are complex. The solid and dashed blue lines in Fig. 4.13 show the real and imaginary

parts of ηKl computed for the plate at different x. The real part is larger for small x,

decreasing as x increases, while the imaginary part increases until x = 4, decreasing

thereafter.

Fig. 4.14 shows the bias in σb and σs for the hexagonal plate, using η = ηKl in Eq. (4.5).

It is immediately clear from the figure that convergence is not achieved as a result of

this implementation. In fact, the method actually leads to divergence for small size

parameters of x ≤ 4 that showed convergence when SOF-DDA was used. As with

previous results, the bias in σs is lower than σb, and exhibits behaviour that is less
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(a) 5 iterations (b) 10 iterations

Figure 4.15: Internal field of the hexagonal plate of x = 4, using ηKl. The results are
plotted after (a) 5 iterations; and (b) 10 iterations.

jumpy, particularly for x = 7. However, results at all size parameters still diverge after

about 10 iterations. This result is not entirely unsurprising since the ηKl convergence

parameter is derived at the first iteration, meaning it may become less applicable as

the number of iterations increases.

4.4.3.2 Internal field

Fig. 4.15 shows the internal field using the derived ηKl, plotted for x = 4 after 5 and

10 iterations. After 5 iterations, the field looks like it may be converging towards the

correct solution (plotted previously in Fig. 4.4a). However, after 10 iterations it is clear

that the field magnitude is too high around the edges, resulting in a huge relative error

of 450%. The range of the colorbar is limited for comparison with the other plots,

but the maximum magnitude in Fig. 4.15b is approximately 40. It is unclear why the

overestimations begin at the particle edge, but the maximum magnitude continues to

rise with increased iterations, along with the overestimations moving throughout the

particle rather than remaining on the edge. This is the case for all size parameters

studied, i.e. 2 ≤ x ≤ 10. The issue of the large field values around the particle edge

is not improved by increasing the resolution from nz = 8 to nz = 12, i.e. increasing

the number of dipoles per wavelength by 50%. Thus, this method of determining the

optimal value of the relaxation parameter is not ideal for plates. We test the method

on aggregates in the following section.
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(a) η = 1 (b) ηKl

Figure 4.16: Bias in σb for the 10 aggregates of 7 dendrites, using values of (a) η = 1
and (b) ηKl. Each colour represents a different particle.

4.4.4 Results for aggregates using the relaxation parameter

of Kleinman et al. [2]

4.4.4.1 Far-field scattering

Values of ηKl for an aggregate of 7 dendrites and an aggregate of 7 plates are also

shown in Fig. 4.13. Unlike for the single plate, ηKl for the aggregates is approximately

constant for different x. For the dendritic particle, <(ηKl) ≈ 0.9 and =(ηKl) ≈ 0.2.

For the aggregate of plates, <(ηKl) ≈ 0.7 and =(ηKl) ≈ 0.5.

The bias in σb for aggregates of dendrites and plates calculated using ηKl is plotted

in Figs. 4.16 and 4.17, alongside the SOF-DDA results for comparison. Each panel

includes results for the 10 different aggregates of each monomer type, at a size param-

eter of x = 10. Fig. 4.16 shows that for the aggregates of 7 dendrites, ηKl results in

decreased overestimations of σb. Use of the parameter also allows the rate of conver-

gence to increase very slightly. However, such a small improvement is unlikely to be

beneficial due to the added overhead of computing ηKl.

It is interesting to see in Fig. 4.17 that using ηKl results in improved convergence

for the aggregates of plates. SOF-DDA results in very poor convergence for these

particles, but using ηKl allows solutions for almost all of the particles to converge

within 20 iterations. However, it is clear that the solution for one of the particles

is unstable, showing amplified approximation errors with increased iterations. In a
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(a) η = 1 (b) ηKl

Figure 4.17: Bias in σb for the 10 aggregates of 7 plates, using values of (a) η = 1 and
(b) ηKl. Each colour represents a different particle.

practical sense, the iterative method would generally continue until a given tolerance

is reached. Thus, the approximation would have converged to the correct solution for

the particles considered here. However, instability is not a desirable property, and it is

unclear for this study whether instability may occur for other particles. Thus, although

good results are obtained for the majority of the aggregates considered here, further

experiments would be required to determine the full range of applicability.

4.4.4.2 Internal field

Fig. 4.18 shows the internal field of the aggregate of plates that has an unstable solution

in Fig. 4.17b. The left panel represents the result after 20 iterations, when the far-field

result appears to have converged. After 20 iterations, the internal field has a maximum

magnitude of 2.4 and an average of 0.98.

The panel on the right side shows the internal field after 100 iterations, when the far-

field result has become unstable. The relative error after 100 iterations compared to

the DDA result is over 3000%. The field is greatly overestimated at some dipoles, and

the colorbar shows that there are regions in Fig. 4.18b where the maximum magnitude

reaches 153.7, and the average magnitude in that case is 21.4. This means the maximum

and average values after 100 iterations exceed those after 20 iterations by over 6000%

and 2000%.
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(a) 20 iterations (b) 100 iterations

Figure 4.18: Internal field of the aggregate of plates showing instability, plotted after
(a) 20 iterations and (b) 100 iterations.

4.4.5 Summary of SOF and JOR methods

In this chapter we have attempted to improve convergence of SOF-DDA using a JOR

iterative method. The idea behind this approach is that reductions to memory require-

ments may be possible, compared to solving DDA using the GMRES iterative method.

Different values of the relaxation parameter, η, have been tested, but a method for

determining the optimal value for convergence has not been achieved. An equation has

been derived that shows promising results for some aggregates, but does not show good

results for single hexagonal plates. Moreover, the results for the plate-like aggregates

were shown to become unstable in one case. More tests are required to explore perfor-

mance of the method with aggregates of different monomer shapes such as columns.

Although memory savings are expected by using the JOR method, we have not pre-

sented any comparisons here since the desired convergence properties have not been

attained. We leave that to future work, and instead turn our attention to an alternative

scattering approximation in the next chapter.
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Geometry x N η n Relative error (%) Figure
Plate 4 33504 1 100 0.07 4.4b
Plate 4.5 33504 1 100 167.45 4.4d
Plate 4 33504 ηKl 10 450.87 4.15b

7 dendrites 10 11876 1 20 0.05 4.7d
7 dendrites 10 11876 0.1 20 36.88 4.12a
7 dendrites 10 11876 0.6 20 0.29 4.12d
7 plates A 10 19221 1 100 13.63 4.7e
7 plates A 10 19221 0.1 100 30.71 4.12b
7 plates A 10 19221 0.6 100 1.83 4.12e
7 plates B 10 19022 1 100 131.98 4.7f
7 plates B 10 19022 0.1 100 35.39 4.12c
7 plates B 10 19022 0.6 100 17.37 4.12f

7 plates (unstable) 10 19097 ηKl 100 3124 4.18b

Table 4.1: Summary of the relative percentage errors in the internal field compared to
DDA.
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Chapter 5

Alternative scattering methods -

Part 2: New IMA scattering

method

In this chapter, we examine the applicability of a new method called the Independent

Monomer Approximation (IMA). We investigate the accuracy and efficiency of the

method by comparing calculations to benchmark DDA solutions. Comparisons with

RGA solutions are also performed.

5.1 Overview of ideas and method

In previous chapters, results were presented using the DDA numerical method. In that

method, the particle is divided into a cubical array of dipoles. The electric field at each

dipole is calculated by summing the field due to the incident wave, and the field due to

each of the remaining dipoles within the particle. In other words, interactions between

all dipoles comprising the particle are considered. For large aggregates of multiple ice

crystals, the DDA method is computationally expensive, because a large number of

dipoles is needed to model the geometry and the variations in electric field across the

particle. A direct solve of the standard DDA linear system has a computational cost
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that grows quadratically with the number of dipoles, since coupling between all dipole

pairs is represented. In fact, for a particle of N dipoles, the time taken to solve the

system is between O(N2) and O(N3), and the memory requirement is proportional to

N2 [47]. However, as outlined in section 2.8.2, we implemented row-wise multiplication

as an alternative to the full matrix assembly, meaning the required memory storage is

reduced to O(N).

In chapter 6, we will utilise measurements from a case study to perform radiative trans-

fer simulations. An important aspect of doing such simulations is to try and match

the atmospheric state as closely as possible. In-situ measurements from cloud probes

generally show that a wide variety of particle habits exist in clouds. Considering this

large number of particles, computing the average scattering properties from an ensem-

ble of aggregate geometries with DDA is problematic for current day computers, due

to the time and memory requirements described above. As discussed in section 1.4,

one way this has been addressed is by doing DDA calculations for different particles

and storing them in publicly available databases. This is beneficial as it allows realistic

geometries to be used, rather than assuming simpler shapes like spheres or spheroids.

However, choices and assumptions still need to be made to do the calculations, for

example particle size, shape, orientation, frequency, and temperature. The user is then

limited to the calculations available, which may not be ideal for their case. Moreover,

as discussed in chapter 2, different parameterisations exist to calculate refractive in-

dex. Refinements to these parameterisations may mean that the calculations in the

scattering database would have to be regenerated. This task would be more feasible

with efficient scattering methods, providing increased flexibility that would be useful

as instruments and needs develop.

In section 3.4.4, DDA results for the internal electric fields within large aggregates

were calculated. Individual monomers were then removed from the particle model and

DDA calculations were performed on each of the isolated monomers. Examples of the

resulting fields are shown in Fig. 5.1. The values of the field calculated in the two cases

are within 5% of each other. The calculations reveal that the coupling between dipoles

is almost entirely confined within individual monomer crystals, and inter-monomer
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Figure 5.1: Examples of two monomers isolated from a complex aggregate. The left
panel shows the field calculated using DDA for the full aggregate. Interactions between
all dipoles within the aggregate are included. On the right, the field is calculated using
DDA within individual monomers. This means any interactions that may result from
other monomers are not included. The values of the resulting fields are within 5% of
those calculated in the presence of the full aggregate.

coupling is weak. Thus we suggest a new approximate method in which we treat

monomers independently.

Consider an aggregate of n monomers. The idea behind the IMA method for aggregates

is that interactions are only considered within individual monomers, and inter-monomer

interactions are ignored. The internal fields of the monomers are independent and do

not influence each other. However, in the far field the scattering from the monomers

may interfere constructively or destructively. Numerically, this involves considering

each of the n monomers individually and independently, and performing DDA compu-

tations for each one. The dipole polarisations are saved, and the scattered fields from

the dipoles in all n crystals are summed coherently, followed by computation of the net

far field scattering. This approach enables significant improvements to the time and
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memory requirements of scattering calculations for aggregates.

5.2 Time and memory requirements

Consider an aggregate comprising 10 identical monomers. Let’s say the time taken

to perform calculations using a given DDA implementation increases as O(N2), where

N is the total number of dipoles. Then calculations of an aggregate of 10 monomers

would take 100 times longer than for one monomer on its own. However, if we take

the IMA approach and do 10 calculations of one monomer each, this would only take

10 times longer than doing one monomer. This means that calculating the scattering

for this particle using IMA would result in a potential saving of a factor of 10 in CPU

time, compared to solving the whole particle using DDA. In other words, in the general

case of an aggregate of n monomers, a time saving of a factor of n is possible. Thus,

the saving increases with the number of monomers, and we expect the method to be

particularly advantageous for aggregates of large n.

Improvements to the memory requirements are also expected. As outlined above, we

implemented DDA in such a way that the memory usage increases as O(N). The

memory required for an aggregate of 10 monomers will therefore be 10 times that of 1

monomer. Since the IMA method only considers 1 monomer at a time, we don’t expect

any difference in the peak memory usage as the number of monomers in an aggregate

is increased. Thus, a memory saving of a factor of n could be achieved by using IMA

instead of DDA.

5.3 Systematic study of IMA performance

Different experiments are performed using the new scattering method, and the main

areas of interest are:

• How the accuracy of IMA changes with size parameter (x).
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• How the accuracy of IMA changes when the shape of the individual monomers are

changed: we consider the plate-like, dendritic, and columnar monomers shown in

chapter 4.

• How the accuracy of IMA changes with effective density, which we examine by

looking at particles with different numbers of monomers. Effective density is likely

to be an important parameter because higher densities imply a strong coupling,

and it is the coupling that we are simplifying in IMA.

Scattering calculations for an ensemble of particles are performed, using 10 different

aggregate realisations for each experiment. The method used to generate the particles

is described in chapter 4, and examples are shown in Fig. 4.5. Ensemble-averaged

scattering quantities are calculated, i.e. averaging the results of a population of 10

different particles of a given monomer number and particle habit. For each x value

considered in a given experiment, the wavelength is chosen by averaging the 10 different

Dmax values of the particles, and using the average value to calculate the wavelength

as λ = π〈Dmax〉/x. Thus, the size parameters considered in Fig. 5.3 and Figs. 5.5 to

5.8 are essentially average values of x.

To ensure that the generated particles are realistic, their effective densities are plotted

in Fig. 5.2. The values are calculated as the mass of the particle m divided by the

volume of a sphere of equivalent size, i.e. ρeff = m/4πR3

3
, where R = Dmax/2. For

comparison, relationships derived from aircraft measurements by Brown and Francis [4],

and Cotton et al. [5] have also been plotted.1 Overall, the particles used in this study

have realistic values of ρeff , following the general behaviour of the two previously

derived relationships. The plate-like and columnar aggregates tend to have higher

effective densities, while the long, thin arms of the dendrites result in particles with

a lower density. Increasing the number of monomers in the aggregates also results in

decreased particle effective density on average.

1Note that the original Brown and Francis relationship of 0.0185D1.9 relates mass to Dmean,
where Dmean is the average of two orthogonal particle dimensions, measured in directions parallel and
perpendicular to the direction of travel of the aircraft. Here we have used the relationship that was
re-derived by Hogan et al. [102] to relate mass to Dmax. In that paper, Hogan pointed out that the
Dmean relationship is often mistakenly used in the literature, and could lead to overestimates in IWC
by a factor of approximately 1.5.
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Figure 5.2: Effective densities of the particles generated for this study, along with
dashed lines showing the values predicted using the relationships of Brown and Francis
[4] and Cotton et al. [5]. The colours represent the different numbers of monomers
used, and the marker shapes represent the different monomer habits, as described in
the figure legend.

The accuracy of the IMA method is evaluated by comparing calculations with the DDA

method. We calculate the percentage relative bias of each of the scattering parameters

considered, e.g. 100(σIMA − σDDA)/σDDA. Equivalent calculations are also done with

RGA in order to analyse the degree to which the IMA method provides an improvement

to the simpler RGA approach.

Calculations for each particle are performed at one fixed orientation. The direction

of travel of the incident wave is in the vertical z direction, and the wave is polarised

in the x direction. However, each of the particles has a different orientation, since

the aggregation model generates particles that are oriented randomly in space. As

mentioned above, 10 different particles are used in each scenario for a given monomer

number and particle habit. This means that although orientational averaging is not

performed, we are integrating over multiple realisations, each in random orientations.

This is similar to what would be sampled by a detector.

Four different quantities are analysed - the scattering cross section σs, absorption cross

section σa, backscatter cross section σb, and the asymmetry parameter g. The extinc-

tion cross section σe was also calculated, but is not shown here due to the results being

almost identical to σs. The parameter is discussed further in section 5.4. The results
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Figure 5.3: Relative bias in scattering cross section compared to reference DDA results,
plotted as a function of size parameter. The three panels represent results for aggregates
of 3, 5, and 7 monomers, respectively. IMA results are shown in magenta, and RGA
results are shown in black. The results using different monomer habits are plotted using
various markers; triangular markers represent plates, plus signs represent columns, and
hexagrams represent dendrites. Each marker is an average of the results calculated for
10 particles comprising the same monomers, but with different arrangements.

are shown in Fig. 5.3, and Figs. 5.5 to 5.8. Each of the figures displays three panels,

showing results for aggregates of 3, 5, and 7 monomers. In other words, the effective

density of the particles decreases in consecutive panels. Within the panels, each of the

particle habits are represented using different marker shapes, as detailed in the figure

legend. IMA results are shown by the magenta markers, and RGA results are plotted

in black.

5.3.1 Accuracy of the scattering cross section

First we consider the bias in the total scattering cross section. The cross section is

given in Eq. (2.32). It is computed as an integral over a sphere, at different polar and
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azimuthal angles of Θ ∈ [0◦, 180◦] and Φ ∈ [0◦, 360◦]. A total of 800 different angles are

used for the calculation. The first panel of Fig. 5.3 shows results for aggregates of 3

monomers. Using IMA produces a relative bias less than 10% for small size parameters

of x < 5, for all monomer habits considered. The second and third panels show the

results for aggregates of 5 and 7 monomers. As the number of monomers increases,

the error incurred by using IMA generally decreases. Particles of x < 6 have errors

below 10% when 5 monomers are considered, and this can be extended to x < 7 for

7 monomers. Even for the largest size parameters considered, the majority of the

calculations remain within 20%.

With the IMA method, dendritic aggregates give the most accurate results out of

the three different monomer habits. The bias in σs is generally within 10% of what

DDA predicts, for all size parameters and numbers of monomers considered. The bias

decreases with increased monomer number, i.e. with decreased effective density. The

results for aggregates of plates and columns show more variation than the dendritic

particles, with larger errors overall. As the number of monomers increases, the bias

for columnar aggregates tends to decrease for x & 6. For smaller x, the bias actually

increases with monomer number. However, the increase is small and as mentioned the

error remains within 10% for these size parameters. There is not a clear decreasing

trend for the plate-like aggregates as monomer numbers are increased. At a range of

size parameters between 5 and 8 the bias decreases, but for x & 8 the error decreases

for 5 monomers but increases again for 7 monomers. It is worth noting that this may

be due to the differences in effective density not being defined enough to see the trend.

For example, in Fig. 5.2 it may be seen that one of the particles of 5 plates in fact has

a lower effective density than the aggregates of 7 monomers.

In chapter 3 we explored the internal fields of aggregates comprising solid ice particles

such as plates, along with aggregates of more sparse structures such as dendrites. It

was found that there is more focussing of the internal field when a particle has a greater

amount of solid mass in the direction of travel. IMA would struggle to represent such

behaviour, since the monomers act independently of one another in the approximation.

Dendritic particles see less focussing due to the air gaps present in the particle structure.
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Figure 5.4: Variation in relative bias of σs with effective density. The different colours
show results for size parameters of 2, 6, and 10. The crosses show the different particles,
and straight lines have been fit to the points in order to see the trend.

The air gaps result in less significant interactions between dipoles, and subsequently a

field that is more smoothed out. Such a field would be easier to reproduce using IMA,

which may be why IMA calculations of σs for such particles have a lower bias than

plate-like and columnar aggregates. It is likely that the metric of particle effective

density is correlated with that property. We expect that increased effective density

leads to increased dipole interactions, meaning a smaller IMA bias will occur for lower

effective densities, with the error increasing with ρeff . It is worth exploring whether

this is in fact the case.

Fig. 5.4 shows how the bias in σs using IMA changes with ρeff . Three different size

parameters of 2, 6, and 10 are included in the plot. The crosses show the results for

the individual particles, including all of the different monomer habits. Straight lines

have been fit to the points for each value of x. It is seen that for small x, there is

an almost constant bias, regardless of the effective density of the particle. As the size

parameter is increased, a correlation between ρeff and bias can clearly be seen. It is

not guaranteed that small values of ρeff result in low bias, and large ρeff means the

bias will be large. Nonetheless, the general trend is that the bias in σs increases with

ρeff for x > 2, with the relationship becoming more apparent as x increases.

As well as showing the bias in scattering cross section calculated using IMA, Fig. 5.3
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Figure 5.5: Same as in Fig. 5.3, but for the absorption cross section.

also shows results using RGA. Overall, RGA substantially underestimates scattering

at all size parameters, with IMA providing a great improvement in the majority of the

cases considered. It is interesting that the RGA biases tend to increase at intermediate

size parameters, and then decrease again for larger size parameters. For aggregates of

3 columnar or plate-like monomers at x & 8, the RGA bias decreases to values below

IMA. Aside from these cases, RGA produces much larger errors than IMA, generally

underpredicting σs by approximately 40%, and reaching almost 60% for some particles.

In section 2.8.4 we outlined that the RGA form factor describes the deviation from the

Rayleigh regime, and f → 1 when the particle is much smaller than the wavelength of

the incident wave, i.e. in the Rayleigh regime. This is the case for the results for small

x shown here, meaning we are using the Rayleigh approximation derived for spherical

particles. It was pointed out by Refs. [61,62] that this results in a bias due to the non-

sphericity of the particles in consideration. This may be the reason the RGA results

show considerable inaccuracies even for small size parameters.
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Figure 5.6: Same as in Fig. 5.3, but for the backscatter cross section.

5.3.2 Accuracy of other scattering quantities

The results for the absorption cross section are shown in Fig. 5.5. The bias in σa is

very low using IMA, for all particles and sizes considered. The maximum bias found is

for aggregates of 7 columns, but even in this case the error is within 20%. Using RGA,

the absorption is significantly underestimated. The bias increases with size parameter,

with large errors of 70% for most particles at x = 10. Aggregates of 5 and 7 dendritic

particles of larger x have a slightly smaller error of approximately 50%.

Comparisons of the backscatter cross section provide a more sensitive test of the ca-

pabilities of IMA. It is expected that the quantity is more difficult to capture than σs,

as an accurate representation of the internal field structure and interference in the far

field are required to obtain good results. The results for σb are shown in Fig. 5.6. The

error is generally less than 20% using IMA for x < 5. Larger underestimates of 60%

are found for the equivalent cases using RGA. The errors for larger x are more unpre-
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Figure 5.7: Same as in Fig. 5.3, but for the asymmetry parameter.

Figure 5.8: Asymmetry parameter plotted as a function of size parameter using IMA
(magenta), RGA (black), and DDA (blue). Each marker represents the average value
of g for the 10 particles used in each scenario.
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dictable, particularly when the aggregate comprises columnar monomers. This shows

that the backscatter is sensitive to monomer habit. However, we suspect that the large

variation in bias would be smoothed out if orientation averaging was considered, or if

a larger ensemble of particles was used. We plan to address these points in a future

publication. Nonetheless, the promising result of small errors for x < 5 implies that

the method could be used in the radar regime.

The asymmetry parameter g is defined in Eq. (2.37), and results showing the bias

and the absolute values of g are shown in Figs. 5.7 and 5.8. It is clear that g is well

captured by both IMA and RGA. The error using IMA is always within 10%. The

error remains within 20% using RGA for all particles and values of x. RGA tends to

overestimate forward scattering, as seen by the mainly positive biases in Fig. 5.7. This

is also clear from Fig. 5.8, where in many cases the RGA results are larger than the

values calculated using DDA. The exception to this is for columnar aggregates of 3

and 5 monomers, at a few larger values of x. It is encouraging that the general shape

of the phase function is represented correctly using IMA. As g is an integral quantity

evaluated by summing the phase function over all scattering directions, it makes sense

that this quantity is not as prone to errors as the backscatter cross section.

In the next section we briefly explore what happens if the density of aggregates is

increased via riming.

5.3.3 Rimed aggregates

It is known that particle density plays a role in the accuracy of RGA calculations, with

more accurate results obtained for lower density aggregates. The low densities may be

due to either increasing the number of monomers in an aggregate, or using lower density

monomers such as dendrites rather than plates [61]. As discussed previously, the air

gaps between dipoles result in less significant internal interactions in such examples.

This means the RGA assumption of no interactions between dipoles is more applicable.

We hypothesized that this was the reason the dendritic particles have a lower bias than

plates and columns when the IMA method is used.
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The process of accretion and freezing of supercooled water droplets on to the surface

of ice particles is known as riming. Riming is a common mechanism of ice particle

growth, and leads to the formation of rimed crystals or graupel. Low density aggre-

gates may experience riming which increases the particle density, thus increasing the

interactions within the aggregate. This means riming may make it more difficult for

scattering approximations to perform well. Leinonen et al. [62] present results using

RGA and SSRGA, which is an approximation based on RGA that may be used to

calculate ensemble-averaged scattering properties [100, 109]. They show that signifi-

cant deviations are found when the scattering properties of heavily rimed particles are

compared to benchmark DDA solutions. It is interesting to test whether riming is also

problematic for IMA.

From the particles generated for this study, one of the aggregates of dendrites where

IMA performs well was chosen. A simplified algorithm to simulate riming, based on

work done by Leinonen and Szyrmer [110], was used to generate rimed versions of the

particle. The algorithm works by capturing stationary droplets on a particle as it falls

vertically. This means the volume elements of ice representing rime are located at the

bottom of the particle. The droplets are located at random positions within the square

enclosing the horizontal projection of the particle. Unlike the authors of Ref. [110] who

model both instantaneous and non-instantaneous freezing, we only consider droplets

freezing immediately on contact with the particle.

On top of neglecting the terminal velocity of the droplet, we do not consider any

properties of the surrounding environment that may influence the aerodynamics of the

particle or the efficiency of riming. We simply specify the desired mass of the particle

resulting from rimed droplets, then iterate the riming algorithm until that value is

reached. We generate rimed versions of the aggregate where 10 to 50 % of the total

particle mass is a result of rimed droplets. The particles are shown in Fig. 5.9.

Fig. 5.10 shows the bias in scattering cross section for each of the particles. The solid

lines indicate the results using IMA, with the red line showing the values calculated for

the particle without riming. In this case, IMA has a negative bias for x . 4, while for
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Figure 5.9: The top left image shows a simulated unrimed aggregate of 7 dendrites.
The following images show the simulated rimed versions of the particle, consecutively
increasing the percentage of the final mass that is due to riming on the aggregate. The
percentages range from 10% in the second image to 50% in the final image.

Figure 5.10: Relative bias in σs using different rime percentages on an aggregate of 7
dendrites. The solid lines show the results using IMA, while the dashed lines show the
results using RGA.

x & 4 the bias is positive. For almost all size parameters used here, the bias is enhanced

by increasing the percentage of mass from rimed droplets. For x . 4 when IMA

underestimates the scattering cross section, riming causes more of an underestimation,

and for larger x when IMA overestimates σs, riming amplifies the overestimation. All

rime percentages give a bias within 10% for x . 7 using IMA. The bias increases for

larger size parameters, reaching almost 30% when 50% of the particle mass comes from

rime.

The dashed lines in Fig. 5.10 show the equivalent results using RGA. Overall, it is

clear that RGA is less accurate than IMA, showing a considerably greater bias in the

scattering cross section. For x . 7 when the bias is within 10% using IMA, differences
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as large as -50% are found using RGA. However, it is interesting to note that in this

case the RGA method appears to improve slightly by riming. To try and understand

this better, histograms of the internal field magnitudes using DDA and IMA are plotted

in Fig. 5.11 for the unrimed and 50% rimed cases. Also included on the plots are lines

showing the magnitude of 0.58 obtained using RGA. It is clear that the overall shape

of the distribution changes due to riming. It can be seen in Fig. 5.11a that the unrimed

particle has a more narrow distribution than the rimed version. The skewness of the

distribution increases with rime, from a value of 0.6576 in the unrimed case, to 0.7298

when the particle is 50% rimed. It is worth noting that the IMA distribution is very

similar to the DDA result in both cases. However, the IMA error in σs increases with

riming. Therefore, the error is not limited to the overall distribution of magnitudes.

The IMA bias must increase because the method struggles to correctly predict the

locations of the magnitudes within the particle, leading to errors arising in far-field

calculations.

Fig. 5.11a shows that in the unrimed case, the majority of dipoles within the par-

ticle have greater magnitudes than what RGA predicts. When the particle is rimed,

Fig. 5.11b shows that there are more dipoles within the particle that have lower magni-

tudes, less than the RGA prediction. The median value of magnitude decreases slightly

towards the RGA value. The shift in the overall distribution towards the RGA value

is perhaps why the bias decreases, but it is difficult to draw meaningful conclusions by

considering only one particle with a fixed orientation. It is possible that the increase in

the number of dipoles with lower magnitudes is a manifestation of the particular riming

algorithm used in this study. The rimed droplets are added to the base of the aggregate

and tend to be quite isolated, meaning they experience only weak interactions with the

rest of the particle. It is these low-magnitude dipoles that allow the DDA results to

shift towards the RGA value. It may be that in reality the riming mechanism does not

work in the same way as our model.

As mentioned, we have only considered riming of one particle with a fixed orienta-

tion, thus making it difficult to translate these findings into generalised conclusions.

Nonetheless, it is sufficient to show that IMA is capable of reproducing the magnitude
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(a) Unrimed (b) 50% rimed

Figure 5.11: Probability density histograms of the magnitude of the internal fields
within (a) the unrimed aggregate of 7 dendritic monomers, and (b) the 50% rimed
aggregate. The results in blue are calculated using DDA, and results in magenta use
IMA. A black line is also plotted in each panel to show the value of 0.58 that would
result if RGA was used.

distribution of both unrimed and rimed aggregates, but at certain size parameters

riming has an influence on the applicability of IMA to far-field scattering calculations.

5.4 IMA and the optical theorem

The extinction cross section was introduced in section 2.4, outlining that it may be

calculated in two different ways. The first method is to calculate the total extinction

by summing the scattering and absorption cross sections:

σSAe = σs + σa (5.1)

The calculation of the total scattering cross section is an integral over a far-field spher-

ical surface (4π steradians) enclosing the particle, i.e. an integral of the differential

scattering in all directions. This is a physically intuitive method to calculate extinc-

tion by a particle.

However, another common approach is to use the optical theorem. Using this method,

σe may be calculated using the scattering amplitude in the forward direction only, i.e.

in the same direction as the incident wave. This well-known, yet somewhat surprising
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relationship is derived in Jackson [48]. We use the formulation of Draine [50]. For an

incident plane wave, the extinction cross section is given by:

σOTe = 4πk
N∑
j=1

=(Pj · E∗inc,j). (5.2)

Application of the optical theorem requires that the scattering amplitude is known

to sufficient accuracy (Tsang et al. [111]). The theorem is known to be invalid for

the Rayleigh and Rayleigh-Gans approximations. One issue is obvious if we consider

a non-absorbent particle, i.e. a particle with a real refractive index m. In this case

the Clausius-Mossotti polarisability in Eq. (2.40) will also be real. This means that

applying the optical theorem to such a particle will give σe = 0, implying that ex-

tinction depends only on absorption and not on scattering. This violates energy con-

servation. Van de Hulst [54] points out that if the optical theorem is to be used with

non-absorbent particles, it is necessary to include the radiative reaction in calculations,

as was introduced in Eq. (2.41). This causes a small phase lag relative to the incident

field. However, Berg [112] points out that the main issue with RGA is the lack of

refraction in the approximation caused by neglecting coupling between dipoles. This

means the phase shift of the wave is not captured, and the optical theorem cannot be

used. Thus, care must be taken to ensure the theorem is applicable before using it

with approximate scattering methods.

The extinction cross section was calculated using both methods for the particles in this

study, and comparisons of the results obtained using DDA and IMA were performed.

We find that when DDA is used, excellent agreement is found between the two different

extinction calculations in equations (5.1) and (5.2). However, this is not the case

for IMA. The extinction calculated using the optical theorem (σOTe ) generally does

not equal the value obtained by integrating over the sphere and adding absorption

(σSAe ). The bias calculated for a single aggregate of 7 dendrites is shown in Fig. 5.12,

i.e. 100(σOTe − σSAe )/σSAe . Using the optical theorem results in underestimates of the

extinction, with the exception of small particles in the Rayleigh regime where x → 0.

There is a very large bias at size parameters close to 1, with the error then decreasing
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Figure 5.12: Relative bias (%) of the IMA extinction cross section calculated using the
optical theorem in Eq. (5.2) compared to Eq. (5.1). This example is for an aggregate
of 7 dendrites.

with increased x. Thus the IMA method does not satisfy the optical theorem, and the

extinction cross section should be found by integrating the scattering over all angles

of the sphere, and adding this to absorption using Eq. (5.1). Calculating extinction in

this way matches results for σSAe and σOTe obtained using DDA.

5.4.1 Internal fields

It is interesting to consider possible sources of error in the IMA method, and relate

these to the fact that the optical theorem is not satisfied. Looking at the equation for

the optical theorem in Eq. (5.2), we are comparing the component of Pj in the forward

direction, i.e. aligned with the incident field, against the incident field Einc evaluated

at that dipole. Thus any error found may arise from either the amplitude or the phase

of Pj. It has been discussed that the forward scattering amplitude calculated using

RGA is not accurate enough for the method to satisfy the optical theorem [111]. We

hypothesize that the most likely source of error in IMA is due to not capturing the

internal phase shift correctly. Application of the optical theorem relies on capturing the

phase shift within the particle, compared to applied field, as the wave moves through

ice. The phase delay cannot be fully captured using the IMA method, since monomers

only see the incident field. Thus it is possible that as more monomers are added to a
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particle, the representation of the phase delay will become worse.

The internal fields represent combinations of the amplitude and phase at each dipole.

We look at these individually below, using an aggregate of 7 plates.

5.4.1.1 Amplitude

To explore how well the IMA method reproduces amplitude, we plot the amplitude

factor, i.e. A = |Pj · E∗inc,j|.

One arrangement from the 10 aggregates of 7 plate-like monomers has been chosen. The

amplitude results are plotted for x = 5 and x = 9 in Fig. 5.13, using DDA and IMA.

The incident wave is along the z-axis in the positive z direction, i.e. travelling from

the bottom of the particle to the top, and it is polarised in the x-direction. Overall,

the amplitudes are represented quite well using IMA. In terms of the regions of the

aggregate where the field amplitude is largest, the IMA method generally places these

regions within the correct monomer, although the exact location within the monomer

is not always precisely captured. Unsurprisingly, larger errors are generally found

where two monomers join. This can be seen clearly by the small red regions of large

amplitude in Fig. 5.13a that are not reproduced by IMA in Fig. 5.13b. It is also seen

in the central monomer in Fig. 5.13d, i.e. the fourth of the 7 monomers comprising the

aggregate. The field within that monomer is clearly interacting with nearby monomers,

exhibiting changes to the field close to those areas. The equivalent monomer does not

show this behaviour in Fig. 5.13e for the IMA case. When the IMA method is used,

we are ignoring interactions at those points that we know exist. The histograms in

Figs. 5.13c and 5.13f show that the distribution is represented quite well using IMA,

but the method slightly underestimates the full breadth of the distribution.

5.4.1.2 Phase

For a particle with a greater refractive index than the surrounding medium, the phase of

a wave within the particle will be retarded when compared to the undisturbed applied
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(a) DDA (b) IMA (c) Distribution

(d) DDA (e) IMA (f) Distribution

Figure 5.13: Amplitude within an aggregate of 7 plates for (a, b) x = 5 and (d, e) x = 9
using DDA and IMA. Panels (c) and (f) show probability histograms of the amplitude
distribution within the aggregates.

wave outside the particle. The change in relative phase is known as the phase shift.

Because IMA illuminates each monomer by the incident wave, any retardation of the

phase by the other monomers is not captured. Therefore, it may be likely that the

phases are very similar between DDA and IMA on the leading edge of the aggregate,

diverging as the wave moves through to the far side. It is expected that the difference

would be small for small size parameters, increasing as the size parameter gets bigger.

The vector Pj · E∗inc,j represents the component of Pj in the direction of the incident

wave, i.e. the parallel component. The phase of that vector can be used to see how

much the phase changes inside the particle. This gives the phase shift of dipoles relative

to the incident wave, and is calculated as:

Ph = arctan

(
=(Pj · E∗inc,j)
<(Pj · E∗inc,j)

)

Values of 0 indicate that the dipoles are oscillating in phase with the incident wave.

Increasing values represent a greater phase delay within the particle.

To visualise this more clearly, an example showing the phase shift within a hexagonal

plate is shown in Fig. 5.14. The incident direction is along the y-axis and the wave is

121



Figure 5.14: Phase shift (in degrees) relative to the incident field within a hexagonal
plate of x = 5. The incident wave is in the y-direction and polarised along the x-axis.
Increasing values with distance through the particle indicate that there is a phase delay
with respect to the incident wave.

polarised along the x-axis. It is clear that the phase shift increases as the wave goes

through the plate, i.e. there is more of a phase delay.

We now look at the behaviour of the phase shift for aggregates. Comparisons of results

calculated using DDA and IMA allow us to examine how well the IMA method captures

the phase shift through a particle.

Figs. 5.15a and 5.15b show the results for the aggregate of 7 plates with x = 5. The

phase shifts are shown in degrees. The incident wave is along the z-axis in the positive

z direction. The colour scale has been fixed to [−180, 180] in order to easily compare

the different cases. A histogram showing the distribution of the phase shifts can be

seen in Fig. 5.15c. The equivalent results for x = 9 are shown in Figs. 5.15d to 5.15f.

For size parameters less than approximately 1, the dipoles oscillate in phase with the

incident wave and no phase shift occurs within the particle. Fig. 5.15 shows that as

x increases, the phase shift becomes more prominent. For x = 5, the phase shift

calculated using DDA in Fig. 5.15a shows similar properties to the result using IMA in

Fig. 5.15b, with differences in the phase shifts appearing quite insignificant. However,

the histogram of the phase-shift distribution clearly shows that IMA does not incur

as much of a phase lag as DDA. For x = 9, it is clear that the phase delay is larger,

with more obvious red regions in Fig. 5.15d showing phase shifts reaching 163◦ when

DDA is used. The behaviour captured using DDA is not represented by IMA, and the
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(a) DDA (b) IMA (c) Distribution

(d) DDA (e) IMA (f) Distribution

Figure 5.15: Phase shift in degrees within an aggregate of 7 plates for (a, b) x = 5 and
(d, e) x = 9 using DDA and IMA. Panels (c) and (f) show probability histograms of
the distribution of phase shifts within the aggregates.

maximum delay in Fig. 5.15e is only 62◦. As hypothesized, the phase shifts calculated

using the two methods are more comparable at the leading side of the particle along the

direction of the incident wave, generally becoming less similar with distance through

the particle.

A similar experiment is performed using dendritic aggregates of x = 10, as seen in

Fig. 5.16. The colour scale has been reduced compared to Fig 5.15 in order to show

more detail in the internal structure. The incident wave is in the z-direction, and

polarised in the x-direction.

As in the case of the plate-like aggregates, there are red regions showing a phase

lag in the DDA result in Fig. 5.16a that are not represented using IMA. However,

considering we are looking at the x = 10 case, it is clear that the phase shift within

dendritic particles is not as prominent as it is for plate-like aggregates. For a given size

parameter, the phase retardation is greater within aggregates of plates and columns

due to their larger densities, whereas the air gaps found in dendritic particles prevent

the wave from experiencing such a large degree of retardation. The larger relative

phase delay within more solid particles is not captured using IMA. The phase delay
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(a) DDA (b) IMA (c) Distribution

Figure 5.16: Phase shift in degrees within an aggregate of 7 dendrites for x = 10 using
DDA and IMA. Note that in order to show more detail, the colour scale has been
reduced compared to Fig 5.15. A probability histogram of the phase shift distribution
is seen in panel (c).

within the dendritic particles is smaller, but Fig. 5.16c shows that IMA captures the

peak of the distribution quite well. However, the method fails to capture details at the

tails.

5.4.2 Relating the internal fields to far-field scattering

By examining the internal fields of different aggregates in the previous subsection, a

weakness of the IMA method has become clear. Comparisons with DDA computations

show that IMA underestimates the phase lag in the forward direction within different

particles. The issue is more prominent for dense plate-like aggregates than for dendritic

aggregates. We propose that it is possible to relate these findings to the biases in far-

field scattering plotted in Fig. 5.10.

Fig. 5.15 shows that IMA underestimates the phase delay within aggregates of plates

for both x = 5 and x = 9. However, the bias in σs is close to 0% for x = 5, and

a much greater error of almost 50% is found for x = 9. This allows us to compare

properties of the two cases, in order to determine the potential source of large error in

the IMA method. The main difference between the internal field results for the two

size parameters appears to be that the phase shift is smaller for x = 5 than for x = 9,

as seen in the distribution plots in Figs. 5.15c and 5.15f. Using DDA, the phase shift

reaches 36◦ for x = 5, whereas for x = 9 a considerably larger maximum phase shift of

163◦ is calculated. Thus, the scattering implications of underestimating the phase shift
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depend on the absolute value of the phase shifts through the particle. In other words,

underestimations of the phase shift do not have significant consequences if the overall

phase shifts are small, while underestimations of the larger values found for x = 9

cause large errors in scattering. This is consistent with the findings of the dendritic

aggregate of x = 10 in Fig. 5.16. A small maximum phase shift of 52◦ is calculated,

and a small bias in σs of 13% is found.

The larger relative phase delay within more solid particles is not captured using IMA.

We suggest that this is why IMA shows a lower bias when calculating scattering prop-

erties of dendrites compared to more solid plate-like and columnar aggregates. Thus

we advise that the IMA method is only used if the phase shift within a particle is not

too large.

5.5 Criteria for applicability of IMA - influence of

refractive index

The two conditions of applicability for the RGA method are outlined in van de Hulst

[54]. The conditions state that the refractive index should be close to 1, and that the

“phase shift” within a particle, defined as 2x|m − 1|, should be much less than 1. As

we found in section 5.4 that the IMA method struggles to represent phase lag, we now

briefly consider whether a similar criterion could be used to diagnose the applicability

of IMA. This would have particular relevance if we were to apply IMA to different types

of aggregate particles in other physical problems- examples could include volcanic ash

or soot particles.

All scattering quantities considered here remain within 20% bias for x < 4. For ice

particles with x = 4 we obtain 2x|m− 1| ≈ 6.2, suggesting that for errors within 20%,

the IMA method should be limited to particles satisfying 2x|m − 1| . 6. To explore

this further, equivalent computations were performed using different refractive indices

with values both less than and greater than that of ice. Here we show results using

m = 0.7mice and m = 2mice, corresponding to values of |m| of approximately 1.24
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and 3.56, respectively. This allows us to determine whether the accuracy of the IMA

method is determined by 2x|m− 1|.

Recall that the number of dipoles per internal wavelength, nλ = λ/(<(m)d), is generally

required to be greater than 10 in order for the DDA method to be accurate. This

means that when m is doubled, care must be taken to ensure that the DDA condition of

applicability is still satisfied. However, as we are testing the condition of 2x|m−1| . 6,

it is sufficient to look at small size parameters when m = 2mice, and we do not do

calculations for x > 2 in this case. For such values of x, we are using values of nλ that

are large enough to satisfy the DDA requirements.

Fig. 5.17 shows the error in scattering cross section as a function of 2x|m− 1| for the

aggregates of 3, 5, and 7 monomers. The magenta markers show the original results

obtained using m = mice. The green and blue markers show results using m = 2mice

and m = 0.7mice, respectively. The monomer habits are represented using different

marker shapes, synonymous with the previous results within this chapter. All results

are calculated for x at intervals of 0.5, up to a maximum of x = 10. This means the

abscissa points at which results are obtained vary for the three different values of m

considered.

It is clear from Fig. 5.17 that the error is smaller for lower refractive indices, generally

increasing with m. When m = 2mice, the error obtained for a given value of 2x|m− 1|

tends to be larger than for smaller m. This is particularly true for aggregates of

plates and columns, while the error for dendritic particles remains small. Therefore,

the IMA method may not be applicable to particles with a refractive index much

greater than that of ice. This is not surprising since the shorter internal wavelength

corresponding to increasing m results in increased interactions between dipoles. Thus,

neglecting some of these stronger interactions by using the IMA method will have a

more significant impact on the overall error. However, it has been noted in previous

literature that the accuracy of DDA also decreases with increasing refractive index.

Yurkin et al. [44] highlight that the DDA method using the lattice dispersion relation

(LDR) for the polarisability (i.e. the formulation used in this work) is only known to
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Figure 5.17: Bias in σs as a function of 2x|m−1|, using three different refractive indices
of 2mice (green), 0.7mice (blue), and mice (magenta). The triangles correspond to plate-
like monomers, plus signs represent columns, and hexagrams represent dendrites.

be applicable if |m − 1| < 2. For the results shown here when the refractive index is

doubled, |m− 1| = 2.56, exceeding the known range of applicability of the method. It

is therefore possible that we are in a region where DDA with LDR does not perform

well, making it difficult to analyse the accuracy of IMA in these cases.

This experiment shows that although the refractive index plays an important role in

the validity of the IMA method, the accuracy is not determined solely by the value of

2x|m−1|, which is referred to as the “phase shift” parameter in RGA literature. We saw

in Fig. 5.4 that the effective density is also important, and it appears that the increase

in refractive index has a more significant effect on accuracy for higher density plate-like

and columnar aggregates, compared to the lower density dendritic particles. For that

reason, it is likely that some combination of x, m, and ρeff may be used to determine

the region where the IMA scattering method performs well. Further tests would be

required in order to recommend generalised applicability limits. However, from the
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tests performed here, we propose that the method may be applied to scattering by

many ice aggregates in the microwave and sub-mm regimes, provided the particle sizes

are not too large. This is explored further in the following chapter, where the method

is applied to simulate measurements obtained from a case study.

5.6 Concluding remarks

In this chapter, we have developed a new scattering approximation called IMA. Overall,

the method provides better results than RGA, but it is clear that some physics is not

captured. As part of our future work, we plan to consider whether the phase shifts could

be represented more accurately. This could be achieved by performing calculations for

each monomer in sequence from the front of the aggregate to the back, and carrying

a phase delay to each subsequent monomer. For example, once P is calculated for

monomer 1 in response to the applied field, the input for monomer 2 could be calculated

as Einc + Esca
mon1, and so on.
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Chapter 6

Application of the IMA scattering

method to radiative transfer

simulations

6.1 Introduction

Experiments can be performed that incorporate several different measurement tech-

niques and simulations. These allow errors to be identified in one or more of the meth-

ods. This type of experiment is called a closure experiment. In this chapter we discuss

a comprehensive microwave closure experiment that has been performed. The study

involved utilising independent datasets from a variety of in-situ and remote-sensing in-

struments, along with performing radiative transfer simulations using ARTS [51]. It is

noted, however, that not all measurements were obtained coincidently in time. Obser-

vations from above the cloud were obtained first, with in-situ measurements obtained

thereafter, thus resulting in a limitation of the experiment.
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6.2 Details of the case study

The data analysed in this study was collected during the North Atlantic Waveguide

and Downstream impact EXperiment (NAWDEX) campaign. Measurements of deep

frontal cloud were obtained in a region off the west coast of Scotland on 14 October

2016. The instrumentation used and measurements obtained from both above and

within the cloud are described in more detail in the following subsections.

6.2.1 Above-cloud measurements

Three different aircraft took coincident measurements from above the cloud during

this case, at an altitude of approximately 9.5 km. Fig. 6.1a shows the flight path of

the aircraft. The Facility for Airborne Atmospheric Measurements (FAAM) BAe-146

aircraft carried the ISMAR radiometer, which measured the vertical and horizontal

polarised brightness temperatures upwelling from the ice cloud beneath. This was

done with an off-nadir observation angle of between 51 and 52◦, matching the planned

configuration of ICI. Coincident data was also obtained from two different radars. The

95.04 GHz RASTA cloud radar flew on board the French Service des Avions Francais

Instrumentions pour la Recherche en Environnement (SAFIRE) Falcon 20 aircraft.

More information on the RASTA radar can be found in Ref. [113]. The 35 GHz radar

was on board the German High Altitude and LOng Range Research Aircraft (HALO),

and is part of the HALO microwave package (HAMP) [114]. Both radars operated at

an observation angle of 0◦, i.e. nadir. The 35 GHz radar differs from other airborne

radars as it uses a high-power magnetron as a transmitting source, enabling a peak

emitting power of 27 kW and an airborne sensitivity of −39.8 dBZ. The 95.04 GHz

radar has a much lower peak power of 1.8 kW, and its sensitivity at 1 km is between

−32 and −16 dBZ, depending on the antenna configuration.

Radiometers such as ISMAR convert measured radiation into brightness temperatures,

i.e. the temperature of a theoretical blackbody that would emit an equivalent amount

of radiation. Colder brightness temperatures correspond to more ice in the clouds, as
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Segment of 
analysis 

(a) Flight path (b) Rain rate

Figure 6.1: Flight path of the three aircraft during the above-cloud near-coincident
run, and the rain rate estimated from the Met Office C-band radar (5.6 GHz) at Druim
a Starraig in Scotland at that time.

a greater amount of radiation from the lower atmosphere is scattered on its way to

the instrument’s detector, as shown in Fig. 6.2. By comparing the brightness temper-

atures at orthogonal horizontal and vertical polarisations, i.e. TBH and TBV , we can

gain some information about the size, shape, and orientation of ice particles within the

cloud. Let us denote the polarimetric difference TBV −TBH as V-H. If large values of

V-H are measured, it is indicative of horizontally oriented particles, since more horizon-

tally polarised radiation is scattered, resulting in TBV > TBH . Random orientation

produces no clear signal. According to Gong and Wu [115], neglecting the polarimetric

signal could result in errors of up to 30% in IWP retrievals.

Fig. 6.3 shows the brightness temperatures at H and V polarisations measured from

ISMAR during this campaign, along with the V-H polarimetric differences. Fig. 6.3a

shows that large brightness temperature depressions were measured as the aircraft flew

over the thick cloud, with a decrease of approximately 30 K at a latitude of 57.3◦.

Fig. 6.3b shows that there were regions where a large V-H polarimetric signal was

measured, reaching almost 10 K. The V-H signal is correlated with the brightness

temperature depression, indicating that it is microphysical rather than being caused

by the surface.
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Figure 6.2: Cartoon of the scattering process, showing a reduction in measured radi-
ation by a radiometer as a result of scattering by snowflakes in the atmosphere. The
measurements used in this study from the ISMAR radiometer were taken at an off-
nadir observation angle of between 51 and 52◦. Both radars used here operated at an
observation angle of 0◦, i.e. nadir.

Fig. 6.4 shows the radar reflectivities measured at the frequencies of 35 GHz and

95.04 GHz. It is clear that the 35 GHz radar detects a signal from particles in the

upper region of the cloud that are not picked up by the higher frequency radar. This

is a result of the higher sensitivity of the 35 GHz radar, as described previously. Two

regions of particularly high reflectivity are seen, where the 35 and 95.04 GHz radars

measure values of about 20 and 10 dBZ respectively. These are located at altitudes

between about 2 − 4 km, and latitudes between approximately 58.4◦ and 57.9◦, and

57.7◦ and 57.3◦. These reflectivities correspond to the large brightness temperature

depressions measured from ISMAR, as shown in Fig. 6.3a, and thus could be caused by

large oriented ice particles. A thin melting layer is observed below 2 km, with a bright

band showing in the 35 GHz reflectivity.
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(a) Brightness temperature (b) V-H Brightness temperature difference

Figure 6.3: Brightness temperatures at V and H polarisations measured at different
latitudes using the ISMAR radiometer at 243 GHz, along with the V-H brightness
temperature difference.

Figure 6.4: Measured reflectivities from HAMP and RASTA.

6.2.2 In-situ measurements

Following the above-cloud run of the three aircraft, in-situ measurements were obtained

from the FAAM aircraft, which carried the Cloud Droplet Probe (CDP), along with

the CIP-15 and CIP-100 instruments. The two CIP instruments are optical array

probes (OAPs), providing 2-D images of particles measuring 15 to 930 µm, and 100 to

6200 µm, respectively. A review of the different probes is given by McFarquhar and

Coauthors [116].

For a cloud comprising an ensemble of scattering particles, we need to consider a par-

ticle size distribution (PSD). The PSD is a function which gives a description of the

number of particles of different sizes that are present in a cloud. For ice particles, the

distribution n(Dmax) is usually measured in units of cm−3µm−1. The number of parti-
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cles of a given size per unit volume is then given by multiplying by the appropriate bin

width n(Dmax)dDmax. The CDP, CIP-15, and CIP-100 probes provide measurements

of the PSDs, along with cloud particle imagery which is useful to decide which particle

habit to use for radar and mm-wave simulations. In this experiment, we model the

atmosphere using multiple layers, described in more detail in section 6.4. Within each

layer, the PSDs from the three instruments were composited using the method de-

scribed in Cotton et al. [5], and averaged over 10 second intervals. The layer-averaged

PSDs are used in this study. The deep cone Nevzorov probe provided data on the liquid

and total water (ice plus liquid) contents by measuring the amount of power required

to melt and evaporate particles that come into contact with the sensor. The IWC is

also averaged over 10 second intervals, and layer-averaged. Due to the inhomogeneity

of the cloud, there is some variability in IWC, represented by a standard deviation

corresponding to each of the layer averages.

The overall plan in this chapter is to determine whether we can combine the in-situ

measurements to construct an atmospheric model to replicate the large brightness

temperature depressions and V-H differences measured from ISMAR. ARTS is par-

ticularly useful for this work because of its capability to handle polarised radiative

transfer. Brightness temperatures are calculated using the RT4 polarised radiative

transfer model within ARTS, described in Ref. [117]. RT4 assumes that particles are

azimuthally random, i.e. there is some preferential polar alignment, but the particles

are randomly oriented in the azimuth. Furthermore, the model assumes a plane-parallel

atmosphere. Thus in all the simulations performed here, we use a 1-D plane-parallel at-

mosphere within ARTS, with azimuthally randomly oriented particles. The differences

in brightness temperatures between those simulated using ARTS, and those measured

by the airborne radiometer, ISMAR are analysed. The calculations are performed at

243 GHz, since this channel in ISMAR measures orthogonal H and V polarisations.
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(a) Z11 (ARTS T-Matrix) (b) Z11 (DDA my code)

(c) Z12 (ARTS T-Matrix) (d) Z12 (DDA my code)

Figure 6.5: Z11 and Z12 elements of the phase matrix, obtained from the ARTS exam-
ple which uses the T-Matrix scattering method, and calculated using my DDA imple-
mentation. These examples are for Θinc = 60◦. The plots show the scattered azimuth
angle, Φ along the abscissa, and the scattered polar angle, Θ along the ordinate.

6.3 Validation of scattering parameters required as

input into ARTS

As well as including a database of scattering calculations for realistic particle habits

performed using DDA [37], ARTS also accepts externally generated scattering calcu-

lations. In the previous chapter, I described a new light scattering approximation for

aggregates of ice particles, which we have named the Independent Monomer Approx-

imation (IMA). As we wish to evaluate the usefulness of the IMA scattering method,

we employ that approximation in this chapter.

As outlined in section 2.5.2, the inputs required by ARTS include the phase matrix,
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Z, extinction matrix, K, and absorption vector, a, for each particle. During a three

month placement at the UK Met Office, I spent time implementing the numerics to

perform these single-scattering calculations for ice particles. In order to validate my

implementation, comparisons were performed using different particles. Note that the

tests have been performed using monomers. Recall that the basis of the IMA method

is that DDA calculations are performed for individual monomers within an aggregate.

This means that when single monomers are used, as in these test cases, the scattering

calculations are done using the DDA method. Thus the tests described here assess the

accuracy of the implementation of the scattering calculations, but do not evaluate the

applicability of the IMA scattering method.

Firstly, comparisons were done using single-orientation cases. The amplitude scattering

matrix elements of a spherical particle were calculated using my implementation. These

results were compared with the values calculated using Mie scattering. Results within

1% were obtained for Rayleigh spheres, with errors for larger size parameters remaining

within 10%. Next, a hexagonal prism geometry was tested by comparing our results

with those calculated using the T-Matrix formalism of Havemann and Baran [118].

Again, results within 10% were found.

Secondly, comparisons were done using different incident and scattered angles. In

order to ensure all of the matrix elements were accurately implemented in the format

expected by ARTS, a test case for an azimuthally random spheroid was provided by

Patrick Eriksson, one of the ARTS developers. This case allowed us to check the phase

matrix, extinction matrix and absorption vector calculations, before proceeding with

calculations for particles specific to this case study. The ARTS data is calculated using

the T-Matrix method. A range of angles between 0◦ and 180◦ have been tested. All

elements are in excellent agreement with the ARTS example, with relative errors below

4%. Fig. 6.5 shows examples of 2 of the 16 phase matrix elements obtained from the

ARTS test case, and calculated using my implementation. The phase matrix elements

have units of m2. The example shown is for Θinc = 60◦. In this chapter, calculations

are done for aggregates specific to this case, which are then implemented into ARTS

to perform polarised radiative transfer simulations.
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(a) Temperature [K] (b) Relative humidity [%]

Figure 6.6: Temperature and relative humidity profiles obtained from 6 different drop-
sondes. The time of each dropsonde release is given in the figure legend.

6.4 Construction of a model atmosphere

The first thing to do is to construct a model of the atmosphere, which will be used in

the radiative transfer simulations. Prior to descending through the cloud, the aircraft

released a series of dropsondes to obtain the background atmospheric state for input

into ARTS. As well as providing water vapour mixing ratio profiles of the atmosphere,

the dropsonde profiles provide surface properties such as temperature and wind speed

that feed into the ocean surface emissivity model used within ARTS. Fig. 6.6 shows

some of the measurements obtained from the dropsondes, namely the temperature and

relative humidity profiles.

As a supplement to the background state, we need to input information on the cloud

that was present during the study. Due to the depth of the cloud, it would not be

possible to obtain an adequate representation of the atmospheric conditions using a

single averaged layer. Hence we model our atmosphere based on the aircraft profiles,

using 7 different layers with depths of approximately 1 km each. These layers are

located between altitudes of 2 km and 9 km.

6.4.1 Mass-size relationships

The single-scattering properties will be integrated over the layer-averaged PSDs in the

radiative transfer simulation, to obtain the layer-averaged single-scattering properties.
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This requires that we make some assumptions about how the density of the particles

varies with maximum dimension, Dmax. These relationships are usually of the form

m = aDb
max, where m is the mass of the particle, and the parameters a and b are

constants which depend on particle habit and atmospheric conditions such as tempera-

ture. As discussed by Mason et al. [119] and references therein, the prefactor, a, of the

mass-size relationship scales the ice density, and the exponent, b, is related to the parti-

cle shape or growth mechanism. Mitchell et al. [120] presented mass-size relationships

with values of b ranging from 1.7 to 2.6 for different habits. By simulating a variety

of particles, Fontaine et al. [121] showed that in general b ≈ 2 if the particle height

remains constant while the length increases, and b approaches 3 for dense particles

whose height and length grow at the same speed. For lower density aggregates, b < 3

even when the area envelope grows at the same rate. As discussed by Westbrook et

al. [108], the value of b for snowflakes is usually around 2.

For the simulations performed here, it is important to do as much as possible to try

and match the atmospheric state at the time of the in-situ observations. Therefore,

rather than employing relationships that are commonly used in the literature, mass-

size relationships specific to this case are derived using the layer-averaged PSDs, along

with the bulk IWC measured using the Nevzorov probe. Two different approaches were

taken to derive the relationships. Firstly, it was assumed that the prefactor of the power

law was fixed at a value of a = 0.0257 kgm−b, and the exponent b was varied until good

agreement was found with the measured bulk IWC data. This was done by integrating

the relationships over the layer-averaged PSDs, and varying b until the resulting IWC

is within 1% of the layer-averaged bulk IWC from the Nevzorov probe. The prefactor

value used in this case is equivalent to that determined from observations by Cotton et

al. [5]. Secondly, a different group of relationships was derived by fixing the exponent

to be the average of the b values obtained in the first case, and the prefactor was varied

accordingly. The resulting parameters are given in Table 6.1. As expected, b ≈ 2 at

the bottom of the cloud where large aggregate snowflakes are present.

The relationships were used to construct two sets of particles for this study, as described

in section 6.4.2. Further experiments are performed to decide upon the most suitable
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Layer b (a=0.0257) a (b=2.12)

1 2.30 0.0051
2 2.30 0.0051
3 2.21 0.012
4 2.04 0.048
5 2.025 0.051
6 2.0 0.060
7 2.007 0.050

Table 6.1: Values of a and b for the initial mass-size relationships of each of the 7
layers. The first column shows the values obtained by fixing a at a = 0.0257 kgm−b,
and varying the exponent b. The second column shows the values obtained by fixing b
at b = 2.12, and varying the prefactor a.

mass-size relationships for this case, thereby allowing a final model to be fixed that can

then be used for the radiative transfer simulations.

6.4.2 Particle generation

To decide on which particle habits to use, imagery from the CIP-100 cloud imaging

probe is used. As mentioned previously, the probe measures particles between the sizes

of 100 µm and 6200 µm. This means the CIP-100 images are more useful than those

from CIP-15 for visually identifying particle shapes, since the CIP-15 probe measures

smaller particles of 15 µm to 930 µm. Imagery at times when there was a peak in the

Nevzorov measured IWC for each of the 7 profiles is examined, and examples from

each cloud layer are shown in Fig. 6.7.

Mixtures of particle habits were present throughout the cloud, but visual inspection

of the imagery led us to approximate the atmospheric model using 2 different particle

types. We use columnar aggregates higher up in the cloud, between 9 km and 6 km,

and dendritic aggregates lower in the cloud between 6 km and 2 km (i.e. P4-P7).

Mixed-phase precipitation was present below 2 km, with a thin melting layer showing

as a bright band in the radar reflectivities in Fig. 6.4. However, we do not represent

melting particles here, and instead just assume a Marshall-Palmer distribution of rain

beneath the ice cloud base. The distribution used here corresponds to a rain rate of

1− 2 mm/hr, estimated from the radar data shown in Fig. 6.1b.
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Figure 6.7: CIP-100 images from each of the 7 cloud layers profiled by the aircraft, at
times of maximum IWC. The height of each frame is approximately 6.4 mm. Examples
of individual monomers and aggregates are highlighted. We approximate the top 3
layers (P1-P3) as columnar aggregates, and the bottom 4 layers (P4-P7) as dendritic
aggregates. The layer altitudes are given to the right of the particle imagery.

I generated particles to have masses that are specific to this case. For both sets of

mass-size relationships, a range of columnar and dendritic aggregates were constructed

using the particle aggregation model of Westbrook et al. [108]. Within the model, the

monomer shape and size are specified at the outset, and realistic aggregates are gener-

ated via the mechanism of differential sedimentation. Those with masses that match

the derived mass-size relationships to within within 20% were kept, storing a maxi-

mum of one particle per size bin. Otherwise the generated particles were discarded. As

mentioned previously, we assume azimuthally random orientation for our simulations

to match the assumptions made in RT4. The particles generated here have a random

orientation, and hence it is necessary to re-orient them such that the largest dimension

is positioned horizontally.

The particle size bins corresponding to the distribution suggest that the cloud contained

particles up to approximately Dmax = 5.75 mm. There are large uncertainties in the

number concentrations of ice particles smaller than 100 µm, due to shattering [122].

Furthermore, Buehler et al. [123] show the sensitivity of various submillimeter channels

to particles of different size. At the frequency of 243 GHz considered here, particles less

than 100 µm do not influence the brightness temperatures. For particles larger than

Dmax =100 µm, I have attempted to generate a particle for the majority of the size
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bins in each layer. However, this was not possible for every size bin and thus I have

rebinned the measured PSDs to match the particle sizes that have been generated for

this case study. The smallest particles were ignored by setting the concentrations of

any measured particles below 100 µm to 0. The new bins use the generated particles to

represent the bin centre, although their Dmax values are not found exactly at the centre

of the bin. The midpoints between successive particles represent the bin edges, resulting

in bins of non-uniform width. The bin edges of the smallest and largest particles were

calculated such that the bin is symmetrical about the first and last particles in the

set, i.e. the Dmax values of the first and last particles do lie at the central point of the

bounding bins.

6.4.3 Testing the model

The 2 radar frequencies are useful for constraining the atmospheric model we are ap-

plying to the 243 GHz radiative transfer simulations, with regards to testing the in-situ

derived mass-size relations in section 6.4 and the range of particles generated for each

layer. The radar cross section, σr, of the generated particles is calculated at 95.04 GHz

and 35 GHz using IMA. These calculations are used to simulate the above-cloud equiv-

alent radar reflectivity, Ze, in order to test the suitability of the generated particles for

this case. The equation for Ze is given by Atlas et al. [124]:

Ze = 1018C

∫
σr(Dmax)n(Dmax)dDmax, (6.1)

where C = λ4/π5|(εliquid − 1)/(εliquid + 2)|2 is a frequency-dependent constant, and

n(Dmax) represents the in-situ distribution of particles. Without the factor of 1018, Ze

would have units of m3. Multiplication by 1018 converts the units of Ze to conventional

radar meteorology units of mm6m−3. More information on the method can be found

in Baran et al. [125].

Ze was calculated using both sets of mass-size relationships derived in Table 6.1. Com-

parisons of the radar reflectivity simulations with the measured data allowed us to

141



Figure 6.8: The final mass-size relationships used to model the particles for this study.
Also plotted are relationships derived by Brown and Francis [4], and Cotton et al. [5].

decide on the most appropriate relationship for each layer, or alternatively iterate our

model where necessary to obtain results closer to the measured reflectivities. This

involved taking the variability of IWC in each layer into account by increasing or de-

creasing the layer averaged value by 1 standard deviation, and re-deriving mass-size

relationships, along with generating new particles. The final number of aggregate reali-

sations generated for each layer ranges from 46 to 62. The tweaked relationships mainly

have b = 2.12 as derived in Table 6.1, except for in layer 2 where better results were

found when a was fixed to 0.0257. The corresponding mass-size relationships, along

with commonly used relationships of Brown and Francis [4], and Cotton et al. [5], are

plotted in Fig. 6.8. The relationships derived for the lower layers of cloud are very

consistent with the commonly used relationships of Brown and Francis and Cotton

et al., while particles in the top layers of cloud have lower masses that would not be

represented correctly by those relationships.

Fig. 6.9 shows the simulated reflectivities using the final modelled particles, with the

measured reflectivities shown in red and the different coloured markers representing

simulations performed using the particles generated for each of the 7 different cloud

layers. Note that I performed the calculations of σr for the particles, but Fig. 6.9 was

generated by Anthony Baran at the Met Office. Grey lines are plotted at the left side

of the reflectivities, showing the estimated sensitivity of each of the radars. Below this

noise level, signal is not detectable by the radar. The minimum detectable signal is
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(a) 35 GHz (b) 95.04 GHz

Figure 6.9: Simulated reflectivities at 35 GHz and 95.04 GHz. The orange dots show
the observed reflectivities from the HAMP and RASTA radars. The different coloured
circles show the reflectivites calculated using the horizontally aligned particles gener-
ated to follow the mass-size relationships derived from measurements. Grey lines at
the left edge of the reflectivities have been plotted to show the estimated noise level,
below which no signal is detected.

calculated in dBZ as 10 log10(r
2) + c, where the range, r, is equivalent to the aircraft

altitude minus height, and c is a constant. Simulations of the 35 GHz reflectivities in

Fig. 6.9a are generally in good agreement with the measurements, with slight overesti-

mations in bottom layer. Given by the location of the noise-level line, simulations that

may initially appear as underestimations in the top layer are likely to be below the

minimum detectable signal. In the case of the 95.04 GHz simulations in Fig. 6.9b, the

low sensitivity of the radar means there is a very clear line in the measurements below

which no signal is picked up. Moreover, considerably fewer reflectivity observation data

points appear in the higher frequency case than in the lower frequency case. In layer

7, more pronounced overestimations in the reflectivities are simulated at 95.04 GHz,

along with slight overestimations in layer 6. However, overall the models fit with the

observations and thus these particles are used to simulate the V and H polarisation

measurements from ISMAR.
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6.5 Simulation of the ISMAR polarised brightness

temperatures at 243 GHz

A range of particles have been generated for each of the 7 model layers to follow

the in-situ measurements as closely as possible. However, prior to considering the

full polydispersive distribution within each layer, two simplified cases are examined.

Firstly, a single-layer cloud is modelled in order to explore the general behaviour of

brightness temperatures at 243 GHz with variations in cloud IWP. Then a 7-layer cloud

is constructed, but with a monodispersive distribution of particles within each layer.

These cases are useful for obtaining a broad understanding of the impact of ice on

retrievals. Moreover, they are useful to test different model assumptions, such as the

number of streams required, along with providing the opportunity to check that the

IMA scattering method gives reasonable results.

6.5.1 Single-layer, monodispersive distribution

To explore how brightness temperatures vary with IWP, a highly simplified single-

layer cloud is modelled. One particle is used to represent all the cloud ice, using a

monodispersive distribution between 2 km and 9 km in altitude. This involves calcu-

lating the relevant scattering properties of the particle and implementing them into

ARTS, along with a corresponding number concentration to represent the density of

particles. Increasing the number concentration corresponds to a higher IWP within the

cloud. Fig. 6.10 shows the results for different values of IWP up to 400 g m−2 , which

is close to the value measured in this case study. The brightness temperatures are sim-

ulated using a single dendritic particle, and also using an aggregate of two dendritic

monomers. Note that particle size would have important effects on the results but this

has not been considered here. Thus we cannot make direct comparisons between the

results of the two cases. Nevertheless, we can get a basic idea of the effect of IWP on

brightness temperatures.

The brightness temperatures at H and V polarisation are seen in Fig. 6.10a, along
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(a) Brightness temperature (b) V-H brightness temperature difference

Figure 6.10: Simulations using a single-layer cloud: Brightness temperatures at H and
V polarisation simulated for different values of IWP, and the V-H brightness temper-
ature difference. The solid lines show the results using an aggregate of two dendritic
monomers, and the dashed lines show the results using a single dendritic monomer.

with the V-H brightness temperature difference in Fig. 6.10b. As described previously,

a Marshall-Palmer distribution of rain is also included in the simulation between the

ground and the cloud base at 2 km. Thus the value at an IWP of 0 g m−2 corresponds to

a simulation where only rain is included. As IWP is increased, an enhanced brightness

temperature depression is simulated by both particles. However, it is clear that the

choice of particle hugely affects the results. A considerably larger depression and

polarisation signal is simulated using the single particle than with the aggregate of

two monomers. Moreover, using the single particle results in the presence of a large

signal even at very low values of IWP, with the V-H brightness temperature difference

reaching almost 35 K at an IWP of 100 g m−2. Using the aggregate with the same IWP

only results in a V-H difference of 2 K. The simulated values for the single dendrite

are much larger than what was measured by ISMAR. This is unsurprising as a cloud

composed of only horizontally oriented single particles is unrealistic. Nonetheless, it

is interesting to note the large polarisation signature that occurs due to horizontally

aligned crystals.

6.5.2 Multi-layer, monodispersive distribution

The model cloud is divided into 7 layers, with a monodispersive distribution of particles

within each layer. For this setup, the measured layer averaged Dmax is used along with
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the derived mass size relationships to obtain an average mass for each layer, and one

particle is generated for each layer to match that mass. Each of the model layers

are given an appropriate number density using the layer averaged IWC. The single-

scattering properties of the particles are incorporated into ARTS, along with their

number densities.

Fig. 6.11a shows the individual brightness temperatures at H and V polarisation for

each of the scenarios considered. The points along the abscissa represent the gradual

increase in cloud layers used in the simulation, starting with the clear-sky case. Then a

Marshall-Palmer distribution of rain is inserted between the ground and the cloud base

at 2 km. This rain distribution is included in all further simulations presented here.

The third point along the x-axis displays the result when the top layer of ice cloud is

included, along with the rain distribution. Then the second layer of ice is added, and

so on until the full 7 layers of cloud ice along with a distribution of rain below the cloud

base are included. The plot is done in this way to mimic the increasing depressions

measured by ISMAR as the aircraft flew over the cloud, as in Fig. 6.3a.

Fig. 6.11b shows the same results for the cases considered in Fig. 6.11a, but here the

values are plotted as V-H brightness temperature differences. The red crosses show

the values measured from ISMAR, and the simulations of the various scenarios are

displayed using different markers. The clear-sky polarisation result of approximately

2 K is shown by the magenta circle, arising from differences in surface emissivity. The

yellow circle shows the V-H temperatures simulated when rain is included, resulting in

a decreased V-H compared to the clear-sky case, with a value of only 0.5 K. The V-H

results when monodispersive layers of ice are included are shown by the cyan markers.

Two different marker shapes are used to represent the gradual increase in the number

of layers used in the simulation. The cyan triangles show the results obtained using

partial cloud amounts. In other words, the points labelled “Rain + Layer 1” to “Rain

+ L(1-6)” along the abscissa in Fig. 6.11a. The cyan star shows the final result using

all 7 of the model layers, i.e. “Rain + all layers” in Fig. 6.11a.

Note that the yellow circle is positioned at TBV ≈ 261 K but is overlapped by other
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(a) Brightness temperature (b) V-H brightness temperature difference

Figure 6.11: Results for the monodispersive case. The left panel shows TBV and TBH ,
calculated using IMA, RGA, and DDA. The points along the abscissa start with results
for the clear-sky case, and each consecutive point shows results obtained by adding one
more layer of cloud to the simulation. This is described fully in the main text. The
right panel shows the results using IMA, plotted as V-H differences.

results. It can be seen clearly in Fig. 6.11a that three of the simulations for the

monodispersive case give the same results- using only layer 1, using layers 1 and 2,

and using layers 1, 2, 3. The values are also the same as the case when only the rain

is included. Thus the markers corresponding to these 4 cases overlap in Fig. 6.11b.

This shows that the top 3 layers of columnar aggregates do not significantly affect

the brightness temperature simulations in the monodispersive case. The inclusion of

layers 4-6 causes an increase in both the brightness temperature depression and the

V-H difference. When layer 7 is included, V-H increases further by approximately 1 K.

However, the value remains quite small at only 2.25 K, while the largest measured value

from ISMAR was close to 10 K. Nonetheless, the monodispersive test case produces

reasonable results that fit some of the ISMAR measurements.

It is seen in Fig. 6.11a that each of the simulations was performed using three differ-

ent scattering methods to obtain the single-scattering properties. The three methods

are: our new Independent Monomer Approximation (IMA), the Rayleigh-Gans Ap-

proximation (RGA), and the Discrete Dipole Approximation (DDA). The brightness

temperatures simulated using DDA are within 0.05 K of the IMA results, while RGA

fails to produce an equivalent depression, differing from the DDA results by up to

2.2 K. With RGA the brightness temperature depressions would be much smaller than

the more accurate IMA technique, thereby resulting in erroneous retrievals. Thus we
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are confident that the IMA method is sufficiently accurate to be applied to this study.

The results of the polydispersive case using the IMA scattering method are presented

in the next section.

6.5.3 Multi-layer, polydispersive distribution

In this section, simulations are performed using the measured PSDs and the full range

of generated particle models described in section 6.4.2. As outlined above, the measured

PSDs are rebinned to match the particle sizes that have been generated for this case

study. The rebinned PSDs for each of the 7 layers can be seen in Fig. 6.12, with each

cross representing one of the generated particles. The single-scattering properties of

each of the particles are calculated using IMA, and are incorporated into ARTS along

with the rebinned PSDs.

The results for the polydispersive case are shown in Fig. 6.13. In an equivalent manner

to the monodispersive case, simulations are performed by adding one layer of cloud at

a time, until the full model cloud is included. The individual H and V brightness tem-

peratures are displayed in Fig. 6.13a. Similar to what was found for the monodispersive

case, the top 3 layers of cloud have very little effect on the brightness temperatures.

As additional model layers are included in the simulation, the brightness temperatures

become more depressed at both H and V. Comparisons of Fig. 6.11a and Fig. 6.13a

show that using a polydispersive distribution of particles results in greater brightness

temperature depressions than the monodispersive case, and these are closer to what was

measured from ISMAR. TBV and TBH are depressed to values below 240 K, whereas

less significant depressions of approximately 255 K are simulated using the monodis-

persive distribution. Note that the equivalent calculations are also performed using

RGA, with the results shown by the dash-dot lines in Fig. 6.13a. It is clear that the

RGA scattering method underestimates brightness temperature depressions that can

be simulated using IMA, by up to 9.6 K.

The V-H brightness temperature differences are shown in Fig. 6.13b. Results adding

layers of ice cloud as before are shown using blue triangles, with the result using the
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Figure 6.12: PSD number concentrations rebinned to match the particles generated for
this case study.

full 7-layer cloud depicted by the blue star. The lowest blue triangle shows the result

calculated using the top 6 layers of ice cloud, along with the rain distribution below

2 km. It is interesting to note that when layer 7 is included (blue star), the brightness

temperature depression increases further but the polarisation signal decreases. When

all 7 layers of cloud are used in the polydispersive simulations, the polarimetric V-H

brightness temperature difference has a small value of slightly less than 2 K. This

decrease in polarisation signal could be caused by the inclusion of too many large,

lower density particles in the bottom layer of cloud, which have a weak polarisation

dependence. The particle habit used in that layer of our model may not adequately

represent the real cloud. Alternatively, these results may suggest that the sizes of the

largest ice crystals were overestimated by the probes.

It is interesting to consider alternative reasons why the simulated polarimetric signal

is not as great as that measured by ISMAR, and explore ways in which it could be

increased to match the observations. One potential reason could be that there was

a change in microphysics between the times of the ISMAR measurements which were

made at 10-10:20 UTC and the in-situ cloud measurements taken between 10:37 and

11 UTC. Another possibility could be that we haven’t taken the melting layer into

account. Looking at the radar reflectivities in Fig. 6.9, the melting layer appears quite

thin with a brightband depth of approximately 100− 200 m. Nonetheless, the melting

layer has a significant polarisation signature in radar, so it is possible that neglecting
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(a) Brightness temperature (b) V-H brightness temperature difference

Figure 6.13: As in Fig. 6.11, but for the polydispersive case.

to include it in our simulations is causing V-H to be too small.

Gong and Wu [115] showed that the V-H differences can be increased by increasing the

mean size of the PSD, and by changing the particle habit or aspect ratio. Therefore, we

investigate these points in the following sections. It is worth noting that a further way

of increasing the polarimetric difference would be to consider habit mixture models,

such as by Miao et al. [126] . Using aggregates of differing monomer shapes in our

simulations may increase the V-H differences, but this is beyond the scope of the

present study.

6.5.4 Changing properties of the PSD

The first method we employ in order to try and enhance the polarimetric signal is

increasing the mean size of the PSD. In order to do that in a systematic way, we do the

following: Using the measured PSD for each layer, Dmax is plotted against ln(N), and

straight lines are fit to the distribution. This means a parameterised exponential size

distribution N(Dmax) = N0 exp(−λDmax) is obtained for each layer. The intercept and

slope parameters, N0 and λ, can now be tweaked in order to try and match the ISMAR

measurements. For consistency with the original setup, the parameterised PSDs have

been truncated using the lower and upper limits of the measured PSDs. The measured

and parameterised PSDs for each layer are plotted in Fig. 6.14a. The fitted exponential

PSDs are imperfect, and tend to underestimate concentrations of particles less than
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(a) Exponential fits to the PSDs
(b) V-H using parameterised PSDs and mea-
sured PSDs

Figure 6.14: (a) The lines with crosses show the rebinned measured PSDs in each of the
model layers, as in Fig. 6.12, and the straight lines show the fitted exponential PSDs.
(b) The blue star shows the V-H brightness temperature difference calculated using the
measured PSDs, and the yellow triangle shows the result using the exponential fits.

approximately 200 µm, and also underestimate concentrations of the largest particles

of the distribution, while overestimating particles of an intermediate size. However,

they should be adequate for the idealised experiment that follows.

First of all, the brightness temperatures are calculated using the parameterised expo-

nential PSDs for each layer. The result is displayed in Fig. 6.14b. It is interesting to

note that this gives a V-H brightness temperature difference of 4 K that matches the

ISMAR measurements more closely than the original experiment with the measured

PSDs. The yellow triangle in Fig. 6.14b shows that the V-H value falls quite centrally

within the ISMAR measurements. The blue star depicts the polydispersive case which

gives a smaller V-H value slightly below 2K. The simulated value does not lie within

the main bulk of the ISMAR measurements. In the previous section, we speculated

that there were too many large particles at the cloud base that were diminishing the

polarisation difference. Thus the increase in V-H as a result of using the parameterised

PSDs may be due to the fact that these fits estimate fewer of the largest particles

within each layer. Moreover, although fewer large particles are considered when using

the parameterised fits, the fits still result an increase of the mean particle size within

each layer, before any changes are made to N0 or λ. As mentioned previously, an

increased mean particle size is one possible mechanism that may increase the polari-

metric signal. Therefore the larger V-H values may be a result of the increased mean
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particle size.

In order to further increase the mean size of the PSD, adjustments are made to either

N0 or λ of one layer at a time. Changing N0 alone will not achieve the goal of increasing

the mean size. Thus it may be expected that the main polarimetric differences will

be found by decreasing λ. However, a reduction in the number of large particles may

be achieved by decreasing N0, so it is worthwhile experimenting with changing both

parameters to see if any increase to the polarimetric signal can be simulated.

6.5.4.1 Changing λ

Values of λ in each cloud layer are varied, changing only one layer at any time. λ is

divided by a range of values, chosen experimentally to explore whether greater polari-

metric signatures can be simulated. An example of the resulting fits for layer 3 can be

seen in Fig. 6.15a. In layer 3, λ is divided by values between 1.2 and 2.1. However, it

is noted that different values between 1.1 and 3.5 are used for other layers. The figure

shows that changing λ in such a way increases the number of larger particles in the

distribution, whilst having less of an effect of the number of smaller particles. This

results in an increased mean particle size. The fits for the remaining layers have not

been plotted, but possess similar properties resulting in increasing the mean size of the

distribution.

The V-H brightness temperature differences obtained by varying λ in each layer indi-

vidually are calculated, and the results are shown in Fig. 6.15b. It can be seen that

increased V-H values may be simulated by changing λ in layers 1-6. However, changing

λ in layer 7 increases the depression but does not increase the polarimetric difference.

This is unsurprising as in section 6.5.3 we proposed that the V-H signal was diminished

due to the presence of too many large particles in that layer. Therefore, increasing the

mean size will not be beneficial in the bottom layer. The most notable results come

from varying λ in the top 3 cloud layers. It is possible to simulate brightness temper-

atures close to the ISMAR measurements by using the successive decreases in λ, such

as those outlined in Fig. 6.15a, resulting in gradual increases to the V-H values. In
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(a) Fits resulting from changing λ in layer 3 (b) V-H brightness temperature difference

Figure 6.15: An example of the changes made to the PSD by varying λ, in this case
for layer 3. (b) shows the V-H results obtained for the variations in each layer.

the case of layer 3, a small increase to V-H is simulated by dividing λ by 1.2, while

division by 2.1 gives a large V-H of approximately 9 K. The simulated V-H brightness

temperatures fit the ISMAR results nicely. In terms of the mean size of the PSD, using

the parameterised fit in that layer results in an increase from 175 µm to approximately

244 µm before making any changes to λ. The successive decreases in λ then result

in further increases to the mean size, from 274 µm when λ is divided by the smallest

value of 1.2, to 409 µm at the largest deviation of λ. The results from this experiment

are in agreement with Ref. [115], showing that increasing the mean particle size of a

distribution may increase the simulated polarimetric signal, provided that absorption

by large particles does not dominate.

However, the important point to stress is that the changes made to λ in order to

simulate these realistic values generally result in parameterised PSDs that do not fall

within a reasonable deviation of the measured PSDs. As already mentioned, varying

λ in the top 3 layers gives the most interesting results as the V-H differences tend

to follow the ISMAR measurements. However, the fits applied to these layers employ

large changes to λ, and as a result the parameterised PSDs deviate widely from the

measurements. Of all the fits used for the three top layers, only the smallest V-H

temperature simulated for layer 3 falls completely within four standard deviations of

the measured PSDs. Furthermore, employing the largest deviation of λ in layer 3

means that the IWP of the layer is increased from 21 g m−2 to 216 g m−2, which is

almost half of the measured total IWP! The fits in the bottom four layers employ less
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drastic changes to λ, resulting in two of the fits in layers 4 and 5, and three of the

fits in layer 6 falling within four standard deviations of the measured PSDs. However,

simulations of the largest V-H differences require values of TBV to be depressed to lower

values than those measured from ISMAR. Less significant polarimetric differences are

simulated while remaining within a realistic brightness temperature depression. Thus,

although it is interesting that realistic brightness temperature values can be simulated

by changing layers 1-3, it is not useful in this case as the setup required to do so does

not agree with the in-situ measurements.

6.5.4.2 Changing N0

We now explore what happens to the V-H brightness temperature differences when N0

is varied in the parameterised exponential PSDs. Initially, values of N0 were decreased

such that the number of large particles in the distribution would be reduced. Decreasing

N0 in the top three layers made no difference to the polarimetric signal. Interestingly,

decreasing N0 in the bottom layers resulted in a lower V-H brightness temperature

difference than using the original PSD. Therefore, N0 is increased in this section to see

if the polarimetric differences are affected.

As in the case of changing λ, only the fits resulting from changing N0 in layer 3 are

shown. The fits are displayed in Fig. 6.16a. The brightness temperatures simulated

by increasing N0 in each of the seven layers are shown in Fig. 6.16b. No changes to

the results are found by increasing N0 in layers 1 and 2. Thus the results for these

cases overlap the black cross showing the original result. Increasing N0 in layers 3-7

results in enhanced V-H differences, with layer 3 showing the most significant differ-

ences. However, the main bulk of the largest V-H values measured by ISMAR fall

between approximately TBV =240 K and 245 K. The largest V-H values of approx-

imately 8K measured within this range generally cannot be simulated without also

simulating a depression that is too large. There is one single point found at approx-

imately TV =231 K with the largest measured V-H value of almost 10 K. A result

close to this can be simulated by changing N0 in layer 3. However, as in the case of
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(a) Fits resulting from changing N0 in layer 3 (b) V-H brightness temperature difference

Figure 6.16: Changes made to the PSD by varying N0 in layer 3, along with the V-H
results obtained using variations in each layer.

changing λ, the parameterised PSDs used for those simulations deviate widely from the

in-situ measurements. None of the parameterised fits used for layer 3 fall completely

within four standard deviations of the measured PSDs. Thus it is necessary to consider

other potential reasons why the largest V-H brightness temperature differences were

not simulated using the original model.

6.5.5 Changing particle habit

The second potential reason for the small polarimetric signal in the original simulations

is that aggregates are not responsible for the V-H brightness temperature difference

observed from ISMAR. Up until this point, monomers have not been included in our

model atmosphere, and we saw in Fig. 6.10b that single dendrites have stronger polari-

metric signals than aggregates. To test this hypothesis, horizontally aligned dendrites

are added to the cloud base. There is evidence from the imagery in Fig. 6.7 that such

particles were present at the time of interest. It is worth pointing out that since we

are using single particles, the scattering calculations for these additional dendrites are

done using DDA rather than IMA, as the IMA method is only applicable to aggregates.

A monodispersive distribution of horizontally aligned single dendrites is used to re-

place the aggregates in the lowest portion of the cloud. The dendrites have a size of

approximately Dmax =1 mm. The number concentration is chosen in such a way that

the measured IWC over the 1 km-deep layer is maintained. Different heights of the
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(a) TBH and TBV (b) V-H brightness temperature difference

Figure 6.17: Brightness temperatures at V (red line) and H (blue line) polarisations,
and the difference between them (V-H). Along the abscissa, the percentage of the total
IWP comprising single dendrites increases.

cloud layer are replaced by dendrites, starting with the bottom 100 m, and increasing

the height by 100 m at a time, until finally the lowest 500 m of cloud is replaced with

dendrites. These values correspond to dendrites comprising 3 to 15% of the total IWP.

The brightness temperatures at H and V polarisations and the V-H difference for the

different IWP percentages are shown in Fig. 6.17.

Fig. 6.18 shows the V-H brightness temperature differences plotted along with the

values measured from ISMAR. The results from the monodispersive and polydispersive

cases in sections 6.5.2 and 6.5.3 are plotted for reference in Fig. 6.18a. The V-H

differences using different amounts of dendrites are plotted in Fig. 6.18b. The blue star

shows the original result before the inclusion of dendrites. The square closest to the

star is the result when 100 m is replaced with dendrites, and the lowest square shows

the result obtained when half of the bottom layer (i.e. the lowest 500 m of cloud)

is replaced. Even when no dendrites are included, the largest brightness temperature

depression is captured. However, adding dendrites increases the polarisation difference,

with each extra 100 m increasing V-H by approximately 1 K, while TBV remains almost

constant. A V-H value of 8.4 K is obtained when the lowest 500 m of the model cloud

is replaced with single dendrites, which is very consistent with ISMAR measurements.

Thus, agreement with observations is possible by including a small IWP of oriented ice

crystals in the simulation.

Although the measured brightness temperature depressions can generally be repro-
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(a) Monodispersive and polydispersive results. (b) V-H when dendrites are included.

Figure 6.18: The red crosses show the measured V-H from ISMAR. Panel (a) shows
scenarios considered in Figs. 6.11 and 6.13 when no dendrites are included. In panel (b),
the green squares show the values simulated when the aggregates in the lowest region
of cloud are replaced with horizontally aligned single dendrites. The different squares
show results obtained when the amount of cloud comprising dendrites is gradually
increased, as described in the text. V-H increases with increased IWP fraction.

duced using the IMA scattering method, the polarisation difference is very sensitive to

the assumed particle shape for a given ice water path, specifically the presence of single

crystals mixed with aggregates. Thus it is possible that these large polarimetric sig-

nals cannot be simulated using aggregates alone. Therefore, to obtain good retrievals

from ICI, it is important to represent the cloud as accurately as possible. Utilising the

multi-frequency polarisation information available from the instrument could provide

a way to constrain this, thereby reducing the need to make unrealistic assumptions.
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Chapter 7

Concluding remarks

7.1 Discussion

The research in this thesis involved analysing the internal electric fields of ice particles

in order to develop new scattering approximations, one of which was applied to a case

study. The results have been presented in chapters 3 to 6.

In chapter 3, the DDA numerical method was used to investigate the internal fields and

scattering properties of ice particles, presenting results for size parameters of x = 0.01

where the particle is in the Rayleigh regime, along with larger size parameters of x = 2

and x = 10.

Exploring the magnitude of the internal electric field for different monocrystals, it was

found that the field varies greatly with size parameter. For x = 0.01, the field is almost

uniform, with a factor of 1.15 between the average and maximum field values of the

hexagonal plate. The magnitude of the field is small, with an average of approximately

1.4 times the value obtained as a result of the applied wave only. For x = 2 the

magnitude is also small with a relatively uniform field, ranging from an average of

approximately 1.02 for the hexagonal prism, to approximately 1.13 for the cylindrical

disk. Increasing x results in a more complex internal field with larger maximum values.

Strong focussing is observed at the forward side of the monocrystals for x = 10. The
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focussing behaviour is persistent for different orientations in the x-y plane, and occurs

independently of whether the incident wave hits a flat prism facet or a sharp edge.

Focussing remains when the incident wave is directed at small angles in the y-z plane,

but the behaviour starts to diminish for larger angles. Such angles correspond to cases

where the incident wave is approximately travelling in the direction of a basal face,

rather than hitting a prism face or edge. The diminished focussing is a result of the

small thickness of the plate in the direction of travel of the incident wave, as strong

focussing is found when the same angles are used along with the thicker hexagonal

prism of aspect ratio 1. For the single hexagonal plate, the internal field structure

is a combination of 2 distinct waves. The perpendicular component of the field, Px,

takes the form of a wave extending through the centre of the particle, and the parallel

component, Py, has a structure resembling a standing wave around the perimeter.

Mitchell and co-workers developed the Modified Anomalous Diffraction Approxima-

tion (“MADA”), for the efficient prediction of the extinction of radiation by water

droplets [127] and ice crystals [128] at size parameters x ≈ 10-1000. In addition to

its speed, an attractive feature of the MADA is that physical wave scattering phe-

nomena are explicitly represented as separate terms, and this can provide insight into

their roles in the scattering process. Our results provide new data on these scatter-

ing phenomena for hexagonal ice crystals (specifically the existence and characteristics

of internally-reflected surface waves and waves extending through the particle), and

thus may be informative for further development and theoretical underpinning of the

MADA approach.

A simple aggregate of 2 hexagonal plates sees a similar uniformity of the internal field

for x = 0.01 and x = 2. However, a dramatic decrease in focussing behaviour and

symmetry was found for x = 10, along with an overall smoothing of the field. This

was even more obvious for a chain-like aggregate of 5 plates. It was found that this

behaviour is partly controlled by the alignment of the plates, and the focussing patterns

vary depending on the arrangement of the individual monocrystals. For example, if

multiple plates are aligned such that there is a longer path length in the incident

direction, there will be more enhanced coupling and a larger field magnitude at the
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forward side of the particle, compared to when the plates are arranged more irregularly

with respect to the incident direction.

As the complexity of the particle is increased further, the internal field continues to

lose more structure, and no regions of enhanced coupling are obvious for the fluffy

aggregate of 10 dendrites. The maximum value of electric field decreases significantly

for aggregated dendrites, with the single hexagonal plate displaying a maximum mag-

nitude approximately 3 times larger than the irregular aggregates for x = 10. Different

values of x give very similar internal fields for the complex aggregate, with almost iden-

tical average and maximum values for x = 0.01 and x = 2, and slightly larger values

for x = 10. An interesting observation is that the individual dendrites comprising the

aggregate act somewhat independently of each other, as seen by calculating the field

of the monocrystals in isolation from the rest of the particle. This could have im-

portant consequences for scattering calculations, suggesting that calculations for large

aggregates could be done without the need for huge computer resources. Individual

crystals could be solved independently and then combined to obtain approximations

for complex particles.

To explore the performance of currently used approximations, the Maxwell-Garnett

formula was employed to calculate the internal field of spherical or spheroidal particles

of equivalent size to the different aggregates in this study. It was found that the

reduced permittivity used in this method leads to the loss of internal field structure.

The effective medium approximation causes the average field to be overestimated for

all particles, and the maximum value to be underestimated in most cases.

The effect of the internal electric field on far-field scattering was also examined by cal-

culating the differential scattering cross section for a number of particles in this study.

For x = 0.01, the particles scatter equally in the forward and backward directions, and

can be represented fully using only the component of the field which is perpendicular to

the direction of propagation. As size parameter is increased, the amount of scattering

observed becomes very dependent on scattering angle. For both single orientation and

orientationally averaged cases, it was found that the component perpendicular to the
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direction of propagation contributes mainly to scattering in the forward and backward

directions. For size parameters of x = 2 and x = 10, a field component in the direction

of propagation emerges, and this parallel component contributes to sidescatter. It is

evident that for x = 10, the influence of the latter component is getting weaker as

particle complexity is increased. The polar plot for the irregular aggregate displays

very few angles where P‖ dominates the total scattering. We saw for the hexagonal

plate that it is the standing wave around the perimeter that leads to sidescatter. For

irregular aggregates of “fernlike” dendrites, it appears that their fluffy structure is in-

capable of supporting such a standing wave. This may be why we see a decrease in the

contribution from P‖ to the total scattering.

Approximations of dendritic aggregates using Maxwell-Garnett soft spheres was ex-

plored. As discussed, this method leads to an internal field that is more uniform than

the true field. In the far-field, underestimations of scattering properties were found.

The far field results were also calculated using RGA, showing more accurate results

than the soft sphere, but with errors persisting at some angles for x = 10, predomi-

nantly in the backward hemisphere.

In chapter 4, the use of a scattering-order formulation (SOF) of the DDA was explored.

The method has the potential to reduce the large memory requirements associated with

solving the DDA linear system, but is known to have convergence issues when coupling

between the dipoles is strong. Computations of the internal field and far-field scattering

properties were performed, and comparisons were done with DDA results. This was

done for the hexagonal plate monomer, and also for aggregates of plates, columns, and

dendrites. For each of the different habits, particles comprising 3, 5, and 7 monomers

were generated. Values of x up to 10 were used.

It was found that the SOF method converges for a solid ice plate of size parameter

x < 4.5, diverging for x ≥ 4.5. For the aggregates, only x = 2 and x = 10 were explored.

Overall, aggregates of dendrites showed good results with the method, converging in

all cases examined. Aggregates of plates and columns showed convergent scattering

calculations for x = 2 but did not show promising results for x = 10. When 3 or 5
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monomers of plates or columns were used, none of the aggregates converged. Increasing

the number of monomers resulted in improved convergence, with some of the aggregates

of 7 monomers showing convergent behaviour for the backscatter cross section.

Three of the aggregates were chosen and used to examine the internal fields, including

one aggregate of 7 dendrites and two aggregates of 7 plates. The two aggregates

of plates were chosen as they had different backscatter behaviour, with one showing

convergent results and the other showing divergence.

As discussed above, in most aggregated particles, increasing the number of monomers

tends to result in the field losing the clear wave-like structure that is found in single

monomers such as the hexagonal plate. Irregular arrangements make constructive

interference less likely, and the fields tend to have lower magnitudes, which are easier

to represent using SOF. This is why increasing the number of monomers improves

convergence for the aggregates considered. Aggregates of dendritic monomers also

experience weaker interactions and less coupling between monomers, resulting in lower

magnitudes which can be represented accurately using SOF. Consequently, accurate

far-field scattering solutions are obtained for these particles.

However, divergent behaviour is still found in some cases, which is why two different

aggregates of plates were considered. As expected, it was found that divergence in

the far-field scattering solution is caused when the internal field magnitude is over-

estimated by SOF. The aggregate of plates with the divergent far-field solution has

strong interactions leading to a larger internal field magnitude than the other parti-

cles examined. As discussed above, enhanced coupling occurs when the monomers are

aligned in the plane of the propagation direction of the incident wave, rather than in a

more irregular alignment. SOF struggles to represent these regions of strong coupling,

overestimating the field magnitudes. As a result the backscatter solution diverges with

increased iterations.

Due to the convergence issues with SOF, variations of the method have been employed

in the past which incorporate a relaxation parameter in an attempt to prevent di-

vergence. In this thesis we investigated different choices of the parameter, η, to see
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whether an optimal choice could be found for ice particles. Since a value of η = 0.5

has been employed in previous literature [77], we began by testing similar values of

0.1 ≤ η < 1, where η = 1 corresponds to SOF.

For the hexagonal plate of x = 10, none of the values chosen led to convergence. For the

dendritic aggregate, convergence was found for all values of η. For the two aggregates

of plates, the overall bias in scattering calculations decreased when many of the values

of η < 1 were used, compared to the SOF case, but results oscillated around the DDA

solution rather than truly converging.

An alternative approach was taken to calculate η, using a method employed by Klein-

man et al. [2] to solve a Helmholtz problem. The parameter, which we call ηKl, is

chosen to minimise the residual error at the first iteration, and it may have a complex

value. It was found that ηKl does not provide good results for the hexagonal plate,

overestimating the field around the particle edge, even in cases such as x = 4 when

SOF gave good results. In the future we plan to explore this further to find out why

the field is overestimated around the edge of the plate. The far-field results diverge

for all values of 2 ≤ x ≤ 10. However, the ηKl relaxation parameter greatly improved

convergence for the aggregates of 7 plates. Convergence was achieved for 9 of the 10

particles tested, but the parameter led to instability in one case. In that case the

internal field magnitude was hugely overestimated, with a relative error over 3000%. It

is unclear why the instability occurred. We plan to explore this further by looking at

aggregates of columns, and also aggregates comprising different numbers of monomers.

It is possible that although this is not a good method for single monomers, ηKl may

generally be useful for scattering calculations of aggregates, provided the instability is

not a recurring issue. It would be interesting to explore convergence by looking at how

the spectral radius changes with particle shape and size parameter.

Using ideas from the findings in chapter 3, a new scattering method specifically for

aggregates called the Independent Monomer Approximation (IMA) was developed and

tested in chapter 5. The method involves doing DDA calculations within monomers,

while ignoring interactions between different monomers of an aggregate. This allows for
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both time and memory improvements when compared to DDA. We set out to explore

how the accuracy of the method changes as different parameters are tweaked, looking

at the effective density ρeff , size parameter x, and monomer shape of the aggregates

described above.

To change the effective density, different numbers of monomers were used, resulting

in particles with more monomers having a lower value of ρeff in general. For smaller

values of ρeff , there is weaker coupling so the simplifications employed in IMA have less

of an impact. A decrease in the bias occurs in these cases. For small size parameters,

the bias in σs remains approximately constant as ρeff is increased. For x > 2 the bias

increases with ρeff , with the correlation becoming more apparent with increasing x.

In terms of the monomer shape, dendritic particles provide the best results overall,

while the bias is larger for plates and columns for most scattering quantities consid-

ered. These findings are similar to what was found using SOF. We attribute this to the

air gaps in the structure of dendritic particles, weakening interactions between dipoles.

The weaker interactions result in a lower magnitude which is easier to reproduce with

IMA. However, it is unclear whether the improved results are simply due to the den-

dritic particles generally having a lower effective density than the aggregates of plates

and columns.

It is worth noting that although dendritic particles give the best results, the other

particle shapes still exhibit a lower bias using IMA than when RGA is used. RGA

underpredicts σs by almost 60% in some cases, while the IMA bias mainly remains

within 20%, exceeding that value for only a small number of cases at larger x. The

bias in σa is very low for all particles using IMA, and larger errors of up to 70% are

calculated using RGA. The bias in σb is less than 20% for x < 5 using IMA, reaching

60% for RGA. More unpredictable errors are found for larger x. We are interested to

test whether these errors are cancelled out if orientational averaging is considered, and

plan to address that in future work. The asymmetry bias is small for both IMA and

RGA, showing results within 10% for IMA and 20% for RGA. This result is expected

as it is an integral quantity so is not as sensitive to the exact representation of the field
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at each point.

Using an aggregate of 7 dendrites, it was found that increasing the percentage of

mass from rime generally enhances the magnitude of the σs bias using IMA. Overall

the bias is larger using RGA for all rime percentages considered. Histograms of the

internal field magnitudes show that riming changes the distribution shape. However,

the distributions are very similar using IMA and DDA, suggesting that the increased

bias using IMA results from the method failing to predict the precise locations of

different magnitudes within the particle.

It was found that IMA does not satisfy the optical theorem, and hence extinction

should be calculated by summing the scattering and absorption cross sections. The

internal phase shift is not captured correctly, since each monomer sees the incident wave

only, and interactions are only considered within the individual monomers. The phase

error is more prominent within higher density plate-like aggregates than in dendritic

particles.

IMA was applied to a case study in chapter 6. The study involved utilising aircraft-

based in-situ and remote sensing observations. In-situ measurements from cloud probes

were used to construct a model atmosphere. Aggregates were generated which we

believed to be representative of the atmospheric conditions close to the time of the

measurements. However, it is important to note that the microwave closure experiment

is imperfect in design, especially for heterogeneous scenes like the one we are examining.

The time of remote sensing and in-situ measurements are different. Using in-situ

data is useful, but has the distinct disadvantage that the cloud is only sampled in a

small region, so particles may not be representative of the total cloud. Furthermore,

measurements are limited to capabilities of the particular instruments, e.g. the limited

sizes that can be measured by different probes.

The newly developed IMA method was used to perform scattering calculations of the

generated particles. The calculations, along with the atmospheric model, were input

into ARTS to perform polarised radiative transfer simulations. Comparisons of the

simulated results with remote sensing measurements from ISMAR radiometer were
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performed. It was found that IMA is capable of reproducing the brightness temperature

depression and polarisation signature, but the aggregates used did not fully represent

the observations. It was required that some aggregates at the cloud base were changed

to horizontally aligned dendrites in order to increase the V-H polarised brightness

temperature differences.

7.2 Future Work

In this thesis we have explored scattering by simple and complex particles. Analysis of

their internal electric fields has given us insight into the scattering processes involved,

and allowed us to propose and test approximations to the full DDA equations. It has

also allowed us to unpick the strengths and weaknesses of these new approximations

on a fundamental level. Our new IMA method is a promising technique for efficient

estimation of scattering by aggregate snowflakes - and we have applied it successfully

to a remote sensing application. We hope to further explore these new avenues of

research in future, and apply them to practical radar and radiometry remote sensing

problems.

The majority of the work presented in chapter 3 considers particles of fixed orientation.

On one hand it is a scenario that makes sense physically, as planar crystals tend to ori-

ent themselves horizontally [129]. Hence, the fixed orientation examples for plate-like

particles are similar to probing with radar at low elevation. However, we acknowledge

that plates may oscillate and rotate around the axis perpendicular to their face, de-

pending on the Reynolds number [130]. Therefore, the geometries included are unlikely

to be representative of all orientations. Although we considered orientationally aver-

aged results for the complex aggregate, it would be interesting to develop this work

by looking at orientationally averaged examples for all particles. Another interesting

extension to this work would be to investigate the evolution of the internal field as the

size parameter is increased to much larger values, which may be possible for infinitely

long, thin crystals, as described in Refs. [131,132].
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It was found that dendritic particles provide the best results with IMA, and we dis-

cussed that this may be because the effective density is lower than aggregates of plates

and columns. It would be interesting to investigate this further by doing some tests

keeping ρeff constant while comparing different monomer shapes. As another area of

future work, we plan to explore whether the representation of the phase lag could be

improved in IMA. A first step could be to include a local phase delay in the calcula-

tions, analogous to the implementation of WKB compared to RGA. We discussed that

WKB allows a change of phase corresponding to the propagation of the wave from the

particle penetration point to the interior location of the volume element. A similar

refinement to IMA could allow improvements to the performance of the scattering ap-

proximation, with only a small increase to computational intensity. Another method

could be to perform calculations for the monomers in order, starting with the first

monomer in the direction of the incident wave. Performing calculations in this way

means that a phase lag could be recorded and incorporated into the input for the next

monomer. We are particularly interested to see if these approaches result in improved

calculations of extinction using the optical theorem.

Overall, IMA is more accurate for lower values of refractive index m, size parameter

x, and effective density ρeff . It is probable that some combination of these three

properties provide the limits of applicability of the method. This will be developed

in future work. Once the further tests of the IMA method outlined here have been

performed, we plan to measure the time and memory improvements and publish the

results.

We also plan to publish the findings from chapter 6, where IMA was applied to a

case study. This will be beneficial to guide ICI developments. Since simulations are

sensitive to particle shape, it is important to accurately represent the particles within

the cloud, rather than making assumptions about shape. This may be done using the

multi-frequency information available from ICI. More accurate retrievals will be made

possible by utilising this information.
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Appendix A

A.1 Derivation of relaxation parameter η

The generalised overrelaxation method used by Kleinman, Roach, and van den Berg [2]

corresponds to the Purcell and Pennypacker [77] iterative procedure, provided we inter-

pret their relaxation parameter in a specific way. Let’s call β the relaxation parameter

denoted by α in Ref. [2]. In our notation, the iterative scheme in [2] is then:

Pn+1 = βEinc + (I− βA)Pn. (A.1)

Comparing equation A.1 with equation 4.6, it is clear that the parameter β is equivalent

to ηα in our notation, where η is our relaxation parameter and α is the polarisability.

The residual r of an iterative method provides a measure of how close we are to the

correct solution, tending to 0 for the exact solution. For a linear system Ax = b,

the residual may be defined as r = b − Ax or r = Ax − b. Most iterative methods

use the residual to measure when a sufficiently accurate solution has been reached.

The idea used by Kleinman is to choose a value of β that minimises the residual

after one iteration. Let us introduce a residual error Q := ‖r1‖2, and define the first

residual r1 = AP 1 − Einc. From equation 4.5 we can write P 1 = βEinc,j, and thus

r1 = βAEinc − Einc. The goal is then to choose β such that Q is minimised after one

iteration. We may separate β into real and imaginary parts, i.e. β = βr + iβi, and

choose βr and βi to satisfy ∂Q/∂βr = 0 and ∂Q/∂βi = 0.
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Let us now introduce an inner product of two vectors u and v, denoted (u, v) or

sometimes 〈u, v〉:

(u, v) = u1v̄1 + u2v̄2 + · · ·+ unv̄n.

We use the convention that the inner product is linear in the first argument and anti-

linear in the second argument, i.e. when you take the scalar β out of the (.,.) you get

a conjugation only if it comes from the second slot:

(βu, v) = β(u, v)

(u, βv) = β̄(u, v).

This is more commonly used in the mathematical community, whereas physicists often

use the reverse. We can now write the residual error as:

Q := ‖r1‖2 = (βAEinc − Einc, βAEinc − Einc) = a|β|2 − bβ̄ − b̄β + c,

where

a = (AEinc, AEinc) = ‖AEinc‖2, b = (Einc, AEinc), c = (Einc, Einc) = ‖Einc‖2.

Writing β = βr + iβi, we have:

Q = a|βr + iβi|2 − b(βr − iβi)− b̄(βr + iβi) + c.

Noting that the squared norm is: |z|2 = zz̄, the relationship can be written:

Q = a(βr+iβi)(βr−iβi)−b(βr−iβi)−b̄(βr+iβi)+c = a(β2
r+β

2
i )−b(βr−iβi)−b̄(βr+iβi)+c.

As mentioned above, we want to choose βr and βi to satisfy ∂Q/∂βr = 0 and ∂Q/∂βi =

0. Separating Q into real and imaginary parts, we may find the partial derivatives:

∂Q/∂βr = 2aβr − b− b̄

∂Q/∂βi = 2aβi + bi− b̄i.
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To minimise, we set:

2aβr − b− b̄ = 0

2aβi + bi− b̄i = 0.

Noting that <(b) = (b+ b̄)/2 and =(b) = (b− b̄)/2i, we may write β = βr + iβi = b/a.

Thus Q is minimised by:

β = b/a =
(Einc,AEinc)

‖AEinc‖2
. (A.2)

It was noted above that β is equivalent to ηα. Thus, for the relaxation parameter η

we have:

η = β/α =
(Einc,AEinc)

α‖AEinc‖2
. (A.3)

The dot function in Matlab computes dot(u,v) = ū1v1 + ū2v2 + · · ·+ ūnvn. Therefore,

in order to obtain the desired result of (Einc,AEinc) in Matlab, we may use the dot

function with the arguments reversed, i.e. η = dot(AEinc,Einc)/(α× (norm(AEinc))
2).
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rence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train

satellite retrievals,” Geophysical Research Letters, vol. 42, pp. 6502–6509, 2015.

[11] G. L. Stephens and Coauthors, “CloudSat mission: Performance and early science

after the first year of operation,” Journal of Geophysical Research: Atmospheres,

vol. 113, p. D00A18, 2008.

[12] N. B. Wood, Estimation of snow microphysical properties with application to

millimeter-wavelength radar retrievals for snowfall rate. PhD thesis, Colorado

State University, 2011. 231 pp.

[13] O. O. Sourdeval, L. C. Labonnote, A. J. Baran, J. Mülmenstädt, and G. Brogniez,
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