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Abstract

Tropical cyclones (TGsaka hurricanes and typhogrgenerallyform at low latitudeswith
access tdhe warm watersof the tropical oceanbut far enougtoff the equatorto allow
planetary rotatiorto causeaggregatingconvectionto spin upinto coherent vorticesYet,
current prognostiédrameworls for TC latitudesmake contradictorypredictionsfor climate
change Smulations of past warm climadesuch as théeoceneand Pliocengshow TCs
forming and intensifying at higher latitudésan preindustrial conditiosn Observations and
model projectiondor the twenty-first centuryindicate TCsmay again migrate polewarth
response t@nthropogenic greenhouse gas emissiposing profoundisksto the SODQHW {V
most populous regionBrevious studiergely neglectedhe complexprocessesccurring at
temporal and spatial scales of individual stosimeetheseare poorlyresolvedin numerical
models Here we review tis mesoscalghysicsin the contextof the responseso climate
warmingof the Hadley circulationjet streamsand Intertropical Convergence Zoi@CZ).
We concludethat twentyfirst century TCs will likely occupya broader range of latitudes
thanoverthe last3 million yearsaslow latitudegenesiswill be supplemented witincreasing
midlatitude TC favourability, although pecise estimatefor future migrationremainbeyond

current methodologies



41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Tropical cyclones(TCs) start asO(10%) km?® clusters ofindividual thunderstormsveakly
rotatingaround acommonaxis. The transitiorinto aTC involves increasg vorticity by two
orders of magnitude produe surface wind®ver 15 ms**!: althoughit may take weekéor
disaggregated convectidn fully transform into acycloné®!. Once formed TCs generally
move poleward and westwalzkefore interactng with midlatitude westerliesand weather
systemsand in some cases transitiog into frontal gstems(Fig. 1). Locally, the physics of
evaporation, friction, convectionentrainment, and radiation determine the vortex
lifecyclé®*], Box 1 summarizeghese core elementin TC formation,intensification,and
propagation + the TC lifecycle How this local physicsand the equatofto-pole TC
distribution relate toone arother has been discussed for at least a cehtugnd yet
fundamental disagreemeabout how TClatitudes depend onclimate persist$?. In this
review we will synthesize recent advancasd attempto connectthe heuristic view above
with a welldefined physical basis f@ C latitudinal distribution.

One of thecentraloutcomesof this reviewis to establishthe fundamentalolesthat
convective mesoscalgrocesseglay in linking climatological TCoccurrenceo largescale
atmospheric dynamicen different climates This emergent view is novdbecause the
lifecycle evolution of TCsand its intrinsic mesoscale procesdeaje historically been
overlookedin TC climate studiednstead, thdocushas beeron whether or noffCs would
emerge from a given climatology of wind, temperature and humidity!’?! (see section
fdropical Cyclogenesisas a Dynamical Process). This well-establishedframework is
underpinned byempirical genesis potential indic§§GPIs)- bestguesses at the functional
forms and coefficients for controls on TC formatibvat arecalibrated against the observed
TC distribution. Often GPIs areused in tandem with simpl€C models eithempassively
propagatingcyclonesthrough environmental wirsdsee Box ) andneglecting thie two-way

interactiors with the atmospheri@nvironment NQRZQ DV pVWDWLMWLFDO GRZQ\
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These diagnostic methods are adoptemh part becaus climate simulations with
General Circulation Models (GCMsSjtruggle toresolve realistic TCE?. A contrasting
approacmess higherresolutionmodels within lower resolutioones NQRZQ DV uG\QDPLF
G R ZQV F.Bahdyrafnical and statisticalownscalingapproacheare usedo enumerate
how past,presentandfuture climatesprodue TCs (se V H F W L RResprd3 DAVid\Potential
Latitudinal MiJ U D W LB prfiblem is thathtse contrasting approaches yiefastly
differing interpretations of twentfirst century climate projectioH§M* 1121131 \which thus
establisheghe necessit for prognostic understanding tte relationshipbetween TCsand
climaté®l. In this review, ve concludethata joint consideration ahe convectivemesoscale
processes occurring withiliCs and the largescale dynamic®f the atmospheric Hadley
circulation, Intertropical Convergence Zone (ITCZ) atrdpospheriget streams enaldea
new frameworkfor understanthg the relationshipof TCsto climate (sesHFWLRQ H/LQNLG
MesoscalePhysics tolarge 6 FDOH & O L P D W As tisguzétllafey these linkshave

implications for reducing uncertainiy projectionsof twenty-first centuryTCs.

TROPICAL CYCLOGEN ESISAS A DYNAMICAL PROCESS

As a core methodology in modermC-climate studies, GPls reproduce the broalrush
characteristicof observed TC genesiparicularly at thebasinaveragedscalé®!. GPIs do
significantly worse at reproducing characteristicef TC genesissimulated in GCM
simulation§**1. We note thatvhile appropriateGPI formulationsshouldonly usevariables
explicitly relevant to TCphysics,they often usefree troposphericelative humidityrather
than water vapor saturation deficibr free tropospheric dryneseelative to the boundary
layer) as the moisture variable despite established physical relevance of ldtéer but not
the formef*>. While GPI variants perform equally weilh reproducingTC genesiatterns

of current climatethey diverge indescribing future chandgé¥. Moreover the greenhouse
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warming response ofn individual stateof-the-art GPI, that usedhe physically consistent
moisture variable of satation deficit was shown to change sign whéme empirical
coefficientfor that variablevas modifiedwithout degrading the fit tmbservationd™. More
troubling still, the statisticalrelationship betweethe time-mean environmental fieldssed to
calculate GPland TC distribution isiot necessarilyconsistent between the observatians
models, and between modelsingdifferent dynamical coresesolutionsand physic$®/17].

Behind GPIs is the assumption thatlimatological tropical cyclogenesjs
approximatd as genesis potentias, alocalisedprocessThis assumption therefoedbstracs
awgy the complex set oplanetary,synoptic and mesoscalprocesses that give rise to the
observational distributions against which GPIs are calibraléé. problem is that thse
processesresuling in cyclogenesis and intensification occur ovarwide range of
overlappingspatial and temporal scalaadcan be dislocated from one anottfdft8119120.
(see Extended Data Kigl and 2 for exampls). This issue likely gives rise to the
aforementioned apparent limitations of GAIkus, to generate fundamenta@derstandingf
physical controls over TC distributiomith robust prognostic skillequires making explicit
the links between the synoptimd mesoscalprocessesnherent to TCsand the largescale
dynamcswithin which they emerge, intensify, and dissipate.

It is remarkable thathe relationship between convective mesoscal@rocesses
underpinning TCsndlargescale dynamicastructureshas been largelignored® 2! since
the first GPI was publisheidd 1979”7, This isall the morestriking because octh observed
TC genesis is embeddeuthin the belts of climatological convectin that are very well
studied roughly 70% of first recordedl C positionsoccurwithin the ITCZ (inside the green
contour in Fig.2a). Idealised simulations historical evidence,and paleaclimatological
reconstruction&®1?#12%1 g]| find strong relationships betwedfiCZ characteristics and TC

frequency.



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Diversity in TC genesigmechanismgFig. 1) is part of this problem andresents a
challenge forderiving a simple prognostic framework foC genesis and intensification
While typically TC genesisoccurs in nonbaroclinic largescale environments,30% of
genesis evenido involve baroclinic influacé?”. Globally, one in six TCs form vigropical
transitionflwherdoy transient uppetropospheric disturbancdsgger deep convection and
low-level moisture convergenagoon coincidng with lower tropospheric lowé"! (Fig. 1b
and Extended DataFig. 2). This processis possible over much lowesea surface
temperatures (SSTs,17°C) and at higher latitudes (>40l) than canonical TC genelfs.
Theseupper tropospheric disturbancesginate from anticyclonicwave breaking following
planetary wave amplification and thus have strongestablishedsensitiviy to planetary
warmind®®). GPIs computed at higher frequency can capture sBrheW Kabh\raditional ]
genesis pathwayicluding polar lows and Mediterranean hurricatié$Extended Datéig.
3), but these routes apmorly captured byGPIs computedrom monthly mean variabless is
done nearly universallysignificantly, genesigathwaysthat are marginal in thpresentday
may have beemonmarginalin the past ananay become nommarginal againas climate
Warm§31'][32'][33'][34'].

Most noncanonical genesis pathways occuron the polewardedge of the TC
distribution On the equatorward sideonvectively coupled equatorial waves (CCEWS)
easterly waves (EWand the Maddedulian Oscillation (MJO)play a criticalrole in TC
genesis and intensificatioff!, which further FRPSOLFDWHY DQDO\VLV
favourability. Thesesynopticand mesoscaleonvectivephenomenaanall triggerconvective
aggregatiorbut also interact witteach othef*>!. CCEWs areestimatedto be involved in
~85% of North Atlantic andwestern North Pacific T@enesis everf§®"1 enabling the
necessaryonvectiveorganisation forgenesi§®!. However,this may simply determine tk

location and tirng of genesis not overall TC frequené&y’. Indirectly, CCEWSs can

R
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141 condition the atmosphere teither encourage or suppress TC genesis locally as their
142 convective anomaliesiodulatevorticity, temperaturemoisture,andwind shearat a range of
143 scales They alsoinduce remote responsd& 421421 sych asfar-field suppressiorof TC
144 potential intensity (Pl;see Bx 1) via upper tropospherictemperature homogenisation
145 maintainingweakhorizontaltemperaturgradiens in the tropicqthe WTG; see Bx 1).

146

147 PAST, PRESENT,AND POTENTIAL LATITUDINAL MIGRATIONS

148 (a.) Paleoclimate reconstructiorasmd modelling

149 At geologic timescak it is likely thatthe secularcooling throughout theCenozoic
150 (the past 66 millionyears)resulted inthe contraction of latitudes witboth high genesis
151 potentialand Pltowardsthe equatoin both hemispheregFig. 3)**. This waild have been
152 coincident with contraction of the Hadley circulatioand equatorward shifts in the
153  subtropicaljet streamé®). During theEarly Eocene climate optimum (8L million years
154 ago) +the warmestprolonged climate interval of the Cenozoic *+ palecproxies show
155 atmospheric C@concentrationground1400 ppm(with a very large uncertainty ran§fé’).
156 This may haveresuledin the equatoto-pole temperature gradiebeingup to 10 °C flatter
157 than themodernerd**1®! and summertimesurfacecontinentaltemperatures in the Arctic
158 reachng ~23 °C*"1. During the geologically brief Paleocendocene Thermal Maximum
159 (PETM, ~55 my3, thesedifferences were likely even moreaggerateld®!141,

160 While the circulation dynamicsassociated withEocene climate remainunder
161 debat&>*%1 available reconstructions amfimate modek forced withEocenecontinental
162 configurationand CO, concentratioa suggesincreased extratropical humidjtgolewardjet
163 streamshifts and Hadley circulationexpansion relative to pres8ft’IPLIB2I53]  Thjg
164 impliesamarkedpoleward expansion of areas favourabl& @formation aml intensification

165 (Fig. 3;ExtendedDataFig. 4). Eocenesimulationsshow genesis potentiaéntred arounthe

10



166 subtropics (~25 degrees latitude)both hemispheres in contrast to the modern era where it

167 dominates theleep tropics£10 degrees latitudi***)(Fig. 3c) Moreover, a recent PET

168 simulation using a 25 km horizontal resolution atmospheric GCM shows very strong

169 VXSSUHVVLRQ RI ORZ ODWLWXGH 7&V (3DDGEegeesatituie)P LV SKF
170 producing many TC¥! (Figure 3b). These results agree with clsydtem resolving

171 simulations of aidealizedEocenelike climatd®*! (Fig. 5, yellow line).

172 Contemporary TC distributions were likely establislsednetime towards the erd

173  the warm Pliocen&?*1**1 (2.6.5.3 million years ag). For most of this periodyroxy-based

174  reconstructios indicateatmosphericCO, concentrations350-450 ppn>!, latitudinal SST

175 gradientsup to 5°C degrees flatter than preséht and surface westerlies weaker and

176  possiblymore poleward’!. In addition, Pliocene climatenay havefeaturedan expanded

177 low-latitude warm poqgl reduced equatorial and coastal upwellingveakened Hadley

178 circulation and TC activity enhanced and shifted polewaedative to preseff-1°8I>91601,
179 During the late Pliocene atmosphericCO, decline among other factorded to the
180 establishment of colder climate pattemgminatingwith the onset ohorthernhemisphere
181 glaciation®. This marked the start of a peod, endng in the present century, when
182 latitudinal variations infCs became more muted and wgmemarily controlled byorbitally
183 driveninsolation changeand resultant glacial cycleshorter millenniaklimate variability,
184 and varying aerosol emissions

185 GCMs forced with continentalice sheet reconstructions and low atmospheric CO
186 concentrations (185 ppndicatethat WK H S OO disttilditiont during the Last Glacial
187 Maximum (LGM, 21 ky.a) was notsignificantly different from the presentday albeit mean
188 TC intensity was likely lowéP 153141 These models howevetisagreeover largescale
189 atmospheric circulation structue, specifically over whether the southern hemisphere

190 subtropical jet was poleward or equatorwagthtive to moderrand whetheratmospheric

11



191 convectionin western Pacifisvas stronger or weak&t®®!. Sincethe LGM, nulti-millennial
192 scaleTC variability was likely dominated by the slow increaseha boreal summer equator
193 to-poleinsolationgradiert until ~10 kya and the subsequent deeliassociated witbrbital
194  precessioff’). The increasd insolation gradient the precession minima10 kya)may
195 have causeamplified tropical convetion and strengthened midlatitudpetg®8 1691701711,

196 Thisseems t@orrespond teuppressedenesis potential ahe most equatorweTCs®"",

197 Orbitally driven variations were punctuatedby millennialscale abrupt climate
198 changesincluding the cold Heinrich and the Younger Dryasvents.The slowdown of
199 Atlantic Meridional Overturning Circulatidff! (AMOC) typically associated with those
200 eventscooledthe North Atlantic sumpresing PI®”). The increased meridional temperature
201 gradientin the northern hemispherevould haveled to an intensification and equatorward
202  shift of both the subtropical jet attthdleycell”*1*] presumablysuppresisig higher latitude

203 TC genesis and intensificati6i. Changesn largescale climateover the last 21 thousand
204 years (CO, ~180280 ppm) were likely smaller in comparison to changes driven by
205 atmospheric Cesincethe EocenéCO, ~500-2000ppm)and PliocenéCO, ~300-500ppm)

206 in particularmean ITCZ shiftsincethe LGMwere probablyess than 1 degree latitdéfd.

207 Atmospheric arosolsprovide an additional control on shorter timescales. They were
208 suppresst GXULQJ W KShhatd perdd Qentredaroundthe midHolocen&®17"! (6

[78] Mineral dust has

209 k.y.a) but sporadicallyincreasedfollowing volcanic eruptioré>’
210 hemisphericallyasymmetric impaston temperature, and consequentially ITCZ locatidn
211 and tropical cyclone latitud€s!. Furthemorth reduced dusincreasesSSTs, which resultsn
212 Pl increases andpoleward gt shifts expanding regions of tropical cyclone
213 favourability*>1"¢I’"] Moreover, North Atlantic TCs wereprobably shifted poleward

214 relative to presentas Sahara greeningcaused apoleward displacement of easterly

215 waved®I77],

12



216 Over the last two thousand yearsdel simulation base@Pl and Plshow nosecular
217 trends prior to the Industrial Revoluti6h®®l. Integrated Atlanticpaleatempestological
218 records (16 =32 °N) howeversuggestpersistent poleward migratioof eastern tropical
219 Atlantic TCs over the last 450 years in concert with ITCZ walel migratioﬁal']. Other
220 records show TGQCactivity shifting from the Caribbean and Gulf of Mexicoward the
221 Bahamas and New England around A.D 14fdrelated with warnecentral tropical Atlantic
222  SSTs prior tathis shift and arelatively warmer western North Atlantiafterward$?!. This
223 would have been coincident with high basitegrated TC activity in the MedievaVarm
224  Period(MWP; A.D. ~900 +1450) followed by a lulburingthe Little Ice Ag&3! (LIA; A .D.
225 ~1450 +1850).Palecreconstructions andistoricalevidenceimply polewardwestern North
226 Pacific TC and ITCZ shifts during th8IWP and equatorward shifiduring the LIA2*184],
227 The North Atlantt poleward and western North Pacific equatorward TC shifts across the
228 MWP-LIA transition occurregdpresumablywith Pacific warm pool coolingPacific Walker
229 circulation weakeningEast Asian summer monsoon weakeniaigd a narrowing and
230 southward shift irthe ITCZ®®*I%] Finally, tree ringsuggesa secular twentieth century TC
231 poleward migratiorin the western North Pacifi@3-45 °N)®°,

232 TC activity may also fluctuate with changes InENSO, Atlantic Multidecadal
233 Variability (AMV) andthe Pacific Decadal Oscillation (PD@)er centennial and millennial
234  timescale®*I®”). TheMWP-LIA transition arguablymarked an increase in ENSO amplitude,
235 a change from predominately negative to predominately po#dwe , and change from a
236 persistent negative PDO state tonamted PDO signal réf. 81 reviews these modes
237 throughout the HoloceheMost casualnterpretationsof TC latitudinal variability in the
238 palecremrds over centennial to millennial timescadgs understoodrsia connections to the
239 ITCZ, often mediated by ENSO variabift§®*18%] Further, TC coupling tolargescale

240 stationarycirculationfeaturedike the subtropical highis alsorecognised®181-1%91,
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‘H VWUHVV WKDW UHFRQVWUXFWLRQV sBffer Takg¢g W KUR X
uncertainties. Model biases and uncertainties in boundary conditions and radiative forcing
diminish the utility of climate simulationandtheir GPI estimatesThere is even continued
debate over how TCs arilentified and trackedin these numerical simulahd™®’.

Conversely, proxypased TC reconstructions only record local storm transits and are biased
towards intense events near coastlfiés while @ntennial ‘weriablity in individual
paleorecords of intense TGway berandom and not reflective of largeale climate
dynamic§?!. Thus, synthesising paléwrricanes records is important, yet complicated by

significant spatial undesampling’”.

(b.) Poleward TC migrationn recent observations

Subtle but robustpoleward trends of 5343 and 62+48 km per decad&! in TC
seasonamean LMI latitudesare detectable in observations of the northern and southern
hemispheres respective(t982 to 202). While theseestimatesare largely drawn from
analyses ofthe IBTrACS archive,which aggregatgs multiple records such poleward
migration is found across different datasatsl also forgenesis latitudé¥1°>1°¢] The
magnitudes of these tremdiepend on the period and TC intensity considéredife-time
maximum intensitys usedsinceit does not rely omabsolutentensity magnitudes kch are
inconsistently recorded and poorly represented in reandlySld. Dynamical reanalysis
datareproduce TC LMI latitudes mostly within a few degred observatiod¥. However,
simulated TCs tend to persist too long into high latitudes where they expand radially and
become better resolved thachieving higher intensities there and distorting higher latitude
(>30°) LMI estimateS’’. Thus, satellitsbasedrecordsprovidethe most reliale sourcefor

trends inTC latitudes
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Over half the recently observed poleward migration is explained by intebasin
frequency changedHig. 2d), with the North Atlantic (average LMI,200 km from the
equator versus hemispheric mean ¢f50 km) and SoutPacific (1,990 km vs 1900 km)
increasinglyproducing more cyclones relative to other basirthe saméiemispher@*°81,
Poleward migration ialsonot uniform over LMI latitude percentil€s! andone of themost
equatorward hurricasen record occurred in 2016 (Hurricane PaR.3°N. Thesepresent
day trends appear to bassociated witlthanges in both the ocean (SST patteFis 43,
and atmospheric thermodynamics [(Rtig. 40, and dynamics (vertical shear, largeale
tropospheric wind§§*1°¢19%1  Additionally, genesis potential has increased during this
period (Fig. 4e)Twentiethcentury gobalmean SST increasenay have forcethcreass in
storm radiiin the western North Pacificd'%], These &rger TCs tend to propagdtether
poleward following increasebdeta drift (Box 1l)andinteraction withthe subtropical his
and topical upper tropospheric troughs (TUTHY). These poleward migration trends are
coincident with increase rates afservedextratropicakransitiod**?,

In addition to observed gradual poleward migration, pronounced transient zonal and

4§91 puring

meridional TC migrations occur in response 830, PDO and AMV cycle
negative PDO phases (warmer SShsthe western and central subtropical Pagific
maximum P! latitudes extend leward, encouraging higher latitu@acific TC genes®*!.
Poleward migration of North Atlantic TCassociatedvith ENSO occurdollowing both
dynamic and thermodynamic suppressmlow latitude TCs During El Niio, Pacific
Walker circulation weakeningintensifies uppertropospheric westerlies over the North
Atlantic amplifying vertical wind shear over the Caribbeand eastern Norther
Pacificl!®®11% \while CCEWs originating in the Pacifiqpush the tropicaNorth Atlantic

atmosphereout of thermodynamicequilibrium with itsunderlying SSTdo suppress TC

genesié!,
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Over the past threw four decades thevest-east equatorial SST gradient across the
tropical Pacific has strengtheneuth the eastern equatorial Pacific getting colder while the
wesern Pacific warme, and the Walker circulatiofintensified'?” 1?1191 This trend
pattern may reflect a negative PDO phase with possible contributionsaéoeol effects
anda thermostatike response to greenhougasforcing%®!. Transition to a positive AMV
circa A.D. 2000'%1110%1 gnd greaterinter-basin temperature contrd&i5! arealso invoked
to explain ths strengthening of the Walker circulatioRegardless of the cause, the stronger
Pacific Walker circulationhas intensified vertical wind shear over tleguatorial central
Pacificand thedeep tropical North Atlanticontributing to TC poleward migratiBfi™%,

In contrast by century] ¥nd a relaxation of the SST gradieatross the Pacifiwith
pronounced eastern equatorial Pacific warnangd corresponding weakening of the Walker
circulation are projected innearlyall CMIP6 model$°®1. All else being equal, this would
correspond to lower vertical wind shear over #ugiatorial centraPacfic and equatorial
North Atlantic an equatorward ITCZ shitind thusencouragd low latitude TC formation

and intensification.

(c.) Simulated climatehange

IdealisedaquaplaneflC simulations (no continents, seef?*! for a review) have
been conducted with atmospitermodels and fixed SSTs or simplified pV @dea
representatioof fixed oceanic heat transpdsia the g-flux fabstractioh These Bnulatiors
generally neglect zonal climate asymmetriesd the seasonal cycleand have other
limitations. For example only models with dynamic oceanic heat transport can provide
strongnegative feedback on ITCZ displacements. Consetigily, changesn ITCZ position
and strength undefrariableclimatc forcing differ dramatically between aquaplanet and fully

coupled simulatios xin the former the ITCZanmovepoleward by 120 degreesatitude
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while in the latter ITCZintensity changes but its shifts do not exceed ddgre€*. In
addition, aquaplanet ITCZs are sensitive to model resolution andonvective
parameterisatidh®’,

Nevertheless, aquaplanet simulatiovith imposedatmosphericrossequatorial heat
transportvariationssuggest & C genesis scalingf a 40 %increase in global TC frequency
per degreef latitude of poleward ITCZ shift'*]. However, hcreasesn TC genesis can
occur on warming aquaplansteven with an equatorward ITCZshift as changes in the
subtropical jetand eductions inmidlatitude baroclinicity increag the likelihood of TC
genesis(Fig. 5). Aquaplanet TCactivity appeas to be correlatedwith atmosphericstatic
stability butis only sensitive to vertical shear abaveertairthreshold value~5 m s; M4,
The climatological relationshipf TC latitudeswith Pl seems to be weak and non
monotoni€ 1321141 Rather, poleward migrationeflect the aerial expansion of higtr70
m s PI values.These poleward migratiorfsllow tropical expansion, but not simplihe
concurrentlilation of the Hadley circulatid?i’.

Full continent slalbcean statistical downscalingexperiments withlarge CQ
increass (x8 and x32 preindustrial concentratjishowLMI| poleward migration (8°, 7.4°
respectively) and prolonged TC lifecydféd Overall maximum PI does not increase with
these hypeexaggerated warmgs (consistent witmef. **Y). This statisticaldownscaling
method involvesnsertingO(1(°) artificial randomweak vorticity anomaliegreferred to as
7& MV HVE thE§ global ocean an effort to simulate realistic pfEC disturbances which
+as we stress abovwemay come from a numbesf spatially and temporally variable
processespotentially poorly resolved in GCM¢$Fig. 1 andBox 1). Most of hese artificial
vorticity anomaliesdecayrapidly, but a few survive andre thenpassivelyadvected bythe
largescale windsand beta drifttComputing he thermodynamicsf these vortices yieldhe

correspondingTC lifecycle (i.e. the progession through genesis, intensification and
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cyclaysis; this methodology does not represent extratropical transifldm@resultsfrom this
approachdepend on the number &eeds used and thuthis methodrequires calibration to
reproduce realistitC frequency*>!.

Some oupled X and4x CO, experimentsvith dynamically simulated’Cs exhibit
small poleward shiftof severaldegreesf latitudein the northern hemisphét®, butother
coupled 2CO, experimentdind zonal but not polewardC migration®. Ref. *®! find that
in these experimenttie pre TC synopticand convective mesoscadesturbancs, definedas
seasonal variance in1) day bandpassl 850 hPa vorticityare the principleatmospheric
driver of TC frequency responsg in increasing C@ simulations Such TC source
disturbancesrefoundto behighly concentrated within climatological convectigthe I TCZ
and Pacific Warm Pdp with potential linksbetweentheir frequencyand time-meanlocal
troposphericpressure velocity #!*). This result contrastswith statistical downscaling
methods that assume a constant numb@&iCof V H H(tRaattificially inserted prelC source
disturbances)but deesnot invalidate the ranBP VHHGLQJ DSSURDFK DV ORQJ D
sufficiently weakandnumerous.

Attribution work using coupled models fintlsatrecent TC distribution changesevery
likely anthropogenically forcétt’!. However, CMIP5 mode$ and various regional
downscalingexperimentsproject a range of21%' century TC migration scenariosfrom no
further migration to poleward LMI migrationof a few degreeqbut less than the 5 degrees
implied by continuation of the ¥ degree per decade f8hdand zonal migration of Pacific
TCSHMBIM9] Early analysis of CMIP6finds no consensus or21™ century distribution
changesn explicitly resolved TC$*! but statistical downscaling shows poleward migration
in the northern hemisphereparticularly in the North Atlantit”. & OLPDWH PRGHO"
dynamicallyresolvedTC activityis projected to bglobally suppressed bgreenhouse gases

however,statistical downscalingredictsincreass in line with monthlymean GPI values
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365 that reflect increasg Pl and decreasingvind sheartemperedagainstincreasing mid
366 tropospheric relative drynd§st#1t20]

367 Some broadpatterns inendof-century TCpredictions have been establishaithough
368 the statisticalreliability of these findings dependgon the selection of climate models
369 studied.In the northern hemispheyelfC poleward shifts of dew degrees in the North
370 Atlantic andboth sides of th&lorth Pacificalongsidethe suppression of the most western of
371 Pacific TCsis found in some but not all analy§8sI*2-11221 Thjs js accompanied by a shift
372 in Pacific TC activity towards the central Padifit! and increasing recurvature of western
373  North PacificTC tracks''#1*2*1 southern hemisphenerojections show no clear deviation in
374 TC genesislatitudes between current and future cliffaté*®!. However, satistical
375 downscaling of CMIP6 modekhows a significant poleward expansion D€ activity both in
376 the North Atlantic andSouth Indian oceanS. All these projections ofincreased high
377 latitude TC activity under greenhouse warmiage consistent withother projectionsof
378 increased ratesnd intensityof extratropical transition in the western North Pacific and North
379  Atlanticl*?®112611271 aqditionally, TC translation spedis projected tadecreasever the21™
380 century, following poleward shifts in the midlatitude westerlies, which would increase
381 midlatitude TCtrackdensity*?%!.

382 While GCMs do reproducemodern TC climatologiesreasonably well, strong errors
383 persist particularly at the distribution edg&d'®I1®1 Models overestimate historical
384 genesis rates in the central North Pacific and the southern hemisphere but underestimate
385 eastern North Pacific and North Atlantic 4311291 = Although SST patterns are
386 considered the principal cause behind spreads in projected TC climatofddfidsthis
387 implicates a complex set of processes such as AMOC slowdognadiative feedbacks

388 Moreover, inte-model spread in projected SS€annotaccount entirely for the lack of
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consensusnd anotherlikely factoris differences nPRGHOVY UHSUHVHQWDWLRQ

deep convectidtf® 11301,

LINKING MESOSCALE PHYSICS TO LARGE-SCALE CLIMATE DYNAMICS
An emergenthypothesisexplaining recent TC poleward migrationrelates it to observed
tropical expansiothrough the areal expansionloiv vertical wind shear anligh PI regions
of the subtropid&*!. Thisinvokeschanges irthe latitudes of the descending branches of the
Hadley circulationand midlatitude jet streamPl has increased in recent decades (#iy.
and modelsimulationsindicatethat changes infC distribution track the aerial expansion of
high PI value€®I™*l Such an expansionyhich follows increasing modified Carnot
efficiency andlower TC outflow temperaturg®ox 1), is present in the recent record (Fig.
4d,f). These resultdroadly agree withthe Eocene and Pliocermaodel reconstructions
showing wider tropics during those epochs coincident with higher latitude TC activity.
However,assumptions of tropical expansicausally drivingTC poleward migratiomequire
careful examinatiof*!. As thelimitations of GPIs anexisting frameworkbave shown, the
challengelies in integratingthe sensitivity ofconvective mesoscalgrocesseso planetary
temperatureZLWK WKH VXPPHUWLPH PHDQ FLUMmM@DtHeRrQ TV EUR
stream shiftsHadleycell expansiorand ITCZchange%®! 113211331 eachdriven bytheir own
distinct set of dynamics

One major confounding aspect of proecbased understanding of recent subtropical
decrease in vertical wind shear and incedasP®*! is the link or lack thereof+between
changes irthe Hadley cells and the subtropical jet. &2° per decade poleward expansion
Rl WKH +DGOH\ FHOOV QRUPD O On b¥ idéntifivd knEe@@Imdrids uWKH W
and datasets$?!. However, norobusttrend is found for the subtropical &/, despite the

expectatiorthat they would covary because the subtropicaketbles strongertical wind
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1351 The much weaker

shearand the Hadley celterminateswhere the sheais maxinal
poleward trend if any, in the subtropical jet implies thalifferent aspects of tropical
expansion are only partially coupl&§’,

The latitude of theHadley cell edge is however negatively correlatadnterannual
timescales at least in CMIP5 modelsyith the strength (not latitude) of the subtropical
jet™") Furthermore, the coherent midlatitude jet stream in the-tiv@@n zonamean
circulationrepresentshe supeposition of two distinct yet dynamicallyconnectedeatures:
the subtropical jet and the eddyiven jetat higher latitudesThe Hadley cell edge shown
to be positively correlated with the latitude of the edtyven jet**®) but not ofthe
subtropical jet While midlatitude baroclinicity associated withthe eddydriven jet is
relatively weak during TC seasons,siill produces significantind shea*!. How this
relationship between the Hadley celtige, eddydriven jet latitude and subtropical jet
strength affects the synoptic and mesoscaleprocessesof baroclinically enabled TC
genesi8®! intensification andextratropical transition (Fig. lbd)emains apressingopen
research questiondeed,this type ofTC genesisbecomes commoim the midlatitudesn
idealisedmodels ofwarm climate§-IF#133134] in particular when the two jets splfig. 5
Extended Datdig. 5). In these simulations the summer subtrapiet shifts equatorward
while the eddydriven jet shifts poleward.

A separateexplanationfor recentTC polewardmigrationinvokessuppressed genesis
in the deep tropicscaused byincreaseddry static stability in the warming tropical
atmospheré®! (Fig. 4a). However, he extent to whichchanges irtime-meanstatic stability
effect actual TC processes unclear. We suggest thstatic staldity is best viewed as a €o
factor with Pl since both are related @mosphericlapse rats. In fact concurrent
observations exhibit lonterm increases imigherfrequencyCCEWs$?! and increasein

ITCZ precipitation Extended Dataig. 6), which contradicts the assertion that increased
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time-meanstatic stabilityimplies less convective activitesides SST increasé the deep
tropics also leads toboth greater mietropospheric uV D W X U D W [(dR @Qop&phieié L W
dryness relative to the boundary layer a wellestablished thermodynamic TC
inhibitor*>1*] andpotentially alsgoleward shifts irthe midlatitudewesterlie§**], which
would likely correspond t@erial expansion of favourable TC latitudes with high Pl and
lower vertical shear

Another core aspeat discussions of TCs and climate changd (SZ migrations and
dynamics even thougHTCZ responses to warmingiay depend on thenetric considered
and have been muted during recent climate chiEfigdespite large intemodel differences,
overall precipitation responses in CMIR6odelsshow a strongenvider, and equatorward
ITCZ by the end of théwentyfirst century (Fig. 6 Extended Data Figr), which follows
changes in SST patterns acwhstraints fronthe ClausiusClapeyron relatiorfthe 3ZHW JHW YV
Z H W peddigni*>Y). However, unlikethe precipitatiorbasedmetricsusedhere circulation
measuresomputed forin the previous CMIP5 modekhowed only little ITCZ latitudinal
changes, with muted narrowing camveakening®!’. Reconciling theselifferenceswill be
critical to understanihg changes iow latitude TCs in th@1% century.

Idealised simulationsonfirm that he further offequator the ITCZ is, the more ambient
vorticity is available for TC gene&id**®. The wider and stronger it is by precipitation
measures the higher free tropospheric specific humidity is likely to®Ye Lastly,
experiments with the moist shallow water equations indicate that a more poleward ITCZ is
more susceptible to barotropic instabifif/’. All thesefactorswould enhance TC genesis
but howtheseidealizedinferencesof TC dynamicgelate tomore realistidTCZs, and GCM
biasesis not yet fully examined

Changes at both the tropieaktratropical margin and within the ITCZAlso raise

guestions about thdegreeof independence betweesource disturbances farCs and the
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maturecyclonesthemselvesFor examplesuppressing easterly waves in the North Atlgntic
the primary source of pré€C disturbances thermayalter the location and timing of genesis,
butnot overall TC frequenéy’. Moreover the stronger the ITCZ is by circulation measyres
the more initial disturbance®may be available for TC geneSi¥'®!. However, he ITCZ is
strong and well defined in the central North Pacific where TC genesis is $paysea)
confirming that the climatologes of source disturbanceand TC developmentcan be
dislocated

Indeed,convective oganisationis possiblethroughmultiple pathwaysuch asCCEWs
MJO, easterly wavedarotropiclTCZ breakdown convectiveselfaggregation andn the
Indian Oceanorographically induced vorticBd32 1145146147 (Fig 11y Yet, investigating
the resultantpre TC disturbances with contemporary clima@Ms is problematicsince
modek struggleto propagateonvectivedisturbances realisticallyecause ofheir mismatch
between surface wind convergence and precipitation patternaused by convective
parameterisatiof4®!. As the realism ofnodelsimulationsimproves, it will becone possible
to ask:What isthe best way tadentify thesepre-TC convectivedisturbance® How strongly
are these disturbancdsmked to CCEW® What are the climate sensitivities of these waves
and disturbances®ow are they affected by changedTCZ latitude width,and strength?

While the previous paragraphdiscussedthe potential links between convective
mesoscal@rocesseand largescalecirculations, banges in the thermodynamic contribution
to TC genesis andhtensificationfavourability are also critical. These are likeigd to SST
changes witlgreenhousevarmingasPI increases in a pattern not dissimilatrpical SST
changeqcompareFig. 4 a and ly which may beelated torecenttime-meanenthalpyflux
increase(Extended Datd&ig. 8) concomitant with SST warming (Figa)*'%!. At the same
time, sincemost atmospheric moisture is the lower tropospherand its contentgrows

exponentiallyfollowing the ClausiusClapeyronscaling the lower levelsgain more water
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489 vaporwith warming than the fregoposphereThe resultantincreag in therelativedryness
490 of the free tropospher(with respect to the boundary layetiscourags genesi$*®.. This
491 effect couldbe the strongesthermodynamiccontrol over TC formation in a warming
492 climate'™, but since moisture in thieee tropospherés not controlled by the WTGt can
493 vary across longitudeanddepend orthe largescale tropical circulation (Box 1)

494 This entire discussion hasden focused on how thg/noptic and mesoscale processes
495 critical to the TC lifecycle respond to climate changes manifesed in the timeaveraged
496 planetaryscale fields. We have neglected consideration of feedbdck€® upon climate
497 itself. Threeparticuar effects arenotavorthy: the effect of TCsn drying free tropospheld,
498 7&V Y UBROupper@ceamixing and ocean heat transpoft!®*I491150] andlow-cloud
499 suppression by TES'. These effects are not wélandled byGCMs and may significantly
500 affect their responses tadiativeforcing, especially in palegontexP*1%],

501

502 IMPLICATIONS FOR TWENTY -FIRST CENTURY WARMING

503 Thecontemporary distributionf TCswaslikely establishedluringthe late Pliocenearound
504 3 million years ag@andhas beerslightly modulatedsince therby glacial cycles on orbital
505 timescalesabrupt climate changes on millennial timescafgadual aerosol variationand
506 volcanism on swdecadal timescale$he warm Pliocenéatmospheric C®~400 ppm) and
507 warmer Eocene (000 ppm) epochslikely producedTCs at significantly higher latitudes
508 thanthe preiindustrial climate (~280 ppm) However, ecent tudieshave beerdivided on
509 whethertwentyfirst centurylevels of atmospheri€0O, (400 +1000 ppn***! will indeed
510 result in a continuation of the present poleward trend in TC acti@gymplied by those
511 warmpastclimates.

512 Since at leastthe 1970, the planef] WYC distribution has unambigusly altered

513 evidenced im polewardmigration in latitudes of peak TC intens#y a rateof ~1/2 degree
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514 latitudeper decadeThis subtle but robust polewastiift has occurreduring an expansion of
515 the tropics at approximately the same tatéduringa period of stable latitudeof thelTCZ
516 and subtropical jetDuring the21™ century, respating to increasg atmospheric Cg the
517 global ITCZmaybecome strongdsut move closeto the equatofFig. 6). The effects of this
518 changeon low latitude TCsare ambiguous since a stronger ITCZ implies mooavective
519 mesoscalélisturbances that could form into TCswaell higher free tropospheric humidity to
520 fuel their intensification, but aldmpliesless planetary vorticity available for them to acquire
521 rotation and axisymmetric structur&urthermorgthese longitudinally averagethangs are
522 dominated by the Pacific where the eastern equat@aaific warming pattern is expected to
523 emergeduringthe 2£' century Thiswill havethe effect of drawingome ofTC genesis away
524 from the western and eastern Pacific towards the central Pdcifithe North Atlantic,
525 changesn the favourabilityof baroclinic nortraditional TC genesis, vertical wind shear, and
526 ITCZ changes will be controlled bpolaramplified ocean warming (favourable to TC
527 poleward shift) possibly moderated byAMOC weakening(generally favourable to TC
528 equatorward shift)

529 Furthertropical expansions likely, primarily driven byamplified warming in the
530 tropical tropospherd Wipper levels but will be constrained by the patterns of surface
531 warming. Crucially, new modelling of TCs at the changingtropicalextratropicalmargin
532 suggeststhat genesis and intensification betwed@ and 40degreeslatitudes could
533 contribute significantly to the TC climatology of the tweffitgt century However,deep
534 tropical TCs will remain ecritical IHDW XUH R (D UnosK §laarly DlloRribge
535 anticipated equatorward ITCZ shifthus, we conclude that TCs wiilkely occupy a broader
536 range of latitudeby the end othe twentyfirst century tharduring the pre-industrial period
537 following equatorward ITCZ shifts and continued increasing midlatitude favouratigy

538 propose that the bleedireglge research quest® critical for addressing uncertaintias
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539 twentyfirst century TG are all centred aroundvaluating dynamicalinks between7 & V
540 convectivemesoscalgrocessesnd thebetter understoothrge scalewarming sensitivities
541 of the atmosphere and ocedPotantial feedbacks from TCs to climate another broad

542 avenue for research.
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FIGURES

[FIGURE 1]
Fig. 1 | Tropical cyclogenesis in weather and climate. f DUWK {V DWPRRVBDEKHUH RQ
from NASA EOSDIS'®*. This day exhibitsthe most simultaneously existingopical
cyclones (TCs)n the satellite recordlropical Storm Roke (peak intensity 40 mph), Sonca
(40 mph), Kulap (45 mph) and Typhoon Nqd10 mph)areseen inthe westernsubtropical
North Pacific. In the eastern North Pacific, Hurricane Fernanda (145 mph), Tropical Storm
Greg (60 mph), Hurricane Hilary (110 mph) and Hurricane Irwin (90 mph) at various
development stages. b Schematic of traditional and baroclinicallyenabled tropical
cyclogenesi:embedded into the largeeale flow andmodulated by atmospheraynamics
(see Extended DataFigs. 1 and 2 for examplgs ITCZ is an acronym for Intertropical

Convergence Zon&chematic style of the tropical mean circulation followingréf.
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[FIGURE 2]

Fig. 2 | Planetary-scale @amospheric circulation, precipitation, and TC activity. a
Seasonal meaprecipitation and lower-troposphericwinds and first recorded positions of
disturbancegshat developinto tropical cyclones (TQs b uppertropospheric windand TC
tracks, ¢ normalisedaverage zonanhean track density 20002019 (red) and 19861999
(blue), andd track density linear trendsinits: local TC passages per yedif)e 6.5 mm/day
contourin panela corresponds to the Y(ercentile seasonatean precipitation ancharks

the region of tropicatonvection duringhe TC seasondJnderlying environmental fields
from ref.!*>*1and TC data fromef!**®), Seasonahverages are computed for months of peak
TC activity: July, August, September and October inrtbghern hemispherand January,

Februaryand March in thesouthern hemisphe(enethods).
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[FIGURE 3]
Fig. 3 | Changes inTC latitudinal distribution over geologicaltimescales.a ModernTC
tracksas in Fig. 2bwith blue curves corresponding to the period 12899 and red to 2000
2019 b simulated PETM track$*, and ¢ changes insimulated seasonamean genesis
potentialrelative to preindustrialthroughout the Cenozoic. Iy yellow dashes indicatshifts
LQ KHPLYVSKmMUnhg&ngsi® poféntidatitudeswhile greenblue columns mark their
upper and lower bound&lefined adatitudes of25% dropoffs on either side ofnaxima).
The datain b andc are based onGCM simulation§*1*3178) and hold large uncertainties.
Red circlesindicate observedatellite erapoleward TC migratior®*). Preindustrial TC
lifetime maximum intensityatitudes are 18°N and 16°S. Given the wide rangeenty-first

centuryprojectionsg(seetext), no future estimateseplotted
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[FIGURE 4]

Fig. 4 | Recentlinear trends in key thermodynamic variables affectingtropical cyclones
(TCs) and their genesis potentiala SST trendsb Trends inTC potential intensity (see Box

1) arecontrolled bythe product ot air-sea thermodynamic disequilibrivand d modified
Carnot efficiency. Thermodynamic disequilibrium representsriben heat source for TCs.
Trends in themodified Carnotefficiency dependon a SST andf TC outflow temperature
Carnot efficiency representhe maximum efficiency at which the atmosphere cse
available heato maintainTC winds(Box 1). e Trends in gaesis potentialSee methods for
the calculation of these variabléss in Fig.2, seasonal averages are computed for months of
peak TC activity.Underlying environmental fields are from ERA5 dafd; trends are

computed for1980-2019.0nly values withp < 0.05 are plotted.
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[FIGURE 5]

Fig. 5| Large-scale circulations and TClatitudinal distributions under idealized climate
warming scenaiios in cloudsystemresolved aquaplanet simulations.This model is
forced bya three fixedsea surface temperature (SSngridional profilesranging from
contemporary climate (blue) to moderate midlatitude warming (purple) to exaggerated
Eocenelike warming (yellow).The plotshows b 20 m/s zonal velocitcontoursmarkingthe
jet streamsg +30x 10° kg/s streamlinesf the Hadley and Ferrel cellandd mean pdraft
strength measured as the tinmean of the zonal minimg@ressure velocity at 500hPa
multiplied by -1. Divergent influences lead the northwardshift of e TC life-time maximum
intensity (LMI) distribution (despite horrmonotopicchangesat low latitudey Datafrom
ref*2] which alsofinds that GPI calculatios underestimate¢he magnitude of midlatitude

genesis responge warming.
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[FIGURE 6]
Fig. 6 | Changes in the northern hemispherdntertropical Convergence Zone (ITCZ)
under different warming scenariosin CMIP6. a ITCZ intensity, b width, andc latitudinal
position. For higher tropical SSTslimate models predica stronger and broader ITCZ
shiftedtowardthe equatofMethods seeExtended Datdrig. 7. for changesn the southern

hemispherk Data fromrefs [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.][170.]

[171.][172][173]
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Box 1 | Elemental controls

Potential intensity

Potential intensity (PI) theob/*) WKH RQO\ H[WDQW DQDO\WLFDO
environmental dependences, statest TC strength is regulated by (1) the rate of oceanic
heat extraction mainly through evaporation, (2) ftional dissipation at the ocean surface,
and (3)thermodynamicefficiency, also called Carnot efficiencyhg normalised difference
between ocean surface and TC outflow tempergtusee MethodsThe Carnot efficiency
concept from classical thermodynamissmodified in the context of TC® incorporate
additional heating due to frictional energy dissipatin upper bound on TC wind speeds is
inferred from this framework and computed in various ways from gridded climateRlata.
theory predicted three dades ago thainghropogenic warmingvould increase Pin warmer
climate$'”®! increasing occurrence of intense TCs (as opposed to more TCstoéraitiss).

This expectation hasow been validateih recentobservatioal dat&d .

Convective aggregations

When Pl is high enough and an aggremabf high etropy air hasoccurred the necessary
thermodynamiconditions for TC genesis are satisffddHigh entropy, or alternatively high

moist static energy (MSE), follows warm and moist air columns that are established by
surface evaporation and sensible heat transfer, radiative fluxeyoazdntal advection.

These aggregations may originate from a wide variety of synogtid mesoscale
disturbances with embedded convective systems: easterly waves, the barotropic breakdown
of the ITCZ, convectively coupled equatorial waves, the Madddan Oscillation (MJO),

or the remnants of baroclinic activity in the midlatitudes (Fig. 1b). Convective self

aggregatiomay beanother potentially important mechanléti’”.
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Large-scale winds

Environmental windsidvectthe developing vortex, therelsyeeringit, while interfering with
its structure and energet. Vertical windvariations or wind shear are intrinsic to all
planetary atmospheresharacterized by horizontal temperature gradidetsiing to time
mean atmospheric featurkise low-level subtropical anticycloa flows (Fig. 2a) and upper
level zonal jets (Fig. 1b; Fig. 2b). Vertical sheais the major dynamical inhibitor of TC
intensificationacting against théormation of coherent deep columns lagh entropy air
required for genesisThis sheadilutes entropy therebweaketing convective upthfts and
slowing the surface winds required fektracting heatfrom the ocearto fuel continued

convectioft’®],

Planetary rotation

Two key scaling hypotheses exist for the depemdeof TCs RQ WKH SODQHWTV
Planetary rotation is manifest as the Coriolis parameigt t30O EJ 6 =+ latitude, 3 -

rotation rate of the planet), also called planetary vortiétyirst hypothesis predicts aia

scaling, i.e., all else ignore@Cs should become more frequent towards the P&iésThe

Coriolis parameteris zero at the equator and increases with latitisldting a meridional

vorticity gradient (Fig. 1b)This gradient, the soalled Eeffect,is also relevant
UL @513 ? K Qo =0
@U =
Opposite tof, Uis largest at the equator amdroat the poles. This gradieigt whatcauss
TC to move poleward andvestward (the process known as beta drift) by establishing
VHFRQGDU\ 3EHWD I%bH eitker sidexoDtheWrIiRgQ M. Beta drift scales
with the square root of 8% Consequetty, TC westwardtracksrapidly curve poleward in

the tropics, but this effect diminishashigher latitudesUprovidesa non-climatological (i.e.,

dependent oplanetary size and rotation rate as opposetdan climatg constraint on TC
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latitudes by imiting the size of cyclonidlisturbancesnd hence reducing beta driff3!. If
TC radii are to increase with climate warming, as has been hypott&Sis¢lden we would

expect stronger beta drift.

Climatological Convection

The majority of TCs (~70%) are spun out directly from climatological convection Z&)g.

The largescale structureof this convection including the ITCZ,can be deduced by
combining two onceptual building blocks of tropical dynamics convective quasi
equilibriumtheory™*! (CQE) and the weak temperature gradient approximt&fagwTG)

+into a single framewoH&3!. This framework provides an explanation for the structure of
large-scale convective circulations resulting from timean spatial varteonsin MSE. CQE
abstracts that thapwardflow of MSE into thesub-cloud boundary layedue toenthalpy
fluxes (latem and sensible heat transfer from the ocearfiace)is balanced by a downward
transfer of low MSE air from the dry free troposphere through convective downdrafts and

183]

large-scale subsidencgFig. 1b) Employing this balanceref! provides the following

zeroth ordediagnosticexpression for controls on the strength of climatological convective
updrafts in the ITCZ and Pacific Warm Pool:

5 (

/5,a X &

/s BRSE

where / ;is the mass flux of the deep convective updrafistthe tropical average vertical
velocity at the top of the boundary layéy, ( tthe surfacenoistenthalpy fluxesand /5
t+the difference between the boundary layes' and free tropospherid 5' (per unit
volume) Thecorrespondingonvective updrafts release local instabilities and transfioit
from the boundary layer into the free troposphetq. [2.] implies that the horizonal
distribution of updraft strength is constrained by horizonariaions in surface fluxes,

boundary layer/5' and free tropospheric/ 5'. Since atmospheric moisture content
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680 declines rapidly with altitudend the effect ofatent heat fix domnates over sensible heat
681 flux, the spatialdistribution ofclimatological convectiomargely reflectssurfaceevaporative

682 fluxes and laver-level tropospheric moistuf&*.
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Tropical cyclone observational recoiichetropical cyclone datéor the contemporary period
(Fig. 2 andExt. Data Fig4) is plotted directly from the International Best Track Archive for
Climate Stewardship® (IBTrACS). These data are freely available at

https://doi.org/10.25921/829e16 Version wW4r00 was downloaded and the World

Meteorological Organisatiof homogenisation was used.

Contemporary environmemelds,used inFigs. 2 and4, and Extended Data Figé, 6 andg,
were takennURP WKH (XURSHDQ &HQWUH IRU OHGL XR6GD DV H
ERAS reanalysis produtt®!. All data was downloaded astivehorizonal resolution (¥4 x ¥
degree) as monthijneandor the yearsl979 to 2020Theseraw data are freely and publicly

available for download dtttps://doiorg/10.24381/cds.6860a573
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Cloudresolving modellingThe idealised cloudesolving modelling data is replotted from
ref®%]. This data is freely available in the following Dryad repository:

doi:10.5061/dryad.8pk0p2np2

PaleoceneEocene Thermal Maximumodelling dataThese datafrom ref.**!, are available

athttps://doi.org/10.1016/j.palae0.2021.110421

CMIP6 Data for thelTCZ plotted inFig. 6 and Ext. Data Fig. Avastaken from 17model
centresthat contributed t&Climate Model Intercomparison Projgéhases (CMIP6) These
data areavailable from the Earth System Grgederation.Our CMIP6 analysis relies on
subsets of the total model ensemble (+50 moddls)used data from the following models
ACCESSCM2™"] ACCESSESM1-5"%!  BCC-CSM2MRM™*!  CAMS-CSM1-0"%%]
CESM2WACCM! ' CIESM™?! canESME®?] EGEarth3ved'®*], GFDL-CM4M%],
GFDL-ESM4'%®1 INM-CM4-8 1871 INM-CM5-0"%%] IPSL-CMBA-LR **1 MIROCE' "}

MPI-ESM1-2-HR" ™), MRI-ESM2-01 "], NorESM2LM 7],

METHODS

a. Tropical cyclone track density

Track density is computedom the IBTrACS archiveas the annual counf TC track points
within 4 degrees okach grid squareu§inga ¥4 by ¥4 degree gritb match the ECMWF
environmental fields The temporal resolution of the underlying track datal®arly. Note
that North IndianOceantracks are masked since TCs thdoegan to be recorded in the

datasebnly in recent years

b. Climate diagnostics
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Climate diagnostics shown in Figs.6 and Extended Data Fig.are computed from ERA5

data (detailed in Section S1.b directly abavgihg the following methods:

Tropical cyclone potential intensity: Potential intensity(PI, units m3) calculations were
GRQH IRU (5% GDWD XVLQJ 'DQLHY, ah tnpRidedionDf2he DOJR U

Bister and Emanuellgorithn{*®1. This methods based otthe followingexpression:

o )
251 Py g uUF s a >s @
%, 6

where % and %, are the exchange coefficients for enthalpy and momentigand 6, are
temperature at the sea surface and at the TC outflow branch in the upper troposphere, both in
units of K. % # 2%and % # 2are the convective available potential energies of the saturated
air lifted from the ocean surface to the outflow leved afboundary layer airespectively,

both evaluated at the radius of maximum winds (RMW). An alternatimge conceptually

intuitive, expressiorfor P1 can bealso uset®’*:

% 16eF 6 - ,
7 H N H E €2 So a > ta
R C8cBEA sz p@paaaxiacand
%@ aVPagUUUOUZEARUUUDRAFOUUOUBAaA0IxUegaclRUOaUSA

28 L

where C%jeis the saturatiommoist enthalpy of air right at the sea surface a@ the moist
enthalpy of aiin the boundary layeoverlying the surfaceExpressionM1 is more accurate
than M2 becausethe former better estimatesthe amount of energy available for
convectioft®®]. Pl can bethen decomposed into the termsM2 while usingexpressiorM1

to computehermodynamic disequilibrium as a residual.

Genesis potentiat:The genesis potentiéGP)is calculated using the foHf™:

8
)2L R7i%7 2+ uwe"5a%:8g50 £ tw G578
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where Ris absolute vorticitpf the flow at850 hPa, capped #te value ob x 10°s™, Plis
expressed as a flow spedfiy ¢is themagnitudeof wind sheaestimated as wind speed
differencebetweerB50and250 hPgin m/s) 1 is themoistentropydeficitin the middle

tropospherelefined as

L RFQ
QFGQ

where @, Q and Cgare the moist entropies of the boundary layer and middle troposphere,

and the saturation moist entrogtthe sea surface, respectivaljoist entropysis defined as

OL 2HJE 4,HJE F 4,MH &*

.«M
6
whereT andp are temperatur@n K) and pressurezis thespecificheat capacity at constant

pressure of air, ¢ is the latent heat of vaporisatioMs the specific humidity 4, and 4, are

the gas constants for dry air and water vapour respectargdyH is the relative humidity

Moist Static Energys definedhereas follows
DL %26 EC\E .c4Ma

whereg is gravitational acceleratiomjs the height above the surface

ITCZ metrics- Three metrics for thentertropicalConvergenc&Zone (ITCZ)were computed
using CMIP6 data, all by standard methods (eef.**')), intensity latitude and widthas
described belowAll metrics are computed from hemispheric zemadan precipitation [units
mm day'] and areaveraged over the last three decades of eaclPE€Mkperimenduring TC
seasons for the respective hemisphetrguly to October in the northern hemisphere and

January to March in the southern hemisphéreese metrics are plotted inFig. 6 and
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1425 Extended Data Figr7. against the global maximum in zorakan sea surface temperature
1426 (SST, units °Q during the respective TC season.

1427

1428 ITCZintensity- is defined as the maximum in zorrakanseasonameanprecipitation.

1429

1430 ITCZ latitude- is defined as the latitude of the maximum in zemabn seasonahean
1431 precipitation.

1432

1433 ITCZ width - is defined as the cartesian distance between latitudes ofneasiseasonal
1434 mean precipitation crossing the 5 mm dalyresholdon either side othe ITCZ latitude.

1435
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EXTENDED DATA
[EXTENDED DATA FIGURE 1]

Extended DataFig. 1 | The developmentand intensification of Hurricane Goni (2020,
peak intensity 195 mph).Poorly organised convection over the west Pacific warm pool
aggregates over the course of three dagtsveen October 32and 24" (a b ¢, and then
acquires coherent rotation over the subsequent three d&{® @%", d e f) while propagating
westward away from its seeding region. Between ottt @& 3¢, Goni developed into a
fully-fledged TC ¢ hi) and made the strongest recsdldandfall event by landfalling in the

Philippines on Oct 31 Data from ref'>3],
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[EXTENDED DATA FIGURE 2]
Extended Data Fig. 2 | The extratropical transition of Hurricane Paulette and the
simultaneous tropical transition of Subtropical Storm Alpha. Hurricane Paulette, which
originally developed out of an easterly wave on Séptr@ached its peak intensity on $ep
14" (105 mph) and then underwent extratropical transition to become an extratropical
cyclone on Sept 17 It then moved south and underwent tropical transition to intensify as a
tropical cyclone on Sept 22. Subtropical Storm Alpha (peak intensity 50 mph) was the first
ever tropical cyclone to make landfall in Portugal andesterrmost genesis event ingh
North Atlantic record. At the same time as these events, a rare medicane tropical
cyclogenesis event occurred forming Cyclone lanos (peak intensity 75 mph) which made

landfall in Greece, seen Extended Dataifure 3. Data from ref*>3],

71



1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

[EXTENDED DATA FIGURE 3]
Extended DataFig. 3 | The North Atlantic on September 16, 2020 Hurricane Sally
(peak intensity 105 mph) can be seen making ldindfzeer Alabama in the US, while
Hurricane Teddy (peak intensity 140 mph) was intensifying over the tropical North Atlantic
and to its northeast, Tropical Storm Vicky is being weakened by strong environmental wind
shear. Hurricane Paulette can be seen eydthrough its extratropical transition of the coast
of Nova Scotia and the extratropical cutoff low that became Subtropical Storm Alpha can be
seen off the coast of Portugal. In the Mediterranean, the rare Medicane lanos can be seen
south of Italy. Tropial Storms Wilfred and Beta later developed out of the organising
convection visible off equatorial Africa and in the Gulf of Mexico respectiviggta from

ref. 1531
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[EXTENDED DATA FIGURE 4]

Extended DataFig. 4 | Planetary-scale amospheric circulation, precipitation, and TC
activity during the simulated PaleoceneEocene Thermal Maximum (PETM) and the
modern period. a, c First tracked positiongand b, d TC tracksfor PETM and modern
climates The green overlay ilb and d show the 6.5 mm/daglimatological TC season
precipitationcontours. ETM data is replotted frorsimulationsin ref. ®*1and modern data is
from IBTrACs (methods)Red and blue dofare as irFig. 2, bluefor 19801999 and redor
20002019. Note that the lysis deition marking the end of the ks between the PETM
tracking and modern data are not easily reconcildlble.suppression of the low latitude TCs
in the PETM is related to the splitting of the summertime subtropical anddetey jets

(Extended Daté&ig. 5and Fig. 5.
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[EXTENDED DATA FIGURE 5]
Extended Data Fig. 5 | Zonal-mean large-scale climate and northsouth TC lifetime
maximum intensity during the PaleoceneEocene Thermal Maximum (PETM, CQO, 1590
ppm). Replottedfrom the~0.25degree resolutioatmosphericGCM simulationsof ref. (34
Note the strong agreement on coincident jet split and TC activity in the midlatitude with the
idealised clad-systemresolving aquaplanet simulations &f. *2! shown inFig. 5 of the

main manuscript.
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[EXTENDED DATA FIGURE 6]
Extended DataFig. 6 | Surface precipitation and tropospheric windsand recent linear
trends from ERAS5. a, b, ¢ the 19802019 precipitation, and upper (300 hPa) and lower
level (850 hPa) wind climatology for the tropical cyclone season (July through September for
the northern emisphere, January through March for the southern hemisphéerag linear
trend for the same seasons over the same péialg. trends for whiclp values are < 0.05
are plotted The contour lines i, d, andf are used to visualise the ITCZ (6.5 mm dgy
and the jet streams (5 m'sn the lower troposphere id and 20 m $ in the upper

troposphere if). Data from ERAS>®
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[EXTENDED DATA FIGURE 7]
Extended DataFig. 7 | As in Fig. 6 but for the southern hemisphere during TC season
there: January-February-March. Note the wide range in projections for the atnisp
RQO\ uDPLSY VLPXODWLRQV LQ EOXH KLJ&c€ahdsupingQJ WKH
for tropical climate.7KH ODUJHVW FRQWULEXW Lcer@esWdrtha Bduth 3V R X W t
Pacific Convergence Zone (SPCZ). Also ntitat these results maye affected by the
PR GHOVfITGRp(dbIBrH which exaggerates the magnitude of the tropical convection

to thesouth of the equatobata fromrefs [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.]

[168.][169.][170.][171.][172.][173]

76



1521 [EXTENDED DATA FIGURE 8]

1522 Extended DataFig. 8 | Surface enthalpy fluxesand recent linear trendsfrom ERA5

1523 (19802019. Plotted as irExtended Daté#ig. 6.Climatology and trends are for the tropical

1524 cyclone season (July through September for the northern hemisphere, January through March

1525 for the southern hemispher&ata from ERAE,

1526 ENDS
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