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Abstract
Droughts in the Amazon region have the potential to generate severe socio-
environmental impacts in addition to having the ability to interfere with the
long-term carbon cycle, thus affecting global climate. The 2015/2016 drought that
occurred in this region, associated with an El Niño, was considered a record-
breaking event in terms of unprecedented warming and the largest extent of the
drought affected areas. Anthropogenic influence on the probability and intensity
of this drought was assessed using two ensembles of the Met Office’s HadGEM3-
GA6 model. One ensemble was driven only with natural forcings and the other
also included anthropogenic forcings. This analysis found that the intensity and
probability of the 2015/2016 Amazon drought likely increased due to anthro-
pogenic influence. The reliability of the model to represent the precipitation of
the study area was assessed by comparing it with the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) product (R2 = 0.81). Results
indicate that anthropogenic forcings altered the drought intensity of 2015/2016 in
the Amazon and increased the risk of this event by about four times with a con-
fidence interval ranging from 2.7 to 4.7. We conclude that anthropogenic emis-
sions threaten the functioning of the Amazon forest due to increased likelihood
of extreme droughts.
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1 INTRODUCTION

Climate change can lead to changes in regional climate and
climate variability including altered seasonal and diurnal
cycles, and the frequency of extremes (Intergovernmental
Panel on Climate Change, 2014). Climate extremes such
as droughts can be harmful to both human and natural
systems. An example of this are droughts that occur in
the Amazon region, which in addition to severely harm-
ing local communities can impact global climate. The soci-
etal impacts of the Amazonian drought events are largely
due to an increase in wildfires which results in respiratory
diseases (Smith and Nelson, 2011), reduction of agricul-
tural production and disruption in the transport of goods
and people (Anderson et al., 2018; Aragão et al., 2018).
These drought events increase tree mortality and decrease
the CO2 uptake by the forest due to photosynthesis sup-
pression with significant post-drought impacts on the for-
est above-ground biomass (Anderson et al., 2018; Doughty
et al., 2015; Feldpausch et al., 2016; Koren et al., 2018; Yang
et al., 2018). These impacts lead Amazonia to shift to being
a carbon source instead of being a carbon sink. In addi-
tion, this can directly affect the long-term global climate
due to the emissions from drought-induced tree deaths
(Lewis et al., 2011). Furthermore, Amazonia is responsible
for 15% of the freshwater discharge that reaches the oceans.
Changes in this can modify the global carbon cycle and
consequently affect global climate (Bernstein et al., 2008;
Molinier et al., 1996; Solomon & IPCC, 2007).
Climate in the Amazon basin has a strong relation-

ship with the El Niño-Southern Oscillation (ENSO) which
is associated with dry conditions in this region. In the
21st century, the Amazon region has been affected by sig-
nificant droughts every 5–6 years (Aragão et al., 2018;
Marengo et al., 2011; Silva Junior et al., 2019). Specif-
ically, the 2015/2016 drought has been identified to be
not only anomalously warmer, but also larger in extent
when compared with the previous 1982/1983 and 1997/1998
droughts events (Jiménez-Muñoz et al., 2016). During this
drought event, a region of approximately 400,000 km2 of
primary forest showed photosynthetic capacity four times
smaller than the regions that were not affected by this
drought event (Anderson et al., 2018; Koren et al., 2018; van
Schaik et al., 2018). Furthermore, during 2016, therewas an
observed increase in fire pixel occurrence in western Ama-
zonia and in the northern fringes of the basin (Silva Junior
et al., 2019).
Extreme and anomalous events such as the 2015/2016

Amazon drought produce social and scientific demand
to understand if this event was induced or modified by
human activities (Van Loon et al., 2016). Decision makers
can then use this information to plan strategies for adapta-
tion or to support carbon emissions reduction policies. In

recent years, there has been an increase in the number of
studies that seek to understand the contribution of anthro-
pogenic forcings to extreme hydro-meteorological events
(Chen et al., 2019; de Abreu et al., 2019; Pall et al., 2011). In
general, attribution of extreme events is made by compar-
ing the probability of the event in a scenario that simulates
the real climatic conditions observed and another that has
human influences removed. This concept has already been
applied to several studies (de Abreu et al., 2019; Pall et al.,
2011; Shiogama et al., 2013; Stott et al., 2004) and specifi-
cally for the Amazon region, Shiogama et al. (2013) stud-
ied the drought that occurred in 2010 in the south of that
region using the MIROC5 model. In this study, we aim to
analyse whether the Amazonian 2015/2016 (October 2015
to February 2016) drought event was modified in terms
of intensity and occurrence probability by anthropogenic
influences, using event attribution methods based on cli-
matic simulations of theMet Office HadGEM3-GA6-based
model.

2 MATERIALS ANDMETHODS

The methodology consists of three main stages:

1. Event characterization: Delimiting the study area and
analysing the impact of the 2015/2016 drought event.
We used precipitation data to determine which region
of the Amazon was most affected by the drought event
in 2015/2016.

2. Model evaluation: Analysing the performance of the
Met Office HadGEM3-GA6-based model. We evaluate
the capability of this model to represent themain atmo-
spheric patterns related to the occurrence of drought
events in the Amazon region.

3. Event attribution: Attributing changes in the risk of the
Amazonian 2015/2016 drought event to anthropogenic
influences. We compared the probability of the occur-
rence of this event in a scenario that removes human
influences with a scenario that represents the condi-
tions actually observed to quantify the anthropogenic
influence in the 2015/2016 drought event.

2.1 Event characterization

In this study, we focus on the northern Amazon. This
region was selected not only because of the extreme
drought and high temperatures in 2015/2016, but also
because in other drought events the impact on vegeta-
tion was greatest in this region (Anderson et al., 2018;
Jiménez-Muñoz et al., 2016). The 2015/2016 drought event
started during the 2015 wet season (April–September),
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then evolved and reached its peak intensity during the
dry season (October 2015 to February 2016). The onset and
peak of this drought event occurred when themost intense
sea surface temperature (SST) variation associated with
El Niño were recorded in recent decades (Jiménez-Muñoz
et al., 2016).
We delimited the study area by analysing the drought

impact by determining the yearly anomaly of maximum
water deficit (AWD). The water deficit (WD) indicates
when drought led to a negative impact in the photosyn-
thetic capacity of the old growth forests. For this, we used
the forest evapotranspiration threshold of 100 mm/month
(da Rocha et al., 2004; von Randow et al., 2004). This
means that when the precipitation is lower than 100
mm/month, the vegetation enters into water stress. This
methodology was proposed by Aragão et al. (2007) for
the study of fire patterns in the Amazon during drought
events. First, we calculated the WD (Equation 1) using the
monthly precipitation and then selected the period with
potentially higher impact, defined here as October 2015 to
February 2016.

WD𝑡 (𝑖, 𝑗) = min(0, WD𝑡−1 (𝑖, 𝑗) − E (𝑖, 𝑗) + P𝑡 (𝑖, 𝑗)),

(1)
where subscript t is month, and i and j are latitude and lon-
gitude, respectively. WD is the water deficit, E is the evap-
otranspiration (100 mm/month; Aragão et al., 2007) and P
is the monthly precipitation. The time series used for this
research covers the period ranging from January 1981 to
December 2018. AWDwas then calculated according to the
following equation:

AWD𝑡 (𝑖, 𝑗) =
WD𝑡 (𝑖, 𝑗) − 𝜇 (WD (𝑖, 𝑗))

𝜎 (WD (𝑖, 𝑗))
, (2)

where 𝜇(WD) and 𝜎(WD) are themean and standard devi-
ation of theWD(i,j), respectively, from, in our case, 1981 to
2018.
The density of the network of rain gauges in the Ama-

zon region is quite low, despite the efforts of several gov-
ernment institutions to expand it. In addition, in most of
the cases the collection of precipitation data is still carried
out in a traditional way, which means that local techni-
cians of the country’s hydro-meteorological services take
notes and report them. One of the main consequences of
thismethod is that it results in additional errors in the time
series of precipitation (Paca et al., 2020). Remote sensing
products can be a solution for both problems and therefore
we chose use the Climate Hazards Group InfraRed Precip-
itation with Station data (CHIRPS; Funk et al., 2015) pre-
cipitation products as an observational precipitation refer-
ence. The CHIRPS data set is a precipitation product that
was originally developed for drought analysis and presents

daily to seasonal time scales with a spatial resolution of
0.05◦ with quasi-global coverage (50◦ S–50◦ N, 180◦ E–180◦
W), starting from 1981 onwards. We selected this product
due to its high accuracy and spatio-temporal resolution
for the Amazon region, in addition to having been widely
applied in several studies related to this region (Anderson
et al., 2018; Cavalcante et al., 2020; Espinoza et al., 2019;
Haghtalab et al., 2020; Paca et al., 2020; Paccini et al., 2018;
Segura et al., 2020; Wongchuig Correa et al., 2017).

2.2 Model evaluation

We have used a multi-decadal ensemble of the Met
Office HadGEM3-GA6-based attribution framework with
ENDGame dynamics at a spatial resolution of N216
(around 60 km), with 85 vertical levels (Ciavarella et al.,
2018;Walters et al., 2017). The land surfacemodel is JULES
version GL6.0. We used this data set at a monthly tempo-
ral resolution. The model encompasses two types of sim-
ulations. In the first one (‘natural’), the model is driven
with only natural forcings, such as solar variability and vol-
canic eruptions, and has the estimated impact of anthro-
pogenic forcings removed from the HadISST observed SST
and sea ice patterns (Rayner et al., 2003) using the method
described in Pall et al. (2011) and Christidis et al. (2012).
The second ensemble (‘historical’) is forced by both natu-
ral forcings and anthropogenic forcings (including green-
house gases, aerosols and changes in land use and land
cover (LULC) and by HadISST observed SST and sea ice
patterns). An ensemble of 15 multi-decadal simulations
(from 1960 to 2013) was produced for each of the natu-
ral and historical scenarios, designed primarily for model
validation. The differences in the realizations of individ-
ual ensemble members were produced by a unique ran-
dom number seed given to a stochastic physics scheme
(Ciavarella et al., 2018). For use in attribution assessments,
ensemble simulations were extended and expanded to 105
members for 2014/2015 period and to 525 members from
2016 onwards. For this last period, we only had access to
monthly rainfall during the dry season (October to Febru-
ary).
The Met Office HadGEM3 model performance analysis

was conducted in two ways. First, we evaluate the capa-
bility of this model to represent the atmospheric patterns
from the historical and natural simulations related to the
occurrence of drought events in the Amazon region. This
was done by calculation of velocity potential (VP) from the
simulations and the European Centre for Medium Range
Weather Forecasts (ECMWF) Interim Reanalysis (ERA-
Interim; Dee et al., 2011). We validated the precipitation
from the model by comparing it with the CHIRPS precipi-
tation product through the Pearson correlation Index (R2)
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and percentage of the absolute bias (AB), which was calcu-
lated through Equation (3).

AB𝑡 = 100 ×

∑𝑛

𝑡 = 1

|Pob𝑡−Psim𝑡|
Pob𝑡

𝑛
(3)

where subscript t is the analysed month and n is the num-
ber of months in the time series. Pob and Psim are the
precipitation from CHIRPS and the historical simulation,
respectively.

2.3 Event attribution

The event attribution method used in this study is the risk
ratio (RR), which is the ratio between the probability of
an event, larger than a defined threshold, in the histori-
cal ensemble compared to the natural ensemble. We deter-
mined this threshold through analysis of the standardized
seasonal precipitation time series, which is the area aver-
aged precipitation of the dry season (October to February)
divided by mean of this time series for 1981 to 2010. We
then expressed the standardized seasonal precipitation as
a percentage to facilitate the interpretation of the results.
Standardizing precipitation reduces the impact of bias in
HadGEM3-GA6. The threshold used to define the drought
event was defined as the average of the standardized sea-
sonal precipitation of the two lowest standardized seasonal
precipitation values fromCHIRPSprior to 2015/2016which
were 1982/1983 and 1991/1992. This approach avoids over-
selection for the observed threshold and was based on the
methods used by Dalagnol et al. (2021) and de Abreu et al.
(2019). We also tested the sensibility of the RR to threshold
values. The sensitivity of the RR to precipitation thresh-
old was evaluated considering two other thresholds for
standardized precipitation. These are CHIRPS precipita-
tion drier by one or two standard deviations and then nor-
malized by the mean.
The probability of occurrence was calculated by fitting

the precipitation data from each ensemble, and the obser-
vations, to a Gamma probability distribution function,
which is commonly used for this kind of analysis (McKee
et al., 1993; Stagge et al., 2015). From the Gamma distribu-
tion, we computed the probability of exceeding the thresh-
old. We analysed several different time periods from the
natural and historical ensembles relative to the defined
threshold. First, we considered the period 1981 to 2018 (15
members) and 2015/2016 (105 members). Then we anal-
ysed scenarios related only to periods subsequent to the
occurrence of the 2015/2016 drought event. In this case, we
analysed 2016/2017 and 2017/2018 both with 525 members.
The confidence interval of the RR was calculated using
the bootstrap method (Efron & Tibshirani, 1994) generat-

ing 104 samples for each set of average precipitation from
October 2015 to February 2016 for the natural and histori-
cal ensemble members by sampling with replacement. We
fit a Gamma distribution to each of these bootstrap sam-
ples to calculate the RR and then use the 5%–90% empirical
distribution to quantify the uncertainty in the original RR
calculation.

3 RESULTS AND DISCUSSION

3.1 Event characterization

Previous studies indicate that, in general, old growth
forests in the Amazon region suffer water stress when
rainfall is lower than evapotranspiration, estimated to be
100 mm/month. This WD can lead to a reduction in pho-
tosynthetic capacity or even increased vegetation mortal-
ity, therefore leading to a reduction of the CO2 uptake
rates. In this study, we characterize the drought events that
occurred in theAmazon region using the yearly AWD (Fig-
ure 1), which is an index that quantifies this vegetation
water stress. Drought events occurred frequently in Ama-
zonia, and since 1981, there have been at least five relevant
drought events (1983, 1995, 1997, 2005, and 2010). However,
all were less intense than the 2015/2016 event (Figure 1).
The study area was delimited by analysing the spatial vari-
ation of AWD and then identifying the region most com-
monly affected by drought events (purple rectangle, Fig-
ure 1a). Figure 1b shows the time series ofAWDof the study
area. It is even more clear in this figure the outstanding
intensity of the 2015/2016 drought event, whichwas at least
twice as intense as the other drought events that occurred
in the study area.

3.2 Model evaluation

The attribution of an extreme meteorological event to
climate change requires complex simulations and their
outputs should be reliable enough to represent the main
climatic patterns related to the occurrence of the extreme
event analysed. Thus, we evaluated the performance of
the HadGEM3-GA6 model. First, we compared the 200
hPa VP difference between El Niño and La Niña from
ERA-Interim reanalysis and simulations, and results are
presented in Figure 2. We also analysed the difference
between historical and natural ensemble for 2015/2016
(Figure 3). There is a general agreement of the model with
the reanalysis, with increased VP in the western Pacific
Ocean, implying anomalous descent, and negative values
from the Central to the Eastern Pacific Ocean, implying
anomalous ascent and these features are associated with a
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F IGURE 1 (a) Spatial variation of yearly anomaly of maximum water deficit (AWD) for the Amazon basin and location of the study area
(purple rectangle 2◦ N to 8◦ S and 65◦ W to 50◦ W); (b) time series of AWD for the study area

weakenedWalker circulation over the tropical Pacific asso-
ciated with El Niño events (e.g. Cai et al., 2020). Another
important feature is anomalous upper level positive VP
anomalies over the Amazon which suggests anomalous
descent in the region associated with El Niño events
although VP anomalies based on reanalysis are relatively
weak. As shown in Figure 2, there is a statistically signif-
icant over-estimation of VP anomalies associated with El
Niño relative to La Niña events in the Amazon, which
suggests stronger anomalous upper level divergence, and
therefore stronger anomalous descent, in the region for the
historical and natural ensembles than in reanalysis. Also,
the composites in natural simulations show lower values
of VP anomalies in the central and eastern Pacific Ocean,
indicating a weaker anomalous circulation associated
with El Niño in the natural than historical simulations,
but there is no statistically significant difference in the
Amazon (Figure 2a). Physical explanations for the model
reanalysis and for the changes in the response to El Niño
between the historical and natural ensembles are beyond

the scope of this paper. Speculating, these differences
between model and reanalysis could be due to the param-
eterization of convection in HadGEM-GA6 and how the
latent heating is vertically distributed.
For the 2015/2016 drought event, VP differences between

the two ensembles are more evident over the tropi-
cal Pacific and the Amazon (Figure 3). Over the tropical
Pacific, positive VP anomalies over the western tropical
Pacific and negative anomalies over the eastern tropi-
cal Pacific in the upper level are similar to those associ-
ated with El Niño events and suggest that anthropogenic
forcings also induce a weakened Walker circulation. The
historical ensemble has higher values than natural in the
Amazon, indicating that the anthropogenic forcings also
induce anomalous upper divergence and therefore anoma-
lous descent in the region. These results suggest an anthro-
pogenic influence on the large-scale tropical divergence
circulation and circulation over the Amazon. Physically,
this could be due to a wetter atmosphere, in response, to
anthropogenic warming meaning larger changes in latent
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F IGURE 2 October–February velocity potential (106 m2/s)
composite difference between El Niño and La Niña years at 200 hPa
for (a) ERA-Interim reanalysis; (b) historical ensemble; (c) natural
ensemble. Hatching shows where El Niño composites are
significantly different from La Niña years for (a), where historical is
significantly different from Era-Interim for (b) and where natural is
significantly different from historical for (c). Horizontal lines and
cross-hatching indicate decreased and increased significance at the
10% level, respectively. Positive values (red colours) are associated
with increased subsidence while negative values (blue colours) are
associated with increased ascent

heating of the atmosphere during El Niño and La Niña
events. This then increases the changes in the Walker cir-
culation in response to El Niño/La Niñas.
We also analysed the performance of the model through

its capability to represent precipitation at different time
scales (monthly climatology, annual mean, and dry sea-
son). The number of members of theMet Office HadGME-
GA6model is not constant over time, so to standardize the
performance analysis we used the 15 multi-decadal histor-
ical ensemble for 1981 to 2018 (see Subsection 2.2). In gen-
eral, the model represents reasonably well precipitation in
the study area over a range of time scales (Figure 4a–d).
Figure 4a shows that the model tends to overestimate pre-
cipitation in the dry (October to February) and wet sea-
sons (April to June). The consequence of this pattern is
more evident in Figure 4b, in which it shows that there
was in general an overestimation of the interannual vari-

F IGURE 3 October–February velocity potential (106 m/s)
difference between 2015/2016 drought event and climatology (1980
to 2010) at 200 hPa for (a) historical simulation; (b) historical minus
natural simulation. Hatching shows where the event is significantly
different from the climatology for (a) and where historical is
significantly different from natural for (b). Horizontal lines and
cross-hatching indicate decreased and increased significance at the
10% level, respectively. Positive values (red colours) are associated
with increased subsidence while negative values (blue colours) are
associated with increased ascent

ability of precipitation. Nevertheless, the model shows a
high correlation with the observed data for all time scales
and even at monthly time scales (Figure 4c), the AB was
lower than 18%. At the dry season time scale (Figure 4d),
which is the most relevant for analysing the drought pat-
terns occurrence in the study area, it can be seen that the
AB was below 10% and associated with a correlation close
to 0.8. The overall rainfall variability at different time scales
for historical simulation was well correlated with CHIRPS
as seen in Figure 4, although simulations tend to overes-
timate ENSO influences in Amazonia. It is expected that
the accuracy of themodel can be further improved through
bias correction methods. Furthermore, the low AB in the
estimation of precipitation in most time scales implies
that the ensemble simulates well enough the atmospheric
drivers for the precipitation time series and therefore it is
suitable for drought analysis and attribution. The gaps in
Figure 4c are because we only had access to monthly pre-
cipitation for the dry season (October to February) for the
period after 2016.

3.3 Event attribution

The threshold for calculating the RR uses standardized
seasonal precipitation (Figure 4d) which is expressed as
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F IGURE 4 Comparison between CHIRPS precipitation and HadGEM-GA6 simulated precipitation in the study area. (a) Seasonal
evolution of climatological monthly mean, (b) time series of annual mean, (c) time series of monthly mean and (d) time series of seasonal
mean (October to February). AB is percentage of the absolute bias and R2 is the Pearson correlation index. The dashed purple line is the
threshold that was used for the risk ratio calculation. The black dashed line in (d) shows the 100% standardized seasonal precipitation

F IGURE 5 Probability distribution
function for fitted Gamma distributions of
natural and historical scenarios of October to
February standardized precipitation in the
study region

a percentage. This figure also shows the event attribution
threshold that was defined considering the years 1982/1983
and 1991/1992 (see Subsection 2.3). We consider that there
should be a reduction in precipitation by at least 28%
(threshold of 72% indicated by the purple dashed line in

Figure 4d) in relation to climatology (average value for
the period 1981/2018) for a drought event to be consid-
ered extreme. Figure 5 shows the probability distributions
for both the natural and historical ensembles based on
fits to Gamma distributions. For the entire 1980 to 2018
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period, there was a small precipitation reduction due to
anthropogenic influences. For 2015/2016 (105 members),
we obtain an RR value of 3.7 with 97.5% confidence inter-
vals of 2.7 and 4.7. This suggests that the probability of a
severe drought event is almost four times higher in the
historical scenario and within 2.5 times to five times more
likely.
Gamma distribution fits for the both 525-member

ensembles in 2016/2017 and 2017/2018 show a shift to
drier conditions in the historical ensembles. They both
show large year-to-year changes in the distributions sug-
gesting that interannual variability has a large impact on
the hydro-climate of the Amazon. This increased risk of
drought events due to anthropogenic forcing, togetherwith
the similarity of the VP anomalies between the historical
and natural simulations (Figure 3) to those associated with
El Niño events suggest that the increased drought occur-
rence was due to the natural climatic variability enhanced
by anthropogenic influence.
To test sensitivity of the RR to precipitation threshold,

we considered two other thresholds for standardized pre-
cipitation. These are CHIRPS precipitation drier by one or
two standard deviations and then normalized by themean.
These thresholds are 82% and 65%, respectively, with the
2015/2016 drought being close to the drier threshold. The
RRs for these thresholds are 1.6 (1.4–1.7) and 10.3 (6.2–
20.5) suggesting that RR increases with the magnitude of
Amazonian drought. This happens because, in 2015/16, the
historical distribution, relative to natural, shifted to being
drier and so dry events in the tail of the distribution are
more common in historical than in natural. It also sug-
gests that our finding of significant increases in the risk of
drought, due to anthropogenic climate change, are insen-
sitive to the threshold used.

4 CONCLUSIONS

In this study, we analysed if anthropogenic forcings
changed the probability and intensity of the 2015/2016
(October 2015 to February 2016) Amazonia drought event,
whichwas themost severe drought in the past fewdecades.
We compare a historical scenario with a natural one in
which the major anthropogenic forcings after the indus-
trial revolution are not considered (e.g. changes in green-
house gas emissions, aerosol emissions and land use/land
cover pattern). We show that although the model presents
some bias related to the intensification of the El Niño effect
in the atmospheric circulation pattern, in general it well
represents the spatial–temporal variation of the precipi-
tation of the Amazon region at different time scales. The
results presented in this study highlighted the potential of
anthropogenic influence in the intensification of droughts

in the Amazon. We show that the occurrence likelihood of
the 2015/2016 drought event has been increased by almost
four times due to anthropogenic influence.
The physical mechanism for the risk enhancement

appears to be a stronger response to the 2015/2016 El Niño
in the historical ensemble than in the natural ensemble
over Amazonia driving descent over this region. In both
model and observations, precipitation over Amazonia is
strongly correlated with ENSO. Mechanistically, during El
Niño events the equatorial Pacific is anomalously warm,
which leads to anomalous ascending motion here, while
subsidence increases over the west tropical Atlantic and
east Amazon basin, as an anomalous Walker circulation.
However, the enhanced response to ENSO, due to anthro-
pogenic warming, seen in HadGEM-GA6 would bene-
fit from further investigation, using other models, as the
circulation in HadGEM-GA6 appears to show a stronger
response to El Niño than does ERA-Interim.
Finally, these results suggest serious concern about the

long-term cumulative impacts of climate change. Extreme
droughts in the Amazon region have the potential to
reduce the greenhouse gas capture capacity of the biome
and, therefore, intensify the effects of climate change. This
in turn can increase the frequency of extreme droughts in
this region, thus creating a vicious cycle. This study was
part of the scientific effort to elucidate more issues related
to climate change, which can support the planning of poli-
cies to reduce the emission of greenhouse gases and miti-
gate the impacts resulting from climate change.
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