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X-Ray Tomography-Based Microstructure
Representation in the Snow Microwave

Radiative Transfer Model
Melody Sandells , Henning Löwe, Ghislain Picard, Marie Dumont, Richard Essery, Nicolas Floury ,

Anna Kontu , Juha Lemmetyinen , William Maslanka, Samuel Morin ,
Andreas Wiesmann, Senior Member, IEEE, and Christian Mätzler

Abstract— The modular Snow Microwave Radiative Transfer
(SMRT) model simulates microwave scattering behavior in snow
via different selectable theories and snow microstructure rep-
resentations, which is well suited to intercomparisons analyses.
Here, five microstructure models were parameterized from X-ray
tomography and thin-section images of snow samples and evalu-
ated with SMRT. Three field experiments provided observations
of scattering and absorption coefficients, brightness temperature,
and/or backscatter with the increasing complexity of snowpack.
These took place in Sodankylä, Finland, and Weissfluhjoch,
Switzerland. Simulations of scattering and absorption coefficients
agreed well with observations, with higher errors for snow with
predominantly vertical structures. For simulation of brightness
temperature, difficulty in retrieving stickiness with the Sticky
Hard Sphere microstructure model resulted in relatively poor
performance for two experiments, but good agreement for the
third. Exponential microstructure gave generally good results,
near to the best performing models for two field experiments.
The Independent Sphere model gave intermediate results. New
Teubner–Strey and Gaussian Random Field models demon-
strated the advantages of SMRT over microwave models with
restricted microstructural geometry. Relative model performance
is assessed by the quality of the microstructure model fit to micro-
computed tomography (CT) data and further improvements may
be possible with different fitting techniques. Careful consideration
of simulation stratigraphy is required in this new era of high-
resolution microstructure measurement as layers thinner than the
wavelength introduce artificial scattering boundaries not seen by
the instrument.
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I. INTRODUCTION

SNOW microstructure knowledge is essential to determine
the scattering properties of snow at microwave frequen-

cies. Simulations of microwave scattering are used as the
basis for remote sensing of snow mass for water resources
and may be used to investigate how the snow mass has
changed over the last few decades. The Snow Microwave
Radiative Transfer (SMRT) model has recently been developed
in order to examine the impact of the representation of the
microstructure, to provide consistent theoretical treatment for
passive and active simulations, and as a basis for a community
model open to future developments [1]. This article provides a
thorough evaluation of the SMRT model against observations
from three different field campaigns.

Many previous simulations of microwave emission and
scattering in the snow using inputs from in situ measure-
ments or snowpack evolution model simulations have a
common feature: scaling of the microstructure parameters
is applied in order to obtain reasonable comparison with
observed radiometric data. Scaling has been applied to obser-
vations of traditional grain size [2] as used in the Helsinki
University of Technology (HUT) model [3], [4], exponential
correlation length [5] as used in the Microwave Emission
Model of Layered Snowpacks (MEMLS) [6], [7], and sticky
hard sphere (SHS) [8] as used by models based on Dense
Media Radiative Transfer (DMRT) theory [9]. Stickiness
is a secondary (dimensionless) parameter used in the SHS
microstructure model and represents the degree of cluster-
ing between individual grains. A number of intercomparison
studies between these models has illustrated different scaling
factors required for each model [10]–[13]. Stickiness itself is
a challenging parameter to quantify [14].

Traditional grain size is a notoriously observer-dependent
measurement and is largely incompatible with the accu-
racy requirements for the snow microstructure of around
0.01–0.04 mm [15]. In recent years, new instruments have
been developed to measure the snow microstructure in the
field from reflectivity measurements at near-infrared wave-
lengths [16], which gives snow specific surface area (SSA)
from which an optical grain diameter can be determined.
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Other methods of determining SSA include gas adsorption,
and microcomputed X-ray tomography [17] [micro-computed
tomography (CT)]. However, SSA only is insufficient to fully
parameterize microstructure models. Micro-CT can provide
the missing information because it gives a 3-D reconstruction
of the ice-air matrix from which the correlation function may
be calculated and the parameters of the analytical correlation
functions can be fit to the observed correlation function.

Until recently, microwave scattering models have not kept
up to date with the developments in snow microstructure
observation techniques. SMRT was developed in part as a
response to new instruments, especially micro-CT, but also
from a demonstration of the sensitivity to microstructure [15]
and a need for more than one microstructure length scale.
SMRT was evaluated against a substantial dataset of Arctic and
sub-Arctic snow in [18] for SHS and exponential microstruc-
ture. The present article is the first to use tomographic
microstructure observations to provide an extensive evaluation
of the performance of SMRT against field observations for all
SMRT microstructure models.

The evaluation is conducted in three steps, with data from
three different field campaigns. The first step is a fundamen-
tal evaluation of the scattering and absorption coefficients
given detailed microstructure information from micro-CT sam-
ples acquired during the Arctic Snow Microstructure Exper-
iment (ASMEx) [19]. The second step is an evaluation of
a shallow snowpack simulation of brightness temperature
with a very simple lower boundary condition, with snowpack
correlation functions given by analysis of thin section images
acquired with the Passive and Active Microwave and Infrared
Radiometer (PAMIR) instrument [20]. The third step is the
evaluation of the active portion of the model given a snapshot
of the micro-CT profile of a complete snowpack with natural
substrate and to present simulations of the angular dependence
of both brightness temperature and backscatter. Data are from
the Nordic Snow Radar Experiment (NoSREx) [21].

Section II presents a brief description of SMRT. The three
field campaigns and the simulation methodology are described
in Section III. Results are given in Section IV followed by
discussions and conclusions in Sections V and VI.

II. SMRT MODEL

The SMRT model [1] was developed in response to
increased understanding of the importance of microstructure
parameterization in snow, and to enable isolation of individual
model components in microwave scattering model intercom-
parison studies. For this, SMRT has a modular structure,
which clearly separates the different steps of the calculation
(permittivities of the raw materials, scattering coefficients, and
solution of the radiative transfer (RT) equation), and for each
step offers different theoretical assumptions or theories that
can be selected by the user. To facilitate the modular nature,
SMRT is written in Python with object-oriented programming
techniques and a plugin system. It has been released to the
community under an open-source license (see Section VII on
code availability) in order to allow it to be used as a general
framework for future developments.

For an evaluation of SMRT in this article, correla-
tion functions of the snow were determined from field
samples. To focus on the microstructure model approaches,
the Improved Born Approximation (IBA) was used as the
electromagnetic model for all the simulations in this article.
Other theories available in SMRT to compute scattering are
specific to a particular microstructure form (e.g., DMRT quasi-
crystalline approximation (QCA) is for SHS only). In IBA,
the bistatic scattering coefficient (also known as the phase
function) is defined for a 2-phase medium (subscript 1 denotes
the host constituent and subscript 2 denotes the scattering
constituent). Radiation from the direction given by zenith and
azimuth angles ϑ �, ϕ � is scattered into ϑ, ϕ, according to [22]

p (ϑ, ϕ, ϑ �, ϕ �)
= f2(1 − f2)(�2 − �1)

2 Y 2(�1, �2) M(|kd |) k4
0 sin2 χ (1)

where f2 is the fractional volume of the scattering con-
stituent, � is the permittivity, Y 2 is the mean squared field
ratio i.e., ratio of the field inside the scattering materials to
that incident on it, M(|kd |) is the microstructure function,
k0 is the wavevector in free space and χ is the polarization
angle. The microstructure function in IBA is determined from
the Fourier transform (FT) of the correlation function C̃(|kd |),
as described by [1], [14]. kd is the wavevector difference
between scattering and incidence angles and is dependent on
the effective permittivity of the medium computed with the
Polder–Van Santen mixing formula [23]. For this implementa-
tion of SMRT, the simplification of spherical symmetry has
been applied for scattering, which means that |kd | can be
replaced with kd . The microstructure function can then be
calculated as

M(kd) = 1

4π

C̃(kd)

f2(1 − f2)
. (2)

As with any model, IBA is a theory with limitations.
At present, only two constituents may be represented (here,
ice and air). To allow an arbitrary arrangement of scattering
material within the medium, the propagation speed is assumed
constant throughout the snow layer. In this implementation,
the relationship between the electric field inside scatterers
and that outside is assumed to be the same as for spherical
scatterers as this ratio is more dependent on the volume
fraction than the type of scatterer [22]. Despite limitations
specific to IBA, IBA remains closely related to DMRT theory,
at least in the low-frequency limit [14]. DMRT was shown to
be limited to small and moderate densities [24], [25], which
is likely to apply to IBA, but needs further comparison with
exact electromagnetic calculations. SMRT allows a compar-
ison between IBA and DMRT at higher frequencies but is
not considered in this article due to the SHS microstructure
restriction in DMRT.

For the simulations in this article, five different microstruc-
ture models were used: spherical model also known as
independent sphere (IND), SHS, exponential (EXP), Teubner–
Strey (TS), and Gaussian Random Field (GRF). Analytical
expressions for the correlation functions in Fourier space as
required by (2) exist for all but the GRF model. C̃(kd) for the
SHS model, which requires sphere radius and stickiness as
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parameters, was given in 31 of [14]. The microstructure func-
tions in Fourier space for the IND, EXP, and TS models are

C̃IND(k) = f2(1 − f2)

(
πd3

ind

6

)[
3(sin X − X cos X)

X3

]2

(3)

X = kddind/2

C̃EXP(kd) = 8πl3
ex f2(1 − f2)

[1 + (kdlex)2]2
(4)

C̃TS(kd) = 8πξ3
TS f2(1 − f2)

[1 + Z ]2 + 2[1 − Z ](kdξTS)2 + (kdξTS)4

Z =
(

2πξTS

dTS

)2

(5)

where dind is the IND diameter, lex is the exponential correla-
tion length, ξTS is the TS correlation length and dTS is the TS
domain length (also known as repeat distance).

For GRF, numerical calculation of the FT of the correlation
function has been applied as an analytical form cannot be
found. The GRF real space correlation function (as a function
of distance r ) is given as

CGRF(r) = f2(1 − f2)
1

2π

∫ Cψ (r)

0

1√
1 − t2

exp

[
− β2

1 + t

]
dt

(6)

where β is a cut-level parameter ( [26]) related to the volume
fraction. The correlation function of the underlying random
field currently used for the GRF in SMRT is

Cψ(r) = exp (−r/ξgrf)

(
1 + r

ξgrf

)
sin(2πr/dgrf)

(2πr/dgrf)
(7)

where ξgrf is the GRF correlation length and dgrf is the GRF
domain length (or repeat distance).

The RT solver in SMRT is based on the Discrete Ordinates
(DORT) approach with stream matching at the boundaries as
described in [1]. Fourier decomposition is used to deal with
the azimuthal dependence of the phase function and allows
computation of the general solution of the RT equations by
eigenanalysis, while the particular solution is obtained by
solving a linear system representing the boundary conditions.
So, it is the FT of the IBA phase function with respect to the
azimuthal component that is used by the solver. The evaluation
is done numerically.

Section III describes the three field campaigns with suf-
ficient microstructural data to evaluate SMRT for all imple-
mented microstructure models. Each dataset and simulation
methodology are described in turn.

III. EVALUATION DATA DESCRIPTION AND METHODS

Fitting of the microstructure models to the micro-CT
data followed a common procedure for all datasets. This is
described in Section III-D, after the descriptions of individual
field experiments.

A. Arctic Snow Microstructure Experiment (ASMEx)

The ASMEx [19] took place in Sodankylä, Finland in the
winters of 2013–2014 and 2014–2015. This field campaign

was specifically designed to measure scattering and absorption
coefficients of slabs of homogeneous snow in order to develop
a new snow extinction coefficient model as a function of
SSA for the HUT snow emission model [4], [27]. Data
from this campaign included micro-CT samples and therefore
provide an ideal dataset to evaluate the SMRT microstructure
and electromagnetic components of the model independently
of the solver. This section provides a brief description of
the field measurement methodology, retrieval of scattering
and absorption coefficients, and simulation approach. A total
of 14 horizontal snow slabs (width = 60 cm, length = 80 cm,
various heights) were extracted and observed with microwave
radiometers during the ASMEx field campaign.

Brightness temperatures (TB)s of the snow slabs were mea-
sured on 1) a metal (highly reflecting) base and 2) microwave
absorber (highly absorbing) base [27] at frequencies of 18.7,
21, 36.5, 90, and 150 GHz. A metal sheet was used to transfer
the snow slab from the natural snowpack onto microwave
absorbers where the metal base observations were made. The
metal sheet was then carefully slid from under the snow slab
to allow the snow slab to rest on the microwave absorber,
as described in [19]. Measurement error specification for these
instruments is 1 K, independently confirmed for 18.7–90 GHz
by [21]. For ASMEx, the measurement protocol was similar
in each case, with minor differences in absorber material used
and frequency range observed due to equipment availability,
as described in [28]. Destructive sampling of the snow slabs
was then carried out roughly in order from least destructive to
most destructive as described by [28]. Snow micropenetrome-
ter profile measurements were taken first, followed by temper-
ature, density then SSA profiles within the slab. Snow grain
macro photographs were also taken after SSA observations.
Finally, two samples of cross section 5 cm × 5 cm (height
of slab governs the third dimension, typically around 15 cm)
were taken [28], one from the radiometer center of field of
view and another in close proximity. These samples were cast
in di-ethyl pththalate in the field, transported to the WSL
Institute for Snow and Avalanche Research SLF in Davos,
Switzerland, where they were processed and observed with an
X-ray microtomography (micro-CT) instrument.

A total of 14 slabs were observed over the two winter sea-
sons: slabs A01-A07 in the first season and slabs B01-B07 in
the second. The orientation of micro-CT samples from slab
A01 differed from the remaining slabs as horizontal rather
than vertical profiles were taken, and only one cast sample
was taken for slab A02 (for calculation of error statistics,
the second A02 sample was assumed to be the same as the
first). Cylindrical sections were extracted from the vertically
casted snow samples and cut in half in order to fit into the
micro-CT instrument, as illustrated by Fig. 1. This means that
a small section of snow is missing due to the thickness of the
saw, although this gap is neglected for analysis purposes. Snow
parameters were then determined for smaller overlapping cubic
subsamples within each micro-CT sample.

Snow density and SSA were calculated from 120 voxel
height subsamples, which corresponds to a subsample height
of 2.18 mm. Mean density and SSA for each of the
slab is shown in Fig. 2. Although the slabs were visually
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Fig. 1. Processing of slab samples (except slab A01): Slab samples were
sliced into two micro-CT samples, and scanned with a nominal resolution
(voxel size) of 18 μm. Microstructure parameters were calculated over
10.8 mm stacked, overlapping subsamples.

Fig. 2. Microstructure properties for 14 ASMEx slab subsamples. Gray line
separates samples taken in two different seasons. (Top) Fractional volume
of ice. (Middle) Correlation length in vertical direction. (Bottom) Ratio of
vertical correlation length to horizontal correlation length (anisotropy).

homogeneous at the point of extraction, the density and
SSA range within each slab show that they are not strictly
homogeneous. Early in the season (lower slab samples)
the slabs are characterized by lower density and smaller
microstructure scales/sizes; both generally increase as the
season progresses. Perfectly isotropic snow would have equal
horizontal and vertical correlation lengths i.e., anisotropy
factor 2 
z /(
x + 
y) = 1 as shown by the red dashed line
in Fig. 2. An anisotropy factor of less than 1 means the
correlation length is larger in the horizontal direction than the
vertical, which is the case for the majority of slab samples,
as expected for surface snow that has hardly undergone any
temperature gradient metamorphism [29]. The microstructure
is larger in the vertical for slabs A04, B05, and B07 only.
Spherical symmetry is assumed in the version of SMRT used
in this article, which may not be appropriate and is discussed
later in this article.

Correlation functions of the snow were determined from the
3-D structure of the ice matrix and parameters retrieved for the
five analytical correlation function models by minimization of
the cost function (further details given below). A summary of
microstructure parameters for all slabs is given in Table I.

Density and microstructure parameters were used to cal-
culate scattering and absorption coefficients for each micro-

TABLE I

SUMMARY OF MICROSTRUCTURAL PROPERTIES FOR ALL THREE
EXPERIMENTS (IQR IS INTERQUARTILE RANGE). ASMEX AND

NOSREX PARAMETERS WERE DERIVED FROM MICRO-CT
DATA, PAMIR PARAMETERS WERE DERIVED FROM THIN

SECTION IMAGES. DENSITY IS GIVEN IN Kg m−3, τ IS
DIMENSIONLESS, ALL OTHER MICROSTRUCTURAL

PARAMETERS ARE GIVEN IN mm. ASMEX,
PAMIR AND NOSREX DATASETS HAVE

562, 10 AND 320 SUBAMPLES,
RESPECTIVELY

CT subsample to evaluate SMRT scattering theories inde-
pendently of other SMRT modules (namely the RT solver,
substrate, atmosphere, and interface modules). Simulations of
the absorption and scattering coefficients were carried out
for all slab subsamples at all ASMEx frequencies for all
five microstructure models. Slab means of these subsample
coefficients were compared against the bulk slab coefficients
retrieved from the radiometric data by [27]. As described
in [27], there is a difference between coefficients retrieved
from horizontally and vertically polarized observations. Here,
the mean of the coefficients derived at both polarizations is
used as the observations for comparison with SMRT.

For calculation of TB , the slabs were reconstructed from the
micro-CT subsamples with one snowpack layer corresponding
to one micro-CT subsample with layer thickness scaled to
account for mass lost during micro-CT preparation. For the
simulations, the substrate was assumed to be a perfect reflector
for the metal plate case, whereas for the absorber substrate,
the reflectivity was determined from the measured emissivity.
Where absorber emissivity observations were not available,
the mean of all observations at that frequency was used.
Measured downwelling atmospheric TB was used to para-
meterize the simple isotropic atmosphere in SMRT (a single
plane parallel layer that follows MEMLS formulation [30])
and included in simulation of TB .

B. Passive and Active Microwave and Infrared
Radiometer (PAMIR) Snow Crust Experiment

The PAMIR system included five microwave radiometers at
frequencies 4.9, 10.4, 21, 35, and 94 GHz (measurement error
∼1 K at 260 K [31]) mounted on a 15 m tower at an incidence
angle of 50◦ at the Weissfluhjoch, Davos site from 1977 to
1987. Here, we describe a snow crust experiment that took
place 8–10 May 1984 when the snowpack underwent two melt-
refreeze cycles. The depth of refrozen snow was measured
manually and the snowpack observed with PAMIR over the
course of the experiment (33 measurements over 41 h) [20]
and two thin section images were taken, shown in Fig. 3.
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Fig. 3. Thin section images from PAMIR melt-refreeze experiment.
(a) May 9, 1984. (b) May 10, 1984.

Fig. 4. Time series of refrozen snow depth (blue), surface temperature
(red dot-dashed line) and observed brightness temperature at 35 GHz,
vertical polarization (red triangles) for the PAMIR snow crust experiment,
May 8–10, 1984.

Correlation functions were calculated in the z- and
x-direction for each of the five subsections in both images
and together with the layer thickness and density observations
noted in the images were used to construct a time series of
snowpacks of depth given by the refrozen thickness measure-
ments shown in Fig. 4. Also shown in Fig. 4 is the decrease
in surface temperature and snowpack brightness temperature
at 35 GHz as the snowpack refreezes, with a sudden reversal
as the snowpack, returns to a melting state. Table I gives a
summary of the analytical microstructure model parameters
derived from the thin section images, averaged over horizontal
and vertical directions, where the y-direction parameters are
assumed to be the same as in the x-direction.

These microstructural parameters were used to construct
numerical snowpacks of time-dependent depth and assumed
lower boundary emissivity of 96% at 0 ◦C. Sky TB observa-
tions were used to parameterize a simple isotropic atmosphere,
which was included in the simulations. The temperatures of
the snow layer midpoints were calculated by linear interpo-
lation between the melt interface at 0 ◦C and the observed

Fig. 5. NoSREx density derived from micro-CT samples overlaid on image
of snowpit face. Sample taken on Mar. 1, 2012.

temperature at the snow surface. These data were used to drive
SMRT simulations and were compared to the time series of
passive data from the snow crust experiment (active data were
not available for comparison).

C. Nordic Snow Radar Experiment (NoSREx)

The NoSREx took place in Sodankylä, Finland over four
winter seasons and is described fully in [21]. The simulations
presented here focus on the third season (2011–2012) where
a near-complete micro-CT profile was available. Angular
observations (30◦–60◦) of both TB and backscatter (σ0) are
available for this campaign, and thus provides the first test
of SMRT in active mode. An array of radiometers (V and H
10.65, 18.7, 21, 36.5 GHz) was installed on a tower 4.1 m
above ground and a four-polarization scatterometer operating
between 9.2 and 17.9 GHz was mounted 9.6 m above ground
nearby. As with ASMEx, brightness temperature measurement
error for 18.7–36.5 GHz radiometers is 1 K. Measurement
error at 10.65 GHz is 2 K due to the radiometer design [21].
Backscatter measurement error is of the order 1 dB [21].

Fig. 5 illustrates the non-continuous density profile deter-
mined from micro-CT data. For simulation of a continu-
ous snowpack, layers were constructed from each available
micro-CT subsample and constant layer thickness derived from
the automated sensor snow depth. The temperature profile of
the snowpack was estimated by linear interpolation between
automated measurements of the air temperature and 2 cm
below the soil surface (mean of observations at two locations)
limited to a maximum of 0◦C. A summary of the microstruc-
tural parameters over this profile is given in Table I.

For the passive simulations, soil reflectivity was calculated
with [32], assuming a soil roughness root mean square height
of 2 cm. The soil permittivity was determined from the
mean of two soil moisture measurements at 2 cm depth, soil
sand content of 70%, clay content of 1% and dry density



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Scatterplot comparison between observed and simulated brightness temperature (all frequencies observed, all incidence angles. V-polarization shown
on top graphs, H-polarization shown on bottom. (a) ASMEx. (b) PAMIR. (c) NoSREx.

of 1300 kg m−3 with the model of [33]. The atmospheric
contribution was approximated with nadir observations applied
to the SMRT simple isotropic atmosphere, which will result in
a small underestimation in TB as a function of incidence angle.
Rather than overfitting the soil contribution in the absence
of data, a soil backscatter of −13 dB was assumed to be
a reasonable approximation for both HH and VV polariza-
tion. For active simulations, micro-CT subsample layers were
aggregated in groups of 20 so that the snowpack of 76 cm
depth was represented by 16 layers for frequencies of 10.2,
13.3, and 16.7 GHz.

D. Microstructure Parameter Fitting

Similar to all datasets, the parameters for the SMRT
microstructure models were obtained by fitting the auto-
correlation functions obtained from binary 3-D micro-CT
images (NoSREx, ASMEx) or 2-D binary thin sections images
[PAMIR, cf. Fig. 3(a)]. All fits were done by using MAT-
LAB’s lsqnonlin optimization over a fixed number of
data points (100) and allowing for a global normalization
prefactor. The ice volume fraction (density) was obtained
directly by counting the ice voxels/pixels of the images. The
real space models (EXP, IND, TS, GRF) were fit along the
main coordinate directions (x, y, z) of the 3-D/2-D correlation
function yielding direction-dependent parameters that were
subsequently averaged (arithmetic mean over directions) to
obtain a single set of parameters for an isotropic model. For the

isotropic Fourier model (SHS) the 3-D FT of the correlation
function was spherically averaged and subsequently fit.

IV. SMRT EVALUATION RESULTS

A. Brightness Temperature

Brightness Temperature (TB ) observations were available
for all field campaigns. Fig. 6 shows scatterplot comparisons
between observed and simulated brightness temperature for
each snow microstructural model and for each field campaign
over all available frequencies. The ASMEx campaign obser-
vations in Fig. 6(a) cover a wider TB range than PAMIR
and NoSREx data due to the bottom boundary condition and
shallow depth of snow: low TB observations are of slabs on top
of the metal plate and high TB were observed after the plate
had been removed and the snow was on top of the microwave
absorbing material. The range of TB measured in the PAMIR
and NoSREx campaigns is smaller but is more representative
of observations over natural snowpacks. The microstructure
model appears to have only a small influence on the simulated
TB of the ASMEx slabs. Low TB tends to be underestimated
and high TB overestimated for ASMEx. Outliers in the central
range of observed values (approximately 100–150 K) were
slabs A02, A04, and B07 at either 21 or 36.5 GHz. TB at other
frequencies for these slabs are more closely grouped with TB

of other slabs.
PAMIR data in Fig. 6(b) show a wide range of simulated TB

for a given observation e.g., an observed H-pol TB of 175 K
is represented by simulations over a range of 170–250 K.
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TABLE II

BRIGHTNESS TEMPERATURE ME AND ROOT MEAN SQUARE
ERROR (RMSE) [K]. SMALLEST ERRORS FOR EACH

POLARIZATION ARE SHOWN IN BOLD FOR

EACH FIELD EXPERIMENT

Simulated TB are generally overestimated except at high TB .
However, the SHS microstructure model generally overesti-
mates TB by the largest amount. This is also the case for the
NoSREx data in Fig. 6(c).

Given the more complicated structure of the full NoSREx
snowpack, Fig. 6(c) highlights the overall importance of
the microstructure model, particularly at lower TB . For the
NoSREx dataset, in general, the SHS model gives the highest
TB , followed by IND, EXP, TS, and with GRF giving the
lowest TB . A high SHS followed by EXP, TS, GRF in decreas-
ing TB order is also apparent in the PAMIR dataset, although
IND can be above or below EXP, or have the lowest TB of
all microstructure models. In contrast, there is no consistency
between the relative TB given by different microstructure
models in the ASMEx dataset: the order changes even for
different micro-CT samples of the same slab.

Table II shows the mean error (ME) and root mean squared
error (RMSE) for TB simulated for each experiment. ME range
from −4.0 to 0.5 K for ASMEx, 2.1 to 18.9 K for PAMIR and
−0.6 to 11.3 K for NoSREx. RMSE ranges from 15.0–25.1 K
for ASMEx, 10.2–37.0 K for PAMIR and 3.1–17.1 K for
NoSREx. For the ASMEx field campaign, RMSE is the
smallest for the SHS, with the smallest ME for SHS (H-pol),
TS (H-pol), and EXP (V-pol) microstructures. In contrast, SHS
performs poorly for both PAMIR and NoSREx experiments,
with the largest ME and RMSE. For PAMIR and NoSREx
experiments, TS and GRF microstructure models have the
lowest ME and RMSE at both polarizations. The following
subsections evaluate each field experiment, in turn, to explore
these results further.

B. Scattering and Absorption Coefficients (ASMEx)

ASMEx data allow evaluation of SMRT absorption and
scattering coefficients against those derived in [27], as shown
in Figs. 7 and 8. A complete dataset is only available at
21 GHz due to instrumentation failure/installation dates at
other frequencies. Calculation of the absorption coefficient (κa)
in SMRT IBA is independent of microstructure model so Fig. 7
compares simulated κa (mean of subsamples) with observed
κa for a single microstructure model. Note that κa in Fig. 7
have been scaled by 1/wavenumber to eliminate the direct

Fig. 7. Scatterplot of ASMEx subsample absorption coefficient, compared
with observed absorption coefficient derived from observations in [27]. Coeffi-
cients have been normalized with respect to the wavenumber in free space, k0.
Note that the absorption coefficient is independent of the microstructure
model. Observation error bars illustrate the difference between retrievals
derived from H- and V-pol observations. Simulation error bars show the range
of subsample absorption coefficients relative to the mean.

frequency dependence (an indirect dependence through the
permittivity remains). In general, there is a good overlap with
the 1:1 line, with a few noticeable outliers: slabs A02, A04,
B05, and B07. Slab B05 (shown by crosses) was observed at
all frequencies and its κa was consistently underestimated in
the simulations. At 36.5 GHz, κa for slabs A02 (downward
triangle) and B07 (thin diamond) were also underestimated,
although slab B07 was simulated well at 90 GHz (A02 was not
measured at this frequency). At 18.7 and 21 GHz, κa for slabs
A04 (leftward triangle) and B07 were also underestimated.
Comparing κa with observations for all slabs, the regression
coefficient r2 = 0.94, with RMSE of 0.3 m−1 and ME
of −0.2 m−1.

Unlike κa, scattering coefficients (κs) depend on microstruc-
ture model, as shown in Fig. 8. Note that κs has been
shown on logarithmic axes. The comparison between models
shows that for the ASMEx parameters, EXP, GRF, and TS
models give near-identical results and there is also a high
agreement between these models and IND. Lower regres-
sion coefficients were found between SHS and any other
microstructure model, which reflect the increased scatter in
SHS κs . For comparison with observations, the mean of
subsample κs was compared with κs observed for the entire
slab. Across all slabs, κs is generally overestimated at 90 GHz
but underestimated at 36.5 GHz and below, with larger errors
for lower scattering coefficients. This is not unexpected as
observation errors and deficiencies in retrieval technique will
have the greatest impact where the least scattering occurs. It is,
however, difficult to apportion the discrepancies either to the
frequency-dependence of IBA or to retrieval errors. Despite
these differences, observations and simulations are highly
correlated. Lowest r2 between observed and simulated κs
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Fig. 8. Scatterplot comparison between scattering coefficients of different microstructure models from ASMEx subsamples, and a comparison of mean slab
scattering coefficients with observed scattering coefficients from [27]. Gray dashed 1:1 line shown. As for Fig. 7, observation error bars illustrate the difference
between retrievals derived from H- and V-pol observations. Simulation error bars show the range of subsample absorption coefficients relative to the mean.

occurred for the single length scale models EXP (0.86) and
IND (0.87), median r2 for SHS (0.88), and highest r2 for
the TS (0.89) and GRF (0.9) models. The difference between
microstructure model correlation with observations suggests
a choice of microstructure model influences the frequency
dependence of IBA.

Errors in ASMEx TB can be explained by κs at high TB and
κa at low TB . At frequencies of 36.5 GHz and below, scattering
coefficients are generally underestimated when compared with
the retrieved values, which can explain overestimation of TB

at high TB for the ASMEx data as there is a less simulated
scattering of the radiation emitted from the absorber. For
low TB , where the substrate was a metal plate, differences in κs

cannot explain the general underestimation in TB . Outliers at
these low TB are generally for slabs A02, A04, B05, and B07,
where κa and therefore the emission from the snow itself was
underestimated. These particular slabs also formed outliers in
the central range of ASMEx TB . It is worth noting that slab
B05 was considerably thinner (5.4 cm thickness) than other
slabs (∼15 cm), which may have impacted the accuracy of
retrieved κa and κs for that slab. Less accurate retrievals of

κa and κs can be expected where scattering is low and could
partially explain the underestimation of low κs in Fig. 8.

Vertical structures within snow assumed to be spherically
isotropic resulted in higher TB errors than for horizontal
structures. Whilst ASMEx slabs were nominally selected for
homogeneity within layers, this was not necessarily the case.
In addition, analysis of correlation functions in x-, y-, and
z-directions showed that the slabs were anisotropic (Fig. 2).
Most of the slabs had an anisotropy factor<1, meaning greater
correlation lengths in the horizontal than in the vertical. Only
slabs A04, B05, and B07 showed anisotropy factors gener-
ally >1 i.e., larger correlation lengths in the vertical direction
more commonly associated with vertical features such as
depth hoar chains. Scattering and absorption coefficients and
brightness temperature for these slabs were less well simulated
than for other slabs.

C. Simple Snowpack (PAMIR)

Whilst Fig. 6(b) gives an overall picture of TB simulations
for a shallow refrozen snowpack with simple lower boundary
condition, Fig. 9 examines the evolution of TB over time as
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Fig. 9. Time series of brightness temperature for PAMIR experiment (periods with dry surface snow shown).

the snowpack refreezes. At 4.9 and 10.4 GHz, the impact
of the snow–and therefore of the microstructure models–is
small. There is more variability in the H-pol observations
than at V-pol, but the simulations do not capture the observed
variability in H-pol TB . At higher frequencies, the contribution
of the snow increases and the impact of the substrate dimin-
ishes. Simulations reflect the rapid decline in observed TB

with increasing depth of refrozen snow at 21 GHz and above
although the observed rate at 35 GHz is faster than simulated.
For much of the time series, the GRF model demonstrates
the best agreement with observations. The SHS microstructure
model does not show good agreement with observations at
21 and 35 GHz but is better able to capture the decline in TB

at 94 GHz for the second refreeze period. The difference in
performance between models is shown in the ME in Table II,
with TS and GRF demonstrating the lowest errors.

PAMIR is an ideal dataset for exploring reasons for different
microstructure model performances as it is relatively small
and there are large differences between microstructure models.
Fig. 10 demonstrates how the correlation functions for differ-
ent microstructure models, as used in SMRT after averaging,
compare with observed correlation functions. Data for the

9th May have been shown as continuous TB are available
for this day. The dominant horizontal (crust) features evident
in Sections 2–4 of Fig. 3(a) are reflected by the anisotropy
in the real-space correlation function in Fig. 10, with high
correlations in the x-direction tail. Section 5 has vertical
features (high correlation in the z-direction tail) whereas
Section I is relatively isotropic. The parameterized correlation
functions thus always represent a compromise between the
different coordinate directions.

For the real-space correlation functions it is possible to
compare their performance via naive fit metrics (mean square
error) which are shown in Table III. IND microstructure is the
least-well fit microstructure parameter yet TB errors in Table II
are overall lower than for EXP. However, errors depend on
frequency. At 21 GHz, Fig. 6(b) shows higher TB errors with
IND than EXP, but lower errors at 35 GHz and above. At small
scales (e.g., r � 1 mm), the IND correlation function shown
in Fig. 10 is higher than EXP and TS real-space microstructure
models for Sections II–V, indicating more scattering. At larger
scales, the lower IND correlation however would suggest less
scattering than for other models. In Fourier space, smaller
length scales (wavelengths) correspond to larger frequencies.
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Fig. 10. Comparison between observed and parameterized correlation functions for EXP, IND, TS and GRF in real space (top) and SHS in Fourier
space (bottom).

TABLE III

REAL-SPACE FIT METRICS IN x - AND z-DIRECTIONS FOR 9TH MAY

PAMIR MICROSTRUCTURAL PARAMETERS, CALCULATED AS THE

SUM OF THE SQUARED RESIDUALS OF THE NON-LINEAR FIT

(nonlinsq MATLAB FUNCTION) OVER 100 DATA POINTS
(MULTIPLIED BY 103). SHS IS EXCLUDED AS IT MUST

BE FIT IN FOURIER SPACE AND IS NOT COMPARABLE

IND could have lower TB errors than EXP at higher frequen-
cies because of the poor but higher fit at small scales. IND
correlation underestimation at larger scales is more relevant
at lower frequencies and could explain why TB is higher for
IND than any other real-space microstructure model at low
frequencies.

TS is a better fit to the measured correlation than EXP
(although demonstrates EXP-behavior in the x-direction for
Sections II–IV). The correlation is also higher than EXP at all
scales. The larger TS scattering leads to lower TB errors. GRF
correlations are generally higher than TS, resulting in further
reductions in TB errors.

The interpretation of naive mean square fit errors must
however be taken with caution: In real space the tail of the
correlation function dominates the scattering coefficient while
absolute values are very small, thus having a low influence
on the fit error. This also prevents a direct comparison of
fit metrics between real space models and Fourier models
(like SHS). For SHS, Fig. 10 however visually reveals that
the fit is poor, in particular for low k values. The difficulties
of fitting the SHS sphere model to micro-CT data is well-
known [14] and remains here the main reason for the poor
performance of the SHS model. The comparison reveals that
the details of the retrieval of microstructure parameters from
CT or thin section image data are a critical, non-trivial problem
that extends beyond the scope of this article. Implications and
future work are indicated in the discussion.

Fig. 11. Brightness temperature variation with incidence angle for NoSREx
experiment on Mar. 1, 2012. (a) 10.65 GHz, (b) 18.7GHz, (c) 21 GHz, and
(d) 36.5 GHz.

D. Complex Snowpack (NoSREx)

The NoSREx data provide an opportunity to evaluate SMRT
for a deeper, more complex snowpack with soil substrate
and a range of incidence angles. Fig. 11 shows the angu-
lar dependence of TB for the EXP, TS and GRF models
as these demonstrated the smallest errors in Table II. The
difference between simulations for each microstructure model
increased with increasing frequency. All three microstructure
models agreed well with observations, with RMSE between
3.1 and 4.3 K, and all simulations generally followed the
observed shape of the brightness temperature curves. At 21 and
36.5 GHz, TB at H-pol were overestimated at incidence angles
of 40◦ and larger.

The polarization difference at 10.65 GHz is too large for
all microstructural models, which is an indication that the
layer thicknesses could be too thin [34]. Layer thicknesses
of 2.37 mm were taken directly from the resolution of the
micro-CT data, but are actually smaller than the wavelength
(28 mm). Resampling of the stratigraphic EXP microstructural
properties from 320 to 16 layers of thickness 47.45 mm is
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Fig. 12. Impact of changing stratigraphic resolution of (a) exponential
correlation length and (b) density on (c) 10.65 GHz TB curves. High resolution
(HR) simulations have 320 layers whereas low resolution (LR) have 16 layers.

illustrated in Fig. 12(a) and (b). Resampling captured the trend
in density and exponential correlation length, but not the high
densities and exponential correlation lengths observed in some
thin layers at the base of the snowpack. The effect of lower
resolution stratigraphy on simulated TB at 10.65 GHz is shown
in Fig. 12(c). Both H- and V-pol TB increased, with a greater
impact at H-pol. This narrowed the polarization difference, but
at the cost of TB simulation accuracy.

E. Backscatter

Simulations of total backscatter (σ0) with the lower resolu-
tion NoSREx snowpack are shown in Fig. 13. No observations
were made of the bare soil backscatter (σs), so the relative
accuracy of the simulations is linked to the chosen parame-
terization of σs = −13 dB. Consequently, no error metrics
have been presented and it is not possible to conclude any
one microstructure model is a better representation than any
other. These simulations are intended to highlight differences
(or lack of differences) between microstructure models over a
range of incidence angles.

As with the passive simulations, microstructure model dif-
ferences shown in Fig. 13 are greater at higher frequencies.
σ0 was highest for the TS model (closely followed by GRF),
and lowest for the SHS microstructure model. At 16.7 GHz

Fig. 13. Comparison between SMRT simulated backscatter and NoSREx
observations on Mar. 1, 2012. Panels (a)–(c) show copolarized backscatter,
whereas panels (d)–(f) show cross-polarized backscatter. 1 dB measurement
error shown.

and incidence angle of 50◦, σ0 for TS microstructure was
−12.4 dB, but −16.3 dB for SHS microstructure. Differences
between VV and HH σ0 were smaller in the simulations than
observations, with a larger decrease in HH σ0 with incidence
angle than for VV. At 10.2 and 13.3 GHz observed HH σ0 was
higher than VV σ0, whereas at 16.7 GHz, VV σ0 is higher than
HH σ0. For all simulations, VV σ0 is higher than HH σ0. Cross-
polarization simulations have not been presented as SMRT
does not currently account for cross-polarization backscatter
contribution from the substrate.

Copolarized backscatter behavior is broadly captured by
SMRT, but the difference between microstructure models can
exceed measurement error. No conclusions can be drawn as
to the most appropriate microstructure for these data due
to uncertainty in the soil backscatter contribution. Improved
knowledge of substrate reflectivity is key to demonstrating
simulation accuracy.

V. DISCUSSION

SMRT accuracy in this study is comparable to or better than
other studies, but the main improvement is that it is achieved
without ad hoc scaling or optimization of microstructure
parameters. The snow parameters are purely based on in situ
measurements. Evaluation of SMRT against these data shows
the largest RMSE for the ASMEx dataset and the smallest
for NoSREx. ASMEx RMSE errors are similar to those found
in [18], where mean RMSE in the frequency range 19–89 GHz
for both Arctic and Sub-Arctic snow was 16 and 23 K for
EXP and SHS microstructure, respectively. While RMSE is
comparable for ASMEx, the ME is lower than in [18]. Studies
with other microwave emission models indicate mean RMSE
(19–37 GHz) of around 13 K [10] and 16–26 K [12], but
as with [18], these were based on microstructure optimiza-
tion techniques not applied here. Improvements in SMRT
simulations come from the ability to determine and use
microstructural parameters directly from micro-CT or thin
section images, and from new microstructural models available
in SMRT.

Precisely how microstructure parameters are derived
requires further attention in a number of areas: 1) fit technique,
2) anisotropy, and 3) stratigraphy. The current method used
to fit the analytical microstructure models to the measured
correlation function places no weight on different portions of
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the curve, meaning fits can be worse at length scales more
relevant to particular frequencies.

SHS cannot easily be compared with other microstructure
models because the fit to micro-CT data must be done in
Fourier space. SHS did not perform well for PAMIR and
NoSREx, yet has the potential to perform well as shown by
ASMEx. It is difficult to retrieve parameters for the SHS
model [14] as the retrieval tends to identify the lowest possible
stickiness as shown in Table I. The fit of the SHS correlation
function to experimental data is subject to degeneracy: similar
goodness of fits can be obtained by simultaneous variation
of diameter and stickiness. For PAMIR, fits to the correla-
tion function at low k are relatively poor and these para-
meters are likely more representative at higher frequencies.
Microstructure models that have both real-space and Fourier-
space analytical correlation functions (IND, EXP, TS) could be
used to provide insight into fitting methodology e.g., whether
better results can be obtained by fitting in Fourier space. This
would also allow us to assess whether it is advantageous to
perform the orientational averaging of anisotropic snow in
real or Fourier space.

Anisotropy has been demonstrated here, even in snow that
visually appears homogeneous, and snow with predominantly
vertical structures is simulated less well. The simple assump-
tion applied here was that the isotropic parameters currently
required in SMRT could be represented by an equally weighted
average of microstructure parameters derived along Cartesian
directions. As scattering is non-linearly related to microstruc-
ture parameters, this may not be the best approach. Non-equal
weight given to the microstructural length scales observed in
multiple directions could be explored in the first instance and
fitting to the directionally averaged correlation function could
also be tested, although a fundamental advancement in SMRT
may be needed to account for anisotropic media properly.

There are greater differences between microstructure models
for PAMIR than for ASMEx, despite similar snow depths and
substrate (absorber). This could be a function of greater snow
heterogeneity in the PAMIR experiment than for ASMEx, but
more likely because of generally coarser structures (Table I)
enhancing the sensitivity to microstructure. PAMIR provides
interesting data. In this study, ice lenses were not treated
as separate thin layers, so there is potential to improve
simulations further through explicit consideration of coherence
and interlayer boundary effects. However, the better perfor-
mance of TS and GRF compared with other microstructure
models within SMRT may mean that the secondary structure
parameter is partially able to compensate for coherent and
semicoherent effects.

More generally, we need to rethink how we consider snow-
pack layers. Snow layers for simulations are often defined
by the resolution of the field measurements. Micro-CT allows
very fine resolution information, potentially at a higher resolu-
tion than microwave observations are sensitive to. At 37 GHz
the wavelength is 8 mm whereas at 10 GHz it is 30 mm. Since
the RT theory is based on energy transport without tracking the
wave phase, specification of thinner layers than the wavelength
introduces artificial dielectric discontinuities, which leads to
overestimated polarization difference in the simulations [34].

SMRT is equipped with a correction for a subwavelength thin
layer surrounded by two normal layers, which is relevant for
modeling ice lenses, but as with any RT model, SMRT is not
able to deal with a snowpack with many layers thinner than
the wavelength properly.

PAMIR microstructural parameters were derived from
∼5 cm sections, which are much larger than the wavelengths
of the observations. ASMEx layers range from 6 mm to 9 mm
in thickness: still too fine for the simulations given that the
longest wavelength considered is 16 mm. For homogeneous
slabs, this would not matter, but vertical bars for simulated κs

in Fig. 8 indicate a fair degree of variability in many of the
slabs. Agreement with retrieved κs depends on whether the
slabs conform with the retrieval assumptions, but even good
simulations of κs can lead to poor TB simulations if there
are more dielectric discontinuities simulated than observed
by the sensors. This does not appear to be a problem for
the ASMEx dataset but is for NoSREx at 10 GHz where
the layers are thinner and a longer wavelength considered.
This only concerns H-pol simulations, particularly at large
incidence angles.

Larger micro-CT sampling size allows longer tail correlation
function analysis but it is not clear whether layers could
then become too large in the simulation and neglect dielectric
discontinuities observed by the sensor (e.g., single layer snow-
pack simulations are generally insufficient) so the question
is what is the most appropriate resolution for snowpack
stratigraphy? Micro-CT should be used to address this question
with the added benefit of informing resolution of future field
campaigns to minimize micro-CT processing cost.

Some of the above questions could be addressed by using
the measured correlation functions directly in SMRT. This is
theoretically possible but needs more understanding of how
to prevent numerical instabilities caused by the tail of non-
decaying correlation functions. Nevertheless, micro-CT offers
the potential to look at microstructure in a way that has not
been possible previously and offers a pathway to more accurate
simulations. However, field sampling is not as easy as for other
microstructural observation methods (e.g., SSA and density),
and the laboratory processing to extract the 3-D structure is
expensive. More work is needed to speed up the micro-CT
processing chain and/or develop strategies for relating field
measurable quantities to the microstructural model parameters
needed for more accurate simulations.

Accurate quantification of simulation errors is critical for
remote sensing applications. For some applications, snow may
not be the primary focus but affects the measurements so
it is necessary to understand the contribution of snow to
the observation error budget in e.g., ice thickness retrievals.
In numerical weather prediction, atmospheric observation
uncertainty due to snow is an essential requirement for the
assimilation of microwave data in lower troposphere sounding
channels. SMRT can also be used in the design of future snow
monitoring missions for water supply management.

VI. CONCLUSION

This article evaluated SMRT against three field experiments
of differing snowpack complexity and covers a range in
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snow type, snow depth, and observation incidence angle. The
way snow microstructure is quantified can have a dramatic
impact on the simulation of microwave brightness temper-
ature or backscatter and becomes increasingly important at
higher frequencies. The optimum microstructure model may
depend on snow type, and the new two-parameter TS and
GRF microstructure models give more accurate brightness
temperature simulations than other microstructure models for
two of the three field campaigns evaluated.

At present, micro-CT or thin section images are needed
to determine the necessary microstructure parameters. Future
research should focus on the following: 1) assess methods
to fit microstructure models to micro-CT data 2) how to
parameterize microstructure models from field observations,
3) how to treat snowpack layers given that different frequen-
cies observe different dielectric discontinuities, 4) how to
account for anisotropy in the microstructure, and (v) quan-
tifying simulation uncertainties in support of remote sensing
applications. SMRT provides the framework to do this.

VII. CODE AVAILABILITY

Code and data to run these simulations are available from
https://github.com/smrt-model/smrt_evaluation_paper
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