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Abstract
To study the forced variability of atmospheric circulation regimes, the use of
model ensembles is often necessary for identifying statistically significant sig-
nals as the observed data constitute a small sample and are thus strongly
affected by the noise associated with sampling uncertainty. However, the regime
representation is itself affected by noise within the atmosphere, which can
make it difficult to detect robust signals. To this end we employ a regularised
k-means clustering algorithm to better identify the signal in a model ensem-
ble. The approach allows for the identification of six regimes for the wintertime
Euro-Atlantic sector and leads to more pronounced regime dynamics, compared
to results without regularisation, both overall and on sub-seasonal and interan-
nual time-scales. We find that sub-seasonal variability in the regime occurrence
rates is mainly explained by changes in the seasonal cycle of the mean clima-
tology. On interannual time-scales relations between the occurrence rates of the
regimes and the El Niño Southern Oscillation (ENSO) are identified. The use of
six regimes captures a more detailed response of the circulation to ENSO com-
pared to the common use of four regimes. Predictable signals in occurrence rate
on interannual time-scales are found for the two zonal flow regimes, namely a
regime consisting of a negative geopotential height anomaly over the Norwegian
Sea and Scandinavia, and the positive phase of the NAO. The signal strength
for these regimes is comparable between observations and model, in contrast to
that of the NAO-index where the signal strength in the observations is under-
estimated by a factor of 2 in the model. Our regime analysis suggests that this
signal-to-noise problem for the NAO-index is primarily related to those atmo-
spheric flow patterns associated with the negative NAO-index as we find poor
predictability for the corresponding NAO− regime.
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1 INTRODUCTION

Atmospheric circulation regimes, or weather regimes, pro-
vide a way to study the low-frequency variability in the
atmosphere (Hannachi et al., 2017). Many studies have
looked into their identification (e.g., Michelangeli et al.,
1995; Straus and Molteni, 2004) and numerous research
efforts have focused on the relation between regimes and
local weather (e.g., Cassou et al., 2005; Ortizbeviá et al.,
2011). It is of interest to know whether the occurrence
of the different regimes varies on both (sub-)seasonal
and interannual time-scales in a predictable way. Such
forced (i.e., non-stationary) variability can be caused
by links between circulation regimes and other pat-
terns of related climate variability, for example sudden
stratospheric warmings on sub-seasonal time-scales (e.g.,
Charlton-Perez et al., 2018; Domeisen et al., 2020) or
the El Niño Southern Oscillation (ENSO) on interannual
time-scales (e.g., Drouard and Cassou, 2019; Lee et al.,
2019). A better understanding of the processes guiding
the non-stationary regime dynamics can help improve
predictions of the regimes themselves, as well as the con-
sequences for local and regional weather. To this end it
is important to robustly identify predictable regime vari-
ations, given the inevitable presence of noise, which can
conceal these possibly weak signals within the regime
dynamics.

The common approach for identifying circulation
regimes is to apply a k-means clustering algorithm to
the 500 hPa geopotential height (e.g., Michelangeli et al.,
1995; Cassou et al., 2005; Straus et al., 2007). Apply-
ing this method to reanalysis data has shown consis-
tent results between studies for, for example, the North-
ern Hemisphere or the Euro-Atlantic sector. However,
reanalysis data only provide one realisation of reality
and thus are sensitive to sampling uncertainty in detect-
ing the non-stationary signal. Reanalysis data mostly
cover only the last 40 years (e.g., ERA-Interim), which is
too short to reliably identify any non-stationary regime
behaviour, especially on interannual time-scales, but also
on sub-seasonal time-scales. For example, when one is
interested in the effect of ENSO on the occurrence rate
of the circulation regimes in winter, one only has a few
years of data consisting of roughly 120 days each when
using ERA-Interim. For six regimes, on average occurring
20 days each year, a few days more being assigned to one
regime can significantly affect the regime frequencies. This
makes it difficult to distinguish any signal from the noise.

One way to increase the sample size, and thus iden-
tify a more robust signal of the predictable component of
the variability, is to use the UNSEEN method, in which
model ensemble members with different lead times are
pooled to create a very large ensemble (e.g., Thompson

et al., 2017; Kelder et al., 2020). Here, the lead times are
beyond the deterministic predictability limit, and there
is no skill for predicting individual weather events. The
ensemble members can thus be treated as plausible alter-
native realisations of reality, which are all equally affected
by the sources of predictable variability. In line with this
approach, we use hindcast ensemble data of the ECMWF
seasonal forecast system to study sub-seasonal and inter-
annual regime dynamics. As the model has high levels
of interannual ENSO forecast skill (Johnson et al., 2019),
using seasonal forecasts allows for a more precise study
of the interannual dynamics and effects of, for example,
ENSO on the regimes. Here, we are not primarily con-
cerned with the initial condition problem of weather fore-
casting, but rather require a high-resolution model with a
small bias on the slightly longer time-scales of interest for
this study.

A difficulty here is that models are imperfect and
exhibit a wide spread in their regime frequencies com-
pared to reanalysis data (e.g., Fabiano et al., 2020).
This behaviour may reflect the “signal-to-noise paradox”
whereby models are more noisy than the real world (see
further discussion below). It is exemplified by the domain
dependence of the regimes, particularly the negative coun-
terpart of the Atlantic Ridge (AR−), when considering the
six regimes identified using the ECMWF SEAS5 hindcast
ensemble in Figure 1. Here, six regimes are considered
instead of the commonly used four as this was identi-
fied to be the optimal number when using gridpoint data
and allows for a more detailed description of the variabil-
ity in the atmospheric circulation (Falkena et al., 2020).
For ERA-Interim data, no such domain dependence of the
regimes is found, despite the smaller sample size. This
domain dependence of the regimes within the model is
undesirable from a physical and useability perspective.

When identifying the circulation regimes, the pres-
ence of noise can hide possible regime variability signals.
Specifically, small deviations in the distance of data to the
regimes can result in them being assigned to a different
regime, obscuring the “true” signal (see further discussion
in Section 2). To avoid the misinterpretation of the regime
signal, we implement a regularisation within the clus-
tering method to strengthen the non-stationary signal by
penalising noise. Specifically, we add information from the
model ensemble to obtain a better informed regime identi-
fication method. Similar forms of regularisation, designed
to increase persistence in time, have been successfully
employed to detect robust and meaningful regimes in the
climate context (e.g., Horenko, 2010; Falkena et al., 2020).
Since the regularisation is empirical, we monitor its effect
by quantifying the trade-off between accuracy and infor-
mation, and assessing whether what it does is physically
sensible.



FALKENA et al. 3

F I G U R E 1 The regimes identified for the ECMWF SEAS5 hindcast ensemble members (left) and ERA-Interim (right) using standard
k-means clustering for two slightly different domains (indicated by the dashed boxes). They are the positive and negative phases of the North
Atlantic Oscillation (NAO), the Atlantic Ridge (AR+) and its negative counterpart (AR−), and the Scandinavian Blocking (SB+) and its
negative counterpart (SB−). Regimes for domain A (20–80◦N, 90◦W–30◦E) are indicated by the colours and those for domain B (30–90◦N,
80◦W–40◦E) by the contours, following the same 50 gpm difference between contour levels [Colour figure can be viewed at
wileyonlinelibrary.com]

Our focus is on identifying non-stationary regime
dynamics in the Euro-Atlantic sector during winter. In this
region the North Atlantic Oscillation (NAO) is the domi-
nant mode of variability and most models show moderate
skill for its prediction during winter (Scaife et al., 2014;
Baker et al., 2018; Weisheimer et al., 2019). It is expected
that this skill can extend, at least in part, to the regime
dynamics, where the regularisation can help to better iden-
tify the signal. In this way the regime dynamics as obtained
using the regularised clustering method can possibly help
understand the so-called signal-to-noise paradox observed
for the NAO. This paradox relates to the observation that
most models are better at predicting the real world NAO
than the NAO of their own ensemble members (Eade et al.,
2014; Scaife and Smith, 2018), while the variance of single
ensemble members and of the observations is compara-
ble. Studying the predictable signal of regime occurrence
on interannual time-scales, using the regularised cluster-
ing results, can firstly indicate whether the signal-to-noise
paradox extends to the regime dynamics, and secondly
point to the dynamical flow patterns which are poorly rep-
resented within the model and thus warrant special focus
when trying to resolve the paradox.

In the next section we start by discussing the problem
setting of using clustering methods to identify circula-
tion regimes in model ensembles exhibiting a wide spread
in their regime representation, and show a motivational
example for the regularisation method proposed to han-
dle this spread and identify a more robust signal. This

method, and the data used, are then discussed in some
detail in Section 3, followed by a discussion on the choice
of the regularisation constraint in Section 4 using several
criteria. The results for the regime dynamics are presented
in Section 5, looking into the effect of the regularisation
and into the non-stationary signal on both sub-seasonal
and interannual time-scales, as well as discussing the
signal-to-noise problem. We end with a summary and dis-
cussion of the results in Section 6.

2 MOTIVATION

The method of k-means clustering, which is the stan-
dard approach for identifying circulation regimes, deals
poorly with data containing a lot of noise. The reason for
this is that k-means clustering assigns every data point to
the cluster centre, or regime, that it is closest to, even if
only by a tiny margin. This makes it overly sensitive to
noise, especially when the signal-to-noise ratio is small.
A consequence is that the identification procedure lacks
robustness and the informational gain is small. The follow-
ing example visualises this issue by means of one possible
scenario.

Consider Figure 2a which shows the distribution of
ensemble members over three different clusters, and
Figure 2b showing the (theoretical) distributions of data
over two regimes (green, left and orange, right) when they
are equally likely (top) and when the orange regime is

http://wileyonlinelibrary.com
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(a) (b)

F I G U R E 2 (a) An example of a possible reassignment of an ensemble member. The green squares, orange circles and blue triangles
give the distribution of the ensemble members over the different regimes, that is, each marker indicates to which regime the corresponding
ensemble member is assigned, but its location within the bin does not provide any further information. The arrow shows the desired
reassignment of a data-point, which might plausibly be associated with either the green square or the orange circle regime. To better
understand this reassignment, in (b) the probability distribution of data around the cluster centres (dotted lines) is shown for equally likely
regimes (top), and a situation where the orange (right) regime is more likely, that is, of higher amplitude (bottom). When the two regimes are
equally likely, a point in the middle (solid line) has an equal probability of belonging to either of the regimes. However, when the orange
(right) regime is more likely than the green one (left), data that lie half-way between have a larger probability of belonging to the orange
regime than to the green one, and thus might better be reassigned to the orange regime. Such reassignments can help to reduce the effect of
noise and identify a more robust signal [Colour figure can be viewed at wileyonlinelibrary.com]

more likely (bottom; note this is an exaggerated visualisa-
tion for illustration purposes). At a fixed time t it is possible
that a data point, that is, an ensemble member, falls in
between two (or more) regimes (e.g., the clusters associ-
ated with the green squares and orange circles). Here a
standard k-means clustering assigns it to the regime it is
closest to in distance, which is valid if the regimes are
equally likely. However, due to the effect on the regimes
of external forcing, such as ENSO, this is not always the
case. If one regime is known to be more likely than the
neighbouring one at that point in time, then it would be
prudent to assign the ensemble member to the more likely
regime. In this way the regime assignment of an ensem-
ble member is not solely determined by its distance to the
cluster centres, but also by a prior likelihood set by the
distribution of the ensemble members over the regimes,
which is picking up a non-stationary signal. Effectively,
noise is being penalised. For example, in our visualisa-
tion the cluster comprised of the ensemble members indi-
cated by the orange circles is more likely, that is, occurs
a lot more over all ensemble members, at a given time t.
The shown ensemble member in distance falls between
the green square and orange circle regimes, that is, only
slightly left of the solid line in Figure 2b. To assign it to the
green square regime based on this small difference in dis-
tance places more weight on the noise than on the signal.

For that reason it can be better to assign it to the orange
circle regime which has a higher probability as shown in
Figure 2b.

The aim is then to design a clustering method that
penalises noise, to mitigate incorrect assignments of data
points as exemplified above. One possible way to achieve
this is to regularise the k-means clustering method by
implementing a constraint enforcing a level of similarity
between the ensemble members at each moment in time
(Bishop, 2006 gives a discussion of different types of regu-
larisation). This design has a physically meaningful basis
as the preferred regimes should, on average, be represented
by the overall ensemble, and if one regime is more popu-
lated than usual at a particular time, it makes it more likely
that borderline cases belong to that regime (Figure 2). By
introducing a constraint that prioritises similarities over
small deviations it is possible to distinguish more pro-
nounced regime behaviour, that is, to discriminate better
between the regimes. The underlying assumption here is
that the distribution of the ensemble members over the
regimes changes in time due to external factors such as
ENSO and that the regularisation helps to better identify
such weak non-stationary signals.

Of course, such an algorithm could be over-confident.
A curb on over-confidence is provided by accuracy. The
overall goal is to keep the accuracy at a reasonably high

http://wileyonlinelibrary.com
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level while significantly increasing the information gain
(in the entropy sense) of the derived regime model. Specif-
ically, we favour regimes with more informative dynamics
over those that fit the data slightly better, since this can
be advantageous in identifying weak signals. In the next
Section we describe how to quantify this trade-off between
accuracy and informativeness.

3 DATA AND METHODS

When it comes to regime analysis of model ensemble data
there are two approaches one can take. The first is to assign
the model data to the regimes obtained from reanalysis
data (e.g., Ferranti et al., 2015; Grams et al., 2018). The sec-
ond approach is to compute the regimes from the model
data itself (e.g., Dawson and Palmer, 2015; Matsueda and
Palmer, 2018). This latter approach means that the regimes
identified can differ from those of reanalysis data. On the
other hand, it includes a natural bias correction of the
model data in the regime representation. Here we choose
the latter approach.

Before discussing how to implement the constraint
discussed in the previous section in the k-means cluster-
ing algorithm for model ensemble data, we first need to
detail the data used for the identification of the circulation
regimes and the distribution of the data over them. Then
we describe the regularised clustering method and lastly
we discuss the use of regression analysis for the identifi-
cation of a predictable non-stationary signal and link this
approach to more commonly used methods.

3.1 Data

Daily 500 hPa geopotential height from the ECMWF hind-
cast ensemble of SEAS5 (Johnson et al., 2019) is used for
the identification of the circulation regimes. The ensem-
ble has 51 members for a 01 November start date and is
available from 1981 to 2016. We use the 500 hPa geopo-
tential height on a 2.5◦ by 2.5◦ grid for a domain cov-
ering the Euro-Atlantic sector. To analyse the robustness
of the obtained regimes, we consider two slightly differ-
ent domains; 20◦ to 80◦N, 90◦W to 30◦E (domain A) and
30◦ to 90◦N, 80◦W to 40◦E (domain B) (both are com-
monly used in literature, e.g., Cassou et al., 2005; Dawson
et al., 2012). The months December to March are con-
sidered using daily data (00:00 UTC), meaning forecast
lead times of over a month are used, for which there is
no longer any discernible effect of the atmospheric ini-
tial conditions. Note that this loss of memory of the initial
conditions does not imply there is no predictable vari-
ability, as other processes such as the month within the

season or the phase of ENSO affect the circulation. We
compute anomalies with respect to a DJFM average cli-
matology in order not to make any assumptions on the
(sub-)seasonal variability in the background climatology
(Section 5.2 and Falkena et al., 2020 have further reasoning
on this point).

To reduce the effect of weather noise, preprocessing
methods are often used to focus on the larger-scale, pre-
dictable variability. In Fabiano et al. (2020) an Empirical
Orthogonal Function (EOF) analysis was used to reduce
the dimensionality of the data in a model ensemble, but
a large spread in the centroid distance and spatial corre-
lation of the regimes was still found. This indicates that
this way of preprocessing is not sufficient to reduce the
effect of noise on the identified regimes. Other methods
of preprocessing the data, such as using a low-pass fil-
ter, could filter out some of the noise within the model
as well. However, these methods can also lead to biases
in the resulting regimes. For example, in Falkena et al.
(2020) it was found that the use of a low-pass filter affects
the regime frequencies. Therefore, we focus on adapting
the clustering method instead of preprocessing the data,
to identify a more robust regime signal. This way we do
not lose any information present in the data and avoid
possibly introducing a bias by preprocessing. The regimes
obtained for the SEAS5 hindcast data using the cluster-
ing method described in the following section are identi-
fied with the corresponding regimes in the ERA-Interim
reanalysis (Dee et al., 2011) as obtained in Falkena et al.
(2020). Thus the regimes for SEAS5 and for ERA-Interim
are slightly different (Figure 1), which allows for bias
within the model. For consistency, the same period of
36 years for which the SEAS5 data are available is consid-
ered for ERA-Interim.

3.2 Regularised clustering method

Let the considered ensemble data be of the form xt,n ∈
RT×N×D, where T is the length of the time series, N
the number of ensemble members and D the spatial
dimension of the data (here latitude×longitude). The aim
of clustering the data is to find k cluster centres Θ =
(𝜃1, ..., 𝜃k) ∈ Rk×D (regimes) that best represent the data.
The assignment of individual data points to the different
clusters is given by the weights, or affiliation vector, Γ =
{𝛾1(t,n), ..., 𝛾k(t,n)} ∈ Rk×T×N . This can be understood as
the probability of a data-point belonging to each of the
different regimes.

Identifying the circulation regimes means that we need
to find the optimal parameters for the cluster centres Θ
and the data-affiliations Γ. To achieve this, a cost function,
also referred to as the averaged clustering functional (in its
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discrete form), is minimized (Franzke et al., 2009):

L(Θ,Γ) =
T∑

t=0

N∑
n=1

k∑
i=1

𝛾i(t,n)g(xt,n, 𝜃i). (1)

Here g(xt,n, 𝜃i) is the distance between the clus-
ter centre and a data point, for which the L2-norm({∑

lat,lon
[
xt,n(lat, lon) − 𝜃i(lat, lon)

]2}1∕2) weighted by
the cosine of latitude is used. The affiliations 𝛾i(t,n) ≥ 0
are normalised following

k∑
i=1

𝛾i(t,n) = 1, ∀t ∈ [0,T], ∀n ∈ [1,N]. (2)

In practice, the 𝛾i(t,n) values obtained via the optimi-
sation are mostly equal to zero or one. In that case the
data-points are unambiguously assigned to one of the
regimes. In traditional k-means clustering, the assignment
of Γ often does not exhibit persistence in time or with
respect to the different ensemble members. This can be a
sign of misinterpreting noise to be the signal. The aim is
to mitigate this effect in order to identify a robust signal.

Previous studies have introduced a constraint within
the clustering method to increase the temporal persis-
tence of the regimes (Horenko, 2010; de Wiljes et al., 2014;
Falkena et al., 2020). Here we expand on that idea by
implementing a constraint on the similarity between the
ensemble members at every time-step, with the aim of
identifying a more robust regime signal, as discussed in
Section 2. This constraint takes the form

1
2

k∑
i=1

N∑
n1,n2=1

|𝛾i(t,n1) − 𝛾i(t,n2)| ≤ 𝜙 ⋅ Ceq, ∀t ∈ [0,T],

(3)
where the sum over n1,n2 is taken over all combinations
of two ensemble members, that is

∑N−1
n1=1

∑N
n2=n1+1. The divi-

sion by two ensures that differences are not counted twice.
Ceq is the maximum value that can be attained by the sum
on the left-hand side and is given by

Ceq = N
2

(
N − N

k

)
. (4)

The maximum of Ceq is reached if the ensemble members
are equally distributed among the k regimes. Thus 𝜙 rep-
resents the strength of the constraint relative to the maxi-
mum value Ceq. One can think of𝜙 as the proportion of the
ensemble members that is not affected by the constraint.
Note that, by expressing the constraint in this way, its
strength, as given by𝜙, is independent of the ensemble size
or the number of regimes. Instead, the ensemble size and
number of regimes enter into Ceq. Since we implement the
constraint separately for every time step we do not make
any assumptions on the form of the non-stationarity, but

only ensure the algorithm can better discriminate between
the regimes at a given time.

The regimes are obtained by minimising the clustering
functional L in Equation (1) subject to the constraints in
Equations (2) and (3). This minimisation is done in two
steps:

1. For fixed Γ, minimise L over all possible values of Θ.
2. For fixed Θ, minimise L over all possible values of Γ.

The first step is realised via standard k-means cluster-
ing, while for the second we employ linear programming,
that is, optimisation of a linear function subject to con-
straints, using the Gurobi package for Python (Gurobi
Optimization, 2019). When the difference between sub-
sequent L values comes below a set threshold, the com-
putation is terminated. Analogously to standard k-means
clustering, this presented algorithm only finds local min-
ima. Therefore we run it at least 50 times starting
from different initial seeds in an attempt to heuristi-
cally infer a global minimum (this approach is referred
to as simulated annealing in the literature). The run
with the lowest L value is then selected as the final
result.

Falkena et al. (2020) identified k = 6 to be the opti-
mal number of regimes for representing the wintertime
circulation over the Euro-Atlantic region for ERA-Interim
using an information criterion (Bayesian), and we there-
fore choose 6 as the number of regimes considered for this
study. While 𝛾i(t,n) ∈ {0, 1} within the standard k-means
clustering, this is no longer the case for all time-steps
or ensemble members when incorporating the constraint.
Specifically 𝛾i(t,n) ∉ {0, 1} when it is not possible to
numerically obtain a solution on the bounds of the admis-
sible set of the optimisation problem; in that case 𝛾i(t,n) is
between 0 and 1. We use this as an indication that those
data-points cannot be unambiguously assigned to one of
the regimes and employ it to define a ‘no-regime’ cate-
gory. Note that this means that, even if 𝛾i(t,n) for some
t, n is very close to 1 for a regime, it is still assigned to be
no-regime. Using this definition of a no-regime category,
the number of data-points assigned to it increases approx-
imately linearly with 𝜙 (not shown), that is, the stronger
the constraint (lower 𝜙), the more data are assigned to the
no-regime category.

3.3 Estimation of signal strength

When discussing the obtained regimes and their
non-stationary dynamics, we use a regression analysis to
identify the strength of the signal in comparison with that
in observations. Assume there is a true signal given by c(t).
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For an observational time series y(t) we can then write

y(t) = ac(t) + ey(t), (5)

where ey(t) represents noise. Note that we explicitly allow
for the possibility that the index (e.g., the NAO) we con-
sider is only a projection of the “true” signal, which proba-
bly is not perfect, hence a ≤ 1. In a similar way, we have a
statistical model for the time series of an ensemble mem-
ber xi(t) given by

xi(t) = bc(t) + exi(t), (6)

now with a coefficient b as the model likely is imperfect.
For the ensemble mean x(t) we then obtain

x(t) = bc(t) + ex(t). (7)

We regard the ensemble mean as the best estimate of the
signal, and ask how well it can predict the observations.
Thus we regress y(t) onto x(t), that is, estimating y(t) =
Ax(t) + Ey(t), which yields A = a∕b as the regression coef-
ficient. This is the ratio of signal strengths with the model
prediction being well calibrated if a = b.

The regression coefficient thus provides information
on the signal strength without having to explicitly address
the noise of the observations, nor of the model. Since
estimates of the noise in the observations (i.e., ey) are espe-
cially uncertain, it is beneficial to avoid having to quantify
them when estimating the signal strength. The regression
coefficient a∕b can be linked to more conventional mea-
sures of signal strength such as the Anomaly Correlation
Coefficient (ACC) or the Ratio of Predictable Components
(RPC) (Eade et al., 2014). One can derive that

ACC = a
b
𝜎x

𝜎y
, RPC = a

b
𝜎xi

𝜎y
, (8)

where 𝜎y,x,xi
are the standard deviations of the residuals

for the respective variables. So long as 𝜎xi ≈ 𝜎y, the RPC
provides the same information as the regression coeffi-
cient. However the regression coefficient is a more robust
estimate, as it does not require estimating the noise.

4 SELECTION OF REGULARISED
REGIME MODEL

Using a constraint to regularise the outcome of the clus-
tering algorithm requires choosing a suitable constraint
value 𝜙. This value determines the regime model that is
used for the subsequent analysis of occurrence rates and
non-stationarity. An appropriate value is highly dependent

on the considered application and needs to be determined
accordingly. Yet it is possible to employ several differ-
ent selection criteria to aid the decision process, inde-
pendently of the underlying physical processes. In the
next section we introduce two main criteria that can be
used for the constraint selection, as well as a check on
the domain dependence of the regimes. We then evaluate
these measures for the considered problem and discuss the
arguments to arrive at our final choice of 𝜙.

4.1 Selection criteria

Numerous methods exist for deciding on the best model for
the data at hand, that is, to find an optimal value of the con-
straint. For example, for the choice of the optimal number
of circulation regimes, researchers have used verification
by synthetic datasets (e.g., Straus et al., 2007), a classifi-
ability index (e.g., Michelangeli et al., 1995), an informa-
tion criterion (e.g., O’Kane et al., 2013) or cross-validation
(Quinn et al., 2020). These methods can be used not only
to determine the number of circulation regimes, but also
the values of other hyper-parameters (e.g., Falkena et al.,
2020; Quinn et al., 2020). In this section we introduce three
criteria, namely the Bayesian Information Criterion, Shan-
non entropy and a domain robustness measure, which can
all be used to inform the choice of a suitable constraint
value 𝜙.

4.1.1 Bayesian information criterion

Information criteria are a popular tool for model selection.
The aim is to find a balance between the accuracy and
complexity of the model (in the spirit of Occam’s razor),
that is, between how well the model fits the data and the
number of parameters required (Burnham and Anderson,
2004). There are many different information criteria vari-
ants, where versions of the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) are the
most widely used. In the context of our application, the
BIC is preferable to the AIC as the considered dataset is
high-dimensional (by using grid-point data) and in con-
trast to the AIC the BIC factors the dimension of the
dataset into the penalty term (Falkena et al., 2020 discuss
this further). The BIC is given by

BIC = −2 log{(𝜃|data)} + K log(m)
= m log(𝜎2) + K log(m), (9)

where m is the dimension of the data and K the number
of parameters needed to describe the clusters. (𝜃|data)
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is the likelihood of the model parameters given the data,
which can be expressed using the error variance 𝜎2. Note
that the error variance, being a measure of the accuracy
of the regimes, is estimated using the clustering func-
tional L in Equation (1). When computing the BIC, we
need to determine m and K. Each ensemble member
has dimension D × T, and the main question is in what
way the number of ensemble members is incorporated.
There are two choices that can be made for this. Firstly,
one can simply use the number of ensemble members
N. However, the regularisation constrains the number
of combinations between any two ensemble members(

N
2

)
instead of the assignment of each of the N ensem-

ble members individually. For this reason, we decide to
use

(
N
2

)
as the dimension of the ensemble, which yields

m = D ×
(

N
2

)
× T and K = k × D + T × (k − 1) × 𝜙 ⋅

(
N
2

)
.

4.1.2 Shannon entropy

The second method considered to identify a suitable con-
straint value 𝜙 is to calculate the entropy, or informa-
tion content. Entropy has already been used occasionally
in evaluating model performance for circulation regimes
(Fabiano et al., 2020), and some studies use it as a way of
correcting information criteria for the distribution of the
model residuals (Murari et al., 2019; Rossi et al., 2020).
The goal of regularising the clustering algorithm is to iden-
tify a stronger non-stationary signal, that is, to increase
the amount of information in the resulting regime dynam-
ics. Therefore, the use of an information measure, such as
entropy, follows naturally from the aim of implementing
the constraint. Here we use the Shannon entropy (Shan-
non, 1948; Shannon and Weaver, 1949), which is given by

H(pi) = −
k∑

i=0
pi log2 pi, (10)

where pi, i ≠ 0, is the occurrence rate of regime i and p0 is
the occurrence rate of no-regime. The Shannon entropy is
low for an equal distribution of the data over the regimes.
On the other hand it is larger for a more unequal distri-
bution in which there is a stronger signal. Note that the
information gain by enforcing a less equal distribution
of the data over the regimes comes at the cost of reduced
accuracy.

4.1.3 Domain robustness

Lastly, we discuss the domain robustness of the regimes to
see whether a choice of constraint is suitable. By domain

robustness we refer to the domain dependence of the
regimes as obtained by the algorithm. Using standard
k-means clustering, the regimes of the SEAS5 hindcast
data are found to be domain dependent, as discussed in
the Section 1 (Figure 1). From a physical perspective this
is undesirable, as the conclusions on the regime dynam-
ics can then depend on the chosen domain. To transform
this domain dependence into a verification criterion for
the constraint value, we consider the clustering results for
both domains A and B and compute the pattern correla-
tion between the two sets of regimes over the overlapping
section of these domains. The average pattern correlation
is then computed as a measure of how well the regimes
for the two domains match. Alternatively, one could take
the lowest pattern correlation to indicate the quality of the
match, that is, what is the worst matching regime. This
yields very similar results.

4.2 Selecting the constraint value

In this section the three discussed criteria are evaluated for
the considered data. In Figure 3 these criteria are shown
for a range of 𝜙, where the BIC and Shannon entropy are
shown for the two domains considered. For the BIC, which
strikes a balance between accuracy and complexity, the
optimal value is located at its minimum. In contrast, for the
entropy, which compares information content and com-
plexity, a higher value indicates a better result. The pattern
correlation between the two domains ideally is as high as
possible, indicating robustness of the regimes with respect
to the choice of domain.

The BIC attains its minimum at 𝜙 = 0.96 for both
domains, indicating that for that constraint value the accu-
racy of the regime-representation of the data is still high.
When looking at the results, we find that these regimes
and the assignment of the data to them are very similar
to those without the constraint, indicating that the con-
straint is too weak to have a strong impact. Furthermore,
we find that this minimum depends strongly on the num-
ber of ensemble members considered, for example, using
26 members the minimum of the BIC is found for𝜙 = 0.92.
While the BIC is generally a good method to select certain
hyper-parameters, the goal of the regularisation is not just
to identify the best statistical model and attain the highest
accuracy, but also to obtain a more pronounced regime sig-
nal. To this end it can be desirable to lose some accuracy, by
using a stronger constraint value, for gaining information.

The Shannon entropy indicates an optimal constraint
value around 𝜙 = 0.92 − 0.94, which is slightly stronger,
that is, a lower 𝜙, than the optimum indicated by the BIC.
This slightly lower 𝜙 is where most information, or signal
strength, is gained by constraining the data. It shows that
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F I G U R E 3 The BIC (blue, circles)
and Shannon entropy (red, squares) for
the two domains considered. The average
pattern correlation between the regimes
for the two domains (green, dotted) is
shown as well. Stars indicate the lowest
(blue) or highest (red) value, suggesting a
suitable value for the constraint 𝜙
[Colour figure can be viewed at
wileyonlinelibrary.com]

to identify a stronger signal, that is, higher entropy, one
loses some accuracy, that is, higher BIC. Since the aim of
implementing the constraint on the ensemble similarity is
to identify a stronger signal, we decide to use the entropy
results as the main guidance, and select the high end of the
range where the entropy is maximized, that is 𝜙 = 0.94, to
not lose too much accuracy. Also, for this constraint value
the regimes are barely domain dependent, as indicated by
the high average pattern correlation.

5 REGIME DYNAMICS

For this suitable value of 𝜙 = 0.94 we study the resulting
regime dynamics. We start by discussing the regimes them-
selves and their overall occurrence rates, after which we
turn to the non-stationary signals that can be identified.
When discussing the non-stationarity we also consider
the results obtained using standard k-means clustering,
to further look into the effect of the regularisation. We
look at variability on both the sub-seasonal and interan-
nual time-scales. For the interannual variability we discuss
whether there is any predictable signal for the regime
occurrence rates and compare this to the signal identified
for an NAO-index.

5.1 Effect of the constraint

The constraint affects the assignment of the data to the
regimes, and thus their occurrence rates. In Figure 4 the
average occurrence rates of the regimes are shown for stan-
dard and constrained k-means clustering. For the uncon-
strained result, as well as ERA-Interim, the occurrence
rates are close to an equal distribution of the data over
all six regimes (dotted line in Figure 4). In contrast, the

occurrence rates differ significantly from an equal distri-
bution when 𝜙 = 0.94 is used as a constraint. Despite the
relatively weak constraint, several regimes, such as the
NAO+, have occurrence rates whose range barely overlaps
with that of a uniform distribution (when corrected for the
no-regime occurrence rate). This shows that the constraint
helps to discriminate better between the different regimes,
identifying a stronger regime signal within the SEAS5
data. It follows that the uniformity of the occurrence rates
found for the ERA-Interim regimes is potentially due to a
lack of discrimination between the regimes, as there are
not enough data available to control the noise.

The geographical regime structures are mostly unaf-
fected by the constraint of 𝜙 = 0.94, as can be seen in
Figure 5. Only AR− changes noticeably, now having a
weak positive Z500 anomaly over Greenland. Overall
these regimes correspond well to the regimes obtained for
ERA-Interim, as can be seen in Table 1. The exception is
AR−. However, the sample size for the regime identifi-
cation in ERA-Interim is limited. Therefore, the poorer
regime correspondence between ERA-Interim and the
constrained results for AR− does not necessarily mean
that the constrained SEAS5 AR− regime is incorrect. It
may instead indicate that assigning SEAS5 data to the
ERA-Interim regimes might not be the best approach for
identifying a robust and statistically significant regime
signal.

Overall the regularisation ensures that NAO+ occurs
more often, while NAO−, AR+ and SB− occur less
often, than the unconstrained results. To study in detail
how the assignment of the data changes between the
unconstrained and constrained results, we look at the
contingency table given in Table 2. For the cases where
significant amounts of data are reassigned to a differ-
ent regime by using the constraint (over 5,000, in bold)
we compute composites (Figure 6) to look into the

http://wileyonlinelibrary.com
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F I G U R E 4 The overall occurrence rates of the different regimes for the results with and without a constraint. The boxes show the
interquartile range (IQR) for bootstrapping with one (random) ensemble member per year, the whiskers extend 1.5 times the IQR on top of
this (99.3% of the data fall within this range) and the circles are outlier points. Stars indicate the ERA-Interim values. The dotted line gives
the 1∕6 line indicating an equal distribution of the data over the regimes, while the dash-dotted line indicates an equal distribution after
correcting for the no-regime rate. Note that there are no ERA-Interim data assigned to the no-regime category by the way this category is
defined using the outcome of the regularised algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 The regimes for domain A using a constraint
value of 𝜙 = 0.94 (colour shading) and without constraint
(contours, with the same 50 gpm difference between contour levels)
[Colour figure can be viewed at wileyonlinelibrary.com]

Z500 anomaly structure of this data and interpret the
changes.

A large proportion of the data that without constraint
was assigned to AR− is assigned to NAO+, explaining the
latter’s increase in occurrence rate. In turn, AR− now con-
tains a substantial part of the data that without constraint
was assigned to NAO−. This reflects the change in the AR−
regime with a higher positive anomaly in the north for the

regularised results, which is exemplified by the compos-
ites shown in Figure 6. It also can be linked to the slight
strengthening of the positive Z500 anomaly for NAO−, as
data with a relatively weak anomaly move to the AR−
regime. Interestingly NAO+ loses some of its data points to
SB+ when the constraint is used. This concerns data with
a northwestern negative and northeastern positive Z500
anomaly (Figure 6) where the balance of regime assign-
ment is shifted by the regularisation. The unconstrained
NAO+ has a relatively high positive Z500 anomaly with its
centre over the North Sea, which is lower when the con-
straint is used, corresponding to the positive Z500 anomaly
of SB+ being slightly weaker and located further south.
The decrease in occurrence rate of AR+ is due to data hav-
ing slightly off-centre positive anomaly areas now being
assigned to NAO− or SB+. Data assigned to SB− when no
constraint is used form the largest part of the no-regime set
of the data, accounting for the majority of the SB− decrease
in occurrence rate.

Changes in transition probabilities between the
regimes as a consequence of the implementation of the
constraint are roughly in line with changes in the occur-
rence rates (not shown). That is, regimes that occur more
often become more persistent and are less likely to tran-
sition to another regime, and the other way around for
regimes that occur less often. One notable change is the
increase in the number of transitions from NAO− to AR−,
which is due to the change in the AR− regime ensuring
both regimes have an area of positive Z500 anomalies over
Greenland (Figure 5). This change is one-way, as there is

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 1 The pattern correlation of the SEAS5
regimes (standard and regularised with constraint
value 𝜙 = 0.94) with the ERA-Interim regimes for
domain A

NAO+ NAO− AR+ SB+ AR− SB−

Standard 0.92 0.98 0.97 0.91 0.95 0.96

Regularised 0.96 0.96 0.95 0.95 0.71 0.96

T A B L E 2 A contingency table for the assignment of the SEAS5 data to the regimes for the results without constraint
and for 𝜙 = 0.94

𝝓 = 0.94

Unconstrained NAO+ NAO− AR+ SB+ AR− SB− No-regime Total

NAO+ 27,994 0 1,443 5,367 54 1,297 2,934 39,089

NAO− 0 23,301 87 37 9,432 310 2,069 36,227

AR+ 14 3,409 25,867 2,349 480 426 2,981 35,526

SB+ 412 1,132 208 28,005 3,881 50 2,670 36,358

AR− 12,512 0 640 71 22,190 795 2,757 38,965

SB− 1,946 104 722 685 1,474 29,265 3,254 37,450

Total 42,878 27,946 28,967 36,514 37,511 32,143 16,656 222,615

Note: Each column indicates the regime assignment following standard k-means clustering of the constrained regimes. Values over 5,000
data points are in italic for the same regime and bold for a different regime.

F I G U R E 6 Composites of the most frequent regime reassignments between the results without constraint and for 𝜙 = 0.94 (as shown
in bold in Table 2). Shown are composites of data which without constraint are assigned to NAO+, NAO− and AR−, but which with
constraint are assigned to SB+, AR− and NAO+, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

no increase in the transition probability from AR− into
NAO−.

The above discussion of the effect of regularising the
clustering algorithm shows that the constraint works as
expected. That is, the occurrence rates of the regimes
become more distinct, indicating that a more pronounced
regime signal is identified. The changes in the regimes
are in line with changes in the assignment of the data to
them and no unexpected changes in transition probabili-
ties are found. In the next sections we turn to discussing
the non-stationary behaviour of the regimes. We start with
a brief discussion of the sub-seasonal signal, followed by a
more detailed study of the interannual signal.

5.2 Sub-seasonal variability

Since we consider anomaly data with respect to a constant
background climatological state, it is expected that there

is a seasonal signal in the occurrence rates of the regimes.
For SEAS5 this is shown in Figure 7 by the dash-dotted
black line for the regularised results. The sub-seasonal
variability obtained using standard k-means clustering
is shown as well (dotted black line), exhibiting similar
behaviour in time as found for the regularised results.
The sub-seasonal variability for ERA-Interim falls within
the ensemble spread of the SEAS5 results. This variabil-
ity is not shown since the sample size is too small to draw
reliable conclusions.

NAO+ exhibits the largest variability throughout the
season with a maximum occurrence rate close to 0.3 in
mid-January and a minimum below 0.1 in March, with
the identified variability being amplified by the regulari-
sation. All other regimes exhibit a seasonal cycle as well,
where the amplitude of the variations differs between the
regimes. We see that AR+ and AR− have a peak in occur-
rence rate in February, whereas NAO−, SB+ and SB−
have a minimum in January and/or February. Most of this

http://wileyonlinelibrary.com


12 FALKENA et al.

F I G U R E 7 The sub-seasonal variation in occurrence rates (30-day running mean) of the different regimes for the constrained SEAS5
results with respect to a constant climatology (black, dash-dotted line) and corrected for a seasonally varying background state (colour, solid
line), with the shaded area indicating the two-standard deviation range. The areas bounded by the horizontal dotted and dashed lines give
the 2-standard deviation noise level for the constant and seasonal climatology results, respectively. Error bounds are determined using
bootstrapping with three members for every 30-day period in each year. In addition the sub-seasonal variation obtained using standard
k-means clustering for SEAS5 is shown by the black dotted line [Colour figure can be viewed at wileyonlinelibrary.com]

variability exceeds the sampling uncertainty as shown by
the shaded area bounded by the grey dotted lines. Look-
ing at the variability on sub-seasonal time-scales found in
other studies, comparison is difficult because the num-
ber of regimes considered is different (e.g., Cortesi et al.,
2021). The seven year-round regimes of Grams et al. (2017)
come closest and show comparable dynamics for AR+,
AR− (Atlantic trough) and SB− (Scandinavian trough),
while for NAO+ (zonal regime) an opposite signal emerges
with lowest occurrence rates in January (when looking at
DJFM). This may be linked to the different way in which
a no-regime state is determined. A similar story holds for
NAO− (Greenland blocking) although the difference is
less robust.

To study whether this sub-seasonal variability is solely
due to the changing background state within winter,
we correct for this effect. This is done by computing
an anomaly dataset with respect to a sub-seasonal cli-
matology, instead of a fixed one, and assigning the
obtained Z500 fields to the closest of the regimes shown
in Figure 5. The sub-seasonal climatology is computed
by fitting a fourth-order polynomial to the daily aver-
aged fields. The assignment of the sub-seasonal anomaly

data is done by first computing the distance of the data
to the regimes and then minimising the clustering func-
tional L over all values of Γ subject to the constraint
(for 𝜙 = 0.94), that is, we apply the second step of the
constrained clustering algorithm (Section 3.2). This
ensures that the corrected occurrence rates are compara-
ble with the standard constrained results. Note that this
will result in more data being assigned to no-regime, as
the minima of L for the sub-seasonal anomaly data are
likely to differ slightly from those of the anomalies with
respect to a constant climatology. An alternative approach
would be to cluster the data again after having removed
the sub-seasonal climatology, however this would
require rerunning the clustering for each choice of the
sub-seasonal climatology one wishes to consider, whereas
the approach taken here does not require re-running the
clustering.

The sub-seasonal occurrence rates corrected for the
seasonal cycle of the mean climatology are shown in colour
(solid line) in Figure 7. As expected the occurrence rate
of no-regime has increased, with an approximate doubling
of the number of data points that are difficult to assign.
This leads to an overall decrease in the occurrence rate of

http://wileyonlinelibrary.com
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F I G U R E 8 The yearly winter occurrence rates of the different regimes for the constrained results (colour), where the year indicated on
the axis corresponds to December of that winter. The grey bands give a noise level, the dashed black line shows the unconstrained SEAS5
results and the dotted black line the ERA-Interim occurrence rates. The bandwidth is given by the 2-standard deviation range when using
bootstrapping with 25 ensemble members, where for the noise level ensemble members for different (random) years are considered. On the
right the average occurrence rates of very strong El Niño years (indicated by the solid vertical red lines) and strong La Niña years (vertical
dash-dotted blue lines) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

the regimes, which is largest for NAO+. The sub-seasonal
variability is significantly reduced after correcting for the
background climatology, and for all regimes the average
falls within the sampling uncertainty. There still is some
variability, for example, SB− appears to be more likely in
early winter, but this is not statistically significant. Thus,
we do not find any significant sub-seasonal variability in
the regime occurrence rates when using a sub-seasonal
climatology. We conclude that the seasonal cycle in the
occurrence rates primarily reflects the seasonal cycle in the
mean climatology, rather than any seasonal cycle in the
variability itself.

Note that any attempt to correct for a varying clima-
tology will be dependent on the choice of sub-seasonal
climatology. For example, when one uses a 90-day running
mean as reference climatology (e.g., Grams et al., 2017) it is
possible that part of the sub-seasonal signal in occurrence
rates seen in Figure 7 remains. Furthermore, often mete-
orological data are grouped according to the season (e.g.,
DJF) and sub-seasonal variations are not considered to first
order. Thus, we deem it better to use a fixed climatology

before clustering and identify the sub-seasonal signal after-
wards. This way there is no assumption on the form of the
sub-seasonal climatology, which could affect the regimes
themselves and the attribution of the data to them.

5.3 Interannual variability

In Figure 8 the wintertime interannual variability in occur-
rence rates is plotted for the constrained results (colour),
as well as for standard k-means clustering for comparison
(black dashed). These results are with respect to a constant
climatology; the interannual variability when correcting
for a seasonal background climatology is comparable (not
shown). The signal identified in the interannual variabil-
ity, as indicated by the SEAS5 ensemble mean, is slightly
stronger for the regularised results than that obtained
without constraint. The average (over all regimes) mean
standard deviation of the interannual occurrence rate for
the bootstrapped results (using 25 members) is 0.029 with a
95% confidence interval of [0.027, 0.031] for the regularised

http://wileyonlinelibrary.com
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results, while it is 0.026 [0.024, 0.028] without the con-
straint. Thus the variability on interannual time-scales
is slightly amplified by using the regularisation. In this
and the next paragraph the discussion is focused on the
regularised results. Note that the standard deviation of
single ensemble members is of the same order as that of
ERA-Interim, albeit slightly smaller on average (0.087 ver-
sus 0.104). For NAO+, AR− and SB− we find strong inter-
annual variability in the ensemble mean occurrence rates,
whereas for AR+ and SB+ no significant signal is found.
Interestingly, the interannual variability in the occurrence
rate of NAO− is weaker than that of NAO+, suggesting a
smaller predictable signal.

The majority of the signal coincides with El Niño or
La Niña years, as shown in the boxplots on the right-hand
side of Figure 8. Here we refrain from separating early
(November and December) and late (January and Febru-
ary) winter as is sometimes done (e.g., Moron and Plaut,
2003; Ayarzaguena et al., 2018), because we would not
want to include November (due to the initialisation on
01 November). During winters in which there was a very
strong El Niño, indicated by the solid red lines, we find an
increase in occurrence of SB− and NAO−, and a decrease
of NAO+. In those years there also is less data that can-
not be attributed to one of the regimes, indicating that the
ensemble members are more similar in their dynamics. On
the other hand, we see an increase of NAO+ and decrease
of AR− occurrence during strong La Niña winters, indi-
cated by the dash-dotted blue lines, with the highest NAO+
value in 1988–1989 for both SEAS5 and ERA-Interim. This
is in line with previous studies looking into links between
ENSO and the NAO (Toniazzo and Scaife, 2006; Li and
Lau, 2012; Ayarzaguena et al., 2018; also Figure 10 below),
although here we capture this relation in more detail by
using the regime variability. Note that data assigned to
either NAO+ or SB− would tend to be assigned to the
positive phase of the NAO when considering only four
regimes. However, their response to a strong El Niño is
opposite in sign, that is, SB− becomes more frequent while
NAO+ occurs less often. The distinction between these two
regimes thus allows better understanding of the details of
the response of the circulation to ENSO.

To see whether the SEAS5 ensemble provides a pre-
dictive signal for the ERA-Interim occurrence rates, we
regress the ERA-Interim annual occurrence rates against
those of SEAS5 (Section 3.3). The scatter plots for this
regression are shown in Figure 9. The slopes and p-values
are given in Table 3 for each of the regimes for both the
constrained and unconstrained results. In addition, the
Bayes factor is given. The Bayes factor is the ratio of the
probability of the data given a hypothesis for two differ-
ent hypotheses H1 and H2, that is, P(D|H1)∕P(D|H2) (Kass
and Raftery, 1995) and has been recently used in climate

studies (Kretschmer et al., 2020). Here, the first hypothesis
H1 is the linear regression model and the second hypoth-
esis H2 is a constant occurrence rate following the overall
value. A value above 1 indicates that H1 is more likely
than H2, while the converse is true for a value below 1.
To have strong evidence towards the hypothesis of lin-
ear regression, the Bayes factor would have to be much
larger than 1. The Bayes factor allows for the comparison
of different hypotheses, whereas the p-value only indi-
cates whether the null hypothesis can be rejected without
providing an alternative (Wagenmakers, 2007; Shepherd,
2021).

This linear regression analysis indicates that there is a
predictive signal for NAO+ and SB− with p-values below
0.05 using 𝜙 = 0.94, while without the constraint only the
NAO+ signal is found to be significant at the 95% level
(Table 3). The Bayes factor for both constrained regimes is
substantially larger than 1, albeit not very large. This con-
stitutes positive, but not yet particularly strong, evidence
that the signal seen in the model is reflected in the obser-
vations (Kass and Raftery, 1995, in which values of 3–20
are said to constitute positive evidence, while values over
20 yield strong evidence). Note that these two regimes are
characterised by a zonal flow pattern. Comparing the reg-
ularised result with the standard approach, the constraint
adds a significant predictable signal for SB− which would
not otherwise have been found. The regression coefficient
is around 1 for both the NAO+ and SB− regimes, indicat-
ing just as strong a signal in SEAS5 as in ERA-Interim, as
discussed in Section 3.3. For NAO− the regression coef-
ficient is around 1 as well, but this is not significant as
indicated by the high p-value and Bayes factor close to 1.
No predictable signal is found for the other three regimes
either.

The absence of a significant signal for NAO− is intrigu-
ing, as we do obtain a signal for NAO+. Interestingly, we
obtain a strong predictable signal for the NAO− regime by
applying multiple linear regression using the NAO+ and
SB− occurrence rates (i.e., regressing the observed NAO−
onto the SEAS5 NAO+ and SB−; last column of Table 3).
For these regimes the response of the occurrence rate of
SB− to a strong El Niño is similar to that of NAO−, but
that of NAO+ is opposite (Figure 8). The Bayes factor here
is very large and constitutes strong evidence towards this
being a real signal. Hence the NAO− regime is predictable
from SEAS5, just not from the SEAS5 NAO− regime sig-
nal itself. Again regularisation significantly improves the
predictability, as that of the standard k-means results has
a considerably larger p-value and smaller Bayes factor.
Both the NAO+ and SB− regime patterns project well onto
the positive phase of the NAO-index, which could in part
explain the strong signal obtained from these two regimes
for the predictability of the NAO− regime, which projects
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F I G U R E 9 Scatter plots of
the annual winter occurrence rates
of ERA-Interim against those of the
SEAS5 ensemble mean for each of
the six regimes. The dotted lines
show a one-to-one relation [Colour
figure can be viewed at
wileyonlinelibrary.com]

T A B L E 3 The results for linear regression of the regime occurrence rates, linear regression of the NAO-index and multiple linear
regression (MLR) of the ERA-Interim NAO− against the SEAS5 ensemble mean NAO+ and SB− occurrence rates, for both the regularised
(𝜙 = 0.94) and standard results

Regime NAO+ NAO− AR+ SB+ AR− SB− NAO-index MLR NAO−

𝜙 = 0.94 Regression coeff. 0.99 0.98 −0.69 0.53 −0.32 1.14 1.87 NAO+ −1.35

SB− −1.76

p-value 0.04 0.35 0.50 0.49 0.58 0.03 0.01 0.03

Bayes factor 8.81 1.60 1.28 1.29 1.18 13.20 53.82 54.10

Standard Regression coeff. 1.23 1.11 −0.22 0.65 1.29 1.02 NAO+ −1.44

SB− −1.72

p-value 0.05 0.15 0.81 0.51 0.14 0.10 0.06

Bayes factor 7.39 3.04 1.03 1.26 3.15 4.42 16.10

on its negative phase (in line with the negative regression
coefficients).

The discussion of the signal-to-noise problem of the
North Atlantic is often focused on the NAO-index. Here,
we compare the regression results of the regimes with
those of the NAO-index. We compute the NAO-index as the
first principal component of the daily 500 hPa geopotential

height fields for December to March (Weisheimer et al.,
2017). The yearly NAO-index is then computed as the aver-
age index over all days in that winter and shown as the
dashed black line in Figure 10 for SEAS5. The regres-
sion for this NAO-index is shown in Figure 11 with the
coefficient and statistics given in Table 3. The signal for
this NAO-index is strong with a Bayes factor of over 50

http://wileyonlinelibrary.com


16 FALKENA et al.

F I G U R E 10 The SEAS5 NAO-index (black, dashed) and an
approximation using the NAO+ and NAO− occurrence rates and
projected NAO-indices for the regularised (green, solid) and
standard (orange, dash-dotted) approaches. On the right the average
NAO-indices of very strong El Niño years (indicated by the solid
vertical red lines) and strong La Niña years (vertical dash-dotted
blue lines) are shown [Colour figure can be viewed at
wileyonlinelibrary.com]

(comparable to that attained for the NAO− regime using
NAO+ and SB− as predictors). The regression coefficient
is roughly 2, indicating that the SEAS5 model is underpre-
dicting the signal in the observed NAO-index by about a
factor of 2. Assuming that the variance of the error is com-
parable between observations and model, as discussed in
Section 3.3, this result is in line with previous studies on
the signal-to-noise paradox for the NAO where RPC ≈ 2
has been found as a lower bound (Eade et al., 2014; Scaife
and Smith, 2018). (We also computed the RPC directly and
found a value of around 2.)

Thus, there is a significant difference in the model
representation of the regimes compared to that of the
NAO-index. While for the NAO-index we see an underes-
timation of the signal in the model compared to observa-
tions, in line with the signal-to-noise paradox, this is not
the case for the signal in the occurrence rates of the two
zonal regimes NAO+ and SB−, which are the regimes with
interannual predictability. In order to analyse whether
this discrepancy is due to only considering the occurrence
rates of the regimes, we need to address whether there
is a possible signal-to-noise problem in the amplitude,
that is, strength, of the regimes. To this end we compute
the average NAO-index for each regime, that is, averag-
ing the NAO-index over all days assigned to a regime, for
both SEAS5 and ERA-Interim. The results are shown in
Table 4. As expected, the NAO+ and NAO− regimes con-
tribute most to the respective phases of the NAO-index.
Approximating the NAO-index in SEAS5 using the annual

F I G U R E 11 Linear regression of the NAO-index (black solid
line), being the winter average of the first principal component of
the DJFM daily Z500. The dotted line shows a one-to-one relation
[Colour figure can be viewed at wileyonlinelibrary.com]

occurrence rates and average NAO-indices for these two
regimes, that is, multiplying the NAO− and NAO+ regime
NAO-indices from Table 4 by their annual occurrence as
shown in Figure 8 and adding the two, provides a good esti-
mate of the NAO-index variability for both regularised and
standard results, as can be seen in Figure 10. In addition we
compute the average annual winter NAO-indices for each
regime in SEAS5, which are found to be uncorrelated with
their respective regime frequencies (not shown). This indi-
cates that the regime occurrence and the regime strength
(in terms of its projection on the NAO-index) are indepen-
dent. Hence we do not find evidence of a signal-to-noise
problem in relation to the regime strengths, for example, a
regime is not weak when its occurrence rate is high.

This leaves us with the discrepancy between the signal
strength for the regime frequencies and for the NAO-index.
Using the regularisation, we found that SEAS5 has a pre-
dictable signal for the two zonal regimes with a regression
coefficient around 1. On the other hand, no signal was
found for the non-zonal regimes and the NAO− signal
was not manifest directly, though it could be detected
from NAO+ and SB−. Thus, the signal-to-noise paradox
for the NAO-index might be linked to certain regimes
being poorly represented within the model, that is, the
NAO-index cannot provide all the relevant information
of the atmospheric flow structure for predictability in the
Euro-Atlantic sector. It is not necessarily the case that the
amplitude of the predictable signal in response to remote
forcings such as ENSO is too weak (Scaife and Smith,
2018), but rather that the signal is only present in part of
the dynamics, while other aspects are incompletely rep-
resented. The first regime to consider in this regard is
NAO−, which represents a blocking over Greenland, as it
is unsuccessfully predicted from the SEAS5 NAO− regime,

http://wileyonlinelibrary.com
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T A B L E 4 The average
NAO-index for each of the six regimes
in both SEAS5 (regularised and
standard) and ERA-Interim

Regime NAO+ NAO− AR+ SB+ AR− SB−

SEAS5 Regularised 1.26 −1.79 −0.31 −0.16 −0.33 0.69

SEAS5 Standard 1.33 −1.53 −0.53 −0.47 0.30 0.69

ERA-Interim 1.38 −1.69 −0.31 0.06 0.06 0.31

even though a strong signal has been identified using the
NAO+ and SB− regimes. This also points to the negative
phase of the NAO being at the heart of the signal-to-noise
problem.

A potential reason for the lack of a predictable sig-
nal in NAO− could lie in the role of stratospheric sudden
warmings (SSWs), which are known to induce negative
NAO states (Baldwin and Dunkerton, 2001; Hitchcock and
Simpson, 2014; Domeisen et al., 2020). Portal et al. (2021)
have shown that seasonal forecast models, including the
SEAS5 model studied here, tend to overpredict the SSW
response to ENSO. Consistent with that, there is a strong
NAO− response to ENSO (Figure 8), which is not seen in
observations. However, if SSWs are playing an important
role in seasonal predictability, then this role will be diffi-
cult to assess from the limited sample size provided by the
reanalysis record.

6 CONCLUSION
AND DISCUSSION

To identify a regime variability signal in model hindcast
ensemble data, a constraint on the similarity between
ensemble members has been implemented. In this way
a stronger and more informative regime signal is iden-
tified by considering the trade-off between accuracy and
entropy. Different criteria are used to identify the optimal
settings for the regularisation method, yielding an opti-
mal constraint value. This optimal value is sufficiently
strong to increase the information gain (as indicated by the
entropy), but not so strong to lose a lot of accuracy (as indi-
cated by the BIC). The constraint helps better discriminate
between the different regimes, which is reflected in the
overall occurrence rates of the regimes being more distinct.
The regime patterns themselves are not strongly affected,
increasing confidence in this approach.

When considering the non-stationary regime dynam-
ics, we find that the average sub-seasonal variability is
primarily determined by variability in the average back-
ground climatology. When one looks at a seasonal clima-
tology, such as the DJF average, a large part of the found
variability will remain. A question when removing a back-
ground climatology based on daily averages is whether one
is removing part of the signal, for the differences in regime

occurrence throughout the season do reflect the changes
in the background climatology. Therefore, we regard it
as cleaner to consider a constant climatology within the
season and account for the background variability in the
interpretation.

On interannual time-scales the NAO+, NAO−, AR−
and SB− regimes show significant variability, which is
enhanced by the regularisation compared to standard
k-means clustering results. In large part this is related to
ENSO, with El Niño leading to SB− and NAO− being more
frequent, while La Niña corresponds to increased frequen-
cies of NAO+ and decreased frequencies of AR−. In this
respect, it would be interesting to look at the response
for early and late winter separately, as those responses
might differ (e.g., Moron and Plaut, 2003; Ayarzaguena
et al., 2018). When considering only four regimes, most
data here assigned to either NAO+ or SB− would be
allocated to the NAO+ regime. This separation between
NAO+ and SB− could help better understand the rela-
tion between ENSO, the Madden–Julian Oscillation (MJO)
and the North Atlantic circulation where previous stud-
ies found a more frequent NAO+ after MJO phases 1–5 in
El Niño years using four regimes (Lee et al., 2019), whereas
the overall signal is a decrease of the NAO-index during a
positive ENSO (Figure 10). El Niño was found to enhance
the teleconnections between the MJO and the regimes,
which is also apparent in the increase of NAO− after MJO
phases 7 and 8. On the other hand La Niña on average
inhibits such teleconnections between the MJO and the
four regimes studied. It would be interesting to examine
the teleconnection signal for the additional regimes (AR−
and SB−) discussed here to see whether these relations can
be captured in more detail.

We have used linear regression to identify the signal
on interannual time-scales, as it allows a direct estima-
tion of the ratio of signal strengths between observations
and model, without requiring estimation of the noise lev-
els. The SEAS5 ensemble has a predictable signal for the
occurrence rates of the two zonal regimes (NAO+ and
SB−), but not for the other regimes. The Bayes factors
show a substantial improvement of predictability, espe-
cially for SB−, with the constraint compared to the stan-
dard results. Interestingly, a strong predictive signal for
NAO− is obtained by considering multiple linear regres-
sion using the model NAO+ and SB−, whereas no such
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signal is found using the model NAO− frequencies. The
regression coefficients that come out of the linear regres-
sion are around 1 for both NAO+ and SB−, indicating that
the SEAS5 signal is of the same magnitude as that found in
ERA-Interim. This implies there is no signal-to-noise para-
dox for these two flow regimes. Note that also for NAO−
the regression coefficient is around 1, but is not statistically
significant.

In contrast we find that for an NAO-index the regres-
sion analysis results in a regression coefficient of 2, in
line with previous studies on the signal-to-noise para-
dox for the North Atlantic sector that show that the
model underpredicts the observed NAO by a similar fac-
tor (e.g., Eade et al., 2014). Our regime analysis suggests
that the NAO signal-to-noise paradox largely manifests
itself in the non-zonal phase of the NAO (and related
regimes), that is, in its negative phase rather than its
positive phase. Improving the regime representation of
NAO− (and AR−) within the SEAS5 model could not only
improve the regime dynamics, but could also help shed
light on the signal-to-noise paradox over the Euro-Atlantic
domain.

The proposed regularisation approach allows for iden-
tifying a more informative regime signal and its appli-
cation is not limited to variability on sub-seasonal and
interannual time-scales, as examined in this study. It could
be employed in the context of other regime behaviour stud-
ies that rely on ensemble data and might lead, as shown
here, to a substantial information gain when studying
model ensemble data. There is potential for applications
in forecasting of regimes where, especially in the initial
stages, the ensemble members are expected to exhibit even
more similar dynamics than discussed here. Furthermore,
this approach could help shed light on biases present in
models when it comes to their regime representation and
dynamics.
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