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Abstract. Data assimilation (DA) aims at optimally merg-
ing observational data and model outputs to create a coherent
statistical and dynamical picture of the system under investi-
gation. Indeed, DA aims at minimizing the effect of observa-
tional and model error and at distilling the correct ingredients
of its dynamics. DA is of critical importance for the analy-
sis of systems featuring sensitive dependence on the initial
conditions, as chaos wins over any finitely accurate knowl-
edge of the state of the system, even in absence of model
error. Clearly, the skill of DA is guided by the properties of
dynamical system under investigation, as merging optimally
observational data and model outputs is harder when strong
instabilities are present. In this paper we reverse the usual
angle on the problem and show that it is indeed possible to
use the skill of DA to infer some basic properties of the tan-
gent space of the system, which may be hard to compute in
very high-dimensional systems. Here, we focus our attention
on the first Lyapunov exponent and the Kolmogorov—Sinai
entropy and perform numerical experiments on the Vissio—
Lucarini 2020 model, a recently proposed generalization of
the Lorenz 1996 model that is able to describe in a simple yet
meaningful way the interplay between dynamical and ther-
modynamical variables.

1 Introduction

We split the Introduction into three parts. The first two are
proper introductory discussions providing the context. In part
three, we provide the motivations and describe the goals of
the present work.

1.1 Lyapunov vectors and related measures of chaos in
a nutshell

The dynamics of several natural systems, including the at-
mosphere and the ocean, are characterized by chaotic condi-
tions which, roughly speaking, describe the property that a
system has sensitivity to initial states. This means that, even
in the presence of a perfect model, small errors in the ini-
tial conditions will grow in size with time, until the fore-
cast becomes de facto useless (Kalnay, 2002)1. A mathe-
matically sound technique for studying the sensitivity to ini-
tial conditions of a system amounts to studying the proper-
ties of its tangent space. In particular, under fairly general
mathematical conditions for a deterministic n-dimensional
system whose asymptotic dynamics takes place in a com-
pact attractor, one can define n Lyapunov exponents (LEs)
M, ..., An, Which are the asymptotic rates of amplification
or decay of infinitesimally small perturbations with respect
to a reference trajectory. Usually, the LEs are ordered ac-
cording to their value, with A being the largest. Unless the

In the words of Ed Lorenz, “Chaos: When the present deter-
mines the future, but the approximate present does not approxi-
mately determine the future”; see https://tinyurl.com/faf3pnda (last
access: 17 December 2021).
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system feature symmetries, all the LEs are distinct, and in
the case of continuous time dynamics, one of them vanishes
correspondingly to the direction of the flow and defines the
neutral tangent space. Once ordered from the largest to the
smallest, the sum of the first k LEs gives the asymptotic
growth rate of a k-volume element defined by k displaced
infinitesimally nearby the reference trajectory plus the refer-
ence trajectory itself. Additionally, if A,, denotes the small-
est non-negative LE, in many practical applications one can
estimate the Kolmogorov—Sinai entropy (or metric entropy)
oks, which defines the rate of creation of information of
the system due to its instabilities, as oxs = > -2, A; (Pesin’s
identity). Finally, it is possible to use the spectrum of LEs
to define a notion of dimension for the attractor of a chaotic
system. The Kaplan—Yorke conjecture, which follows from
the estimate of the rate of growth of the infinitesimal k vol-
ume, indicates that the information dimension of a chaotic
attractor is given by Dxy = p + Zle)»,-/|)»p+1|, where p is
the largest index such that Zf’ _1*i = 0.In systems where the
phase space contracts (the large class of dissipative systems),
one has Dxy < n. Roughly speaking, larger values of A, of
oks, and of Dky are associated with conditions of high in-
stability and low predictability for the flow. This is clearly an
extremely informal presentation of some of the features and
properties of the LE; see Eckmann and Ruelle (1985) for a
now classic discussion of these topics.

It is possible to associate each LE with a physical mode.
Ruelle (1979) proposed the idea of performing a covariant
splitting of the tangent linear space such that the basis vectors
are actual trajectories of linear perturbations. The average
growth rate of each of the covariant Lyapunov vector (CLVs)
equals one of the LE. This idea was first implemented by
Trevisan and Pancotti (1998) for studying the properties of
the Lorenz 1963 model (Lorenz, 1963). Separate algorithms
for the computation of CLVs were proposed in Ginelli et al.
(2007) and Wolfe and Samelson (2007); see the recent com-
prehensive review by Froyland et al. (2013). Note that the
CLVs corresponding to the positive (negative) LEs span the
unstable (stable) tangent space. Recently, Lyapunov analysis
of the tangent space was the subject of a special issue edited
by Cencini and Ginelli (2013) and the book by Pikovsky and
Politi (2016). Detailed Lyapunov analyses of geophysical
flows on models of various levels of complexity have been
recently reported (e.g. Schubert and Lucarini, 2015; Vannit-
sem and Lucarini, 2016; Vannitsem, 2017; De Cruz et al.,
2018).

1.2 Data assimilation in chaotic systems: the signature
and the use of chaos

The properties of the dynamical models have large impli-
cations on data assimilation (DA; Asch et al., 2016). Data
assimilation refers to the family of theoretical and numeri-
cal methods that optimally combine data with a dynamical
model with the goal of improving the understanding of the

Nonlin. Processes Geophys., 28, 633—649, 2021

phenomenon under study, enhancing the prediction skill, and
quantifying the associated uncertainty. Data assimilation has
long been studied and developed in the geosciences. It is an
unavoidable piece of the operational numerical weather pre-
diction workflow, but it is nowadays used in a growing range
of scientific areas (Carrassi et al., 2018).

Numerical and analytic evidence has emerged recently
showing that under certain observational conditions (data
types, spatio-temporal distribution, and accuracy), the per-
formance of DA with chaotic dynamics relates directly to the
instability properties of the dynamical model where data are
assimilated. One can thus in principle use the knowledge of
the dynamical features to inform not only the design of the
DA that better suits the specific application — e.g. how many
model realizations for the Monte Carlo based DA methods,
or the length of the assimilation window in variational DA —
but also the best possible observational deployment.

A stream of research has shed light on the mechanisms
driving the response of the ensemble-based DA (Evensen,
2009), i.e. its functioning and suitability, when applied to
chaotic systems. A recent comprehensive review can be
found in Carrassi et al. (2022), while we succinctly recall
the main findings in the following. In the deterministic linear
and Gaussian case with a Kalman filter (KF) and smoother
(KS), it has been analytically proved that the error covari-
ance matrices converge in time onto the model’s unstable—
neutral subspace, i.e. the span of the backward Lyapunov
vectors (BLVs) or of the covariant Lyapunov vectors (CLVs),
associated with the non-negative LEs (Bocquet et al., 2017,
Bocquet and Carrassi, 2017). These results have been shown
numerically to hold for the ensemble Kalman filter/smoother
in weakly non-linear regimes (EnKF/EnKS; Evensen, 2009)
by Bocquet and Carrassi (2017). In practice, for sufficiently
well observed scenarios, the error of the state estimate is fully
confined within the unstable—neutral subspace. Because this
subspace is usually much smaller than the full system’s phase
space, the above convergence results imply that an ensem-
ble size as large as the unstable—neutral subspace dimension,
no, suffices to achieve satisfactorily performance, i.e. to track
the “truth” and effectively reduce the estimation error along
with a substantial computational saving. The impact of insta-
bilities on non-linear DA, in particular particle filters (PFs,
see e.g. Van Leeuwen et al., 2019), has been recently eluci-
dated in Carrassi et al. (2022): the number of particles needed
to reach convergence depends on the size of the unstable—
neutral subspace rather than the observation vector size.

The picture above slightly changes in the presence of a
degenerate spectrum of LEs, which often arises in systems
with multiple scales, associated with the presence of cou-
pling between subsystems with different characteristic dy-
namical timescales (Vannitsem and Lucarini, 2016; De Cruz
et al., 2018). The degeneracy is usually concentrated on the
unstable—neutral portion of the LE spectrum. In these cases
it is necessary to increase the ensemble size to account for all
of the degenerate modes (Tondeur et al., 2020; Carrassi et al.,

https://doi.org/10.5194/npg-28-633-2021
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2022). The necessity for going beyond the number of asymp-
totic unstable—neutral modes is also connected to the local
(in phase space) variability of the degree of instability of the
system (Lucarini and Gritsun, 2020). The large heterogeneity
of the atmospherics’s predictability is due to the presence of
substantial variability in the number of unstable dimensions
(Lai, 1999) of the unstable periodic orbits (UPOs) populating
the attractor and defining the skeletal dynamics of the system
(Auerbach et al., 1987). As a result of the fact that the orbit
of a chaotic system shadows the UPOs supported on the at-
tractor in some of its regions, certain directions of the stable
space experience finite-time error growth due to locally im-
portant instabilities, causing the need for a larger ensemble
size than the number of the unstable-neutral modes.

In the stochastic scenario, noise is usually injected irre-
spective of the flow-dependent modes of instabilities. Con-
sequently, with a non-zero probability, error is also injected
onto stable directions that would not have been otherwise
influential in the long term. The trade-off between the fre-
quency of the noise injection and its amplitude on the one
hand, and the dissipation rate of stable modes on the other,
determines the amplitude of the long-term error along stable
modes (Grudzien et al., 2018a). This mechanism implies the
need to include additional members in the ensemble to en-
compass weakly stable modes that experience instantaneous
growth Grudzien et al. (2018b).

The knowledge of the LEs and its associated Lyapunov
vectors (LVs) can be used to operate key choices in the im-
plementation of ensemble-based DA schemes aimed at en-
hancing accuracy with the smallest possible computational
cost. This point of view is at the core of DA algorithms that
operates a reduction in the dimension of the model (e.g. the
assimilation in the unstable subspace, AUS; Palatella et al.,
2013), of the data (Maclean and Van Vleck, 2021), or both
(Albarakati et al., 2021).

1.3 This paper: can data assimilation be used to
reconstruct the dynamical properties of the
system?

While extremely theoretically appealing and practically use-
ful in low-to-moderate dimensional problems, the use of the
dynamically informed DA approaches is difficult in high di-
mensions, where even just computing the asymptotic spec-
trum of LEs, let alone the very relevant state-dependent local
LEs (LLEs), is very difficult or just impossible. A major but
not exclusive issue is that LE estimation algorithms require
computation of the tangent space of the dynamical system,
a task usually unfeasible for high-dimensional systems, or
impossible when the model equations of are not explicitly
accessible. On the other hand, the existence of a relationship
between the DA and the unstable—neutral subspace suggests
reversal of the viewpoint: use DA as a tool for estimating the
properties of a given system that would be otherwise very
difficult to compute. As a model-agnostic technique, DA, and
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in particular ensemble-based methods such as the EnKF, can
be applied to any model without the need of computing the
tangent space. This makes the EnKF a potentially powerful
instrument to reveal the stability properties of a dynamical
system. This is the goal of this work. Specifically, we shall
investigate whether we can use DA to infer the spectrum of
the LEs and the Kolmogorov—Sinai entropy (oks) of the sys-
tem whereby data are assimilated.

The paper is structured as follows. In Sect. 2, an upper
bound of the root mean squared error of the Kalman fil-
ter for the linear dynamics in the asymptotic limit is de-
rived. In Sect. 3 we present the Vissio and Lucarini (2020)
(VL20) model and its DA setup. The VL20 model is a re-
cently proposed generalization of the Lorenz 96 (Lorenz,
1996) model that is able to describe in a simple yet meaning-
ful way the interplay between dynamical and thermodynam-
ical variables. Additionally, the presence of a qualitatively
distinct set of spatially extended variables allows one to con-
sider non-trivial cases of partial observations for DA exer-
cises. Section 4 presents the main results of the paper by
comparing the skill of the performed DA exercises with some
fundamental measures of instability of the VL20 model. Fi-
nally, in Sect. 5 we discuss our results and present perspec-
tives for future investigations.

2 Kalman filter error bounds and Lyapunov spectrum

We are interested in searching for a further relation between
the skill of EnKF-like methods applied to perfect (no model
error) chaotic dynamics and the spectrum of LEs. We shall
build our derivations on the results mentioned in Sect. 1.2 and
reviewed in Carrassi et al. (2022). In this section we set our-
selves in a linear and Gaussian context, whereby the Kalman
filter (KF) yields the exact solution of the Gaussian estima-
tion problem. Linear results will guide the interpretation of
the findings in the general non-linear setting with the EnKF.

At time #, let x; € R” and y, € R? be the state and ob-
servation vector, respectively. The (linear) model dynamics
M;, € R™" and observation model Hy, € RP*" read

Xk =kak_1, (1)
Yi = Hgxp + v (2)

The observation noise, vy, is assumed to be a zero-mean
Gaussian white sequence with statistics

E[vv] ] = 8. iRy, 3)

with E[ ] being the expectation operator, §; ; the Kronecker’s
delta function, and Ry the error covariance matrix of the ob-
servations at time f. For the sake of notation clarity, we as-
sume that the model dynamics is non-degenerate so that all
its Lyapunov exponents are distinct; we note that the exten-
sion to the general degenerate case is possible.

Nonlin. Processes Geophys., 28, 633—649, 2021
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In general, we can write xx = Myx; where #; > #;, and
express M., using the singular value decomposition (SVD)

My = U Ara Vi, 4

where Uy, and Vy; are non-degenerate orthogonal matrices
and Ay, the diagonal matrix of singular values. For #; —
—oo the left singular vectors, Uy, converge to the backward
Lyapunov vectors (BLVs) at #, and, similarly for # — oo
the right singular vectors, V., converge to the forward Lya-
punov vectors (FLVs) at #;. The singular values (SVs) in
Ay converge to n distinct values of the form diag(A.); =
exp(A; (tx —1;)), in which 4; is the Lyapunov exponents (LEs)
in descending order, A; > A2 > ... A,y =0> X, > A,. The
ng non-negative LEs identify the n(y unstable—neutral modes.
For non-uniformly hyperbolic systems, only one of the expo-
nents vanishes.
Let us define the information matrix as follows:

k—1 k-1
o= My HIRTTHM =3 MM ()
1=0 =0

which measures the “observability” of the state at #;, with
Q= HlTR;IH[ being the precision matrix of the observa-
tions mapped to the model space. Moreover, let UE_’ © be
a matrix whose columns are the np unstable and neutral
BLVs of the dynamics M. Bocquet and Carrassi (2017) have
shown that, if the following three conditions hold, (i) the
unstable—neutral modes are sufficiently observed, such that

UL TUsk > el, €>0, (6)

with I, € R" being the identity matrix, (ii) the neutral modes,
u, are subject to the stronger observation constraint,

liminfuZI‘kuk =00, @)
k—o00

which implies that each term of the information matrix
should be positive-definite, and (iii) confining the initial er-
ror covariance matrix to the space of FLVs at time 7y, then the
KF forecast error covariance matrix, P,i, converges asymptot-
ically to the sequence

-1
P =U, (UL, TxUsy) UL, (8)

In real applications, the convergence (within numerical accu-
racy) occurs in long but finite times (Bocquet et al., 2017).

The asymptotic mean squared error of the forecast (MSEF)
of the KF solution is given by the trace of Eq. (8),

AMSEF = Tr(Py) = Tr [UH(UL JTiU )7

U O
=T (UL, 10407, (10)

where, for last equality, we made use of the cyclic property
of the matrix trace and the orthogonal relation of the BLVs,
UL Us k=1

Nonlin. Processes Geophys., 28, 633—649, 2021

Equation (9) shows evidence that the asymptotic MSEF
depends on the observation constraint through the informa-
tion matrix (data accuracy, encapsulated in R, while data
type and deployment are encapsulated in H) but also on the
unstable—neutral BLVs. Despite this, it is particularly diffi-
cult to use Eq. (9) to derive a direct relation between the
MSEF and the spectrum of LEs. This is because U 4 is not
invertible in general and because one needs to make specific
(often overly simplified) assumptions on the model dynam-
ics and observations, i.e. on My.;, H; and Ry, in order to get a
treatable expression of the information matrix. Alternatively,
rather than through a direct relation, we shall seek informa-
tive bounds for the MSEF in terms of the LEs.

Let us substitute the SVD of My, Eq. (4), in the informa-
tion matrix,

k—1
Fo= Y U ALV VAU an
=0

For every t1;, the individual terms in the summation can be
written as

T o-1 T 17!
I:Uk:lAk:lejszl Vk:lAk:lUk;l] . (12)

We now define the maximum projection of the precision ma-
trix onto the FLVs as

) = max e ' h, (13)
helm(Viy),|lk|l=1

with || . || being the Euclidean norm, and use it to get an upper

bound for the inverse of each term, Eq. (12), in the informa-

tion matrix summation,

Ukt Akt Vi 2 Vi AUy < BiUki Az Uy, (14)

The inequality is based on the Lowner partial ordering of
R (i.e. the partial order defined by the convex cone of pos-
itive semi-definite matrices; see, for example, Bocquet et al.,
2017, their Appendix B). We shall use this partial ordering in
the following derivations.

By defining the maximum of 8 across all 0 <#; <f;_1 as

ﬂk=[ max 1,31, (15)

k=1
Bi Z(Uk:lAklUkl)
=0
k=1 1
=3 [V A VE, 2 Vi Aua U, | (16)
=0
=T (17)

The bound reflects the effect of assimilating observations
(the rhs) compared to the unconstrained free model run (the
lhs) — note that Ugy A7, UL, = M MJ .

https://doi.org/10.5194/npg-28-633-2021
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Given that Uy A7, UL, is symmetric positive definite, we
can invoke the aforementioned partial ordering for this class
of matrices and further develop the lower bound of the infor-
mation matrix as

Ui A7, UL, < M1 =Dy, (18)

where e2*1 =11 is the largest eigenvalue of Uy, A7, UL, The
lower bound of the information matrix in Eq. (16) then be-
comes

k—1
B ' Dy <. (19)
=0

Under the assumption that the assimilation cycle is uniform
intime, e.g. At =ty —ty—1 =tp—1 —tg—p = ... =11 — 1o, the
summation of the diagonal matrices Dl_l coincides with a
geometric series with known sums:

=20 At _ ,—2x (k+1)At
£ £ A >0

k—1
—1 —1 —2A1 At
S. = D L= 1—e 1 . (20)
i 1§=(): 1,ii k A =0

By using the lower bound, Eq. (19), and the orthogonality
of the BLVs, U_TF_ «U+.k = I, we get a lower bound for the
information matrix projected onto the unstable-neutral sub-
space:

Bilsm g =B s UL LU, <UL TiUy i 2D

We can thus finally use Eq. (21) in the expression of the
MSEEF, Egq. (9), and derive the following upper bound:

AMSEF =Tr[ (UL, TxUs ) '] 22)
< Tr(Bisiln,) (23)
no 1— e—ZAIAz
= Pr 21: 20 Al _ 20 (k) AT 24
1=
n 1— e—zk]At
— ﬁkz;—e_%m k — oo (25)
1=
= pino (#12 ~ 1). (26)

This upper bound incorporates the key players shaping the
relation between the KF estimation error and the model dy-
namics. The presence of B; and At reflects the observation
modulation of the MSEF: the stronger the data constraint, the
smaller By and At. The signatures of the model instabilities
are in the term ng, the size of the unstable—neutral subspace,
and in A1, the error growth rate along the leading mode of in-
stability, both related directly to the amplitude of the bound.
Under a Bayesian interpretation, the factor 8 can be seen as
the likelihood of data and the remaining terms in the bound
altogether as the prior distribution. Note that, if the dynam-
ical model is stable (and independently of the data), A; =0,
s = %, and the MSEF goes to zero asymptotically.

https://doi.org/10.5194/npg-28-633-2021

As alluded to at the beginning of the section, a direct ex-
pression (e.g. an equality in place of a bound) relating the
model instabilities and the error can be obtained under strong
simplified and somehow unrealistic assumptions on the form
of the model dynamics and of the data, for example, if the lin-
ear dynamics M, the observation covariance matrix R, and
the observation operator H are all scalar matrices. With no
need of these assumptions, and with more generality, the up-
per bound, Eq. (26), indicates that the MSEF is determined
by a convolution of model dynamics and observation error.

In the next sections we will perform numerical experi-
ments under controlled scenarios to investigate the condi-
tions for which the bound holds. In particular, we will study
the conditions leading to the smallest possible upper bound,
such that the output of a converged DA, i.e. its asymptotic
MSEEF, can be used to infer the LE spectrum of the model
dynamics.

3 Experimental setting
3.1 The Vissio-Lucarini 2020 model

Our test bed for numerical experiments is the low-order
model recently developed by Vissio and Lucarini (2020),
hereafter referred to as the VL20. The VL20 model is an ex-
tension of the classical Lorenz 96 model (Lorenz, 1996) that
includes additional thermodynamic variables. The model is
given by the following set of n ordinary differential equa-
tions (ODEs) (with n being an even integer):

dX;

TS =X 1(Xip1—Xi2)—ab—yX;+ F (27)
do;
Ein+19i+2_Xi—19i—2+OlXi —y6; +G, (28)

where X represents the momentum, 6 is the thermodynamic
variable, and the subscript 1 <i <n/2 is the grid point in-
dex. The model is spatially periodic, and the boundary con-
dition is expressed as

Xi—njp = Xitnp=Xi (29)
Oi—ns2 = 0itn2 =0;. (30)

In the VL20 model it is possible to introduce a notion
of kinetic energy K = Z';/ 12 X 3 /2 and potential energy P =
r %6]2 /2. Additionally, the model features an energy cy-
cle that allows for the conversion between the kinetic and
potential forms and for introducing a notion of efficiency.
The parameter « modulates the energy transfer between the
two forms, while y controls the energy dissipation rate, and
F and G are external forcing defining the energy injection
into the system. The model’s evolution can be written as the
sum of a quasi-symplectic term, which conserves the total
energy, and of a gradient term, which describes the impact
of forcing and dissipation. In the turbulent regime, the VL20

Nonlin. Processes Geophys., 28, 633—649, 2021
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Table 1. Instabilities features of the VL20 model for the three forc-
ing configurations; n =36, anda =y = 1.

(F,G) (10,10) (10,0) (0, 10)
M 1587 1340 1475
no 10 7 10
oKs 6248 3917  6.103
Dky 20037 15742 19510

allows for propagation of signals in the form of wave-like
disturbances associated with unstable waves exchanging en-
ergy in both potential and kinetic form with the background.
In terms of energetics, the difference between the L96 and
the VL20 model mirror the one between a one-layer and a
two-layer quasi-geostrophic model because the former fea-
tures only barotropic processes, while the latter features the
coupling between dynamical and thermodynamic processes
via baroclinic conversion, which makes its dynamics much
more complex (Holton and Hakim, 2013). The VL20 model
is thus a very good test bed for research in DA, a further step
toward realism from the very successful L96. Further details
on the model as well as an extensive analysis of its dynamical
and statistical properties can be found in Vissio and Lucarini
(2020).

In all the following experiments, we set n = 36, imply-
ing both model variables X and 6 have 18 components, and
consider three model configurations differing in the values
of the external forcings: F =G =10, F =10,G =0, and
F =0, G = 10. Unless otherwise stated, the model runs with
the default parameters « = y = 1, and it is numerically in-
tegrated using the standard fourth-order Runge—Kutta time
stepping method with a time step Az =0.05 time units. A
summary of the model instability properties with the chosen
configurations is given in Table 1.

3.2 Data assimilation setup

Synthetic observations are generated according to Eq. (2) by
sampling a “true” solution of the VL20 model, Eq. (27), and
then adding simulated observational error from the Gaussian
distribution A (0, R). Observational error is assumed to be
spatially uncorrelated so that the error covariance, R, is a
diagonal matrix, and we observe the model components di-
rectly, implying that the observation operator is linear and
under the form of a matrix, H € RP*". The observation er-
ror variance is set to be 5 % of the variance (i.e. the squared
temporal variability) of the climatology of the corresponding
state vector component such that

diag(R); = 5%Var(X), i = 1% G1)

diag(R); = 5%Var(6), i = %+1,...,n. 32)

Nonlin. Processes Geophys., 28, 633—649, 2021

Linking the observation error to the model variance makes
the setup more realistic, but it ties the error amplitude to the
choice of the model parameters. For example, the model’s
state vector variance gets very small when the dissipation is
strong, potentially making the R matrix degenerate. Under
such circumstances, the corresponding entries in R are set to
5x 1076,

In line with previous studies (e.g. Carrassi et al., 2022),
we work with deterministic EnKFs, whereby it is possible to
study the filter performance in relation to the model instabil-
ities without the inclusion of additional noise that is inherent
to stochastic versions of the EnKFs (Evensen, 2009). In par-
ticular we choose to use the finite-size ensemble Kalman fil-
ter (EnKF-N; Bocquet et al., 2015) because it automatically
computes the required covariance inflation, thus saving us
from running many inflation tuning experiments. The initial
conditions for the ensemble are sampled from the Gaussian
distribution A/ (x{,, R), with the x{, being the “truth” at 7o: this
choice signifies that the initial condition error is taken to be
equal to the observational error.

The performance of DA experiments will be assessed pri-
marily using the root mean square error of the analysis, nor-
malized by the observation variance:

nRMSEa

l Z:izl (Xi — Xi,truth)2 Z:lfl @ — 9i,truth)2 (33)
diag(R); diag(R);yn/2 '

n

The nRMSEa measures the analysis error independent from
observation error, allowing for a multivariate assessment of
the performance. Unless otherwise stated, observations are
taken at every time step, and the experiments last 2000 model
time units. With this setting, an experiment comprises 40 000
DA cycles, and when computing time averages of the nRM-
SEa, we only consider the last 500 model time units. Finally,
and again unless otherwise stated, we shall adopt N = 40 en-
semble members in the EnKF-N.

4 Numerical results

Our analysis focuses on the relation between observational
design and filter accuracy and the relation between the model
instabilities and the filter accuracy. By exploiting the novel
dynamical-thermodynamical feature of VL20 over its L96
precursor, we will also study the EnKF-N under observa-
tional scenarios that alternatively measure the dynamical
variable, X, or, the thermodynamical one, 6.

4.1 Data assimilation with the VL20 model: general
features

Figure 1 shows the time series of the nRMSEa over the first
100 time units, for the three main model configurations un-
der consideration. In all cases, the error drops to below 20 %
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Figure 1. Time series of nRMSEa over the first 100 time units
(2000 DA cycles) using « =y =1 on n/2 = 18 grid points with
an ensemble size of N = 40 with the entire state vector observed at
every time step.

of the observational error after approximately 10 time units
(corresponding to 200 DA cycles) and then fluctuates with
oscillations that only sporadically lead the error to exceed
0.3. The configuration, (F,G) = (10,0) (red line), attains
the smaller error, while the other two configurations (blue
and purple lines respectively) show comparable error lev-
els slightly larger than configuration (F, G) = (10, 0). Recall
that in the configuration of (¥, G) = (10, 0), the model is not
thermodynamically forced (G = 0), and is also slightly sta-
bler than in the other two configurations (cf. Table 1).

The first connection between the filter performance and
the model instabilities is drawn from Fig. 2 that shows the
nRMSEa as a function of the number of the ensemble mem-
bers. In line with previous findings for uncoupled univari-
ate (Bocquet and Carrassi, 2017) and with coupled models
(Tondeur et al., 2020), Fig. 2 shows that, even with a mul-
tivariate model, the error converges to very low values as
soon as the ensemble size exceeds the number of unstable—
neutral modes, ng, and that it does not further decrease by
adding more members. This behaviour is possible because
error evolution is bounded to be linear or weakly non-linear.
This means that one can in principle induce linearity inten-
tionally in the error evolution to meet the aforementioned re-
lation between filter accuracy and ensemble size and use it to
infer the number of unstable—neutral modes. In a DA exper-
iment, a “practical” way to achieve this is by strengthening
the observational constraint (i.e. by increasing the measure-
ments spatial and temporal density); here we observe the full
system’s state at every time step.

As mentioned above, the VL20 model represents four
main physical mechanisms: (i) conversion between kinetic
and potential energy, (ii) the energy injection from external
forcing, (iii) the advection, and (iv) the dissipation. Although
these processes all participate in the evolution of the model,
the non-linear interplay cannot be straightforwardly disen-
tangled. Nevertheless, we shall try to refer to them when in-
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Figure 2. The time-averaged nRMSEa for all experiment configura-
tions. The vertical dashed lines indicate the dimension of unstable—
neutral subspace, ng. The ng under the forcing F =10,G =10
is the same as the forcing condition F = 0, G = 10, which shows
overlapped vertical lines. For the sake of numerical errors, the neu-
tral mode is chosen as the LE that is closest to 0.

terpreting the outcome of the DA experiments. In particular,
in each experiment we will attempt to identify the prevail-
ing mechanism over the aforementioned four. We perform
three experiments, where we observe the full system state
(i.e. H =I1¢), or alternatively X or 6 alone (implying in both
cases H € R18%36) Results are given in Fig. 3, that displays
the time-averaged nRMSEa (global or for the dynamics or
thermodynamics only) over a range of the coefficient « that
modulates the energy transfer rate.

Overall, and as expected, the analysis error is smaller in
the observed variables (cf. the left and middle columns and
corresponding colour lines) and attains the smallest level
when X and @ are simultaneously observed (right column).
Nevertheless, a few remarkable points can be raised. First,
when the system is fully observed, for large values of « (i.e.
for large conversion between available potential energy and
kinetic energy) the skills in X and # become very similar
(right column): we conjecture this to be a consequence of the
system getting more evenly turbulent with all variables shar-
ing a similar internal variability as energy is exchanged ef-
ficiently between the kinetic and potential form. Second, for
small values of « (i.e. small energy conversion), the effect of
external forcing becomes dominant and determines the anal-
ysis error of X and @ (last column in Fig. 3). For instance,
whenever the momentum is externally forced (F = 10), the
error in X is systematically smaller than in @ (first and sec-
ond rows of the last column): DA is more effective in con-
trolling the dynamics than the thermodynamics, even when
they are subject to the same observational constraint. The sit-
uation is somehow reversed when only the thermodynami-
cal variables are forced (F = 0, G = 10): the analysis error
of the momentum and the thermodynamic variable is undif-
ferentiated. With small values of « and no forcing for the
momentum, the non-linear momentum advection is limited
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Figure 3. The nRMSEa with varying energy transfer coefficient & € (0, 3) (with an interval of 0.1) and dissipation coefficient y = 1. The left
axis represents nRMSEa, while the right axis shows the ogg and the A1 (solid grey line) scaled by a factor of 3. The results come from perfect
model assumption with observations at each time step where all variables, only X, or only @ is observed. The dashed blue line indicates the
nRMSE of the X variable, the dashed red line represents the nRMSE of the @ variable, and the dashed purple line shows the nRMSE of the

entire state vector.

by the small magnitude of the momentum that is not able to
activate much the dynamical variables, so that we observe
similar analysis error between the thermodynamics variable
and the momentum.

Finally, the effect of the energy transfer and advection can
be revealed by looking at the partially observed experiments
(left and middle columns). Both mechanisms involve the mo-
mentum, making it more efficacious to observe X than 6, es-
pecially in the energy-transfer-dominated regime (large o).
However, in an advection-dominated regime (small «), if 6 is
unobserved, X has limited capability to constrain the error in
0 due to the weak feedback from 6 to X. On the other hand,

Nonlin. Processes Geophys., 28, 633—649, 2021

observing @ reduces error in X via the accurate estimate of
the advection process of @ (see middle column).

Further insight into the role of the driving (unstable) vari-
able and on the interplay between the prevailing physical
mechanisms and the analysis error is given by looking at
the CLVs (Kuptsov and Parlitz, 2012). In Fig. 4 we show
at (normalized time-averaged) absolute amplitude of CLVs
components along the state vector: it tells us which variable
type/component has the larger influence on each CLV, thus
indicating what processes participate more in a specific di-
rection of error growth/decay.

As discussed above, changes in the value of « lead to shift-
ing between the advection-dominated regime and an energy
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mixing one: these two regimes are portrayed in Fig. 4, by se-
lecting @ = 0.4 and « = 2.2. Moreover, these two values of
« correspond roughly to those giving the largest differences
in nRMSEa between the momentum and the thermodynamic
variables (cf. left and middle panels of Fig. 3). For small en-
ergy exchange (o« = 0.4 — left column in Fig. 4), the model
instabilities are driven by the external forcing, with the driv-
ing variable being the one where energy is injected. This is
clearly visible when comparing the amplitudes of CLVs be-
tween X and 6 in the left panel of Fig. 4: larger amplitudes of
the unstable—neutral CLVs are found in the forced variables.
When the momentum and the thermodynamics are equally
forced (blue lines), the amplitude of the unstable-neutral
CLVs for X and 6 is close to each other. The non-linear ad-
vection process intensifies the error growth, especially for X.
The non-linear advection and the momentum are of lesser
importance if the momentum is not forced (F =0,G = 10
— purple lines), while the thermodynamic processes control
both the stable and unstable subspace dominantly. The ther-
modynamic variable on the stable subspace acts as an energy
sink to stabilize the dynamical system. The effect of the ther-
modynamics is shown noticeably by the large relative ampli-
tude of the CLVs of the thermodynamic variable in the stable
subspace when the momentum is directly forced (F = 10 —
blue and red line).

The behavior changes substantially when the energy ex-
change is the dominant physical mechanism (o = 2.2 — right
column). This causes a stronger mixing across the model
variables so that both X and € play a comparable role in the
unstable—neutral components of the CLVs, leading to similar
amplitude of the CLVs for all types of forcing. Remarkably,
the effect of the energy conversion also applies to the stable
components of the CLVs, leading to similar amplitude of the
CLVs between X and 6.

https://doi.org/10.5194/npg-28-633-2021

The results in Fig. 4 reveal the effect of the prevailing
physical mechanisms on determining the driving unstable
variables. The figure suggests what variables should in prin-
ciple be controlled by targeting measurements on the por-
tion of the system’s state vector with larger amplitude on the
unstable—neutral CLVs.

Along with «, the energy in the system is modulated by
the dissipation parameter, y: larger values of y imply an ef-
ficient removal of energy from the system, thus reducing the
system’s variability of both the potential and kinetic energy.
At dynamical level, the parameter y controls the contraction
of the phase space as the sum of all Lyapunov exponents
(equal to the average flow divergence) is —ny. Hence, one
expects that larger values of y correspond to weaker instabil-
ity for the model, as in the case of the classical L96 model
(Gallavotti and Lucarini, 2014). Figure 5 is the same as Fig. 3
but for the dissipation, y. Overall, we see that, with large y,
the system’s internal variability reduces, and we find sim-
ilar small errors in both X and #. For weaker dissipation,
the momentum is better controlled than the thermodynam-
ics. With partial observations (left and middle columns), the
error is much larger than in the corresponding fully observed
cases. Similar to Fig. 3, the momentum is generally better
reconstructed by the DA than the thermodynamics, although
observing the latter appears more efficacious (i.e. it leads to
smaller analysis error) than observing the momentum. We
think that this is due to the prevailing mechanism being the
advection of the thermodynamics given that « = 1 in these
experiments (cf. also Fig. 3). The amplitudes of the CLVs
along the state vector are studied in Fig. 6. We consider the
cases y =0.4 and y = 1.0 for which the difference in the
nRMSEa between X and @ is roughly the largest (cf. Fig. 5).

With the leading CLVs strongly affected by the external
forcing, the amplitude of the CLVs along the system’s com-
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the nRMSE of the entire state vector.

ponents is similar to the pattern of low energy exchange rate
in Fig. 4 where o = 0.4, even though here, « = 1. This con-
firms that the dynamical regime of our experiments lies in
the regime dominated by advection, and dissipation does not
mix the kinetic and potential energy diffusely as the energy
exchange, but rather it uniformly removes both types of en-
ergy without changing the prevailing physical mechanism.
This is also reflected in the consistently low nRMSEa for
the observed variable when varying dissipation rates in the
partially observed experiments (see Fig. 5). The decreasing
analysis error in Fig. 5 corresponds to the increases of y,
which reduces the dimension of the unstable-neutral sub-

Nonlin. Processes Geophys., 28, 633—649, 2021

space with increased relative importance of forced variables
in the unstable—neutral subspace as the fast energy removal
reduce the amount of energy mixing.

The results of Sect. 4.1 confirm the relation between the
performance of DA (in terms of analysis error) and the
dimension and characteristics of the unstable-neutral sub-
space. In particular, we conclude that successful DA relies
on controlling the error in the unstable—neutral subspace by
observing the variable that drives the error growth. The VL20
model enabled the investigation of the relation between the
DA and the specific physical mechanisms such as the advec-
tion, the energy transfer among dynamics and thermodynam-
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dimension of the unstable—neutral subspace.

ics, and the dissipation. The effect of DA (i.e. its efficacy) is
strongly influenced by the form of the coupling between the
unobserved and the observed variables that is in turn shaped
by the prevailing physical mechanisms.

4.2 Inferring the degree of model instability with data
assimilation

The derivation in Sect. 2 shows that, in the linear setting,
the assimilation error is asymptotically bounded from above
by a factor dependent on the observation error, the first LE
and the number of unstable—neutral modes of the underly-
ing forecast model. In this section we explore the extent to
which this result holds in a non-linear scenario whereby the
observational constraint is strong enough such that the error
evolution is maintained approximately linear or weakly non-
linear. We shall make use of numerical experiments with the
VL20 model.

A first insight on the existence of a direct relation between
the model instabilities and the skill of the EnKF-N is already
provided in Figs. 3 and 5. They display the Kolmogorov—
Sinai entropy, oxs (black line), and the first LE, A; (ampli-
fied by a factor of 3 — grey line), along with the nRMSEa
(discussed in Sect. 4.1). Even just by visual inspection, the
figures clearly show the high correlation between the analy-
sis error and both the oks and A;.

The nature of this relation is further studied in Fig. 7,
which shows scatter plots between the nRMSEa (with black
markers) and oxs/A; in a log—log scale. Data points relative
to experiments with forcing values are given in the panels’
legends and with varying energy exchange and dissipation
rates in the range (o x y) €[0.1,3) x [0.3, 1.8). Here, the
EnKF-N assimilates the full state vector at each time step.
The analysis error appears in a linear relationship with either
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oks or Ai, as long as In(nRMSEa) > —4. The existence of
such an approximate relationship provides the possibility to
infer ogs and/or A1 based on the outcome of DA.

The scatter plots also demonstrate the validity of the upper
bound (red markers) of Eq. (26) in Sect. 2. To compute the
bound we set the coefficient related to observation, 8 =1,
as it is compared to analysis errors normalized by observa-
tional error. The nRMSEa is bounded by the theoretical up-
per bounds for most of the model configurations considered.
The linear relationship of the upper bound can be explained
by its formulation in Eq. (26), where the exponent ¢**147 — |
can be approximated as 211 At if 211 At is sufficiently small.
The spread of upper bounds points for given A values (left
panel) reflects the various values of ng under similar A val-
ues. The better correspondence (narrower spread of the scat-
tered points) in the plane nRMSEa with oxg (right panel)
shows the importance of including both the dominant error
growth rate, A1, and the unstable-subspace dimension, ng, —
both present in oks — to better characterize the system’s insta-
bilities. The correspondence between okg and the theoretical
upper bound could also be a result of the relation between A1
and oxks as in a highly turbulent case, there is a linear relation
between A and okgs (Gallavotti and Lucarini, 2014).

The linear relation does not hold for numerical experi-
ments when In(nRMSEa) < —4 (see the black markers’ dis-
tribution in the panels’ inset). We explain this behaviour in
the following way. The wide clouds of points correspond to
all model configurations with very small ogs and A;. In these
quasi-stable dynamics, the error growth in between succes-
sive analysis is very little, with occasional error decay. The
observational error, which is random and white in time, will
be often larger than the forecast error and will dominate the
analysis error, thus breaking its direct dependence on the
instability-driven forecast error. In addition, in the weakly
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unstable model configurations, the most unstable direction
behaves almost like a neutral mode, which also breaks the
assumptions of the theoretical upper bound for unstable mod-
els. In fact, we do not show the weakly unstable results with
oks < 1 for both ogs and Aj.

The error bounds in Sect. 2 rely on the assumption of linear
error evolution, a condition that we met in our experiments
thanks to a strong observational constraint, with (synthetic)
measurements covering the full state vector at each time step.
These conditions are rarely achievable in practice, so it is
relevant to explore how results will change with a lighter ob-
servational constraint. There are three direct ways to achieve
this by acting on (i) the number/type of measurements, (ii)
the measurement error, and/or (iii) the temporal frequency.

The effect of the first is studied in Fig. 8 that is similar
to Fig. 7 but for DA experiments whereby only one of each
variable in the VL20 is observed.

The impact of partially observing the system causes the
emergence of a weakly quadratic relationship between the
analysis error and either oks or A1. However, the analysis er-
ror is still uniquely and monotonically related to them, espe-
cially for oks. A quadratic law requires one additional coeffi-
cient to be determined compared to a linear law; yet the mere
existence of such a law suggests again that one could in prin-
ciple infer oxs and/or A1 based on the analysis error. With the
relaxed observation constraint, the analysis error can (and in-
deed do so in several instances) exceed the theoretical upper
bound. However, the general trend of the numerical experi-
ments still follows the theoretical upper bound.

We study the effect of changing the amplitude of the ob-
servational error in Fig. 9. Results reveal that varying the ob-
servation error in the range of 5 %—10 % does not break the
quasi-linear relationship between the analysis error and oks
or A1. The nRMSEa is quite insensitive to the observation
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variance due to the normalization. Nevertheless, the upper
bound limit is not violated as in Fig. 7, and the slope of the
nRMSEa from the numerical experiment is remarkably sim-
ilar to the slope of the theoretical bound.

Finally, the impact of varying the observation frequency is
explored in Fig. 10. It is patent that decreasing the frequency
leads to blurring the linear relation between the analysis error
and the oks or 1. There is a clear deviation from the trend of
the theoretical upper bound and from the uniqueness of the
relation between analysis error and oks, as soon as the obser-
vational time interval exceeds the error doubling time (that is
inverse related to 1), and DA error evolves beyond the linear
regime. However, for frequent enough observations, a linear
relation similar to the upper bound appears, and, again, one
could in principle deduce oks and/or A based on DA.

The larger sensitivity to the observation frequency than to
observation noise (cf. Figs. 9 and 10) is a direct consequence
of the different effects these two factors have in determining
the degree of non-linearity of the error. This is explained,
for the L96 model, in the Appendix of Bocquet and Carrassi
(2017) using a dimensional analysis. The key point is that
the observation frequency modulates directly the magnitude
of the non-linear term in the model, namely the advection.
Decreasing the observation noise, while effectively reducing
the analysis error, is not sufficient to keep the error dynamics
linear if Az > 0 and the model is chaotic.

5 Conclusions

It is sometimes of great importance to be able to obtain in-
formation on the instability of a system of interest by per-
forming data analysis of suitably defined observables. This
is of key importance when one does not have direct access to
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with ogg < 1 and hence excluding cases where In(nRMSEa) < —4, similar to Fig. 7.

the evolution equations of the system or when the analysis of
its tangent space is too computationally burdensome. As an
example, quantitative information on the degree of instabil-
ity of a chaotic system can be extracted using extreme value
theory by studying the statistics of close dynamical recur-
rences as well as of extremes of so-called physical observ-
ables (Lucarini et al., 2014, 2016). The use of such a strat-
egy has shown great potential for the analysis of geophysical
fluid dynamical models in a highly turbulent regime (Gélfi
et al., 2017) as well for the understanding of the properties
of the actual atmosphere (Faranda et al., 2017; Messori et al.,
2017).

In this study, we have addressed this problem by taking
the angle of DA. The relation between DA and the instability
of the dynamical system where it is applied has long been
studied (see, for example, Miller et al., 1994; Carrassi et al.,
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2008), and has been used to design DA techniques in various
field of geosciences (Carrassi et al., 2022; Albarakati et al.,
2021). Here, we have reversed this viewpoint and investi-
gated the possibility of using DA to infer fundamental quan-
tities of the underlying dynamics, in particular the Lyapunov
exponents, A;, or the Kolmogorov—Sinai entropy (oxs). The
basic idea is to look at DA as a control problem and relate our
ability to control the system, ceteris paribus, to its underly-
ing instability. We have leveraged a stream of previous works
that set the theoretical foundation and that proved the conver-
gence of the error covariance of the Kalman filters onto the
unstable—neutral subspace of the dynamical system. Based
on this, we derived here an upper bound of the Kalman fil-
ter forecast error, i.e. under the assumptions of a linear model
dynamics and a linear observation operator. The upper bound
is very informative as it relates the error’s amplitude to all of
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the essential descriptors of the model instabilities on the one
hand and of the DA on the other. These are the dimensions of
the unstable—neutral subspace, ng, the first Lyapunov expo-
nent, A1, the frequency of the observation assimilation, At,
and the observation error, B;. By properly normalizing the
bound by the observation error, it can be written as a func-
tion of the model dynamical properties exclusively.

The existence of a relation between A or ogs and the DA
skill, as well as the validity of the bound, has then been inves-
tigated in a non-linear scenario using numerical experiments.
We have used the EnKF-N (Bocquet et al., 2015) as a pro-
totype of deterministic EnKF (Evensen, 2009) and the new
model developed by Vissio and Lucarini (2020). The VL20
is an extension of the widely used Lorenz 96 model that in-
cludes a thermodynamic component. While maintaining all
of the virtues of a low-dimensional model suitable for inves-
tigations on new methods at low computational cost, VL20
is conceptually much richer than the original L96 model.
In particular it allows for the exchange of energy between
a kinetic and potential form, which, together with forcing
and dissipation, provides the fundamental framework for the
Lorenz (1955) energy cycle. Additionally, as advection im-
pacts temperature-like variables, one can observe the emer-
gence of more complex dynamical behaviours. By changing
the value of its key parameters, and in particular of those de-
termining its forcing and dissipation, the model explores var-
ious dynamical regimes, ranging from fixed point, periodic,
quasi-periodic, and chaotic behaviour. In terms of DA, the
VL20 model has the attractive feature that it includes two
qualitatively different set of variables, associated with dy-
namics and thermodynamics, respectively. Hence, it is possi-
ble to explore the problem of having partial observation be-
yond focusing of the spatial extent of the observations only.
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We demonstrate that the skill of the EnKF-N is directly
linked to both A; and okgs. Whenever the error within the
EnKF-N cycles is kept sufficiently linear via a strong ob-
servational constraint, the relation is clearly linear too. By
relaxing the observational constraint (by either reducing the
frequency of measurements or by increasing their noise), de-
viation from linearity emerges. Nevertheless, the linear re-
lation is very robust against the level of observational noise
(within certain range), while it turns quadratic once the in-
terval between successive measurements gets too large and
it exceeds the system’s doubling time. Similarly, we found
out that the theoretical upper bounds for the errors, derived
for a linear system, still hold, as long as the observational
constraint is strong enough, but are then violated.

The error bound and the linear/quasi-linear relation be-
tween the error and A or ogs represent two direct ways to
infer A1 and ogs by looking at the output of a DA exercise.
First, we can use the bound (Eq. 26) to estimate 1| for a spe-
cific dynamical model, based on (normalized) error output of
a DA exercise. This requires the unstable—neutral subspace
dimension, ng, that can be obtained, in the case of EnKF-
like methods, by looking at the analysis error convergence
for increasing ensemble size; N: ng will be equal to N* — 1,
where N* is the smallest ensemble size for which the error
reaches its minimum. This procedure will give us an under-
estimate of Aj. Nevertheless, our results (cf. Fig. 7) seem to
suggest that the amount of the underestimation is small and,
notably, constant across a range of different model configu-
rations (and thus possibly quantifiable).

Our numerical experiments indicate a second way to esti-
mate A1 or oks from the skill of DA. The linear/quasi-linear
relationship between normalized DA error and A or oks (cf.
Fig. 7) exists for both the derived upper bound in Eq. (26)
and numerical experiments and is tested under various obser-
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vation constraints. The existence of the relationship for the
upper bound implies that the relationship may exist for other
dynamical systems as long as the time between analysis At is
sufficiently frequent because the upper bound is based on the
assumption of a (quasi-)linear model. To utilize the relation-
ship for a specific dynamical system, a few DA experiments
using different set of parameters of the dynamical system are
required. A linear relation can be obtained by linear regres-
sion from the selected data, by which a relatively accurate A1
or oks for other parameters of the dynamical system can be
inferred. Unavoidably, for the selected set of parameters, the
method requires the A or oks to be known, which possibly
can be obtained by computational methods such as the one
proposed by Wolfe and Samelson (2007). However, the re-
sulting linear relation can lead to a computationally efficient
approach for other sets of parameters of the dynamical sys-
tem with an estimate more accurate than the one from the
upper bound in Eq. (26).

The linear relation between error and A; and ogs will
certainly be more complicated with model errors. From
Grudzien et al. (2018a) and Grudzien et al. (2018b), we know
that the KF error covariance will no longer be fully confined
within the unstable—neutral subspace but could maintain pro-
jections everywhere and thus also on the stable modes. Those
projections would be asymptotically zero in the absence of
model noise. While this remains to be investigated, we ar-
gue that the existence of a clear monotonic relationship be-
tween analysis error and A; will still hold in the presence of
model error. The relation to oxs might also still stand be-
cause the correction would come from weakly stable modes.
However, the conjecture needs to be validated by numerical
experiments that are outside of the scope of this paper.

We are currently considering how these results will change
when performing DA for state and parameter estimation. In
this context, a relevant recent study has shown how the min-
imum number of ensemble members, N*, will need to be
increased to include as many members as the number of pa-
rameters to be estimated (Bocquet et al., 2020). By modify-
ing its parameters, the model’s instabilities’ properties will
change too, potentially inducing a catastrophic change (a tip-
ping point) in its long-term behaviour. Data assimilation will
then need to infer the best parameter values to track the data
signal and keep the DA solution in the same region of the
bifurcation diagram.
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