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Abstract
Land–atmosphere feedbacks, through water and energy exchanges, provide
subseasonal-to-seasonal predictability of the hydrological cycle. We analyse sub-
seasonal land–atmosphere coupling over South America (SA) during extended
austral summer for the soil moisture-to-precipitation and soil moisture-to-air
temperature feedback pathways. We evaluate subseasonal hindcasts from global
forecasting systems from the UK Met Office, the National Centers for Environ-
mental Prediction (NCEP), the European Centre for Medium Range Weather
Forecasts and the Center for Weather Forecast and Climate Studies (CPTEC),
for the common period of 1999–2010, against two reanalyses. Biases in land–
atmosphere states are established in the first week of hindcasts and increase with
lead time. By Week 5, all the models only demonstrate good performance over
northern, northeastern and southeastern SA for soil moisture and evapotran-
spiration and over tropical and subtropical SA for temperature. The hindcasts
show stronger coupling at longer lead–lag between variables than reanalyses.
Our results highlight possible deficiencies in feedbacks between soil moisture
and precipitation in CPTEC and NCEP forecasts over the Amazon due to initial
dry soilmoisture biases, and in feedbacks between soilmoisture and temperature
for all four investigated models over southeastern SA due to erroneous represen-
tations of evapotranspiration.
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original work is properly cited.
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1 INTRODUCTION

The land and atmosphere are connected through
exchanges of water and energy (Dirmeyer et al., 2018).
As the land surface usually evolves more slowly than
the atmosphere, it modulates atmospheric variability
on scales longer than synoptic (Koster & Suarez, 2001).
Land–atmosphere interactions provide subseasonal-to-
seasonal (S2S) predictability for the hydrological cycle
on S2S timescales, influenced by the relatively slowly
varying aspects of the land surface (Dirmeyer et al., 2015).
The land surface can affect atmospheric S2S variability
when three conditions are satisfied: (i) the atmosphere is
sensitive to variations in the land surface state (coupling);
(ii) the land surface state fluctuates (variability); and (iii)
these fluctuations persist (memory).
Soil moisture is one of the most important land sur-

face features for S2S predictability (National Academy
of Sciences, 2016), as it significantly modulates evapora-
tion in moisture-limited regimes and ultimately precipita-
tion through local and regional water and energy cycles
(Dirmeyer et al., 2018). Dirmeyer & Halder (2017) identi-
fied a significant relationship between S2S forecast skill
and land–atmosphere coupling strength, over most of the
world, through both water and energy pathways. Con-
sequently, S2S prediction skill is significantly limited by
model errors in land–atmosphere feedbacks (Dirmeyer
et al., 2019). Other than model errors, loss of potential pre-
dictability may arise from poor representation of atmo-
spheric conditions, poor initial soil states due to limited
observations and erroneous coupling between land surface
and atmospheric models (Dirmeyer & Halder, 2017).
Many studies show that some regions of South Amer-

ica (SA), like the Amazon and southeastern SA, are “hot
spots” for land–atmosphere interactions (e.g. Koster et al.,
2004; Orlowsky & Seneviratne, 2010; Sörensson &Menén-
dez, 2011; Ruscica et al., 2014, 2015; Spennemann et al.,
2015). Advances inmodelling soil and vegetation processes
have improved the representation of SA summer precipita-
tion in climate simulations (Ma et al., 2011). However, poor
model prediction performance for soil moisture variability
reduces the performance of the Climate Forecast System
version 2 for precipitation over parts of SA (Koster et al.,
2009; Dirmeyer et al., 2019). Thus, errors in SA land surface
predictions may propagate to errors in SA precipitation
forecasts (Koster et al., 2000). Improved representations of
soil moisture control processes may improve model repre-

sentations of seasonal to annual land-atmosphere interac-
tions over SA (Baker et al., 2021).
Some S2S models have shown promising performance

for SA rainfall forecasts three weeks ahead (Li & Robert-
son, 2015; Hirata & Grimm, 2018). Studies have also eval-
uated and proposed forecast verification methods for SA
precipitation at the subseasonal timescale for autumn
(Coelho et al., 2018) and summer (Klingaman et al., 2021).
S2S forecasts for SA summer precipitation have substan-
tial biases, with forecast performance for weekly rainfall
extending up to three weeks over northern, northeastern
and southeastern SA but only to the first week for south-
ern Amazonia and the Andes (Klingaman et al., 2021).
We expand on Klingaman et al. (2021) by comprehensively
analysing the skill and performance of the SA land surface
and atmosphere states and land–atmosphere coupling at
subseasonal lead times in the same four global forecasting
systems used in that study. We focus on the soil moisture–
evaporation–precipitation and soil moisture–evaporation–
air temperature feedback pathways (Seneviratne et al.,
2010) to investigate the representation of the hydrological
cycle over SAduring extended austral summer (NDJFM) at
lead times of one to five weeks. This work provides a holis-
tic view of the performance of four S2Smodels for regional
subseasonal land–atmosphere feedbacks over SA.
The models, hindcasts, reanalyses data (Section 2.1) and

methods used (Section 2.2) are introduced in Section 2;
verification of land and atmosphere state in models is dis-
cussed in Section 3; verification of land–atmosphere cou-
pling is discussed in Section 4.We discuss the broader con-
text and limitations of our results in Section 5 and conclude
our findings in Section 6.

2 DATA ANDMETHODS

2.1 Data

We evaluate hindcasts (reforecasts) of three models from
the S2S project database (Vitart et al., 2017) and from a new
Brazilian model (Guimarães et al., 2020) over the common
period of 1999–2010. The four hindcast datasets and associ-
atedmodelling systems are described below and in Table 1.

∙ CPTEC: The Centre for Weather Forecast and Climate
Studies Brazilian Global Atmospheric Model version 1.2
(BAM-1.2) is used to generate hindcasts twice permonth
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TABLE 1 Description of S2S hindcast model components and initialization along with ensemble and verification sizes

Dataset

Atmosphere Land-Surface
Original
ensemble
size

Final
ensemble
size

Verification
sizeModel Initialisation Model Initialisation

CPTEC Centre for
Weather
Forecast and
Climate Studies
Brazilian
Global
Atmospheric
Model version
1.2 (BAM-1.2)
(Guimarães
et al., 2020)

ERA Interim (Dee
et al., 2011)

IBIS (Integrated
Biosphere
Simulator)
CPTEC surface
model (Kubota,
2012)

Seasonal
climatology
developed from
Willmott et al.
(1985)

11 11 110

ECMWF Integrated
forecasting
system (IFS;
Cycles 43R1
and 43R3)
spectral
atmospheric
model
(ECMWF, 2014)

ERA Interim
reanalysis (Dee
et al., 2011)

Revised Tiled
ECMWF
Scheme for
Surface
Exchanges over
Land
(HTESSEL)
(Dutra et al.,
2009)

ERA
Interim/Land
soil reanalysis
(Balsamo et al.,
2015)

11 33 220

NCEP Climate Forecast
System (CFS;
version2)
spectral
atmospheric
model (Saha
et al., 2014)

Climate Forecast
System
Reanalysis
(CFSR) (Saha
et al., 2010)

4-layer NOAH
Land surface
model (version
2.7.1) (Ek et al.,
2003)

CFSR and
associated
GLDAS
analysis (Meng
et al., 2012)

4 28 220

UKMO UKMet Office
Unified Model
(UM) Global
Atmosphere
6.0 (Hadley
Centre Global
Environment
Model version
3; HadGEM3)
(Walters et al.,
2017)

ERA Interim (Dee
et al., 2011)

UM Global Land
6.0 (Joint UK
Land
Environment
Simulator;
JULES)
(Walters et al.,
2017)

ERA Interim (Dee
et al., 2011)

7 7 220

with 11 ensemble members (Guimarães et al., 2020).
CPTEC performs a “fixed” (frozen) hindcast set. The ini-
tialization dates can be found in Table 1 of Guimarães
et al. (2020).

∙ ECMWF: The European Centre for Medium Range
Weather Forecast Integrated forecast system (IFS) cycles
43R1 and 43R3,with 11 ensemblemembers (Vitart, 2014).
Hindcasts are run twice per week (Monday and Thurs-
day). ECMWF generate hindcasts “on the fly” (i.e. in
near-real time, alongside the operational forecasts), and
we use hindcasts performed during May 2017–April
2018.

∙ NCEP: The National Centers for Environmental Predic-
tion Climate Forecast System version 2 (CFSv2) is ini-
tialized daily to generate hindcasts with four ensemble
members (Saha et al., 2014). NCEP also performs a fixed
hindcast set.

∙ UKMO: The UK Met Office Global seasonal forecast-
ing system configuration 2.0 (GloSea5-GC2), with seven
ensemble members is initialized on the 1st, 9th, 17th
and 25th of each month (MacLachlan et al., 2015).
UKMO also generates hindcasts “on the fly”, and
we use hindcasts performed during May 2017–April
2018.
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To comparemodels with different initialization frequen-
cies and start dates, we use time-lagged ensemble means
of the more frequently initialized NCEP and ECMWF
hindcasts, to align with the less frequently initialized
UKMO hindcasts (Klingaman et al., 2021). We use an 8-
day window of forecast initialization dates for the NCEP
and ECMWF lagged ensemble prior to and including the
UKMO initialization date (Kirtman et al., 2014). The lagged
ensemble size is the total number of ensemble members
we use, for NCEP and ECMWF, to match the UKMO ini-
tialization date. We use the UKMO dates, rather than the
CPTECdates, because the approximately 15-day separation
between CPTEC dates would lead to the loss of up to two
weeks’ lead time for ECMWFandNCEP. Thus, CPTEChas
a smaller verification sample size than the other models
(Table 1). Verification sample size is the lagged ensemble
size multiplied by the number of initializations. The S2S
ensembles have different final ensemble sizes in our study:
CPTEC (11), ECMWF (33), NCEP (28) and UKMO (7). For
CPTEC and UKMO, the final ensemble size is same as the
original ensemble size, as they are not lagged.
The sample size and the window used for creating

the lagged ensembles are very important for forecast per-
formance at subseasonal timescales (e.g. DelSole et al.,
2017; Trenary et al., 2017, 2018). Sensitivity tests compar-
ing lagged ensembles ofNCEP andECMWFusing an 8-day
window to ensembles of similar size to UKMO (based on 2-
day window for NCEP and one initialization for ECMWF)
showed that using a longer window for lagged ensemble
had slightly lower performance for rainfall forWeeks 1 and
2 and slightly higher performance for Weeks 3–5 (Klinga-
man et al., 2021). We use the larger lagged ensembles for
ECMWF and NCEP in this study, as they perform slightly
better beyondWeek 2, which coincides with the lead times
at which subseasonal forecasts are generally used.
We use weekly-mean ensemble hindcasts of 0–20 cm

soil moisture (SM), evapotranspiration (ET), precipitation
(PR) and 2m air temperature (T2) from the four mod-
els for extended austral summer (November–December–
January-February–March; NDJFM). We analyse austral
summer as it is the major wet season for most of SA,
and land–atmosphere coupling strongly influences the SA
monsoon (Sörensson & Menéndez, 2011). In winter, the
land and atmosphere are mostly decoupled over most SA
(Sun &Wang, 2012).
Hindcasts are verified against the fifth-generation

ECMWF land reanalysis (ERA5L; Muñoz-Sabater et al.,
2021) and NASA and NOAA’s Global land data assimi-
lation system version 2.0 analysis (GLDAS; Rodell et al.,
2004; Rui & Beaudoing, 2018). ERA5L is generated using
the Tiled ECMWF Scheme for Surface Exchanges over
Land incorporating land surface hydrology (H-TESSEL) of
the IFS cycle 45R1, but without coupling the IFS to the

atmospheric module or the ocean wave model (Muñoz-
Sabater et al., 2021). ERA5L has a spatial resolution of
9 km and is forced by the atmospheric output of the
ERA5 system. It is a high-resolution “replay” of the land
component of the ERA5 reanalysis. As ERA5L is forced
with ERA5 surface fluxes, it is expected to have similar
land–atmosphere feedbacks to ERA5, particularly on the
regional-continental scales of interest here. In otherwords,
the land–atmosphere feedbacks do not benefit from the
higher resolution in ERA5L. We use ERA5L, over ERA5,
to gain higher resolution land surface fields that are physi-
cally consistent with the ERA5 atmospheric reanalysis, not
to capture higher resolution land-atmosphere feedbacks
than those in ERA5. GLDAS integrates observations (from
satellites and ground observations) using the four-layer
NOAH land surface model without coupling to the atmo-
sphere (i.e. offline). It generates a land surface analysis that
is physically consistent with real-world input data, using a
spatial resolution of 0.25◦ (Rui & Beaudoing, 2018). We use
version 2.0, which is forced with the global meteorological
dataset from Princeton University.
Scarce SM and ET observations over parts of SA cre-

ate challenges to verify forecasts with observations alone
(Spennemann et al., 2015). Thus, we must use reanaly-
sis products (ERA5L and GLDAS) to verify the hindcasts.
ERA5 (Baker et al., 2021) and GLDAS (Spennemann et al.,
2015) represent well SM variability over SA, with general
agreement between the datasets (Piles et al., 2019). Other
studies (e.g. Spennemann et al., 2015) using reanalysis con-
clude that offline simulations not only avoid atmospheric
model biases but also producemore consistent results. Fur-
ther, there are no qualitative differences between results
from ERA5 and ERA5L for our study (not shown), as
ERA5L is a high-resolution “replay” of the land com-
ponent of the ERA5 reanalysis. Alternative products are
less reliable such as Modern-Era Retrospective Analysis
(MERRA)-Land, which shows poor land–atmosphere cou-
pling due to the non-stationarity in the satellite observa-
tions it assimilates, which artificially increases soil mois-
ture variability (Dirmeyer, 2011). As the coupling results
are strongly sensitive to the land surface model used (e.g.
Zhang et al., 2008;Menéndez et al., 2019), whichmay skew
our results in favour of one model, for example ECMWF
if we only used ERA5L as the verification dataset. Thus,
we use both datasets to not only understand the regions of
agreement between reanalyses for land–atmosphere cou-
pling but also regions with large uncertainties for fore-
cast verification. We use reanalysis PR from ERA5L and
GLDAS to calculate land–atmosphere coupling rather than
observed PR, to have a physically consistent representation
of land–atmosphere feedbacks, as in previous studies (e.g.
Spennemann&Saulo, 2015). However, we compare reanal-
ysis PR with observed PR from Climate Hazards Group
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F IGURE 1 (a) The six regions of SA analysed in the study; (b–d) NDJFMmean PR (mm⋅day−1) from (b) CHIRPS (observed), (c) ERA5L
(reanalysis) and (d) GLDAS (reanalysis) over 1999–2010

InfraRed Precipitation with Station (CHIRPS) data (Funk
et al., 2015) as a quality check.
As in Klingaman et al. (2021), we focus our evalua-

tion across six regions of SA (Figure 1a), which have dis-
tinct precipitation regimes that are relatively homoge-
neous within the region:

1. NSA (0–12◦N; 50–80◦W) - Northern SA
2. AMZ (5–15◦S; 47–67◦W): Southern Amazonia
3. NDE (5–15◦S; 34–47◦W): Northeastern SA
4. SESA (22–35◦S; 48–60◦W): Southeastern SA
5. AND (15–40◦S; 67–75◦W): Central Andes
6. PAT (40–50◦S; 60–75◦W): Patagonia.

2.2 Methods

We evaluate prediction performance and skill of weekly-
mean values of three variables (SM, ET, T2) at lead times
of one to five weeks over the extended austral summer
(NDJFM) for 1999–2010. We interpolate the reanalyses
and the hindcasts ensemble members to a common grid
of 1.5◦ horizontal spatial resolution. For detailed analysis
of the models’ performance for PR, see Klingaman et al.
(2021). We use deterministic (bias; root mean square
error, RMSE; correlation coefficient, CC) and probabilistic
(Ranked Probability Skill Score, RPSS) verificationmetrics
to evaluate the hindcasts. Using multiple verification
metrics allows for a holistic analysis of hindcast perfor-
mance and skill. All deterministic verification metrics are
calculated for the ensemble mean, which allows for a fair
comparison of models with different ensemble sizes. We
compute biases in the hindcast mean of forecast Week
1–5 for all three variables compared against ERA5L and
GLDAS. The RMSE is calculated by comparing weekly
anomalies of variables (Week 1–5) for the models and
does not include contributions from the model mean
bias. Anomalies for each year are calculated relative to
the weekly 1999–2010 climatology, with the current year
excluded to mimic an operational forecast process. We
compute CC as correlation coefficients between weekly

anomalies of reanalyses and hindcasts (Week 1–5). We
consider CC values statistically significant at the 5% level.
The CC critical value of statistical significance accounts
for serial (lag-1) auto-correlation between consecutive
forecast initializations at the same lead time, following
the method of Zwiers & Von Storch (1995). The RPSS
is computed for terciles (derived from the respective
reanalysis or hindcast spread) of weekly mean variables
and is evaluated against the climatological reference
forecast, which has a probability of 1/3 for each tercile.
For more details on the metrics used, see Klingaman et al.
(2021).
To evaluate land–atmosphere feedbacks, we trace

energy or moisture feedback pathways from the surface to
the atmosphere using coupling metrics (Dirmeyer et al.,
2014). This method is based on physical understanding of
the factors that control land–atmosphere interactions, to
identify areas of strong land–atmosphere coupling. The
feedback pathway is broken into two “legs”: the terrestrial
leg, which measures the strength of coupling between a
surface variable (SM) and a flux variable (ET); and the
atmospheric leg, whichmeasures the relationship between
the flux variable (ET) and an atmospheric variable (PR
or T2). These four variables allow us to understand the
coupling strengths for the SM–ET–T2 and SM–ET–PR
feedback pathways (Seneviratne et al., 2010).
The coupling strength for each leg of the pathway can

be calculated using a coupling index (CI; Guo et al., 2006;
Dirmeyer, 2011; Baker et al., 2021). We calculate CI for the
terrestrial leg (𝑇𝐶𝐼 ; Equation 1) by calculating the regres-
sion slope between weekly anomalies of the surface vari-
able (𝑆′), that is SM, and the surface flux (𝐹′), that is ET,
multiplied by the standard deviation of the surface variable
(𝜎𝑆′ ). For the atmospheric leg (𝐴𝐶𝐼 ; Equation 2), we calcu-
late the regression slope between weekly anomalies of the
surface flux (𝐹′), that is ET, and the atmospheric variable
(𝐴′), that is PR or T2, multiplied by the standard deviation
of the surface flux (𝜎𝐹′ ).

𝑇𝐶𝐼 =
𝑑𝐹

′

𝑑𝑆′
× 𝜎𝑆′ , (1)
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𝐴𝐶𝐼 =
𝑑𝐴

′

𝑑𝐹′
× 𝜎𝐹′ . (2)

The CI will be weak if the linear association is strong,
but the variability is low, or if the variability is high but the
linear association is weak, as the index reflects the correla-
tion magnitude as well as the variability of the dependent
field. If the relationship between the land and atmosphere
were linear, then the total feedback (TF) between 𝑆′ and
the 𝐴′ could be calculated using CI only. However, as the
relationships are non-linear, we calculate TF (Equation 3)
between 𝑆′ and 𝐴′ using the two-legged metric (Dirmeyer
et al., 2014; Spennemann & Saulo, 2015), as the product
of CI for the terrestrial (𝑇𝐶𝐼) and atmospheric (𝐴𝐶𝐼) legs
within the pathway.

𝑇𝐹 = 𝑇𝐶𝐼 × 𝐴𝐶𝐼. (3)

We also computed land–atmosphere coupling
strengths with the Zeng’s Gamma (Zeng et al., 2010)
and temperature-evapotranspiration (Seneviratne et al.,
2006) metrics, as it is essential to compare multiple
coupling metrics for robustness (Lorenz et al., 2015; Spen-
nemann et al., 2018). These metrics provide similar results
to the CI (Figure S4 in the Supporting Information).
Land–atmosphere feedbacks are not always instanta-

neous due to the longer memory of the land surface and
to intervening processes. To understand the effect of per-
sistence of land–atmosphere fields on the covariability of
their states, we use the feedback parameter (FP; Liu et al.,
2006). The FP defines the lead–lag relationship between
SM and PR, after removing the impact of auto-correlation
from SM (Notaro, 2008). Using the Sun & Wang (2012)
method, we calculate the FP as the lead–lag correlation
between PR and SM in increments of forecast weeks (𝜏),
divided by the auto-correlation in SM at the same lead or
lag (Equation 4) for the six regions.

𝐹𝑃 =
𝑐𝑜𝑟𝑟[𝑃𝑅(𝑡), 𝑆𝑀(𝑡 ± 𝜏)]

𝑐𝑜𝑟𝑟[𝑆𝑀(𝑡), 𝑆𝑀(𝑡 ± 𝜏)]
. (4)

Using Equation (4), we calculate the correlation
between the variables in a particular leg (e.g. SM and PR)
for each increment of forecast week and divide it by the
auto-correlation of the first variable (e.g. SM) for the same
increment of the forecast week. We calculate FP for all
legs of the land–atmosphere pathway (SM–ET, ET–PR
and ET–T2) and for the full pathway (SM–PR and SM–T2).
We calculate FP using the regional mean variables to
represent the regional coupling feedback at different lead
times for our six SA regions.

3 LAND AND ATMOSPHERE STATE

We analyse the performance of four model hindcasts for
the climatology and weekly variability of land surface and
near-surface atmospheric fields (SM,ET andT2). The same
models’ performance for PR is analysed in detail byKlinga-
man et al. (2021) against CHIRPS. As this study uses PR
from ERA5L and GLDAS rather than CHIRPS (see Sec-
tion 2), we first discuss the differences between these
datasets. ERA5L and GLDAS (Figure 1c,d) show a simi-
lar NDJFM climatology to CHIRPS (Figure 1b). There is a
northwest–southeast-oriented band of high PR, with max-
ima in AMZ, the eastern slopes of Andes and parts of the
Atlantic coast of Brazil, with minima over the northern
NSA,NDE and thewestern slopes of Andes. GLDAS shows
lower PR over AMZ, the eastern slopes of Andes and east-
ern PAT than CHIRPS and ERA5L. ERA5L shows higher
PR over eastern NSA than CHIRPS and GLDAS.
The spatial pattern of climatological SM during NDJFM

in ERA5L and GLDAS (Figure 2a,f) is similar to that of
PR (Figure 1b,c), as expected. Regions with lower PR dur-
ing this season have lower SM (NDE, southern and south-
western SA); and regions with higher PR show higher SM
(AMZ, parts ofAndes andAtlantic coast of Brazil). ETmax-
ima are seen over parts of SESA, linked to the higher SM
availability (Seneviratne et al., 2010); ET minima are seen
over parts of AND, PAT, northernmost SA and NDE (Fig-
ure 2k,p). However, the regions with maximum SM, AMZ
and its surrounding regions, concurrent with regions of
maximum PR, show moderate ET as the region has an
energy-limited ET regime rather than an SM-limited ET
regime (also in Spennemann et al., 2015; Menéndez et al.,
2016). T2 is lowest over regionswith high orography (AND)
and over the mid-latitudes (southern SA) (Figure 2u,z).
Despite differences in magnitude, the spatial variability of
all three variables is similar in ERA5L and GLDAS, which
leads to similar spatial patterns of biases in S2Smodels (dis-
cussed below). GLDAS shows lower weekly climatological
mean SM than ERA5L, which may lead to weaker ET and
higher T2 in GLDAS than ERA5L. Despite the similarities
in ERA5L and GLDAS, the differences between them lead
to uncertainty in the “observed” state. At the end of Sec-
tion 3, we discuss the implication of the reanalysis uncer-
tainty and of verifying hindcasts against a reanalysis that
uses the same physical model.
CPTEC and NCEP have strong dry SM biases, whereas

ECMWF and UKMO have weak wet biases over most of
SA against ERA5L (Figure 2b–e). The sign of SM biases
against GLDAS is the same as those against ERA5L in
all models; however, the magnitudes of the biases dif-
fer (Figure 2g–j) due to differences between ERA5L and
GLDAS. Over eastern SA, the models show a positive bias
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F IGURE 2 NDJFM climatological (a) SM (m3⋅m−3) from ERA5L and (b–e) SM biases (m3⋅m−3) against ERA5L from S2S hindcasts at
Week 1 lead time from (b) CPTEC, (c) ECMWF, (d) NCEP and (e) UKMO over the 1999–2010 period. (f–j) is the same as (a–e) but against
GLDAS as reanalysis. (k–t) is the same as (a–j) for mean ET (mm⋅day−1) and (u–ad) is the same as (a–j) but for mean T2 (K). Note that the first
row uses different colourbars, placed below the respective panels; hindcast bias colourbars are placed at the bottom of each column

in ET, whereas over western parts of SA the models show
a negative bias against ERA5L (Figure 2l–o). Over most of
SA, biases against GLDAS are positive except over north-
ern SA and parts of SESA (Figure 2q–t). All four mod-
els have a strong negative ET bias over SESA against both
reanalyses (weakest in ECMWF and strongest in CPTEC),
which is associated with the warm T2 bias over the same

region (Figure 2v–y). SESAhaswarm and dry conditions in
reanalyses and the models, but the models show a warmer
T2 in comparison. The negative ET bias and the warm
T2 bias might be influenced by errors in the representa-
tion of the SM–ET–T2 pathway, which is discussed fur-
ther in Section 4. ECMWF and NCEP have cold T2 biases
over most of SA against ERA5L, except in parts of SESA
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F IGURE 3 RMSEs in hindcast NDJFM weekly-mean SM anomalies (m3⋅m−3) against ERA5L for (a,e) CPTEC, (b,f) ECMWF, (c,g)
NCEP and (d,h) UKMO at (a–d) Week 1 and (e–h) Week 5 lead times over the 1999–2010 period. (i–p) is the same as (a–h) but for
weekly-mean ET anomalies (mm⋅day−1) and (q–x) is the same as (a–h) but for weekly-mean T2 anomalies (K). Note that each variable uses a
separate colourbar, placed below the respective columns

and PAT, whereas CPTEC and UKMO have warm biases
except over parts of NDE andNSA (Figure 2v–y). The signs
of the biases remain the same against GLDAS, but the
magnitudes increase in EMCWF and NCEP and reduce in
CPTEC and UKMO (Figure 2 aa–ad). Over the Andes, all
models except ECMWFshowhighly variable biases against
both reanalyses, which may be associated with difficulties
in modelling processes over complex topography. Similar
to PR (Klingaman et al., 2021), the biases of all three vari-
ables are well established by Week 1 and show relatively
little drift with lead time (not shown). The Week 1 biases
in SMmost probably stem from initial condition biases, as
demonstrated in Dirmeyer & Halder (2017).
Among the six regions, NSA, NDE and SESA show the

strongest RMSE for SM weekly anomalies against ERA5L
for Week 1 in all S2S models (Figure 3a–d), as for PR
(Klingaman et al., 2021). For ET (Figure 3i–l) and T2 (Fig-
ure 3q–t), the models also show high errors over NDE and
SESA but not over NSA. The errors increase from Week
1–5 for all the three variables (Figure 3e–h, m–p, u–x), as
expected.Models also show a steep increase with lead time
in errors over southern SA for T2, associated with stronger
mid-latitude temperature variability. NCEP shows the low-

est errors in SM over all regions except over the AMZ,
whereas ECMWF shows the lowest errors in ET and T2.
The spatial pattern of errors in all models against GLDAS
are the same as with ERA5L, with only small differences in
the magnitude (Figure S2 in the Supporting Information).
Themodels also performwell forCC (i.e. CCbetweenmod-
els and reanalysis is significant at the 5% level) overmost of
SA for Week 1 against ERA5L. This performance remains
significant to Week 5 over NSA, NDE, SESA (Figure 4).
Models show poor performance (i.e. CC between models
and reanalysis is not significant at the 5% level) by Week
3 for SM and ET over AMZ and central SA and by Week 4
for T2 over southern SA, with CPTEC showing poor per-
formance by Week 2. As with RMSE, models show lower
CC against GLDAS than ERA5L, with poor performance of
SM and ET over AMZ and the surrounding regions even in
Week 1 (Figure S3 in the Supporting Information).
Seneviratne et al. (2006) summarized that regions with

lower SM have lower ET, which leads to higher T2 due
to increases in the sensible heat flux, while regions with
higher SM and higher ET tend to have lower T2. Further-
more, higher (lower) T2 leads to a higher (lower) vapour
pressure deficit, which increases (decreases) ET and may
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F IGURE 4 Same as Figure 3 but with CC (shaded) and statistical significance at the 5% level (stippling)

thus reduce (increase) SM. This might explain why the
biases in all hindcasts for SM and T2 are strongly related
(Figure 2) to regions with dry SM biases showing warm
T2 biases and regions with wet SM biases showing cold
T2 biases over most of SA for Week 1. ET biases do not
show a strong relationship with SM over parts of SA, as
the relationship between SMandETdepends highly on the
regionalmoisture regime.Over SESA, there is a strong neg-
ative ET bias in all four hindcasts (strongest in CPTEC and
weakest in ECMWF) and a related warm bias in T2. This
may indicate an erroneously strong relationship between
ET and T2 in models as compared to reanalyses. Parts of
the AMZ region in all the models show poor performance
(represented by insignificant CC) for SM and ET, whereas
parts of southern SA and SESA show poor performance
for T2 (Figure 4). All four investigated models show high
errors for all three variables in almost the same regions of
SESA even inWeek 1, which worsens byWeek 5 (Figure 3).
The exception to this is T2, which shows high errors over
southern SA for Week 5, compared to high errors in SM
and ET over SESA, NDE and parts of NSA. Similarly, mod-
els also show poor skill (measured by CC) over the same
regions (Figure 4), whichmay indicate erroneous coupling
in the SM–ET–T2 pathway, which is discussed further in
Section 4.

The forecast skill for tercile categories of SM ismeasured
by RPSS and is compared against the climatological ref-
erence forecast. Models show a better RPSS than the cli-
matological reference forecast over NSA, NDE and SESA
for ECMWF and NCEP and worse for CPTEC and UKMO,
with ECMWF having the highest skill (Figure 5a–f). Skill
for all models is worse than the climatological reference
forecast over AND, PAT and AMZ (except ECMWF) even
for Week 1, which may be due to difficulty in modelling
SM over complex topography (AND and PAT) and highly
forested regions (AMZ). Skill for ET (Figure 5g–l) is worse
than the climatological reference forecast for all models
except ECMWF from Week 1 over the six regions, except
for NCEP for NDE compared against ERA5L (Figure 5g–l).
Forecast skill for T2 (Figure 5m–r) in all models is gener-
ally better than the climatological reference forecast over
all six regions forWeeks 1 and 2, with ECMWF showing the
highest and CPTEC showing the lowest skill, likely due to
underdispersion of theCPTEC ensemble (Guimarães et al.,
2020). The models have better skill than the climatologi-
cal reference forecast over NSA even at Week 5, perhaps
due to lower T2 variability in the tropics. Althoughmodels
have higher skill in Week 1 over PAT for T2, models lose
skill rapidly with lead time. Forecast skill for all three vari-
ables converges towards climatological skill for all models
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F IGURE 5 Regional-mean RPSS for NDJFM weekly-mean tercile categories of (a–f) SM for each model’s hindcast distribution,
computed relative to a climatological forecast over the 1999–2010 period, for (a) NSA, (b) AMZ, (c) NDE, (d) SESA, (e) AND and (f) PAT. Solid
lines and filled markers show RPSS for hindcasts against ERA5L; dotted lines and unfilled markers show RPSS for hindcasts against GLDAS.
(g–l) is same as (a–f) but for weekly-mean ET and (m–r) is same as (a–f) but for weekly-mean T2. Grey horizontal line shows RPSS equal to
zero. RPSS is computed on the original 1.5◦ grid, then averaged over the region. The regions are shown in Figure 1a

byWeek 5. Aswith PR (Klingaman et al., 2021), the forecast
skill for tercile categories of the three variables in the S2S
models is linked to higher skill in the above- and below-
normal categories of variables, relative to skill for the nor-
mal (middle tercile) category (not shown).
Uncertainty in the verification data (reanalyses) leads

to uncertainty in quantifying hindcast error and skill. For
understanding and quantifying the uncertainty in the ver-
ification data, to have more confidence in our results, we
verify against both GLDAS and ERA5L. Models gener-
ally show poorer skill when verified against GLDAS than
ERA5L (Figure 5). However, ECMWF and UKMO have
lower biases when compared to ERA5L, and CPTEC and
NCEP have higher biases when compared against GLDAS
(Figure 2). Similarly, ECMWF consistently performs best
(with positive RPSS over all regions) against ERA5L for
all three variables; however, this is not a fair comparison
as the ECMWF hindcasts and ERA5L use the same phys-
ical model. ECMWF also has the highest skill when veri-
fied against GLDAS, but the RPSS values are negative for
ET for all six regions (Figure 5g–l) and SM for AMZ and
AND (Figure 5b,e). This shows that although we are con-
fident that ECMWF outperforms the climatological refer-
ence forecast for SM and T2, ET skill is more uncertain due
to disagreements between ERA5L and GLDAS. There is
also higher confidence thatNCEP skill for SM (Figure 5a–f)
and T2 (Figure 5m–r) is better than the climatological ref-
erence forecast, as skill for NCEP verified against ERA5L

andGLDAS are similar. Further, there is higher confidence
that UKMO and CPTEC skill is worse than the climatolog-
ical reference forecast for SM (Figure 5a–f) and ET (Fig-
ure 5m–r), against both verification datasets. We are also
confident that models fail to represent the variables in spe-
cific regions (parts of AMZ for SM, AMZ and NSA for ET
and southern SA for T2) by Week 5 as the errors are high
(Figure 3 and Figure S2 in the Supporting Information)
and CC insignificant (Figure 4 and Figure S3 in the Sup-
porting Information) when compared against both ERA5L
and GLDAS.

4 LAND–ATMOSPHERE COUPLING

In this section, we discuss the land–atmosphere coupling
in the hindcasts. We first look at the spatial variability of
CI for the terrestrial (𝑇𝐶𝐼 ; Figure 6) and atmospheric (𝐴𝐶𝐼 ;
Figure 7) legs and the total feedback pathways (TF; Fig-
ure 8) over SA. The regional coupling strengths are shown
as matrices of lead–lag coupling (using FP; Figure 9). The
matrices in Figure 9 show each FP relationship over a
region, with one 2 × 9 matrix for reanalyses, and four 5 × 9
matrices, one for each model. The x-axis of the reanalyses
matrix shows a column each for ERA5L and GLDAS. The
x-axis of each model matrix represents the five lead-weeks
(Week 1–5) of the hindcasts. The y-axis for all the matrices
represents the FP relationship at coincidence (0), four lead
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F IGURE 6 𝑇𝐶𝐼 between SM and ET (mm⋅day−1) for (a)
ERA5L, (f) GLDAS and the S2S hindcasts: (b) CPTEC, (c) ECMWF,
(d) NCEP, and (e) UKMO at (b–e) Week 1 and (g–j) Week 5 lead
times over the 1999–2010 period. Insignificant CI (p < 0.01) is shown
in grey shading

weeks (+1 to +4) and four lag weeks (−1 to −4). For SM–
ET FP over AMZ (Figure 9a), the negative values on the
y-axis represent ET leading SM and positive values on the
y-axis represent SM leading ET, with a similar format for
other legs (Figure 9b–e). The grid cells within each matrix
represented with grey ‘x’ show the incremental week that

cannot be calculated, as it does not exist. For brevity, we
only discuss AMZ and SESA (Figure 9f–j) here, due to the
large errors in hindcasts over these regions (refer to Fig-
ure S4, in the Supporting Information, for the other four
regions).
SM–ET coupling (Figure 6) is the terrestrial leg of both

the SM–PR and SM–T2 feedback pathways (Seneviratne
et al., 2010). Over SA, SM–ET coupling in ERA5L is posi-
tive over all subregions except AMZ and central SA, where
the relationship is negative (Figure 6a). These regions have
negative SM–ET interactions as they are energy-limited
regimes, where due to high SM, ET variability depends
mainly on net radiation rather than SM. Positive SM–ET
coupling in other regions of SA indicates that these are
SM-limited ET regimes, where SM is the first-order con-
straint on ET. Regions with no significant SM–ET rela-
tionship are transition zones between the SM-limited and
energy-limited ET regimes. Spennemann & Saulo (2015)
and Baker et al. (2021) found that these results also hold
on monthly scales; however, the transition zone (non-
significant SM–ET interaction) is larger in this study as
we analyse subseasonal timescales. It should be noted that
the non-significant results for the SM–ET interaction will
be sensitive to the significance level used. In GLDAS (Fig-
ure 6f), there is no energy-limited regime in SA, as AMZ
has a positive SM–ET relationship, which may be asso-
ciated with lower SM in GLDAS over AMZ. GLDAS and
ERA5L show strong positive SM–ET coupling over SESA
(as in Spennemann et al., 2018) and NDE, but GLDAS has
much stronger coupling over SESA than ERA5L.
All models except NCEP show negative SM–ET cou-

pling over AMZ and central SA and positive coupling
over the rest of SA for Week 1 (Figure 6b–e) like in
ERA5L. While CPTEC shows transition zones over parts
of AMZ, ECMWF shows no transition zones, and UKMO
shows stronger negative SM–ET coupling than ERA5L and
weaker positive SM–ET coupling than both reanalyses.
NCEP shows positive SM–ET coupling over most of SA,
with a coupling pattern similar to GLDAS, which may
be a result of using the same land surface model in both
datasets and a dry SM bias. Despite the coupling errors,
the models represent the maxima over NDE and SESA,
even though the positions are slightly displaced in all mod-
els. These coupling errors in the models may be linked to
the strong SM dry bias in CPTEC and NCEP, the strong
ET biases in CPTEC, NCEP and UKMO (Figure 2) and
the biases in SM and ET variability (Figure 4). Coupling
strength in the models declines from Week 1–5, especially
over the regions of maxima (Figure 6g–j), further shown
with FP analysis (Figure 9), which may be associated with
the models’ skill for SM and ET (Figure 5a–l) converging
to the climatological reference forecast by Week 5 as dis-
cussed in Section 3.
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F IGURE 7 Same as Figure 6 but (a–j) for 𝐴𝐶𝐼 between ET and PR (mm⋅day−1) and (k–t) for 𝐴𝐶𝐼 between ET and T2 (K)

Over AMZ, ERA5L shows negative coupling at lag 0 and
ET leading SM at a one-week lag, whereas GLDAS does
not show significant coupling at any lag between SM–ET
(Figure 9a). ECMWF and UKMO represent the negative
coupling similar to ERA5L, but the relationship persists
longer, which shows that increasing ET reduces SM. For
NCEP and CPTEC, the sign of coupling is positive for all
lags, which disagrees with both reanalyses and suggests
that SM and ET biases strongly reinforce each other. Over
SESA, both reanalyses show positive SM–ET coupling at
all leads and lags, with GLDAS showing stronger coupling
than ERA5L (Figure 9f). Over an SM-limited region like

SESA, SM is a persistent constraint for ET variability, but
ET also influences SM variability. All models show posi-
tive coupling at all lags, similar to the reanalyses but the
coupling in CPTEC, NCEP and GLDAS is stronger than in
ECMWF, UKMO and ERA5L.
The atmospheric ET–PR interaction (Figure 7a,f) is posi-

tive over parts of NSA, NDE, AND and PAT in both ERA5L
and GLDAS. Over SESA, ERA5L shows insignificant
coupling (Figure 7a) and GLDAS shows positive coupling
(Figure 7f). For the rest of SA, ERA5L shows strong neg-
ative coupling whereas GLDAS shows insignificant cou-
pling. Negative coupling between ET–PR over AMZ and
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F IGURE 8 Same as Figure 6 but (a–j) for TF between SM and PR (mm2⋅day−2) and (k-t) for TF between SM and T2 (mm⋅K⋅day−1)

positive coupling over SESA is also found atmonthly scales
(Baker et al., 2021). ET–PR coupling is highly uncertain
and involves multiple complex processes like convective
instability, moisture recycling, boundary-layer instability
and land surface heterogeneity (e.g. Eltahir, 1998; Senevi-
ratne et al., 2010; Tawfik et al., 2015). The models show
positive ET–PR coupling over NSA, NDE and PAT (i.e.
peripheral regions of SA), and negative coupling over the
rest of SA for Week 1 (Figure 7b–e). However, the strength
of coupling is overestimated in CPTEC (in the positive ET–
PR regions) and UKMO (in the negative ET–PR regions).
Similar to SM–ET coupling, only NCEP shows no coupling

over parts of AMZ, like in GLDAS, and negative coupling
over the central parts of AMZ. Compared to the reanalyses,
ECMWF shows weaker ET–PR coupling over PAT.
ET–PR regional coupling (Figure 9b,g) has a similar sign

for SM–ET coupling in ERA5L and the models. For ET–PR
in AMZ (Figure 9b), the models show significant coupling
with PR leading ET, whereas coupling with ET leading PR
is significant only up to a one-week lag. As with SM–ET
coupling, CPTEC and NCEP show the wrong sign of cou-
pling for ET–PR. For SESA (Figure 9g), ET–PR coupling is
positive in reanalyses and the S2Smodels,with no coupling
of ET leading PR in ERA5L, CPTEC, ECMWF and UKMO.
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F IGURE 9 (a) Lead–lag regional-mean FP between SM and ET (unitless) for reanalyses (REAN; ERA5L and GLDAS marked as ‘E’ and
‘G’, respectively) and S2S hindcasts (CPTEC, ECMWF, NCEP and UKMO) at different lead weeks for AMZ over the 1999–2010 period. The
reanalyses have one 2 × 9 matrix, and the four models have one 5 × 9 matrix each. The x-axis of the reanalyses matrix shows a column each for
ERA5L and GLDAS. The x-axis of each model matrix represents the five lead-weeks (Week 1–5) of the hindcasts. The y-axis for all the matrices
represents the FP relationship at coincidence (0), four lead weeks (+1 to +4) and four lag weeks (−1 to −4). The negative values on the y-axis
represent ET leading SM and positive values on the y-axis represent SM leading ET. Insignificant FP (p < 0.01) is shown in grey shading. Grey
crosses mark the points where lead–lag FP cannot be calculated. (b–e) are same as (a) but (b) shows regional-mean FP between ET and PR
(unitless), (c) shows regional-mean FP between ET and T2 (unitless), (d) shows regional-mean FP between SM and PR (unitless) and (e)
shows regional-mean FP between SM and T2 (unitless). (f–j) is same as (a–e) but for SESA. FP is calculated for regional-mean variables
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However, the same feedback is well established at all lags
for GLDAS and NCEP (Figure 9g), which again reiterates
the similarities in these two datasets.
Positive ET–T2 coupling indicates regions under ‘atmo-

spheric control’, that is T2 influencingET in energy-limited
regimes; negative coupling indicates regions under ‘land
surface control’, that is ET influencing T2 in SM-limited
regimes (Spennemann & Saulo, 2015). Thus, ET–T2 (Fig-
ure 7k,p) shows similar patterns but opposite signs to SM–
ET (Figure 6). The sign of ET–T2 is also opposite to that
of ET–PR over the same regions in ERA5L, but GLDAS
shows insignificant ET–T2 over most of SA. For ET–T2,
the models’ representation is inconsistent for Week 1 (Fig-
ure 7l–o). CPTEC shows positive ET–T2 over the regions
surrounding the Amazon River like in ERA5L, and no cou-
pling over some parts of SA like GLDAS. However, CPTEC
shows very strong positive coupling over SESA unlike any
other reanalysis or model, which may be associated with
the strong positive T2 bias (Figure 2v,aa) or from the nega-
tive ET bias (Figure 2l,q) over the same region. NCEP, like
GLDAS, shows limited regions of positive coupling around
AMZ but has a strong negative ET–T2 hotspot over cen-
tral SA, as also seen in SM–ET (Figure 6d) and ET–PR
(Figure 7d), which may stem from the negative ET bias
in NCEP (Figure 2n,s). UKMO shows weak negative cou-
pling and ECMWF has stronger negative coupling com-
pared to the reanalyses over NSA, NDE and PAT. As with
SM–ET, the coupling strength for the atmospheric legs in
the S2S models weakens from Week 1–5, except for ET–T2
for CPTEC and UKMO over SESA, where the positive cou-
pling in Week 1 changes to negative coupling by Week 5.
ET–T2 in ERA5L shows positive coupling only with no

lag or ET leading T2 by one week; however, GLDAS shows
positive coupling only with ET leading T2 up to lag of four
weeks over AMZ (Figure 9c). In the models, ECMWF and
UKMO show the correct positive ET–T2, whereas CPTEC
and NCEP show erroneous negative ET–T2. For SESA,
ERA5L and GLDAS show no coupling at any lag, whereas
ECMWF and NCEP show negative coupling (Figure 9h).
CPTEC and UKMO mostly show insignificant coupling,
except for strong positive coupling with T2 leading ET at
one-week lag. Figure 9 also indicates that coupling in the
models weakens with lead time.
Total feedbacks for the pathways SM–PR and SM–T2

summarize the interactions between the terrestrial and
atmospheric legs (Figure 8). SM–PR is positive over most
of SA (Figure 8a–j), while SM–T2 is negative (Figure 8k–t).
In these models, there are strong regional variations in
the strength of the feedbacks, as also shown by Orlowsky
& Seneviratne (2010). For AMZ (Figure 9d,e), ERA5L
shows stronger but less persistent SM–PR and SM–T2 than
GLDAS, whereas all the models show stronger as well as
more persistent coupling than both reanalyses. CPTEC

and NCEP also represent the correct sign of the SM–PR
and SM–T2 pathways, despite incorrectly representing the
atmospheric and terrestrial legs of these pathways. For
SESA, SM–PR (Figure 9i) magnitude is well represented
by the models but the feedback of SM leading PR is
insignificant, whereas the models fail to represent SM–T2
(Figure 9j), due to errors in the representation of ET–T2
(Figure 9h).

5 DISCUSSION

Errors in analysis datasets, for variables like SM and ET,
due to sparse observations and poor representation of
physical processes in backgroundmodelsmake it challeng-
ing to verify and improve operational forecasts over regions
like AMZ. It is important to use multiple verification prod-
ucts, particularly in data-sparse regions and in cases where
the verification dataset uses the same physicalmodel as the
forecast. The two reanalyses show similar spatial patterns
of SM, ET and T2, and, thus, the pattern of biases in the
S2S models compared against ERA5L and GLDAS is simi-
lar. There is higher confidence in results whenmodels per-
form similarly against both verification datasets. For exam-
ple, we have high confidence that ECMWF has the highest
skill amongst the four models for SM and T2, as this result
holds verifying against both ERA5L and GLDAS.
However, the intensity of the biases and coupling

strength differs between reanalyses and this leads to uncer-
tainty in the model verification results and fidelity of the
reanalyses. At shorter lead times, the errors in the variables
are smaller and thus the associated coupling strengths
would be more realistic, as expected. At shorter lead times
(e.g. Week 1; Figure 3), when the model state is closer to
the initial conditions, errors in land–atmosphere variables
are smaller, and thus the associated coupling strengths are
more realistic, as expected (Figure 6). At longer lead times
(e.g. Week 5; Figure 5), when the model state has drifted
closer to themodel climatology, the errors increase and the
coupling strengths weaken (Figure 6). Previous research
shows that initial biases in land surface variables are
associated with the errors in the initialization (Dirmeyer
& Halder, 2017) and that land–atmosphere interactions
depend strongly on the specific model physics (Zhang
et al., 2008). Similarities in feedbacks between ECMWF
versus ERA5L and NCEP versus GLDAS may be linked to
the use of the same physical models. ECMWF and ERA5L
use different versions of the same coupled model (IFS)
and the same land surface model (HTESSEL); and NCEP
and GLDAS use the same land surface model (NOAH).
Similar SM biases in ECMWF and UKMO may also be
attributed to initialization with the same dataset (Table 1).
For this reason, we evaluated all models against two
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reference datasets and have greatest confidence in our
findings when model performance validated against both
reference datasets was similar.
As with PR (Klingaman et al., 2021), themodel biases for

SM,ET andT2 are established byWeek 1. TheWeek 1 biases
for SM are possibly associated with the biases in the initial-
ization of SM, as also shown in Dirmeyer & Halder (2017).
Biases and errors in SM show a clear connection to T2 in
Week 1, possibly through the changes in sensible heat flux
and vapour pressure deficit (Seneviratne et al., 2006). NSA,
NDE and SESA have relatively moderate mean PR, com-
pared to the heavier PR in AMZ. These three regions are
considered SM-limited regimes, where land surface fea-
tures can significantly influence the atmosphere (Senevi-
ratne et al., 2010). Good skill for SM in themodels overNSA
and PAT, as shown by low RMSE and significant CC, is not
reflected in skill for PR (Klingaman et al., 2021). According
toDirmeyer et al. (2018), thismismatch in skill between SM
andPRmight stem fromerrors in convective parameteriza-
tion. The only SM available in the S2S datasets is the value
averaged over the top 20 cm soil. This SM does not include
moisture from deeper layers, which can also influence the
land–atmosphere coupling. It should also be noted that
the SM–PR coupling we discuss in this work represents
the statistical relationship between SM and PR, which pri-
marily represents the local recycling of moisture, which
only provides 9–10% of all moisture for precipitation over
SA; the majority of moisture comes from remote sources
via advection (Zemp et al., 2014). Thus, errors in PR from
moisture advection likely play a leading role in the model
forecasts; PR errors in forecasts cannot be explained only
by errors in land–atmosphere feedbacks. Further research
linking PR error to errors in moisture transport and con-
vergence would provide more insights about PR errors in
the S2S models.
Hindcasts show poor performance for all three variables

over regions with relatively higher climatological PR, like
AMZand parts of central SA,which have humid tropical or
monsoonal subtropical climates. Over these regions, dur-
ing NDJFM, the land surface may not substantially influ-
ence PR due to short SM memory (Dirmeyer et al., 2019)
and high SM, making these regions energy limited rather
than moisture limited (Seneviratne et al., 2010). ERA5L
represents this region as energy limited, whereas the cou-
pling strength in GLDAS is insignificant. This difference
between the reanalysis datasets leads to higher uncertainty
for skill in the investigated models. ECMWF and UKMO
show similar energy-limited regimes as ERA5L over AMZ
and central SA. NCEP and CPTEC show an energy-limited
regime only over the regions surrounding the Amazon
River, with a moisture-limited regime over the southeast-
ern Amazon that may stem from dry SM biases in both
models. NCEP shows larger regions with negligible cou-

pling overAMZand central SA likeGLDAS.NCEP also has
a strong hotspot of land–atmosphere coupling over central
SA, which may be linked to errors in ET and T2. Due to
this uncertainty and differences in the representation of
the land–atmosphere state and coupling, there is a need to
identify the sources of error in the modelled processes. To
diagnose the source of errors in the land–atmosphere feed-
back, more in-depth analysis of the model process param-
eterizations is required (e.g. Guo et al., 2006).

6 CONCLUSIONS

Errors in the representation of land–atmosphere feedbacks
may limit prediction performance in models (Dirmeyer
et al., 2019). Models are known to represent well the sea-
sonal variation in the land–atmosphere moisture feed-
backs overmost of SA, except over theAmazon,whichmay
be due to biases in PR and SM control processes (Baker
et al., 2021). Previous research shows that S2S models have
moderate performance at forecasting weekly rainfall over
SA at subseasonal lead times (de Andrade et al., 2019;
Klingaman et al., 2021). In this study, we identify inter-
model and inter-region differences in the simulated land–
atmosphere state and coupling in the same four models
(CPTEC, ECMWF, NCEP and UKMO) compared against
two reanalyses (ERA5L and GLDAS). We focus our analy-
sis on SM–ET–PR and SM–ET–T2 feedback pathways, dis-
cussed in Seneviratne et al. (2010). This study contributes
to understanding of the representation and predictability
of the hydrological cycle over SA, during extended austral
summer (NDJFM), at lead times of one to five weeks.
Biases in the land–atmosphere states are well estab-

lished by Week 1 and increase with lead time. All models
demonstrate the good prediction performance (measured
by significant CC at Week 5) for SM, ET only over NSA,
NDE and SESA, and for T2 in tropical and subtropical SA.
Model skill for SM, ET and T2 persists for longer than the
skill for PR shown in Klingaman et al. (2021). The model
skill by Week 5 degrades to be similar to that of climato-
logical reference forecast, which may be associated with
weaker coupling. The errors for SM and ET are slower to
develop in the models than the errors for PR due to the
slowly varying nature of the land surface. The SM biases
in models (stemming from the SM initialization) define
the hydrological regime in the model. The dry SM biases
in CPTEC and NCEP lead to an erroneous simulated SM-
limited regime in AMZ. These errors in the terrestrial leg
for CPTEC and NCEP also lead to errors in both the atmo-
spheric legs of the pathways over AMZ. However, all four
models represent the area-averaged feedbacks overAMZ in
the overall SM–PR and SM–T2 pathways well, but CPTEC
and NCEP have incorrect feedbacks in the individual legs.
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CPTEC and NCEP do not show the correct feedbacks for
the SM–PR and SM–T2 pathways over AMZ at the grid-
point scale, which may be due to the poor representation
of model fields at a finer scale. Over SESA, all four models
represent the SM–PR pathway well, but fail to reproduce
the atmospheric leg in the SM–T2pathway. This leadsmod-
els to have a direct and negative relationship between SM
and T2 biases over SESA, which is not seen in the reanal-
yses. The strength of the feedbacks between all the land—
atmosphere pathways in S2S models generally weakens
with increasing lead time, due to accumulation of errors
with lead times thatmay lead to errors in the result of phys-
ical processes.
The results in the current study are influenced by the

model and initialization data used, as discussed before and
in Koster et al. (2004). Our results may also be sensitive
to limiting our analysis to the common hindcast period
of the models (1999–2010) and to the creation of lagged
ensembles for ECMWF and NCEP. Further research into
the impact of model initialization and intervening pro-
cesses of the models’ feedback pathways are required to
understand the error sources in land surface variables and
simulated land—atmosphere feedbacks.
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