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A B S T R A C T   

Autism Spectrum Disorders (ASD) are a set of neurodevelopmental conditions characterised by difficulties in 
social interaction and communication as well as stereotyped and restricted patterns of interest. Autistic traits 
exist in a continuum across the general population, whilst the extreme end of this distribution is diagnosed as 
clinical ASD. While many studies have investigated brain structure in autism using a case-control design, few 
have used a dimensional approach. To add to this growing body of literature, we investigated the structural brain 
correlates of autistic traits in a mixed sample of adult participants (25 ASD and 66 neurotypicals; age: 18–60 
years). We examined the relationship between regional brain volumes (using voxel-based morphometry and 
surface-based morphometry) and white matter microstructure properties (using Diffusion Tensor Imaging) and 
autistic traits (using Autism Spectrum Quotient). Our findings show grey matter differences in regions including 
the orbitofrontal cortex and lingual gyrus, and suggestive evidence for white matter microstructure differences in 
tracts including the superior longitudinal fasciculus being related to higher autistic traits. These grey matter and 
white matter microstructure findings from our study are consistent with previous reports and support the brain 
structural differences in ASD. These findings provide further support for shared aetiology for autistic traits across 
the diagnostic divide.   

1. Introduction 

Autism Spectrum Disorders (ASD) are complex neurodevelopmental 
conditions characterised by atypical social interaction and communi-
cation as well as stereotyped behaviours (American Psychiatric Associ-
ation, 2013). The origin of differences in brain structure and volume can 
be traced back to early childhood, as several studies reported early brain 
overgrowth in younger children (2–5 years old) with ASD (Courchesne 
et al., 2001; Hardan et al., 2001). It was suggested that the enlarged 
brain structural abnormalities were indexed by an increase in head 
circumference (Courchesne et al., 2003). Such brain structural 

differences may, in some cases, continue to exist until adulthood in ASD. 
These differences in brain structure may reflect alternate trajectories of 
brain development which have consequences for the behavioural man-
ifestations of ASD. 

Studies measuring brain structure in autism have traditionally used 
voxel based morphometry (VBM) (Nickl-Jockschat et al., 2012) and 
showed reduced regional grey matter volume (GMV) in cortical brain 
regions including the orbitofrontal cortex (OFC) (Hardan et al., 2006; 
Mueller et al., 2013), amygdala (Nordahl et al., 2012; Mosconi et al., 
2009), fusiform gyrus (FG) (Sato et al., 2017), and superior temporal 
sulcus (STS) (Boddaert et al., 2004) in individuals with ASD compared to 
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controls (Cauda et al., 2014; Mundy, 2018; Via et al., 2011). These re-
gions are considered to be part of the putative ‘social brain’ circuit and 
believed to play a significant role in theory of mind abilities, emotional 
judgement, face recognition and interpreting biological motion cues 
respectively (Brothers, 1990; Pelphrey et al., 2011; Schultz, 2005). 
While the majority of structural neuroimaging studies of autism do not 
make an explicit link to behavioural outcomes (but see Rosenblau et al., 
2020 for an exception), there have been several studies linking brain 
structural features with autism symptom domains (Ecker et al., 2012; 
Rojas et al., 2006). 

Although regional GMV can be measured using VBM, two-third of 
the cortical structures are hidden and it may be difficult to directly 
measure other surface based metrics such as cortical thickness, surface 
area and gyrification (Jiao et al., 2010). Considering this, some previous 
studies used surface based morphometry (including the regional and 
inter-regional structural networks) and demonstrated increased cortical 
thickness in the medial prefrontal cortex and reduced cortical thickness 
in the posterior cingulate cortex and precuneus in individuals with ASD 
relative to controls (Valk et al., 2015). 

Previous studies have suggested that key brain regions may be poorly 
connected due to white matter microstructure differences which may 
affect the social information processing in individuals with ASD (Rippon 
et al., 2007; Wass, 2011). These differences in the white matter micro-
structure may be driven by reduced axonal density and myelination in 
individuals with ASD. Previous studies on ASD have reported white 
matter microstructure abnormalities (reduced fractional anisotropy and 
increased mean diffusivity) in the fibre tracts including bilateral supe-
rior longitudinal fasciculus (SLF), uncinate fasciculus (UF), inferior 
longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus 
(IFOF) (Boets et al., 2018; Catani et al., 2016; Itahashi et al., 2015; 
Barnea-Goraly et al., 2004; Groen et al., 2011; Lee et al., 2007; Lisiecka 
et al., 2015) which connects key social brain regions. These differences 
in the regional grey matter (including the social brain regions) and white 
matter microstructure (Aoki et al., 2013) indicate brain structural 
atypicalities which are believed to play an important role in individuals 
with ASD. 

The majority of the studies discussed above have used a case-control 
design and reported brain structural differences including regional grey 
matter volume (GMV) and white matter microstructure in individuals 
with ASD. These brain structure measurements between the ASD and 
control group may induce a sampling bias in the analysis and lead to 
mixed findings. There is considerable variance inherent in the case- 
control design due to the sampling of the controls. A dimensional 
approach avoids this source of variance by sampling across the whole 
population. Growing evidence suggests that autistic traits lie in a con-
tinuum across the general population, whilst the higher end of this trait 
measure is diagnosed as clinical ASD (Whitehouse et al., 2011; Robinson 
et al., 2011). More importantly, it is very important to understand the 
brain structure, rather than solely depending upon the behavioural 
measures assessing the symptoms of autism irrespective of categorising 
clinical ASD. This is because although ASD is a behaviourally defined 
condition, from the previous studies, brain structural differences are 
believed to underlie the atypical behavioural manifestations in ASD. 
Recent developments within mental health and psychiatry research have 
led to the Research Domain Criteria (RDoC) which provides a dimen-
sional transdiagnostic framework for investigating individual differ-
ences at multiple levels. Our study is aligned with this framework in 
using a dimensional approach to investigate brain structural differences, 
irrespective of diagnostic category membership. 

We used SBM to measure cortical thickness, surface area and gyr-
ification in the cortical grey matter, as well as VBM to characterise both 
cortical and subcortical grey matter volume at a whole brain level. Voxel 
based Morphometry (VBM) is a volumetric analysis that uses a whole 
brain voxel-by-voxel comparison to compute the local concentration of 
the regional grey and white matter volume in the brain (Ashburner and 
Friston, 2000). Surface-based Morphometry (SBM) uses a cortical 

surface reconstruction to measure the cortical thickness, surface area, 
volume and gyrification (Fischl, 2012). SBM helps us to compute the 
grey matter metrics only in the cortical structures, but not the subcor-
tical structures, whereas VBM helps us to compute the regional GMV for 
both cortical and subcortical structures. In addition, we also examined 
the white matter microstructure differences using DTI. We explored the 
relationship of these brain based metrics with self-reported autistic traits 
in a mixed sample of adults including neurotypicals and individuals with 
ASD. 

2. Methods and materials 

2.1. Participants 

Ninety-one adults consisting of 66 neurotypicals and 25 ASD (52 
males, 39 females, age 18–60 years, mean AQ: 36.32 ASD and 14.86 
neurotypicals), participated in this study. Participants with a clinical 
diagnosis of ASD were included to enrich the higher end of the score 
distribution for autistic traits. All neurotypical individuals were 
recruited from the University of Reading campus and autistic individuals 
were recruited from a research volunteer database held at the Centre for 
Autism, University of Reading. All autistic participants had a DSM-IV TR 
autism spectrum diagnosis from a recognized clinic, and were assessed 
using the Autism Diagnostic Observation Schedule (ADOS) module-4 
(Lord et al., 2000). Subjects with any neurological conditions or head 
injuries were excluded from the study. Autism Spectrum Quotient (AQ) 
scores (Baron-Cohen et al., 2001) were also collected from all partici-
pants. AQ is a widely used self-report measure of autistic traits in adults, 
which shows high reliability and validity (Ruzich et al., 2015, Baron- 
Cohen et al., 2001). This dataset came from two separate phases of 
data collection (N = 53 originally reported in Neufeld et al., 2019; Hsu 
et al., 2018a and N = 38 originally reported in Hsu et al., 2018b; both 
phases used the same protocol for collecting structural MRI). This study 
was approved by the University Research Ethics Committee (UREC), 
University of Reading. From the full sample above, a subset of fifty-three 
adults consisting 28 neurotypicals and 25 ASD matched for age, gender 
and IQ took part in the diffusion tensor imaging study. The performance 
IQ was measured using Raven’s Progressive Matrices (Neufeld et al., 
2019) because the verbal IQ (VIQ) based matching strategies were not 
ideal for autism case-control studies (Table 1). 

2.2. sMRI and DTI data collection 

Siemens Trio 3 T MRI Scanner was used to acquire the high resolu-
tion T1-weighted whole brain structural images from all participants 
using 32-channel head coil including (Voxel size = 1 × 1 × 1 mm; 
matrix = 256 × 256; TR = 2020 ms; TE = 2 ms) at the Centre for 
Integrative Neurosciences and Neurodynamics (CINN). The DTI protocol 
used single-shot spin echo, echo planar imaging (EPI) with 32-gradients 
including 60 diffusion weighted (b = 1000 sec/mm2) and 2 non- 
diffusion weighted images (b = 0 sec/mm2), repetition time = 7200 
ms; echo time = 10 ms, matrix = 128 × 128, voxel size = 2 × 2 × 2 mm 
(isotropic). 

Table 1 
Sample characteristics.  

Characteristics sMRI sample (N ¼ 91) DTI sample (N ¼ 53)  

Mean SD Mean SD 

Age 28.14 10.313 32.08 11.440 
Gender (m/f) 52/39 N/A 31/22 N/A 
AQ 20.76 [3–49] 11.983 25.21 [6–49] 12.402 
IQ N/A N/A 51.98 24.919 

N = Number of participants, SD-Standard Deviation, Range [], m-male; f-female, 
N/A - Not Applicable. Note: The Raven’s Progressive Matrices percentile ranging 
between 25 and 75 is considered as average IQ. 
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2.3. SBM preprocessing 

Freesurfer analysis suite (Fischl, 2012) was used to perform the 
surface-based morphometry to reconstruct the cortical surface. The 
MPRAGE images were preprocessed and corrected for head motion, bias 
field correction, skull-stripping, segmentation, registration, spatial 
normalisation and smoothing. After the bias-field correction and skull- 
stripping, the individual structural images were computed to deter-
mine the transformation matrix and co-registered to the Talairach space 
to maximise the possibility that individual images overlap with the 
study-specific average brain template coordinates. Then, the structural 
brain images were segmented into pial and white surfaces. Next, the 
inflated cortical surfaces from the individual images were spatially 
normalised to the spherical average template, such that each vertex 
forming multiple triangles across the surface were aligned closely to the 
corresponding anatomical locations. In the final step, default smoothing 
was applied to normalise the local neighbourhood voxels across the 
entire brain. The pial surfaces of each hemisphere were preprocessed to 
create an outer smoothed pial surface to account for the local gyr-
ification index (LGI). 

All the individual subjects’ cortical thickness, surface area and local 
gyrification index maps were concatenated together for measuring each 
metric separately in the group level analysis. Additionally, smoothing 
(FWHM = 10 mm) was applied to average the close neighbourhood 
voxels for cortical thickness, surface area, while no additional smooth-
ing was used for measuring the local gyrification index in this analysis 
based on its compatibility of the cluster-forming threshold (0.05). 

2.4. VBM preprocessing 

Voxel-based morphometry was applied for preprocessing and anal-
ysis with the Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie algebra (DARTEL) pipeline incorporated in SPM12 
toolbox. Initially MRI dataset were visually inspected for head motion 

artifacts and signal dropout carefully before proceeding with pre-
processing and analysis. Translation (x, y and z-axis) and rotation (pitch, 
roll and yaw) parameters were used to realign all the MPRAGE dataset 
subjected to head motion. All T1-weighted structural brain (MPRAGE) 
images were reoriented for anterior and posterior commissure align-
ment. In this method, images were segmented into grey matter, white 
matter and CSF. Then, a study-specific template was created by aligning 
and averaging the inter-subject grey matter volumes iteratively. The 
segmented individual grey matter volumes were registered to the tem-
plate using non-linear registration and normalised to MNI standard 
space. These normalised images were smoothed using Gaussian kernel 
(FWHM = 8 mm) for the cortical structures and subcortical structures 
(FWHM = 4 mm) by averaging the spatial intensity of the local neigh-
bouring voxels (Ashburner, 2010; Coalson et al., 2018). 

2.5. Tract-based spatial statistics 

Tract-based Spatial Statistics (TBSS), a whole-brain voxel-wise 
analytical approach incorporated in the FSL software library version 5.0 
(Smith et al., 2006) was used for the data analysis. The standard TBSS 
preprocessing and analysis pipeline was used for eddy current correc-
tion, non-brain tissue removal, diffusion tensor modelling, registration, 
normalisation, thresholding and randomisation as follows: The DTI 
images were preprocessed for eddy current correction and removal of 
non-brain tissues, and the diffusion tensor models (FA and MD maps) 
were derived from all the images. Subsequently, the FA and MD maps 
were non-linearly registered and transformed to the FA FMRIB (1 mm3) 
standard space. Next, the mean FA skeleton, all skeletonised FA and MD 
4D concatenated multi-subject maps were derived and transformed 
using non-linear registration to the MNI152 (1 mm3) standard space. 
Then, a white matter thresholding (0.2) was used on the mean FA 
skeleton to restrict the grey matter partial volume effects. 

Fig. 1. Cortical thickness: Clusters showing significantly associated brain regions of lingual Gyrus (left), lateral occipital (Right) and pars triangularis (right). Cortical 
thickness is measured in millimetres (mm). Surface area: Clusters showing significantly associated brain regions in lateral occipital cortex (right). The unit of surface 
area is square millimetre (mm2). LGI: Clusters showing significantly associated brain regions in lingual gyrus (right). Local gyrification index has no units. 
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3. Statistical analysis 

3.1. SBM analysis 

In the SBM analysis, the Different Offset Same Slope model was used 
to test the relationship between cortical thickness, surface area, local 
gyrification index (separately for each dependent variable at a time) and 
AQ, including age and gender as covariates. The FreeSurfer Group 
Descriptor format was used to construct a design matrix. Then, the 

precomputed Monte-Carlo Simulation was used to run the tests for 
multiple comparisons with a cluster-forming threshold (0.05) and the 
threshold for significance (p = 0.05, two-tailed). 

3.2. VBM analysis 

The general linear model was used to test the relationship between 
the regional GMV and AQ scores across the combined sample of ASD and 
neurotypicals after controlling for the effects of age, gender and total 
brain volume. The covariates including the age and gender were 
demeaned for the whole sample. We used Family Wise Error (FWE) rate 
testing for multiple comparisons. 

3.3. Tract-based spatial statistics 

The general linear model was used to test the relationship between 
fractional anisotropy and AQ. In addition, the relationship between the 
mean diffusivity and AQ was also tested, while controlling for age, 
gender and IQ. This was performed using permutation-based testing (N 
= 5000) and Threshold-free Cluster Enhancement (TFCE) for multiple 
comparisons. 

Table 2 
Brain showing association between cortical thickness, surface area, cortical 
volume and AQ.  

Brain regions Hem Talairach coordinates t- 
value 

K   

x y z   

Cortical thickness       
Lingual gyrus L − 14.2 − 63.4 − 3.5  3.642  2386.74 
Lateral Occipital R 18.3 − 100.3 − 7  4.255  4388.31 
Pars triangularis R 47 5 4.7  3.679  1480.64 
Surface area       
Lateral Occipital R 16.2 − 99.1 − 2.5  3.434  4042.26 
Local gyrification 

index       
Lingual gyrus R 18.6 − 64.2 − 8.3  2.493  2392.50 

Abbreviations: L- Left, R- Right, K-cluster size, t-value - test statistics, Hem- 
Hemisphere, p-threshold = 0.05, corrected. 

Fig. 2. Scatterplot showing positive association between cortical thickness (first row), surface area (second row, left), gyrification (second row, right) in different 
brain regions with AQ scores. The coloured triangles in navy blue and red indicate controls and ASD respectively. Note: Autistic and non-autistic participants are 
marked differently on the scatterplots for the purpose of visual illustration. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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4. Results 

4.1. Surface based morphometry 

Our analysis focused on the relationship between surface-based 
morphometry and autistic traits revealed significant positive associa-
tion between all four metrics including cortical thickness, surface area, 
local gyrification index and autistic traits across the combined sample of 
neurotypicals and individuals with ASD (Fig. 2). Autistic traits were 
found to be significantly associated with cortical thickness in the left 
lingual gyrus, right lateral occipital cortex and right pars triangularis, 
and with surface area in the right lateral occipital cortex. In addition, the 
significantly associated clusters for local gyrification index were 
observed in the right lingual gyrus (Fig. 1, Table 2). 

4.2. Voxel based morphometry 

We found significant positive association between regional GMV and 
AQ scores in cortical brain regions including the clusters of right lingual 
gyrus and precentral gyrus. We also found significant positive associa-
tion between regional GMV and AQ scores in subcortical brain regions 
including the left putamen and right putamen. Additionally, we found 
significant negative association between regional GMV and AQ in the 
right orbitofrontal cortex which also extended to the anterior cingulate 
gyrus. (Figs. 3 and 4, Table 3). 

4.3. Tract based spatial statistics 

We found a positive association between MD and AQ in the superior 
longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto- 
occipital fasciculus and corpus callosum (forceps major and splenium). 
In addition, we also found a negative association between FA and AQ in 
the superior longitudinal fasciculus, inferior longitudinal fasciculus, 
inferior fronto-occipital fasciculus and corticospinal tract in the com-
bined sample of neurotypicals and individuals with ASD (Fig. 5). How-
ever, none of these clusters survived after correcting for multiple 
comparisons using threshold-free cluster enhancement (TFCE) (p <
0.05, uncorrected) (Table 4). 

5. Discussion 

In the current study, we tested the relationship between the regional 
grey matter properties, white matter microstructure and autistic traits in 
a mixed sample with adults including neurotypicals and individuals with 
a clinical diagnosis of autism. Our results demonstrated that autistic 
traits were significantly associated with multiple metrics of regional 
grey matter (cortical thickness, surface area, gyrification and volume) 
that spanned the social brain regions. These findings were consistent 
with brain structural findings from previous studies that used a case- 
control design (Ecker et al., 2012; Sato et al., 2017; Shukla et al., 
2011). Considering ASD as a unitary and rigid category lacks biological 

Fig. 3. Row 1: Significantly associated cluster in right lingual gyrus and right precentral gyrus. Row 2: Significantly associated cluster in right orbitofrontal cortex. 
Row 3: Significantly associated clusters in bilateral putamen. 
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validity. Some individuals with higher autistic traits may fall short of 
meeting the cut-off scores to meet the diagnostic criteria for ASD. 
Nevertheless, such individuals with autistic traits share similar aetiology 
seen in individuals diagnosed with ASD. A dimensional approach 
focused on autistic traits distributed through the population offers a 
more inclusive and potentially more informative approach to investigate 
the underlying biology. 

We discovered significant regional grey matter variations in the key 
social brain regions in the frontal lobe related to higher autistic traits. 
These findings include reduced regional GMV in the right orbitofrontal 
cortex and increased cortical thickness in the right pars triangularis. The 
reduced regional GMV in the orbitofrontal cortex may be underpinned 
by fewer minicolumns in the frontal lobes demonstrated in post-mortem 

studies (Buxhoeveden et al., 2006; Casanova et al., 2006). The regional 
GMV differences in the orbitofrontal cortex has previously been sug-
gested to be related to observed behavioural differences in theory of 
mind (ToM) in individuals with ASD (Frith and Frith, 2001; Lewis et al., 
2011; Sabbagh, 2004). Individuals with higher autistic traits might have 
social skill difficulties such as interpreting self-thoughts and interpreting 
other’s intentions (Girgis et al., 2007; Mundy, 2003). The greater 
cortical thickness in the pars triangularis may be related to the expres-
sive language deficits noted in some individuals with ASD (Knaus et al., 
2018). The pars triangularis may cross-talk with the other social brain 
region (pars orbitalis) closely located in the frontal lobe, which may also 
account for the social communication difficulties related to higher 
autistic traits (Fishman et al., 2014). 

Greater GMV in the precentral gyrus (in the right hemisphere) was 
associated with higher autistic traits. This finding is consistent with 
previous studies in ASD relative to controls (Bonilha et al., 2008; Ecker 
et al., 2012; Rojas et al., 2006). The precentral gyrus is believed to be an 
integral part of an action observation network/mirror neuron system 
(Hadjikhani et al., 2006). Increased GMV in the precentral gyrus may 
underlie atypical visuomotor learning in individuals with higher autistic 
traits (Mahajan et al., 2016; Carper and Courchesne, 2005; Nebel et al., 
2014). We also found increased regional GMV in the bilateral putamen 
related to higher autistic traits. This finding is consistent with regional 
GMV variations in putamen in ASD from previous studies (Hollander 
et al., 2005; Langen et al., 2009; Nickl-Jockschat et al., 2012). The pu-
tamen, an integral part of the dorsal striatum, plays a key role in 
restricted and repetitive behaviour in ASD (Langen et al., 2012; Sato 
et al., 2014). Such regional GMV variations in putamen may influence 
the striatum volume which may underlie atypical behavioural mani-
festations such as insistence to sameness and complex motor functions in 

Fig. 4. Scatterplots showing significant positive association between GMV of different brain regions including right lingual gyrus, right precentral gyrus, left and 
right putamen with AQ scores. Scatterplot showing significant negative association between right orbitofrontal cortex GMV and AQ scores. 

Table 3 
Brain regions displaying the association between cortical and subcortical GMV 
and AQ.  

Cortical brain regions Hem MNI-Coordinates K PFWE   

x y z   

Positive association       
Lingual gyrus R 9 − 65 − 8 8010  <0.001*** 

Precentral gyrus R 14 –22 62 6918  0.012** 

Negative association       
Orbitofrontal cortex R 16 21 − 25 7888  <0.001*** 

Subcortical brain regions       
Positive association       
Putamen L − 29 − 9 − 3 2837  <0.001*** 

Putamen R 29 − 4 − 5 2459  <0.001*** 

Abbreviations: Level of significance *p < .05, **p < .01, ***p < .001, Hem - 
Hemisphere, FWE- Family Wise Error and K- Cluster size. 
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individuals with ASD (Calderoni et al., 2014; Eisenberg et al., 2015; 
Schuetze et al., 2016). These common sites of brain structural variations 
in the striatum may underlie the stereotyped behaviours in individuals 

with ASD (Eisenberg et al., 2015; Schuetze et al., 2016) which may also 
be related to higher autistic traits. 

The lingual gyrus in the right hemisphere demonstrated increased 
gyrification and regional grey matter volume related to higher autistic 
traits. In addition, lingual gyrus in the left hemisphere demonstrated 
increased cortical thickness. This evidence is consistent with previous 
reports of structural atypicalities, with greater local gyrification and 
grey matter volume in lingual gyrus in individuals with ASD (Libero 
et al., 2019; Peterson et al., 2006). In addition, the right lateral occipital 
cortex showed cortical thickness and increased surface area which may 
result in difficulties when modulating the visual perceptual abilities 
(Ecker et al., 2010a; Ecker et al., 2010b). Lingual gyrus constitutes part 
of a network, including other brain regions (lateral occipital cortex, 
fusiform gyrus and posterior superior temporal sulcus) that play a sig-
nificant role in object/face recognition and following biological motion 
cues in ASD (Ecker et al., 2015). The lateral occipital cortex is believed 
to play a significant role in visuospatial attention in individuals with 
ASD (Ecker et al., 2013; Nickl-Jockschat et al., 2012). The greater vol-
ume and gyrification of the lingual gyrus and lateral occipital cortex may 
underlie the atypical visual processing in individuals with higher autistic 
symptoms (Keehn et al., 2008). 

The regional variations in intrinsic grey matter properties may arise 
from differences in neuronal migration within the radial minicolumns 
which may be altered in individuals with ASD/higher autistic traits 
(Casanova and Trippe, 2009). This aberrant cortical cytoarchitecture 
may be indexed by an increased number of minicolumns, reduced 
alignment and increased density of pyramidal neuronal cells - and may 
be a key factor associated with the atypical cortico-cortical connectivity 
in ASD. These developmental neurobiological processes may underlie 
the observed pattern of brain structural metrics in the pars triangularis, 
lateral occipital and lingual gyrus that are associated with higher autistic 
traits. Our findings from VBM and SBM study supports the evidence for 

Fig. 5. Whole white matter skeleton (green) display, showing negative association between fractional anisotropy (clusters in red, first row) with AQ and positive 
association between mean diffusivity (clusters in blue, second row) with AQ (4). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 4 
Association between fractional anisotropy and mean diffusivity and AQ.  

White matter 
tracts 

Hem MNI 
coordinates 

K P- 
values     

x y z   
Fractional 

anisotropy       
Superior 

longitudinal 
fasciculus 

R 40 − 48 8 266  0.04 

Inferior 
longitudinal 
fasciculus 

R 49 − 24 –22 2837  0.04 

Inferior fronto- 
occipital 
fasciculus 

R 26 − 24 − 5 118  0.03 

Corticospinal tract L − 17 − 12 − 4 300  0.05 
Mean diffusivity       
Superior 

longitudinal 
fasciculus 

R 57 − 42 − 7 135  0.05 

Inferior 
longitudinal 
fasciculus 

R 38 5 − 36 105  0.03 

Inferior fronto- 
occipital 
fasciculus 

R 36 − 54 4 129  0.03 

Corpus callosum 
(Forceps major)  

6 − 37 13 473  0.03 

Abbreviations: K- Cluster size, L- Left, R- Right, FA- Fractional Anisotropy, MD- 
Mean Diffusivity, Hem-Hemisphere, P-values - uncorrected. 
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variations in regional brain volume and atypical cortico-cortical con-
nectivity hypothesis in ASD. 

Notably, there are some methodological differences between VBM 
and SBM (topographical and voxel-wise comparison respectively) in 
measuring cortical morphometry (Hyde et al., 2010; Jiao et al., 2010; 
Pappaianni et al., 2018). These two analytical approaches (VBM and 
SBM) are incomparable when measuring the cortical thickness, surface 
area and gyrification because their principles and implementation are 
distinct from one another. SBM provides us with a higher reliability in 
measuring the cortical thickness, surface and gyrification, whereas the 
VBM (DARTEL) provides us with a high dimensional spatial registration 
for measuring regional grey matter volume in ASD. In addition, VBM 
helps us to measure the regional GMV in the subcortical structures un-
like SBM. Together, VBM and SBM are the two complementary ap-
proaches that contribute to the efforts in identifying a neuroimaging 
endophenotype for ASD. 

While none of the DTI results survived a test for multiple compari-
sons, the findings from the DTI study were convergent with those from 
the SBM study. The SBM study found atypicalities in the lingual gyrus, 
which is connected to the ventral visual stream through the ILF and 
IFOF. These findings suggest that the co-occurrence of grey matter 
variations of these brain regions (lingual gyrus and lateral occipital 
cortex) and atypical white matter microstructure integrity of inferior 
longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus 
(IFOF) may underlie the sensory atypicalities in individuals with higher 
autistic traits (Itahashi et al., 2015). In addition, the white matter 
microstructure variations in the superior longitudinal fasciculus (SLF) 
(connected to the pars triangularis and Wernicke’s area) may impose 
difficulties in acquiring language skills may be associated with autistic 
symptoms (Fitzgerald et al., 2018). Future studies should test these 
speculations by combining behavioural phenotyping and structural 
neuroimaging, ideally in longitudinal cohorts. 

The results discussed above needs to be interpreted with caveats. 
Though larger than majority of neuroimaging studies typically reported, 
sample sizes of N = 91 is small/moderate for using a dimensional 
approach. Second, the DTI data was available only from a subset of the 
individuals (N = 53), thus reducing the power for statistical inferences. 

6. Conclusion 

The regional grey matter variations in the orbitofrontal cortex and 
pars triangularis, dorsal striatum and ventral visual stream were found 
to be associated with higher autistic traits. These observations are 
consistent with previous results reported in case-control studies of ASD, 
and demonstrate the value of using a dimensional approach. The 
approach used in this study is consistent with the framework suggested 
by the RDoC framework (Insel et al., 2010), and has already shown 
promise in similar studies on the depression and anxiety spectrum 
(Besteher et al., 2020). For this approach to be truly transdiagnostic, 
future studies should extend such studies to include larger samples, 
including individuals with a greater diversity of clinical diagnoses. 
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