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ABSTRACT 72 

The subseasonal-to-seasonal (S2S) predictive timescale, encompassing lead times ranging 73 

from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this timescale 74 

provide opportunities for enhanced application-focused capabilities to complement existing 75 

weather and climate services and products. There is, however, a ‘knowledge-value’ gap, 76 

where a lack of evidence and awareness of the potential socio-economic benefits of S2S 77 

forecasts limits their wider uptake. To address this gap, here we present the first global 78 

community effort at summarizing relevant applications of S2S forecasts to guide further 79 

decision-making and support the continued development of S2S forecasts and related 80 

services. Focusing on 12 sectoral case studies spanning public health, agriculture, water 81 

resource management, renewable energy and utilities, and emergency management and 82 

response, we draw on recent advancements to explore their application and utility. These case 83 

studies mark a significant step forward in moving from potential to actual S2S forecasting 84 

applications. We show that by placing user needs at the forefront of S2S forecast 85 

development – demonstrating both skill and utility across sectors – this dialogue can be used 86 

to help promote and accelerate the awareness, value and co-generation of S2S forecasts. We 87 

also highlight that while S2S forecasts are increasingly gaining interest among users, 88 

incorporating probabilistic S2S forecasts into existing decision-making operations is not 89 

trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate useful, 90 

usable and actionable forecast applications for and with users that will increasingly unlock 91 

the potential of this forecasting timescale. 92 

CAPSULE 93 

A global community exploration of the application and utility of S2S predictions, 94 

comprising 12 case studies from across public health, agriculture, water resource 95 

management, energy and utilities, and emergency management.  96 
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Introduction 97 

The subseasonal-to-seasonal (S2S) predictive timescale, encompassing forecast ranges 98 

from 2 weeks to a season, is a rapidly maturing discipline. The S2S timescale is a frontier of 99 

forecasting science, with emerging recognition for both the need and the potential utility of 100 

forecasts on this timescale (White et al. 2017; Merryfield et al. 2020; Mariotti et al. 2020). It 101 

is now over a decade since Brunet et al. (2010) recommended that the weather and climate 102 

communities, under the auspices of World Weather Research Programme (WWRP) and 103 

World Climate Research Programme (WCRP), collaborate to jointly tackle the challenge of 104 

providing skillful and useable S2S forecasts. Significant advancements have been made in 105 

this time, including the joint WWRP/WCRP Subseasonal to Seasonal Prediction Project1 106 

(Robertson et al. 2018), which is advancing the science in identifying and simulating key 107 

sources of S2S predictability and identifying ‘windows of opportunity’ (Vitart 2014; Mariotti 108 

et al. 2020), quantifying and reducing inherent uncertainties, and working towards their 109 

future operationalization (Robertson et al. 2014; Vitart et al. 2017; Lang et al. 2020). As S2S 110 

prediction science continues to mature, the availability of extended-range forecasts provides 111 

opportunities for enhanced application-focused capabilities to complement existing services 112 

and develop new ones. Applications of S2S forecasts are increasingly being explored and 113 

assessed across a range of sectors (White et al. 2017), with efforts also underway to test their 114 

application in real-time through the S2S Real-Time Pilot Initiative2 (Robbins 2020). 115 

There remains, however, a ‘knowledge-value’ gap, where evidence of the potential socio-116 

economic benefits of S2S forecasts supported by demonstrations of their utility across a 117 

number of sectors, has been limited to date. The 2018 international conference on S2S 118 

prediction in Boulder, reported in Merryfield et al. (2020), brought together research, 119 

                                                 
1 WWRP/WCRP ‘Subseasonal to Seasonal Prediction Project’ (http://s2sprediction.net/) 
2 S2S Real-Time Pilot Initiative (http://s2sprediction.net/xwiki/bin/view/dtbs/RealtimePilot) 
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operational prediction and application expertise to help identify such gaps and provide 120 

pathways to address them. Several recommendations were identified for action, including the 121 

creation of a summary of application-focused S2S case studies that highlight past and 122 

ongoing projects to encourage and promote better engagement with end users and 123 

stakeholders. As user needs vary greatly between different sectors and regions, the wider 124 

community is increasingly working together on the co-generation of S2S predictions, yet 125 

such application-focused studies are typically either reported as a ‘side story’ to S2S 126 

predictability studies, or are simply not publishable in their own right. However, to guide 127 

further user-driven decision-making products and support the continued development and 128 

utility of S2S forecasts and related services, these efforts need to be catalogued and widely 129 

disseminated. 130 

This study is the first coordinated global community effort at summarizing the 131 

experiences of application-relevant forecasts on the S2S timescale across sectors and regions. 132 

Focusing on 12 sectoral S2S application case studies spanning the public health, agriculture, 133 

water resource management, energy and utilities, and emergency management and response 134 

domains (Table 1), we draw on recent advancements to explore the use and utility of S2S 135 

predictions and demonstrate how they can be employed to benefit society. We explore 136 

common challenges and learnings, and why it is appropriate to integrate S2S forecasts with 137 

other predictive, verification and risk-based systems for various decision-making purposes to 138 

seamlessly extend the forecast horizon. Through this collective exploration of existing 139 

applications, we aim to unlock the potential of S2S predictions. 140 

Sectoral case studies 141 

Public health 142 
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Public health is a key sector for the development and application of S2S forecasts, where 143 

decisions over extended-range forecasting timescales are directly contributing to positive 144 

health outcomes (e.g., expected disease outbreaks, morbidity and mortality predictions, 145 

poverty and nutrition indicators). The benefits are perhaps greatest in regions where climate-146 

sensitive diseases pose a continuous threat to the lives and livelihoods of millions of people 147 

(White et al. 2017). In this section, we explore three diverse applications of S2S predictions 148 

in the public health domain, including mortality predictions during extreme weather events in 149 

the U.K., malaria occurrence in Nigeria, and an early-action system for acute undernutrition 150 

in Guatemala.  151 

1) MORTALITY PREDICTIONS DURING EXTREME COLD WEATHER EVENTS IN THE U.K. 152 

Authors: Andrew J. Charlton-Perez, Christian M. Grams, Dominik Büeler, Robert W. 153 

Lee, W. T. Katty Huang, Ting Sun 154 

Extreme weather, such as cold and heat waves, often increases human mortality in 155 

temperate countries (e.g., Anderson and Bell 2009; Ryti et al. 2016). Anomalous mortality 156 

can be particularly high during events that last several weeks, meaning mortality predictions 157 

on S2S timescales are of specific interest. Here we examine the application of S2S forecasts 158 

for predicting mortality in the U.K. during a recent cold wave event in 2018, colloquially 159 

‘The Beast from the East’, by combining a statistical mortality model (Vicedo-Cabrera et al. 160 

2019) with 2m temperature (T2m) and weather regime (Michelangeli et al. 1995; Grams et al. 161 

2020) predictions from S2S forecasts. The event was characterized by two intense cold waves 162 

peaking on February 28 and March 18, 2018, in the U.K. (Fig. 1a), which were both 163 

associated with a cold Greenland Blocking weather regime (cf. Grams et al. 2017) (Fig. 1c). 164 

The statistical model, estimating temperature-related mortality from observed T2m, indicates 165 

more than 300 mortalities per day attributable to the event’s cold temperatures (Fig. 1b), 166 
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totaling an estimated burden of 9,568 deaths during March that largely exceeded the 20-year 167 

average. During the peak of the cold wave in the first week of March, the excess daily 168 

mortality compared to the 20 year average (cf. differences of blue lines in Fig. 1b) matches 169 

the mortality attributable to cold weather (black line in Fig. 1b) 170 

We explore how far in advance the European Centre for Medium-Range Weather 171 

Forecasting (ECMWF) extended-range (Vitart 2004; Vitart et al. 2008; Vitart et al. 2014) 172 

S2S ensemble forecasts3, available from the S2S global repository, indicated the first cold 173 

wave to occur at the end of February. The T2m forecast converges towards a cold scenario 174 

after the February 13 initialization, which is indicated by the substantial drop in the ensemble 175 

mean and the gradual reduction in ensemble spread (Fig. 1d). The consideration of weather 176 

regime forecasts provides additional insight into the predictability of the large-scale 177 

conditions determining the cold temperatures. Both Scandinavian Blocking and Greenland 178 

Blocking probabilities were relatively high in the S2S forecasts from February 05 (Fig. 1e); 179 

as these regimes typically coincide with colder than average temperatures in the U.K., the 180 

forecast thus indicates a possible cold scenario up to 3 weeks in advance. Nevertheless, the 181 

regime prediction is rather uncertain until a Sudden Stratospheric Warming (e.g., Lee et al. 182 

2019) occurs on February 12, indicated by the gradual increase in the probability for the two 183 

blocking regimes and the decrease in the probability for the typically mild cyclonic regimes.  184 

These results reveal the potential for predicting mortality on an operational basis when 185 

combining a statistical mortality model with S2S forecasts. Our analysis shows that a 186 

sophisticated combination of both temperature and weather regime information from S2S 187 

forecasts as predictors might generate useful operational mortality forecasts, such as national 188 

or regional mortality exceedance probabilities, that could support National Health Service 189 

                                                 
3 ECMWF extended-range forecasts (https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-

range-forecasts)  
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decision-making (e.g., NHS Improvement 2018). This builds on previous investigations that 190 

systematically linked weather regimes with the likelihood of high mortality (Charlton-Perez 191 

et al. 2019; Huang et al. 2020). Engagements with national health boards and public health 192 

agencies in the U.K. through webinars and one-on-one interviews indicate interest by 193 

stakeholders (particularly once the capability of S2S forecasts is clearly communicated)4. 194 

However, the lack of operational planning focused on S2S timescales and health services’ 195 

limited capacity to react to moderate probability events are challenges that need to be 196 

overcome.  197 

2) MALARIA OCCURRENCE PREDICTION IN NIGERIA 198 

Authors: Eniola Olaniyan, Elijah A. Adefisan, Ahmed A. Balogun, John A. Oyedepo, 199 

Kamoru A. Lawal 200 

Malaria is one of the largest contributors to disease in Nigeria. Humans contract the 201 

malaria parasite through mosquitos (Githeko and Ndegwa 2001; Jones and Morse 2010), the 202 

distribution and survival of which is largely influenced by environmental and atmospheric 203 

factors such as temperature and rainfall (Abiodun et al. 2016; Asare and Amekudzi 2017). 204 

The vector-borne disease community model of ICTP, Trieste (VECTRI) (Tompkins and 205 

Ermert 2013), a distributed open-source dynamical malaria model that resolves the growth 206 

stages of the egg-larvae-pupa in addition to the gonotrophic and the sporogonic cycles, has 207 

demonstrated predictive skill over different regions in Africa using both modelled and 208 

observed climatic drivers (Tompkins and Ermert 2013; Asare et al. 2016; Asare and 209 

Amekudzi 2017). The Nigerian Meteorological Agency (NiMet) and the National Weather 210 

and Hydrological Centers (NWHC) are collaborating with researchers globally5 to develop a 211 

                                                 
4 ‘Addressing the resilience needs of the UK health sector: climate service pilots’ project, part of the UK 

Climate Resilience Programme (https://www.ukclimateresilience.org/projects/addressing-the-resilience-needs-

of-the-uk-health-sector-climate-service-pilots/) 
5 ‘GCRF African SWIFT’ project (https://africanswift.org/) 
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sustainable African weather forecasting and application system. Under these auspices, NiMet 212 

has developed a real-time monitoring system based on temperature and rainfall conditions for 213 

malaria transmission and has been issuing early warning forecasts for the potential 214 

occurrence of malaria on the S2S timescale (2-6 weeks) using VECTRI. Despite the potential 215 

benefits of forecasting malaria distribution in west Africa on the S2S timescale (Olaniyan et 216 

al. 2018), the utility of S2S forecasts in the operational early warning system has yet to be 217 

explored in this region.  218 

Here we explore the potential benefits of S2S forecasts for the hyper-endemic malaria 219 

zones in Nigeria using the VECTRI model. Observed daily temperature and rainfall datasets 220 

were obtained from the Nigerian Meteorological Agency, together with ensemble hindcasts 221 

from ECMWF (VarEPS, based on IFS version 41r1), China Meteorological Administration 222 

(CMA) (BCC-CPS-S2Sv1 version 1) and UK Met Office (UKMO) (GloSea4) from the S2S 223 

global repository. Clinically reported malaria cases were obtained from of the ‘Roll Back 224 

Malaria’ program6. Two evaluations were undertaken between 2013 and 2017: firstly, 225 

reported (observed) malaria cases were used to evaluate the skill of the VECTRI model using 226 

an estimated entomological inoculation rate (EIR) as a measure of exposure to infectious 227 

mosquitoes; secondly, the skill of the S2S predictions in driving the VECTRI model. The EIR 228 

from the observed-driven VECTRI model was then compared with the EIR from the S2S-229 

driven VECTRI model. Preliminary results show that the estimated EIR from the S2S-driven 230 

VECTRI model (and as also seen in the observed-driven VECTRI model) increases from the 231 

Gulf of Guinea to the Sahel as a function of the population profiles, with the ensemble means 232 

of both the CMA and ECMWF S2S ensembles showing correlations with the observed-driven 233 

EIR ranging from 0.7 to 0.85. A correlation of approximately 0.9 was found over all regions 234 

from the UMKO model.  235 

                                                 
6 ‘Roll Back Malaria’ program (https://endmalaria.org/) 
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Despite regional model biases, the findings show the use of S2S forecasts in a malaria 236 

early warning system to be realistic, supporting early identification of malaria hyper-endemic 237 

areas, as well as prompt mobilization and intervention by the responsible health department, 238 

at least a month before the outbreak of the disease. However, the integration of S2S 239 

predictions into operational early warnings has its challenges, with real-time warnings only 240 

shared with ‘Roll Back Malaria’ and Nigeria’s Ministry of Health, reducing the potential for 241 

co-production due to lack of feedback from users. 242 

3) AN EARLY-ACTION SYSTEM FOR ACUTE UNDERNUTRITION IN GUATEMALA 243 

Authors: Carmen González Romero, Ángel G. Muñoz, Ana María García-Solórzano, 244 

Xandre Chourio, Diego Pons 245 

The World Food Programme indicates the prevalence of stunting in children younger than 246 

5 years old in Guatemala reaches 46.5% nationally, with peaks of 90% in the hardest-hit 247 

municipalities (WFP 2020). Food insecurity in Guatemala is driven by both climate and non-248 

climate factors, and its pathways are often complex (Beveridge et al. 2019). Additionally, 249 

70% of the impoverished population in Guatemala lives in rural areas, where agricultural 250 

production is mainly rain-fed (Lopez-Ridaura et al. 2019). Climate factors contribute to acute 251 

undernutrition in children under 5, especially in the Dry Corridor, a region already highly 252 

vulnerable to climate-related impacts.  253 

Since September 2018, the National Secretariat for Food Security and Nutrition (SESAN) 254 

has been using a monitoring system called ‘Sala Situacional’, to allow for an early-action 255 

system for food security. Some limitations, though, have been identified: the expert-based 256 

criteria and the survey-based method are labor intensive, and its outputs are more aligned 257 

with a monitoring system than an early warning system. These challenges limit the use of the 258 

system as a forecasting tool, since it does not provide enough forecast lead time for decision-259 
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makers to maneuver and distribute the resources available to better deal with food insecurity. 260 

To address these issues, an objective, automated forecast system that incorporates S2S 261 

forecasts that supports SESAN’s current monitoring system is presented and discussed. Using 262 

the ‘Sala Situacional’ approach as the base, the International Research Institute for Climate & 263 

Society (IRI) worked with SESAN to co-develop a system to forecast the number of cases of 264 

acute undernutrition for children under 5 per department.  265 

The forecast system follows the NextGen methodology (Muñoz et al. 2019, 2020; WMO 266 

2020) and promotes ecosystems of climate services (a climate services landscape that 267 

increases resilience to crises via optimal orchestration of available resources; see Goddard et 268 

al. 2020), considering the role of both climate and non-climate factors in statistical models of 269 

increasing complexity. Observed total rainfall (or lack thereof) can be used as a predictor of 270 

acute undernutrition in children under 5, with lags (or lead times) ranging 3-6 months 271 

depending on the geographical location. A combination of observed rainfall and calibrated 272 

rainfall forecasts produced by the S2S prediction project (Vitart and Robertson 2018) were 273 

found to provide monthly predictions of acute undernutrition for up to 5 months in advance – 274 

a lead time identified by SESAN as useful since it would allow the National Government to 275 

deploy resources effectively. Calibration was found to be required in order to guarantee that 276 

the S2S forecasts could reproduce the observed (statistical) characteristics of acute 277 

undernutrition. The best predictive models were found to exhibit good forecast discrimination 278 

(as measured by the two-alternative forced-choice metric; Mason and Weigel 2009) for 279 

almost all departments in Guatemala, with the system forecast skill being highest over the 280 

eastern Dry Corridor (Fig. 2).  281 

Although the interannual and seasonal characteristics (e.g., timing) of acute 282 

undernutrition are well captured by models using rainfall as the only predictor, the inclusion 283 

of non-climate predictors, such as the price of maize, beans and coffee, and user-defined 284 
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probability of exceedance of thresholds, were found to increase forecast skill and usability. In 285 

other words, the inclusion of non-climate predictors, which are consistent with the conceptual 286 

model of drivers for food security in Guatemala developed by SESAN, helps to reproduce the 287 

main features beyond the annual cycle and interannual variability of the undernutrition 288 

timeseries by better capturing peaks at monthly timescales. 289 

Agriculture 290 

The agriculture sector is already one of the most advanced in terms of using weather 291 

forecasts and seasonal outlooks to support operational decisions (Clements et al. 2013). S2S 292 

forecasts are starting to provide additional decision-relevant information to support the timing 293 

of crop planting, irrigation scheduling, and harvesting, particularly in water-stressed regions. 294 

In this section, we explore agricultural applications of S2S forecasts of season onset timing in 295 

Kenya, and agricultural management in India.  296 

4) RAINY SEASON ONSET TIMING IN KENYA 297 

Authors: Richard J. Graham, Mary Kilavi, David MacLeod, George Otieno, Martin C. 298 

Todd, Stella Aura 299 

Approximately 98% of Kenya’s agricultural systems are rain-fed (Republic of Kenya 300 

2017). Prediction of rainy season onset timing is therefore a key requirement for assisting 301 

farmers in timely land preparation and planting. The Kenya Meteorological Department 302 

(KMD) provides season onset predictions based on inferences from statistical and dynamical 303 

seasonal forecast systems. A real-time trial of the utility of S2S forecasts was undertaken by 304 

KMD to assess their usefulness in strengthening these operational onset predictions, at lead 305 

times of up to 4 weeks, for improved agricultural decision-making, crop yield and food 306 
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security. The trial was part of the ‘Forecast-based Preparedness Action’ (ForPAc) project7, 307 

conducted over 5 rainy seasons in the period 2018-2020. 308 

Met Office GloSea5 (MacLachlan et al. 2015) S2S forecasts8 were provided to KMD in 309 

the form of weekly guidance bulletins with a supporting narrative. KMD used the guidance 310 

primarily for pre-operational evaluation purposes, however, in some cases where confidence 311 

in the predictions was high (e.g., consistency over consecutive lead times), the information 312 

was used in operational forecasts to the Kenyan public, including farming communities. The 313 

bulletin was provided weekly throughout each rainy season, beginning 3 to 4 weeks ahead of 314 

the climatological start of the season. Products included maps of forecast probabilities for 315 

tercile categories of weekly-averaged precipitation at weeks 1-4 ahead and forecasts of the 316 

Madden-Julian Oscillation (MJO), a key driver of sub-seasonal rainfall in the region 317 

(Berhane and Zaitchik 2014), using phase and amplitude diagrams (Wheeler and Hendon 318 

2004). The prediction skill and GloSea5’s representation of the MJO phase teleconnections, 319 

which are generally well captured (MacLeod et al. 2021a), were also provided. Two March-320 

May (MAM) rainy seasons and three October-December (OND) rainy seasons were sampled 321 

in the trial, each containing marked rainfall anomalies, including one with a widespread 322 

notable delay in rainfall onset (MAM 2019) and one with a marked early rainfall onset (OND 323 

2019). In both of these highly impactful cases, predicted tercile category rainfall probabilities 324 

for the early weeks of the seasons were consistent with the observed onset anomaly, 325 

including at week 4 of early forecasts, with the forecast signal strengthening as the lead time 326 

shortened.  327 

                                                 
7 ‘Towards Forecast-based Preparedness Action (ForPAc)’ project 

(http://www.shear.org.uk/research/ForPAc.html)  
8 Met Office GloSea5 seasonal prediction system (https://www.metoffice.gov.uk/research/approach/modelling-

systems/unified-model/climate-models/glosea5)  
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In the case of late onset (MAM 2019) the GloSea5 forecasts were used by KMD to update 328 

the previously issued seasonal forecast to delay the expected onset date by 3-4 weeks, thus 329 

providing the farming communities with improved information for scheduling of planting. 330 

The trial also documented examples of good predictability beyond week 2 for intraseasonal 331 

periods with rainfall above the upper tercile, generally when the MJO was predicted to be 332 

active in a rainfall-favoring phase. This supports the expectation that while, on average, skill 333 

drops sharply beyond 2 weeks lead time (MacLeod et al. 2021a), an active MJO can provide 334 

a ‘window of opportunity’ for longer-lead warning (Kilavi et al. 2018). These results give 335 

clear indications that S2S predictions can assist KMD in strengthening its season onset 336 

predictions. Further, as part of a seamless approach such S2S predictions can add value to 337 

existing heavy rain hazard warnings (MacLeod et al. 2021b) by enabling early ‘horizon 338 

scanning’ for up-coming heavy rain events and, potentially, by extending the warning lead 339 

time. 340 

5) AGRICULTURAL MANAGEMENT IN BIHAR, INDIA 341 

Authors: Nachiketa Acharya, Andrew W. Robertson, Lisa Goddard 342 

A probabilistic S2S forecast system was developed for the state of Bihar, one of the most 343 

climate-sensitive states in India. Precipitation forecasts were issued in real-time during the 344 

June-September 2018 monsoon to explore the potential value of the S2S forecasts for small-345 

holder farmers who operate farms of less than five acres9. Four districts were selected – two 346 

in the northern plains (flood-prone) and two in the southern plains (drought-prone). The 347 

project was a collaboration between IRI, University of Arizona, Indian Meteorological 348 

Department (IMD), Regional Integrated Multi-Hazard Early Warning System for Africa and 349 

Asia (RIMES), and the Government of Bihar, India.  350 

                                                 
9 ‘International Research Applications Project (IRAP)’ project (https://cpo.noaa.gov/Meet-the-

Divisions/Climate-and-Societal-Interactions/IRAP) 
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Real-time National Centers for Environmental Prediction (NCEP) CFSv2 (Saha et al. 351 

2014) S2S forecasts10, calibrated against observed gridded rainfall fields from the IMD 352 

using canonical correlation analysis, were generated each month during June-September 353 

2018. The forecasts were limited to two weeks in advance as the calibrated probabilistic 354 

forecasts for weeks 3-4 were concentrated around climatological probabilities (0.33), which 355 

was a limitation of the forecast’s potential utility. The 2018 monsoon recorded a large rainfall 356 

deficit over Bihar (~25% below its long-term average) with 11 of the 18 weeks registering 357 

deficits. The real-time S2S forecast captured the signal of the weaker monsoon in 2018 over 358 

Bihar, including the delayed monsoon onset and the observed break phase in August at the 359 

week 2 lead time. The quantitative verification of the district-level hindcasts and real-time 360 

forecasts over the monsoon season in 2018 is evaluated in Robertson et al. (2019) and 361 

Acharya (2018). 362 

To assess the usability and utility of the real-time S2S forecasts to the user community, 363 

‘field schools’ involving ~300 farmers were conducted prior to the monsoon in May 2018. 364 

The curriculum extended beyond the presentation of climate forecasts to include contextual 365 

information on climate systems and variability, the technology of forecasting, and the range 366 

of adaptations available under specific forecast conditions. During the monsoon season, real-367 

time forecasts were displayed through a virtual ‘maproom’11. Text summaries based on the 368 

forecast maps were sent to two of Bihar’s State Agricultural Universities (SAUs) – one for 369 

the flood districts and the other for the drought districts – who translated the forecast 370 

summary into the local language (Hindi). These were disseminated through a non-371 

governmental organization (NGO) directly to farmers via text message (Fig. 3). A user 372 

survey was conducted at the end of the 2018 monsoon season across the four districts to find 373 

                                                 
10 NCEP CFSv2 seasonal forecasts (https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2_body.html)  
11 IRI Bihar Climate Maproom (http://iridl.ldeo.columbia.edu/maproom/Agriculture/bihar.html#tabs-2) 
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out how farmers used the S2S forecasts for farm-level planning and decisions (October 374 

2018). The survey found that almost half of the farmers that participated in the field school 375 

used the forecasts to change their farming practices and irrigation schedules compared to 376 

previous years. Farmers used the late arrival of the 2018 monsoon (~16 days), which was 377 

well captured across Bihar by the S2S forecast, to delay the sowing of rice and other crops 378 

until closer to the monsoon onset. They also changed to a less water-demanding variety of 379 

paddy rice in response to expectations of a weaker monsoon.  380 

Water resource management  381 

Forecast information on S2S timescales is crucial for managing water resources, 382 

especially in times of flood or drought. Combined S2S meteorological, climatological and 383 

hydrological forecast systems provide valuable water resource information to reduce 384 

economic, social and environmental damages (White et al. 2015), particularly in climate-385 

sensitive regions (Ralph et al. 2020). Here, we explore water resource management S2S 386 

forecasting applications in Brazil and the western U.S..  387 

6) WATER MANAGEMENT IN CEARÁ STATE, BRAZIL 388 

Authors: Francisco C. Vasconcelos Jr., Dirceu S. Reis Jr., Caio A. S. Coelho, Eduardo S. 389 

P. R. Martins 390 

A combination of seasonal climate and hydrological models has been used for ~15 years 391 

by Ceará State Meteorology and Water Resources Foundation (FUNCEME) and Ceará State 392 

Water Resources Management Company to support reservoir operations by forecasting 393 

inflows for key regional basins in Brazil, for both water resources planning and drought risk 394 

response. Current efforts on improving the seasonal forecast system include the use of an 395 

interannual statistical model and both global and regional dynamical models, but forecast use 396 

on S2S timescales is still in its infancy (Fig. 4a). The Inter-agency Drought Contingency 397 
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Group (IDCG) is responsible for monitoring and predicting the State drought status within a 398 

30-day planning horizon for 184 municipalities, including triggering emergency warnings 399 

and responses for municipalities at risk. In the absence of operational S2S forecasts, these 30-400 

day ahead scenarios are based on seasonal forecasts updated monthly.  401 

In this study, ECMWF S2S precipitation forecasts from the S2S global repository were 402 

evaluated to assess their performance at producing inflow predictions for the Orós reservoir 403 

in Ceará State up to 45-days ahead between January-April 2018 (Fig. 4). The verification 404 

study focuses on 15 weekly forecasts as if issued every Thursday from January 18 to April 405 

26. The quality of these forecasts has been evaluated at three time-mean horizons, 15, 30 and 406 

45 days ahead from the initialization date. ECMWF S2S forecasts initialized once a week 407 

during the Jan-Apr 1998-2017 period were used to feed a hydrological model to produce flow 408 

forecasts into the Orós reservoir. These forecasts were then post-processed through an 409 

empirical quantile mapping procedure using observed (1998-2017) flows to generate mean 410 

flow forecasts for 2018. All 11 available ECMWF hindcast ensemble members were used for 411 

post-processing. Fig. 4b shows the correlation between the 11-member ensemble mean flow 412 

forecasts and the corresponding observations computed over the 1998-2017 hindcast period 413 

for each initialization date and time mean horizons. Correlation values between 0.70 and 0.90 414 

indicate reasonable forecast association ability. Fig. 4c shows boxplots of 51-member post-415 

processed ensemble flow forecasts for 2018 (for 30-day means) along with the observed flow 416 

and climatological 50th and 80th percentiles (dashed lines), which provided a good 417 

description of the observed flow for most initialization dates.  418 

These results illustrate the utility of inflow forecasts based on S2S precipitation forecasts 419 

in addition to the existing seasonal flow forecast system to support water management 420 

decisions and the triggering of emergency responses (e.g., construction of pipelines and 421 

wells) for municipalities at risk in Ceará State. Although this study illustrates the utility of 422 
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S2S forecasts to guide IDCG’s decisions, additional activities are needed to demonstrate their 423 

long-term value, such as one-on-one meetings with IDCG members to provide details about 424 

the developed S2S timescale inflow forecasting system, an assessment of past performance of 425 

this system, and the opening of a two-way dialogue with users to enable suggestions for 426 

future improvements and product co-development. 427 

7) WATER MANAGEMENT IN WESTERN U.S. 428 

Authors: Michael J. DeFlorio, Peter B. Gibson, Duane E. Waliser, F. Martin Ralph, 429 

Michael L. Anderson, Luca Delle Monache  430 

The Center for Western Weather and Water Extremes (CW3E) and the National 431 

Aeronautics and Space Administration Jet Propulsion Laboratory (NASA JPL), supported by 432 

the California Department of Water Resources (CA DWR), formed a partnership to improve 433 

the S2S prediction of precipitation to benefit water management in the western U.S.. The 434 

main objective of this team is to produce experimental S2S prediction products for 435 

atmospheric rivers (ARs), ridging events, and precipitation, supported by research and 436 

hindcast skill assessments. Although the main quantity of interest for stakeholders is total 437 

precipitation (i.e., available water), ARs and ridging events are a focal point due to their 438 

strong influence on the presence (and absence, respectively) of precipitation in the western 439 

U.S. during wintertime, and their intrinsic predictability. The primary sector and stakeholder 440 

for which this effort is particularly relevant is western U.S. water resource management and 441 

CA DWR, respectively. 442 

A key pillar of this applied research endeavor is to collaborate with CA DWR’s 443 

stakeholders regarding the target predictand, methodology, and data used for research along 444 

with the experimental product display and description for experimental S2S forecast 445 

products. Our team, which also includes collaborators at IRI, University of California at Los 446 
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Angeles, University of Arizona, and University of Colorado, has interacted regularly with 447 

stakeholders from CA DWR to facilitate communication and help with the development of 448 

the forecast products. This interaction ensures that the research and forecast product 449 

development are meeting the specific needs of end users while maintaining high standards for 450 

both quality of research and utility of the forecast products for the applications community. 451 

These experimental S2S forecast products, together with continued investment from CA 452 

DWR into S2S research, stand to benefit end users at CA DWR by providing information at 453 

subseasonal lead times to support flood risk management, emergency response, and 454 

situational awareness (DeFlorio et al. 2021). 455 

Fig. 5 summarizes two CW3E/JPL experimental S2S applications that utilize data from 456 

the S2S global repository: the week 3 AR activity outlook (Fig. 5a), and the weeks 3-4 457 

ridging outlook (Fig. 5b). This figure shows an example of particular forecast for AR activity 458 

and ridging made on September 21, 2020. In Fig. 5a, the bottom panel shows the anomaly 459 

forecast field (top minus middle panels) for above or below average AR days per week for 460 

the October 06-12 week-3 verification period in the NCEP forecast system. In Fig. 5b, 461 

forecast probabilities for each ridge type (North, South, and West) during the October 05-19 462 

weeks 3-4 verification period are shown. If > 50% of ensemble members in the NCEP 463 

forecast system predict above normal ridge frequency, the right panel maps are displayed to 464 

show the likelihood of wetter or drier conditions based on how each ridge type typically 465 

influences precipitation (Gibson et al. 2020a). Both outlooks are updated weekly and made 466 

available on the CW3E S2S forecast website12. Skill assessments of the NCEP and ECMWF 467 

hindcasts from the S2S repository are provided in DeFlorio et al. (2019a,b) and Gibson et al. 468 

(2020b). These forecast products have been regularly consulted by our stakeholders at CA 469 

                                                 
12 CW3E Subseasonal to Seasonal (S2S) Experimental Forecasts (https://cw3e.ucsd.edu/s2s_forecasts/) 
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DWR, both in internal CA DWR meetings and in collaborative meetings between CA DWR 470 

stakeholders and our research team. 471 

Renewable energy and utilities 472 

Understanding weather-related risk is vital for renewable energy pricing, production, 473 

transmission and usage. Energy demand and risk-based scenarios based on S2S predictions 474 

are now being explored to support the management of anticipated energy peaks and other 475 

weather-related risks. In this section, we explore an S2S forecast-based renewable energy 476 

decision-support tool, hydropower inflow predictions and scenario planning in Scotland and 477 

Australia, and weather risk management for telecommunications in the U.K.. 478 

8) A DECISION-SUPPORT TOOL FOR THE RENEWABLE ENERGY SECTOR 479 

Authors: Andrea Manrique-Suñén, Isadora Christel, Ilaria Vigo, Lluís Palma, Ilias G. 480 

Pechlivanidis, Albert Soret 481 

The S2S4E13 project explored the usefulness of S2S forecasts to anticipate renewable 482 

energy production and demand several weeks to months ahead (Soret et al. 2019). A 483 

decision-support tool (DST) that provides S2S predictions of climate variables and renewable 484 

energy-related indices was co-developed with users. The spatial coverage of the majority of 485 

the forecasts is global with some products provided for the pan-European domain. The DST 486 

is fed with forecasts from the ECMWF S2S forecast system (2 m mean / max / min 487 

temperature, 10m wind speed, precipitation, solar radiation and mean sea level pressure). It 488 

provides weekly S2S forecasts for up to 4 weeks lead time via a visual interface that includes 489 

a skill score that evaluates the quality of the forecast with respect to a climatological forecast 490 

reference (fair Ranked Probability Skill Score for the tercile probabilities and fair Brier Skill 491 

Score for the extreme probabilities; Wilks 2011; Ferro et al. 2014). The raw forecasts are bias 492 

                                                 
13 ‘Sub-seasonal to Seasonal climate forecasting for Energy’ project (https://s2s4e.eu/dst)  
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adjusted to remove the model mean bias with respect to ERA5 reanalysis (Hersbach et al. 493 

2020). The computation of a robust climatology is crucial to ensure an effective bias 494 

adjustment of subseasonal forecasts (Manrique-Suñén et al. 2020).  495 

The DST provides forecast indices per energy sector: hydropower (maximum snow and 496 

inflows at the catchment scale), wind energy (3 capacity factors for 3 different turbine types), 497 

solar energy (capacity factor) and energy balance (electricity demand, wind energy 498 

production, and demand minus wind energy production per country). Energy companies use 499 

the S2S forecasts to inform operation and maintenance decisions, optimize water levels in the 500 

reservoirs, and hedge against climate variability (e.g., by trading energy futures).  501 

The co-generation and operationalization of the DST involved scientists, designers, 502 

communication and industry specialists. The inclusion of three energy companies as 503 

consortium partners (EDF Electricité de France, EDP Renováveis SA, and ENBW Energie 504 

Baden-Württemberg AG) provided opportunities for collaboration at all stages of the project, 505 

and ensured their needs were addressed in the co-development of the DST. In the design 506 

phase, user input was crucial to devise a structured, complete and concise interface. Focus 507 

groups, workshops, interviews, usability testing and eye-tracking were some of the 508 

techniques used (Calvo et al. 2021). During the operational phase, monthly meetings were 509 

held with partners to understand how the tool was being employed. This allowed a 510 

continuous feedback that served to include small modifications or additional functionalities. 511 

A key challenge in the development of the DST was introducing the concept of ‘skill’ to 512 

users. To orientate the user, a qualitative skill classification was devised : ‘no skill’ (skill < 513 

0%), ‘fair’ (0 < skill < 15%), ‘good’ (15% < skill < 30%) and ‘very good’ (30% < skill). This 514 

helped users to evaluate expected quality. Nevertheless, in order to attribute trust to a 515 

probabilistic forecast, users need to combine the skill information with a measure of 516 
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uncertainty (related to the ensemble spread) provided by the forecast probability. This 517 

remains an open challenge in the field of uncertainty communication in climate services.  518 

9) HYDROPOWER INFLOW PREDICTIONS IN SCOTLAND, U.K. 519 

Authors: Robert M. Graham, Jethro Browell, Christopher J. White, Douglas Bertram 520 

In Scotland, reservoir inflow forecasts for hydropower generation are primarily dependent 521 

on weather forecasts rather than initial hydrological conditions. This is due to steep 522 

topography and low groundwater storage capacity (Svensson 2015). SSE Renewables, a UK 523 

energy generation company, have a hydropower portfolio of 1,459MW across Scotland, 524 

enough to supply approximately 1 million UK homes. Hydropower operators at SSE 525 

currently use deterministic inflow forecasts, covering periods up to 2 weeks ahead, and an 526 

expert meteorologist provides longer range outlooks based on S2S forecasts. A team of 527 

hydropower operators from SSE Renewables and researchers from the fields of meteorology, 528 

energy forecasting and hydrology at the University of Strathclyde co-developed probabilistic 529 

S2S inflow forecasts for selected hydropower reservoirs in Scotland and further evaluated the 530 

potential economic value of these forecasts. SSE were involved from the initial concept stage 531 

of the project to its closure.  532 

Inflow forecasts were derived from ECMWF S2S forecasts from the S2S global 533 

repository. Benchmark inflow forecasts for a case study reservoir were created by training a 534 

linear regression of the S2S precipitation forecasts onto the historical inflow record. These 535 

were then post-processed, following methods similar to Scheuerer (2014), to produce 536 

calibrated probabilistic inflow forecasts (Graham et al. 2021). We evaluated the inflow 537 

forecasts for 11 lead times, including weekly mean inflow rate forecasts from week 1 (days 1-538 

7) to week 6 (days 36-42), and extended mean inflow rate forecasts from 2 (days 1-14) to 6 539 

weeks (days 1-42) ahead. After post-processing, the probabilistic weekly mean inflow 540 
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forecasts demonstrated skill up to week 6, though skill in weeks 3 to 6 is low relative to 541 

weeks 1 and 2. Furthermore, the six-week average (days 1-42) inflow rate forecasts displayed 542 

greater skill than weekly mean inflow forecasts for week 2 (days 8-14). In contrast, the raw 543 

S2S precipitation forecasts and benchmark inflow forecasts held statistical skill only to 544 

forecast week 2, the typical skill horizon in mid-latitudes for probabilistic ensemble forecasts 545 

(Branković et al. 1990).  546 

The economic value of the inflow forecasts was explored using a stylized cost model 547 

based on the classical ‘News Vendor’ optimization problem (Khouja 1999), following the 548 

principle of maintaining a target water level in the reservoir. Within this framework, the 549 

probabilistic inflow forecasts consistently reduced costs relative to the use of climatological 550 

forecasts, even for forecast week 6 (days 36-42). However, deterministic inflow forecasts, 551 

based on the median of the probabilistic forecast distribution, often resulted in poor 552 

operational decisions and increased costs relative to the use of climatological forecasts from 553 

week 2 (days 8-14) onwards.  554 

The project concluded that S2S probabilistic forecasts can improve water management 555 

decisions for hydropower reservoirs up to six weeks ahead. However, post-processing and 556 

forecast calibration is an essential step to realize skill in the S2S range. The demonstration of 557 

the potential for the S2S inflow forecasts to increase economic value and improve decision-558 

making was particularly welcomed by the industry collaborators. The partnership was not 559 

without its challenges however; understanding how the ‘value’ of the S2S forecasts could be 560 

fully realized and applied in operation would require closer and continued collaboration 561 

between the researchers, hydropower operators and in-house meteorologists. 562 

10) SCENARIO PLANNING FOR HYDROPOWER OPERATIONS IN TASMANIA, AUSTRALIA 563 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-20-0224.1.Unauthenticated | Downloaded 12/07/21 12:35 PM UTC



   
 

25 

Authors: Carly R. Tozer, Sonia Bluhm, Carolyn J. Maxwell, Tomas A. Remenyi, James S. 564 

Risbey, Robert G. Wilson 565 

The El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are recognized 566 

as key large-scale drivers of Australia’s climate variability (Risbey et al. 2009). The co-567 

occurrence of El Niño and positive IOD events has been associated with dry conditions 568 

across the country (Meyers et al. 2007; Ummenhofer et al. 2011). One such occurrence was 569 

in 2015, which coincided with below average winter and spring rainfall across parts of 570 

southern Australia. Tasmania experienced statewide rainfall deficits and the lowest spring 571 

rainfall on record in western Tasmania (Karoly et al. 2016). Hydro Tasmania, which manages 572 

multiple hydropower facilities, primarily located across western Tasmania, produces hydro-573 

electricity for both Tasmania and mainland Australia. The record low rainfall in 2015 574 

contributed to an energy supply challenge for Hydro Tasmania, leading to a subsequent 575 

operational review. In 2019, a reappearance of this combination of climate drivers looked 576 

likely, with S2S forecasts issued in April and May 2019 pointing towards the development of 577 

an El Niño and positive IOD over winter and spring (e.g., Bureau of Meteorology 2019). The 578 

positive ‘super-IOD’ (Doi et al. 2020) event has since been linked to rainfall deficits and 579 

bushfires across Australia (van Oldenborgh et al. 2021).  580 

Hydro Tasmania collaborated with the Commonwealth Scientific and Industrial Research 581 

Organisation (CSIRO) as part of a project to understand the use and potential utility of 582 

climate forecasts, including identifying Hydro Tasmania’s operations and decision-making 583 

processes, and the climate variables of importance for forecast evaluation. The application of 584 

climate forecasts within Hydro Tasmania’s operations is through operational scenario 585 

planning (Fig. 6a). Potential operational outcomes are produced in response to forecast 586 

information and evaluated against historical data. In the case of the 2019 El Niño/positive 587 

IOD forecast, Hydro Tasmania’s operational scenario planning options were focused on dry 588 
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conditions as this was the expectation based on past experiences (Fig. 6b,d). As the year 589 

progressed, Hydro Tasmania monitored the subseasonal climate driver forecasts issued by 590 

Australia’s Bureau of Meteorology in concert with rainfall received in western Tasmania, in a 591 

‘watch and act’ process. When it became clear that the rainfall deficits experienced in 2015 592 

were not being repeated in 2019 (Fig. 6d) no major changes to operations were enacted (Fig. 593 

6c).  594 

Using S2S forecasts of climate drivers to inform scenario planning – as opposed to the 595 

direct input of forecast information into operational systems – implicitly acknowledges that 596 

there is uncertainty in S2S forecasts, and that teleconnections between large-scale climate 597 

drivers and regional rainfall are complex. There are typically multiple drivers at play on 598 

different timescales, which is the case in Tasmania (Risbey et al. 2009; Tozer et al. 2018), 599 

meaning a skillful forecast of a particular climate driver may not lead to a skillful rainfall 600 

forecast. The forecast may also not directly change a decision, but it can influence which 601 

scenarios to reassess. Scenario planning puts Hydro Tasmania in a stronger position to 602 

identify options and make appropriate decisions should a dry scenario play out, or continue 603 

normal operations if it does not.  604 

11) WEATHER RISK MANAGEMENT FOR U.K. FIXED-LINE TELECOMMUNICATIONS 605 

Authors: David Brayshaw, Alan Halford, Stefan Smith, Kjeld Jensen 606 

The physical infrastructure associated with fixed-line telecommunication systems, which 607 

are critical for many aspects of modern service-based economies, is subject to significant 608 

weather exposure. In the U.K., weather-related line-faults are commonly associated with 609 

service disruptions (e.g., BT 2018), however, rapid evolution of the infrastructure (e.g., 610 

growth in broadband) limit the availability of historical data for both weather risk assessment 611 

and impact-based prediction. A jointly supervised project (Halford 2018) by the University of 612 
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Reading and a leading UK communications services company, BT plc, sought to address 613 

these challenges by creating a robust long-term historic fault-rate record for the UK 614 

telecommunications system with a multi-week fault rate forecasting system to support line-615 

maintenance scheduling. In brief, historic fault-rates from 1979-2017 were constructed using 616 

a multiple linear regression fault-rate model which was applied to weather-inputs from ERA-617 

Interim (Dee et al. 2011), i.e., a time-series of estimated fault rates assuming the historic 618 

weather impacted upon the UK telecoms system of 2017 was produced (refer to Brayshaw et 619 

al. 2020 for details). S2S ‘forecasts’ spanning 1996-2015 for the same UK telecoms system 620 

were then generated using ECMWF S2S ensemble hindcasts (11 ensemble members). Here, 621 

and in the original study (Brayshaw et al. 2020), there was an emphasis on the quantitative 622 

estimation of end-user ‘value’ from skillful S2S forecasts that can be summarized by the 623 

schematic: 624 

S2S forecast (weather) => Impact model (line faults) => Decision model (cost) 625 

S2S forecasts were identified as potentially offering predictive skill and opportunities for 626 

user-value through efficient scheduling of staffing resources (restorative maintenance versus 627 

provision of new line connections). A strategy was agreed that combined a tercile-based S2S 628 

forecast of the North Atlantic Oscillation (NAO), with fault-rate distributions from the long-629 

term synthetic fault-rate record corresponding to the occurrence of each NAO-tercile. The 630 

resulting forecast system was shown to have skill in predicting weekly fault rates up to 4 631 

weeks ahead in winter, based on 11-member ECMWF S2S hindcasts spanning 1996-2015 632 

(Vitart and Robertson 2018).  633 

A decision-simulation model utilizing the fault-rate forecast in maintenance scheduling 634 

was then developed to estimate forecast value. This demonstrated that the fault-rate forecast 635 

system could be used to improve both short-term and long-term management strategies, e.g., 636 

either meeting week-to-week performance targets (a simulated ~5-10% improvement) or 637 
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achieving the same level of performance but at lower long-term cost (a simulated ~1% 638 

reduction in resource levels). Though these estimates are likely an upper bound to that which 639 

would be achievable in practice, the savings are potentially significant with the penalty for 640 

failing to meet repair targets reaching up to ~£1 million/day and annual staffing costs of 641 

around £500 million (see Brayshaw et al. 2020).  642 

The success of the project is attributable to the extensive collaboration between the 643 

academics and BT plc staff from the outset. This not only enabled the rapid co-development 644 

of statistical fault-rate and decision-support models, but also deepened engagement in both 645 

directions (as BT staff, rather than the academic team, held the expertise regarding the fault 646 

rate modelling and maintenance scheduling). Beyond successfully demonstrating skill on S2S 647 

lead times, the project emphasized that the skill of the fault-rate forecast does not in itself 648 

guarantee value to the end-user, e.g., a forecast may have skill but may hold little value if the 649 

outcome has no relevant consequences and/or the user is unable to act upon it.  650 

Disaster early warnings and emergency management 651 

Skillful and reliable extended-range forecasts of extreme events, such as floods and 652 

droughts, offer significant opportunities for improved disaster preparedness and risk 653 

reduction, including tracking the progress of the slowly evolving, large-scale climate modes 654 

and supporting the transition from long-range outlooks to weather forecasts to provide early 655 

warnings and inform emergency management activities (Tadesse et al. 2016). In this section, 656 

we explore the use of S2S forecasts for flood forecasting across Europe.  657 

12) EUROPEAN FLOOD FORECASTING 658 

Authors: Francesca Di Giuseppe, Fredrik Wetterhall 659 
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The European Flood Awareness System (EFAS)14 is operated by the Copernicus 660 

Emergency Management System (CEMS), and functions as a common pan-European tool to 661 

provide coherent early warnings of flood events. A set of decision rules based on forecast 662 

persistency and magnitude are defined to identify points on Europe’s river network where 663 

flooding is likely to happen. The authorities responsible for flood forecasting in the specific 664 

location are then sent flood notifications ahead of such events. EFAS uses medium-range 665 

forecasts, typically up to 10 days lead time, but for rare and potentially widespread flood 666 

events a system working on the S2S timescale (10-30 days) would extend the early warning 667 

window to help pinpoint regions in need of attention. EFAS recently added a twice weekly 668 

extended-range ensemble forecast with 51 members up to 6 weeks (aggregated into weekly 669 

averages) based on ECMWF S2S forecasts (Wetterhall and Di Giuseppe 2018). These 670 

forecasts are currently only for supplementary information and not used to issue warnings. 671 

Since the predictability for extreme events on S2S lead times can be uncertain (Domeisen et 672 

al. 2021), decision rules for preventive actions would have to be designed with this increased 673 

uncertainty in mind in comparison with the medium-range forecasts. 674 

In this study, we revisit a major flooding event that took place in southeastern Europe in 675 

May 2014 to explore the potential added-value in the decision-making process of S2S 676 

hydrological forecasts. During the event, large areas of south-eastern and central Europe 677 

experienced exceptionally intense rainfall which led to widespread flooding where over 60 678 

people died and more than a million inhabitants were affected (Stadtherr et al. 2016). The 679 

EFAS system indicated exceedance of the 20-year return period more than a week ahead of 680 

the event and was able to issue notifications 4-5 days lead time. However, this information 681 

could potentially have been even more useful if an even earlier indication of the event was 682 

                                                 
14 EFAS (www.efas.eu), part of the European Commissions’ Emergency Management System (CEMS) 

(https://emergency.copernicus.eu/) 
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available. In this revised analysis, we look at how far back a signal for these conditions was 683 

present in the S2S forecasts. The fraction of ensemble members that predicted the exceedance 684 

of the ‘decision’ threshold is considered as the probability of an event occurring for the 685 

period preceding and following the event (April 01 to June 30 in this case) and as a function 686 

of lead times up to 46 days ahead. Considering that extreme conditions are difficult to detect 687 

at longer lead times as the forecast naturally reverts to climatology as predictability 688 

decreases, a 30% chance at lead times >10 days is generally taken as an indication a 689 

forthcoming event. In this study, the main event had a persistent signal up to 25 days before 690 

the event in the S2S forecasts, highlighting the importance and potential utility of the S2S 691 

time scale for pre-warning. To put this into the context of decision-making, a full cost-loss 692 

scenario analysis of the historical period is needed to establish the correct level of probability 693 

and lead time to issue pre-alerts for severe events. Further, the decision-making process in the 694 

region would need to be trained to utilize the added information. 695 

Discussion 696 

We demonstrate here that S2S forecasts are increasingly being used across the public 697 

health, agriculture, water resource management, renewable energy and utilities, and 698 

emergency management and response sectors in both the developed and emerging economies. 699 

As identified across our 12 application-focused case studies (Table 1), current decision-700 

making is generally based on either short-to-medium range (often deterministic) or seasonal 701 

forecasts. The S2S forecasting timescale is therefore a new concept for many users. While the 702 

additional value of S2S forecasts for decision-making is increasingly gaining interest among 703 

users, as shown here, incorporating probabilistic ensemble S2S forecasts into existing 704 

operations is not trivial. S2S forecasts do not produce a “go/no go” answer of what a user 705 

should do; instead they provide additional, supplementary ‘situational awareness’ information 706 
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that can be used to drive decision-making and risk-based management processes on weekly to 707 

monthly forecast horizons. Seasonal to decadal forecasts face the same challenge. What the 708 

presented case studies clearly suggest, however, is that the kind of widespread, national and 709 

international investment witnessed in service development on seasonal and climate timescales 710 

is also needed on the S2S timescale.  711 

 In addition to the limited awareness and demonstration of the potential benefits of the 712 

S2S timescale across sectors to date, a lack of ‘in house’ expertise in how to effectively apply 713 

S2S forecasts and, to some extent, a lack of access to S2S forecasts, have also been barriers to 714 

widespread adoption of S2S forecasts. This is the ‘knowledge-value’ gap, highlighting the 715 

challenge and need of translating S2S forecast skill into forecast value (e.g., Giuliani et al. 716 

2020). For S2S predictions to have utility, there needs to be an signal in the forecast that 717 

emerges beyond the noise in the system (Mariotti et al. 2020). However, across the case 718 

studies presented here, there are varying interpretations of what ‘skill’ is from a scientific or 719 

user perspective and what magnitude of signal is needed for a forecast to add value for a user. 720 

For any forecast application, user-focused questions such as “What is the minimum level of 721 

skill (or perhaps ‘certainty’) that can still be useful?”, and “Is the required level of skill 722 

actually attainable for the variables, region and application of interest?” are as essential to the 723 

concept of forecast utility as is verifying forecast skill (e.g., Crochemore et al. 2021). Here, 724 

we highlight that the answers to these and similar questions can only be determined via user 725 

engagement and continued partnership. This approach helps determine whether S2S forecast 726 

information can be better utilized through approaches such as multiple scenario planning 727 

‘storyline’ frameworks with a comparison to recent historical events (e.g., hydropower 728 

operations in Tasmania, Australia), or supplemented by statistical post-processing (e.g., 729 

hydropower inflows in Scotland, U.K.), or through additional impact-based models (e.g., 730 

Malaria occurrence in Nigeria). Some of the most effective real-time / operational 731 
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applications presented here are where S2S forecasts have been communicated to end-users 732 

and contributed to ‘situational awareness’ using an early ‘horizon scanning’ approach of up-733 

coming extreme events. This is true in the case of farmers determining the planting and 734 

management of crops, informed by the timing of the monsoon in Bihar, India, and the rainy 735 

season onset in Kenya. The co-development of the S2S4E project’s decision-support tool for 736 

the renewable energy sector also provides a particularly useful and insightful discussion 737 

around forecast skill, value, trust and communication, with all of the cross-sectoral case 738 

studies presented here confirming the need for the co-generation of forecast products. This 739 

clearly identifies and communicates the strengths and limitations of forecasts in support of 740 

improved forecast utility. 741 

We acknowledge, however, that S2S forecasting is still a maturing discipline, with 742 

several of the studies here being at the ‘proof of concept’ stage so their scope is somewhat 743 

limited or that issues to their further implementation and/or operationalization remain. There 744 

is also a distinction between case studies that use S2S forecasts directly (e.g., precipitation 745 

and temperature fields) compared to those exploring the large-scale climate drivers to identify 746 

additional sources of skill (e.g., ENSO, NAO, MJO). While we present application case 747 

studies that span different sectors from around the world, there is also a notable focus on 748 

water-related applications. This is perhaps not surprising – there is an experienced user-base 749 

spanning the water-related sectors, meaning the ‘knowledge-value’ gap is perhaps not as 750 

significant here compared to other disciplines. For example, the agriculture sector is already 751 

familiar with using seasonal outlooks (e.g., Verbist et al. 2010), and flood management is the 752 

forefront of providing risk-based anticipatory warnings in response to forecasts. Impact-based 753 

flood and drought forecasts, for example, have huge potential to help shape these dialogues 754 

(Merz et al. 2020) and have been deployed in a number of the water-related studies shown 755 
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here. Water therefore presents perhaps the best opportunity to demonstrate the utility of S2S 756 

forecasts to bridge the gap between the weather and climate forecasting timescales.  757 

It is, however, the collective body of evidence provided by all of these multi-sectoral case 758 

studies that marks a significant step forward from White et al. (2017) in moving from 759 

potential to actual S2S forecasting applications. By placing user needs and applications at the 760 

forefront of S2S forecast development – demonstrating both skill and utility across sectors – 761 

in unison with ongoing scientific endeavors to improve forecasting systems and identify 762 

sources of skill, it is hoped that this dialogue will help promote and accelerate the awareness, 763 

value and co-generation of S2S forecasts to real-world decision-making. Increasing the 764 

ability of users to engage simply and transparently with S2S forecasts, and to employ new 765 

technologies such as machine learning and artificial intelligence tools to build and augment 766 

impact models, would help to further accelerate this process. Crucially, this study provides a 767 

platform towards the creation of a global community of researchers and users with a shared 768 

aim of exploring and promoting applications of this new generation of forecasts. S2S 769 

forecasting represents a significant opportunity to generate useful, usable and actionable 770 

forecast information and services for and with users for a range of sectoral applications on 771 

previously untapped predictive timescales. 772 

 773 

  774 
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TABLES 1092 

Table 1 Description of sectoral case studies with notable prior or related studies where 1093 

applicable. Note: not all case studies are based on previously-published work; for some, this 1094 

is the first time they have been documented (shown as n/a). In other cases, such as study 2 1095 

and 4, the studies listed describe key motivations, partially related components of the case 1096 

study, or prediction of events different to that of the main study theme and should not be 1097 

taken as a more complete account of the case study. 1098 

Description Sector 

S2S 

Application / 

Product 

Prior or Related 

Studies 

1) Mortality predictions 

during extreme cold 

weather events in the 

U.K. 

Public health 
Cold wave 

mortality 

Charlton-Perez et al. 

(2019); Huang et al. 

(2020) 

2) Malaria occurrence 

prediction in Nigeria 
Public health 

Malaria 

prediction 

using a vector-

borne disease 

model 

Tompkins and Ermert 

(2013); Asare et al. 

(2016) (both related to 

the VECTRI model) 

3) An early-action 

system for acute 

undernutrition in 

Guatemala 

Public health 

Early-action 

system for food 

security 

n/a 

4) Season onset timing 

in Kenya 
Agriculture 

Season onset 

timing for crop 

yield and food 

security 

Kilavi et al. (2018); 

MacLeod et al. (2021a) 

(both primarily related 

to heavy rain events in 

the study region) 

5) Agricultural 

management in Bihar, 

India 

Agriculture 

Monsoon signal 

for small-holder 

farmers 

Robertson et al. (2019); 

Acharya (2018) 

(verification of district-

level hindcasts and real-

time forecasts in 2018) 

6) Water management 

in Ceará State, Brazil 

Water resource 

management 

Reservoir 

inflows for 

water 

management 

n/a 

7) Water management 

in western U.S. 

Water resource 

management 

Atmospheric 

rivers, ridging 

events and 

precipitation 

DeFlorio et al. 

(2019a,b); Gibson et al. 

(2020a,b) 

8) A decision-support 

tool for the renewable 

energy sector 

Renewable 

energy and 

utilities 

Renewable 

energy 

decision-

support tool 

Soret et al. (2019) 
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9) Hydropower inflow 

predictions in Scotland, 

U.K. 

Renewable 

energy and 

utilities 

Reservoir 

inflows for 

hydropower 

Graham et al. (2021) 

10) Scenario planning 

for hydropower 

operations in Tasmania, 

Australia 

Renewable 

energy and 

utilities 

Low rainfall 

scenarios for 

hydropower 

n/a 

11) Weather risk 

management for U.K. 

fixed-line 

telecommunications 

Renewable 

energy and 

utilities 

Telecommuni-

cation fault-rate 

maintenance 

scheduling 

Brayshaw et al. (2020) 

12) European flood 

forecasting 

Emergency 

management 

and response 

Hydrological 

flood 

forecasting 

Wetterhall and Di 

Giuseppe (2018) 
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FIGURES 1100 

 1101 

 1102 

Figure 1 Mortality during extreme cold weather events in the U.K., showing: a) HadUK-Grid 1103 

mean 2m temperature (T2m) observations for the two cold waves in February and March 1104 

2018; b) estimated U.K. mortality attributable to the cold weather (black line), observed raw 1105 

total mortality (blue line), and 1998-2017 average (dashed line); c) Observed weather regime 1106 

evolution (based on ECMWF analysis) during the same period for a life cycle definition of 1107 

seven weather regimes (cf. Grams et al. 2017); d) ECMWF extended- and medium-range 1108 

U.K. mean T2m ensemble forecasts valid for February 28, 2018 00 UTC (y-axis) as a 1109 

function of forecast initial time (x-axis), with the blue box-and-whiskers showing the 99th, 1110 

75th, 50th, 25th, and 1st percentiles, the black dots the control forecast, and the red box-and-1111 

whiskers the model climatology for February 28, 2018 00 UTC (plotting tool provided by 1112 

Linus Magnusson, ECMWF); e) Same as d) but for the predicted probabilities of the active 1113 

weather regime (regime projection > 1 sigma) in the ensemble indicated by the corresponding 1114 

color (gray indicates the ‘no regime’ category representing an atmospheric state not 1115 

resembling any of the seven regimes). 1116 
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 1118 

 1119 

Figure 2 Skill assessment for the early-action system for acute undernutrition in Guatemala, 1120 

showing: The Generalized Relative Operating Characteristics (GROC) skill metric for cases 1121 

of acute undernutrition for children under five in each department in Guatemala. GROC 1122 

measures forecast discrimination, or how well the system discriminates between different 1123 

categories (below normal, normal or above normal values). This NextGen forecast system 1124 

uses total monthly rainfall as a predictor of monthly cases of acute undernutrition for children 1125 

under 5 years old. Values ~50% indicate discrimination as good as climatology, and values 1126 

above (below) 50% indicate better (worse) discrimination than climatology. The skill shown 1127 

corresponds to the average skill for the following target month (example, January, if the 1128 

forecast is made in December), and considers the different lags/lead times between rainfall 1129 

and acute undernutrition for each department. 1130 
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  1132 

Figure 3 Agricultural management in Bihar, India, showing: A flowchart of the forecast 1133 

generation and dissemination. Interactions between the institutions and actors involved are 1134 

indicated. NGO: non-governmental organization; IMD: India Meteorological Department; 1135 

RIMES: Regional Integrated Multi-Hazard Early Warning System for Africa and Asia; SAU: 1136 

State Agricultural Universities; IRI: International Research Institute for Climate and Society. 1137 

 1138 

  1139 
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  1140 

  1141 

Figure 4 Water management in Ceará State, Brazil, showing: a) Ceará State flow forecast 1142 

system schematic depicting January to April (rainy period) forecasts. Produced with (1) 1143 

statistical models using previous July and October equatorial Pacific and Atlantic indices, and 1144 

(2) daily precipitation forecasts from dynamical global and regional seasonal forecast models 1145 

updated monthly from January to April for feeding a hydrological model to generate monthly 1146 

flow forecasts (brown), and with ECMWF sub-seasonal precipitation forecasts produced 1147 

every Thursday for the following 45 days for feeding a hydrological model to generate daily 1148 

flow forecasts during the January to May period (yellow). The blue (grey) bar illustrates the 1149 

wet (dry) period; b) Correlations between cross-validated 11 members ensemble mean flow 1150 

forecasts post-processed through empirical quantile mapping and the corresponding observed 1151 
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flow over the 1998-2017 hindcast period for three time horizons (15, 30 and 45 day means). 1152 

Flow forecasts were produced with a hydrological model (Lopes 1999) fed with daily 1153 

precipitation ECMWF S2S forecasts initialized every Thursday (15 dates between January 18 1154 

and April 26). The solid, dashed and dotted horizontal grey lines represent the correlation 1155 

values computed aggregating all available forecasts (300 pairs of forecasts and observations) 1156 

for the three time horizons; c) 30 day mean post-processed flow forecasts for 2018 (boxplots 1157 

of 51 member ensembles) produced with a hydrological model fed with daily precipitation 1158 

ECMWF sub-seasonal forecasts initialized every Thursday (between January 18 and April 1159 

26). The red line in the boxplots represents the median p50 (50th percentile), the upper box 1160 

border represents the upper quartile p75 (75th percentile), and the lower border the lower 1161 

quartile p25 (25th percentile). The whiskers at the top of each box extend to p75 + 1.5IQR, 1162 

where IQR is the interquartile range (p75-p25). The whiskers at the bottom of each box extend 1163 

to p25-1.5IQR. Values outside the whiskers are plotted with open circles. The black line 1164 

represents the 2018 observed flow, and the dashed lines the climatological (1998-2017) 50th 1165 

and 80th percentiles.  1166 
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 1168 

 1169 

Figure 5 Water management in western U.S., showing: a) CW3E/JPL week 3 1170 

AR activity outlook. Forecast initialized September 21, 2020 and verified October 06-12, 1171 

2020. Top panel shows the forecasted number of AR days to occur during the week 3 1172 

verification period; middle panel shows the NCEP hindcast climatology of AR days during 1173 

the October 06-12 week in the hindcast record; bottom panel shows the anomaly forecast 1174 

field (top minus middle panels). Hindcast skill assessment provided in DeFlorio et 1175 

al. (2019a,b); b) CW3E/JPL weeks 3-4 experimental ridging outlook. Forecast initialized on 1176 

September 21, 2020 and verified October 05-19, 2020. Left column shows the occurrence 1177 

frequency of each ridge type (bars) compared to climatology (horizontal line) for each of the 1178 

model ensemble members. The top, middle, and bottom row display the North, South, and 1179 

West ridge forecasts, respectively. If over 50% of the ensemble members predict more 1180 

ridging than expected (for this time of year), then the right column maps indicate the 1181 

likelihood of wetter or drier conditions based on how each ridge type typically influences 1182 

precipitation. We note that summing across ridge types for a given ensemble member does 1183 

not necessarily equal 14 daily counts as there can be days in the 2 week forecast verifying 1184 
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period where none of the three ridge types are predicted to occur. Methodology for 1185 

calculating ridge types is provided in Gibson et al. (2020a); hindcast skill assessment is 1186 

provided in Gibson et al. (2020b).   1187 
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 1188 

 1189 

Figure 6 Scenario planning for hydropower operations in Tasmania, Australia, showing: a) A 1190 

general scenario planning approach, where a climate driver forecast is received from which 1191 

there is an expectation around the seasonal rainfall response focused towards operational 1192 

scenario planning; b) Dry scenario planning in response to IOD positive/El Niño forecast 1193 

and the expectation of negative (dry) rainfall anomalies in western Tasmania; (c) 2019 1194 

example outcome; (d) Probability density function of total winter/spring rainfall (in mm) in 1195 

western Tasmania for each year from 1900-2019. The years marked in red indicate past IOD 1196 

positive/El Niño events and the associated winter/spring rainfall anomalies. Dashed line 1197 

indicates median winter/spring rainfall. Western Tasmania is considered the region west of 1198 

the dashed black line (inset map).  1199 
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