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Abstract
Hydro-morphodynamic modelling is an important tool that can be used in the protec-
tion of coastal zones. Themodels can be required to resolve spatial scales ranging from
sub-metre to hundreds of kilometres and are computationally expensive. In this work,
we apply mesh movement methods to a depth-averaged hydro-morphodynamic model
for the first time, in order to tackle both these issues.Meshmovement methods are par-
ticularly well-suited to coastal problems as they allow the mesh to move in response to
evolving flow and morphology structures. This new capability is demonstrated using
test cases that exhibit complex evolving bathymetries and have moving wet-dry inter-
faces. In order to be able to simulate sediment transport in wet-dry domains, a new
conservative discretisation approach has been developed as part of this work, as well as
a sediment slide mechanism. For all test cases, we demonstrate how mesh movement
methods can be used to reduce discretisation error and computational cost. We also
show that the optimumparameter choices in themeshmovementmonitor functions are
fairly predictable based upon the physical characteristics of the test case, facilitating
the use of mesh movement methods on further problems.

Keywords Mesh adaptation · Mesh movement · Sediment transport · Morphology

Mathematics Subject Classification 65M60 · 65M50 · 35Q35 · 86A05

1 Introduction

Over the last few decades, hydro-morphodynamic models have been increasingly used
to simulate erosion in both fluvial and coastal zones (see Amoudry and Souza (2011),
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Papanicolaou et al. (2008)).Unfortunately, thesemodels are generally computationally
expensive, especially as they are often required to simulate very long-term morpho-
logical effects with relatively small timestep sizes in order to resolve hydrodynamic
features such as waves and tides. These models must also often be run more than
once for calibration purposes, as for example in Villaret et al. (2016), Harris et al.
(2018) and Clare et al. (2021b), thus further increasing the computational cost. In
addition, when applied to coastal regions, hydro-morphodynamicmodels must resolve
problems with complex and fundamentally multi-scale domains. Unstructured mesh
models, such as those based on finite element methods (Piggott et al. 2008a, b), are
ideally suited to providing the required mesh flexibility, and multiple tools exist for
generating multi-scale fixed meshes, which are suitable for a wide range of geophys-
ical applications (for example Avdis et al. (2018)). However, these are insufficient in
cases with significant morphology changes as the areas that require finer mesh resolu-
tion vary throughout the simulation. Therefore, many fluvial and coastal scenarios are
unfeasible to model using standard fixed meshes of appropriate resolution. A solution
to this time-dependent multi-scale issue is to use mesh adaptation methods, such as
mesh movement and h-refinement, which offer the potential to improve result accu-
racy and/or reduce computational cost. Any computational cost reduction means that
there are more problems that are feasible to model and more calibration runs that can
be performed for an equivalent cost.

The focus and main novelty of this work is that we apply mesh movement methods,
also known as r -adaptation (Budd et al. 2009), to a hydro-morphodynamic model for
the first time. Mesh movement methods work by fixing the mesh topology and dynam-
ically moving the (fixed number of) mesh nodes, thus allowing different regions of the
domain to vary between low and high resolution as flow structures pass through them.
In most hydro-morphodynamic problems, including the ones considered here, regions
warranting the highest mesh resolution move continuously with the flow and using
mesh movement thus allows us to track these features of interest. Furthermore, the
nature of mesh movement avoids the problem of hanging nodes and means that simple
data structures can be used because the number of mesh nodes and their connectivity
remains fixed during the simulation. This means that the mesh movement approach
presented here in the context of one model can in principle be readily retrofitted to
other existing hydro-morphodynamic models. We thus hypothesise that mesh move-
ment will lower the computational cost of using hydro-morphodynamic models for
the same or a better accuracy than that achieved using fixed uniform meshes, and that
it can do so in a relatively easy to implement manner.

The mesh movement method used in this work is driven by monitor functions,
which utilize a concept of ‘mesh density’ to distribute the mesh across the domain.
Given that the bed is of primary interest whenmodelling erosion, we seek to construct a
generalised mesh movement approach that is suitable for most hydro-morphodynamic
problems. We make use of monitor functions that focus mesh resolution in regions
where the bed is sloped, has high curvature and/or transitions from wet to dry. The
relative importance of each of these components is discussed, but we conjecture that
the scaling factor that optimises the error reduction will be reasonably predictable
from the physical characteristics of the test case.
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Fig. 1 Diagram of sediment transport processes. Adapted from Geology Cafe (2015)

For our hydro-morphodynamic model, we use the 2D depth-averaged coupled
model of Clare et al. (2021b) to simulate both suspended sediment transport and bed-
load transport for non-cohesive sediment with bed updates (see Fig. 1). This model
is developed within the finite element coastal ocean modelling system Thetis (Kärnä
et al. 2017), which is well-suited for the implementation of mesh movement meth-
ods, as discussed in Sect. 2. Other works have previously applied the alternative mesh
adaptation technique, h-refinement, to hydro-morphodynamic models (for example
Mayne et al. (2002), Delandmeter (2017), Benkhaldoun et al. (2013)). Note that for
h-refinement the mesh topology is more substantially altered with cells locally created
or destroyed and mesh connectivity altered (Piggott et al. 2006, 2009), resulting in
the disadvantage that a much more complex data structure is required to implement
it than that required for mesh movement. Furthermore, our model has key advantages
and/or differences to the hydro-morphodynamic models for which h-refinement has
been previously applied. In particular,Mayne et al. (2002) shows that h-refinement can
accurately capture sharp differences in sediment concentration, but their model sim-
ulates cohesive sediments (i.e. clay and silt) rather than the non-cohesive sediments,
which are present in many fluvial and coastal environments. Similarly, Delandmeter
(2017) shows that h-refinement can accurately capture sharp gradients in hydrody-
namics, but they do not simulate the bedlevel changes caused by sediment erosion and
deposition meaning their results are inaccurate especially in cases, such as the ones
we consider, where there is a lot of bed movement. Finally, Benkhaldoun et al. (2013)
again shows that h-refinement can accurately capture sharp gradients in sediment con-
centrations, but their model uses finite volume methods, whereas our model uses a
discontinuous Galerkin finite element discretisation, which has several advantages for
hydro-morphodynamic problems as discussed in Clare et al. (2021b).

The applications of h-refinement to hydro-morphodynamicmodels discussed above
focus on refining the mesh based on either the hydrodynamics or the sediment con-
centration. Instead, in this work, we refine the mesh based on the bedlevel as well
as potentially other solution fields. Focussing the monitor function on the bedlevel
is sensible because this is the variable of most interest in erosion problems; other
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variables are generally only of interest in the way in which they pertain to the bed
and its evolution. This means that complex characteristics of these other variables
do not need to be resolved if they play no role in the bed’s evolution. However, the
construction of appropriate error metrics that take account of this takes us into the
field of goal-oriented mesh adaptation (Becker and Rannacher 1996, 2001) which is
beyond the scope of this work.

In order to test our novel hydro-morphodynamic model mesh-movement frame-
work, in this work we consider multi-scale test cases with complex evolving
bathymetries, which are difficult to capture accurately on coarse and/or fixed meshes
that may incorrectly represent small structures. We also consider test cases with a
moving wet-dry interface that can be difficult to capture on a fixed mesh, a frequent
scenario in the modelling of coastal zones. Note that to simulate sediment transport in
wet-dry domains, we have developed and implemented a new conservative discretisa-
tion approach to our model as part of this work, as well as a sediment slide mechanism.
Hence, we are able to establish a generalised mesh movement methodology that can
be applied to a variety of fluvial and coastal zone test cases.

The remainder of this paper is structured as follows: in Sect. 2 we outline the
mesh movement methods used; in Sect. 3 we give a brief outline of the hydro-
morphodynamic model including the new conservative discretisation approach; in
Sect. 4 we apply our mesh movement methods to a series of test cases and finally in
Sect. 5 we conclude this work.

2 Meshmovement

There are a variety of approaches that can be taken to apply mesh movement including
(but not limited to): imposing a prescribed mesh velocity (Donea et al. 2017); re-
interpreting the mesh as a structure of stiff beams (Farhat et al. 1998); and enforcing
mesh transformations using monitor functions (Huang et al. 1994; Budd andWilliams
2009). In this work we consider the latter.

In the monitor function based approach, the ‘physical’ mesh—upon which the
prognostic equations are solved—is moved during the time period of simulation, by
defining it to be the image of some mapping applied to a fixed reference mesh, which
determines the way in which the mesh is moved. The mesh’s ‘density’ is prescribed
by a user-provided monitor function; a concept first proposed in White (1979). In that
work, in the context of a one dimensional PDE, a monitor function based on the arc
length of the PDE solution was used. The monitor-based framework enforces the even
distribution of the monitor function across mesh elements, meaning that regions with
high values have elements with small areas and vice versa. This is typically achieved
through the solution of an auxiliary PDE, which describes the mesh movement (such
as Huang et al. (1994), Budd andWilliams (2009)). As may be expected, the choice of
monitor function greatly impacts the geometry of themovedmesh and should therefore
be chosen with care.

Because our hydro-morphodynamic model is developed within the coastal ocean
model Thetis and built using the automated code generation PDE solver framework,
Firedrake, (Rathgeber et al. 2016), we can utilise Firedrake to implement this monitor
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function based approach. The Firedrake framework is well suited to this because it
can readily solve the complex non-linear PDEs used in this method (see McManus
et al. (2017)). Moreover, such an approach has already been implemented in the wider
Firedrake framework in McManus et al. (2017), McRae et al. (2018), Wallwork et al.
(2020), although note compared to these works, our work has the added complexity
of implementing mesh movement with a coupled model.

Within the Firedrake framework, we could combine the hydro-morphodynamic
model and mesh movement equation into a single system of equations solved at
each timestep in an Arbitrary Lagrangian-Eulerian (ALE) type approach (Piggott
et al. 2006; Budd and Williams 2009; Donea et al. 2017). However, for a hydro-
morphodynamic problem, this approach is unnecessarily computationally expensive
because it requires the mesh to be moved at every timestep which may be superflu-
ous for many problems (see Fig. 6, for example). Therefore, we take an alternative
approach and only move the mesh after a user-defined number of timesteps. A con-
sequence of this choice is that we can no longer assume we are solving our problem
in a moving reference frame, and thus the solution variables must be interpolated
betweenmeshes during the PDE time integration loop. Here this interpolation is imple-
mented using libsupermesh (Maddison et al. 2017) and performed using a conservative
Galerkin projection based approach.Although the simple act of interpolation can intro-
duce additional errors, our conservative Galerkin approach ensures that quantities are
conserved in the mesh-to-mesh transfer and it is generally more accurate than the
alternative simpler interpolation methods available in Firedrake.

2.1 Equidistribution and theMonge-Ampère equation

The approach to mesh movement used in this work is concerned with obtaining a
discrete representation of a sufficiently smooth map,

x : ΩC × [0, T ] → ΩP , x(HC , t) = HP (t), t ∈ [0, T ]. (1)

Here ΩC ⊂ R
n is a computational reference domain, which remains fixed andHC is

an associated computational mesh. The physical domain is denoted byΩP : [0, T ] →
R
n , is allowed to vary with time and has an associated physical mesh,HP , upon which

our hydro-morphodynamic model is solved. As with the domain, HP = HP (t) is
allowed to vary with time, whereas HC remains fixed.

The map (1) has certain constraints imposed on it. In particular, the user-specified
monitor function, m : ΩP × [0, T ] → (0,∞) must be equidistributed, in the sense
that

m det J = θ, where θ(t) =
∫
ΩP

m(x, t) dx
∫
ΩC

dξ
and J = ∂x

∂ξ
(2)

is the Jacobian transform with respect to the computational coordinate ξ ∈ ΩC . The
normalisation coefficient θ : [0, T ] → (0,∞) acts to conserve the domain volume. In
this work, we do not consider boundary deformations and hence will always assume
that ΩP = ΩC =: Ω , meaning θ depends only on the monitor function. The mesh
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movement problem can thus be stated as follows: for a given m, find a map, x, which
satisfies (2).

Assuming that the equidistribution relation (2) is solved to a sufficiently high accu-
racy, the determinant term remains positive, because bothm and θ are strictly positive.
As such, the Jacobian cannot change sign. This prevents mesh tangling (where one or
more mesh elements become inverted) because it means that no two vertices of the
original mesh can meet, nor can two edges. It also means that elements cannot become
degenerate, because their area must remain strictly positive.

In dimension n > 1 the mesh movement problem is ill-posed, meaning addi-
tional constraints must be imposed on the map (1). Our hydro-morphodynamic model
described in Sect. 3 is in n = 2 spatial dimensions and therefore this is indeed the
case in this work. Following the optimal transport approach advocated in McRae et al.
(2018), Budd andWilliams (2009), Budd et al. (2013),Weller et al. (2016), we assume
that the map takes the form

x(ξ) = ξ + ∇φξ (ξ), (3)

for some scalar potential φ : ΩC × [0, T ] → ΩP . Substituting (3) into (2) yields

m det
(
I + H(φ)

) = θ, (4)

where I is the identity matrix in R
n×n and H(φ) denotes the Hessian of the potential

with respect to the computational coordinates. Equation (4) is a nonlinear PDE of
Monge-Ampère type.

Under an appropriate choice of monitor function, the elliptic PDE (4) has been
shown to be capable of producing equidistributed meshes, which admit more accu-
rate solutions of the underlying PDE (in this case the hydro-morphodynamic model)
without increasing the number of degrees of freedom or modifying the mesh topology
(for example see McRae et al. (2018), Budd and Williams (2009), Budd et al. (2013),
Weller et al. (2016)).

A criticism of mesh movement methods that are driven by solutions of Monge-
Ampère type equations is that the underpinning theory requires a degree of convexity
of domain geometry (see Theorem 4.3 of Budd and Williams (2009)), which is not
present in ocean domains bounded by coasts. However, for many realistic coastlines,
the use of a wetting-and-drying scheme in the hydrodynamics solver such as the one
present in ourmodel (see Sect. 3)means that domain convexity can be ensured, because
the domain boundary is no longer constrained to topographic contours and may be
chosen as a convex superset of the ‘wet’ region. It is the convexity of the entire meshed
domain (both ‘wet’ and ‘dry’ regions) that is important, not just the wet region. Hence,
meshing all islands we avoid voids in the (both wet and dry) mesh; similarly for coastal
regions.

An alternativemeshmovement algorithm, such as anALE typemethod inwhich the
mesh moves continuously at every timestep, could be used to drive the wetting-and-
drying itself,moving the coastal boundary as appropriate. Of course, the domainwould
not be convex in this case. Compared with such a method, the meshmovement method
described in this work does not directly tackle the wetting-and-drying problem, but
does allow for an interior refined regionof the overallmesh to resolve andmovewith the
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wet-dry interface. As such, it should be similarly capable to resolvemoving coastlines,
albeit with redundant nodes in the dry region, which exist to ensure convexity.

It should also be noted that convexity is a sufficient—but not necessary—condition
for solvability.

2.2 Implementingmeshmovement

As discussed above, in order to implement mesh movement based on (4), the user
must choose a computational meshHC , an initial physical meshHP with an identical
topology (usually chosen to coincide withHC ) and a monitor function m. The choice
of monitor function is particularly important (see Sect. 4) because it determines the
way in which mesh resolution is to be distributed over the domain.

Themeshmovement itself is achieved in an iterative fashion. Each iteration involves
the numerical solution of (4) for the scalar potential on the current physical mesh,
followed by the transformation of this mesh according to (3). Equation (4) is an elliptic
PDE, with two sources of nonlinearity: one from the determinant and another from
the product with the monitor function, via the dependence of the physical coordinates
on the computational coordinates. Thus, we follow Budd and Williams (2009) and
McRae et al. (2018) and parabolise the Monge-Ampère equation

− ∂

∂τ
Δφ = m det

(
I + H(φ)

) − θ, (5)

where τ denotes ‘pseudotime’. As φ approaches a steady state, the derivative term on
the left-hand side converges to zero, whereby the solution of (5) tends to the solution
of the elliptic form (4). It is proved in Awanou (2015) that the sequence of solutions
given by solving (5) converges to the solution of (4), provided the ‘pseudotimestep’
Δτ > 0 is sufficiently small and the initial guess for φ is sufficiently close to the
solution. A pseudotimestep of Δτ = 0.1 is found to be sufficient in this work.

Note, the problems considered in McRae et al. (2018) have periodic boundary con-
ditions, whereas in this work, we consider non-periodic domains. We can distinguish
between outer open boundaries and land boundaries, which can always be defined suf-
ficiently far inland that they are always dry. The outer wet boundaries could be defined
as a parametric curve, with mesh movement constrained to this curve, although this
does not fully resolve the conservation issue. Dry cells do not contribute significantly
to mass conservation, so the associated errors are not of large concern. However, we
can prescribe zero motion on the outer boundary of the dry cells as no ‘wet’ dynamics
ever reach these locations.

In the preliminary investigations presented here, we use rectangular domains and
constrain the movement of boundary nodes to be tangential to the corresponding
segment. The extension of our mesh movement algorithm to allow for non-axes-
aligned geometry and temporal boundary deformations will be the subject of future
work.

To solve (5), still following McRae et al. (2018), we use a mixed finite element
method. Let Ψ ⊂ H2(Ω) and Σ ⊂ L2(Ω)2×2 denote the function spaces in which
the potential and its Hessian at a given timestep reside. At pseudotimestep k, the
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forward Euler scheme is applied to obtain φk+1 ∈ Ψ as follows:

〈∇ψ,∇φk+1〉L2(Ω) = 〈∇ψ,∇φk〉L2(Ω)+Δτ 〈ψ,m det(I+Hk)−θ〉L2(Ω), ∀ψ ∈ Ψ .

(6)
Its Hessian, Hk+1, is then recovered via an L2 projection (Lakkis and Pryer 2013):

〈σ ,Hk+1〉L2(Ω) = −〈∇ · σ ,∇φk+1〉L2(Ω) + 〈σ · n̂,∇φk+1〉L2(∂Ω), ∀σ ∈ Σ. (7)

In practice (6) and (7) are solved using finite-dimensional subspaces, Ψh ⊂ Ψ and
Σh ⊂ Σ . In this work, we choose both spaces to be piecewise linear and continuous
(P1). The Hessian is initialised to zero for the first iteration (assuming that the initial
physical mesh coincides with the computational mesh).

Equations (6)–(7) are solved to equilibrium, subject to a relative tolerance tol on
the residual of (6) as a stopping criterion. The gradient of the scalar potential is then
obtained by L2 projection, similarly to (7), but for the vector, rather than tensor, case.
With the recovered gradient, the mesh coordinates are updated according to (3).

Solving (6)–(7) repeatedly can be computationally expensive, because each solve
involves establishing a new map from ΩC to ΩP . However, in this work, we employ
several strategies to reduce this cost. Firstly, we use the final value of φ computed
during one iteration as the initial guess for the next. This is an appropriate choice
provided that the hydro-morphodynamics have not changed too significantly between
the iterations. In Sect. 4, we see that due to the slow nature ofmorphodynamic changes,
this is often the case. These slow changes mean it is be excessive to apply mesh
movement at every timestep, especially if the modifications to mesh coordinates are
only minor and thus the second way we reduce cost is by choosing an appropriate
mesh movement frequency. This can be inferred either by small sensitivity studies or
by using test case knowledge to infer the approximate rate at which the bed is moving.
Finally, whilst the exact equidistribution provided by (4) is mathematically attractive,
it is often unnecessary in practice. Figure 2 shows an example of the trade-off between
discretisation error and computational cost with respect to the relative solver tolerance
tol used to solve the Monge-Ampère equation. It shows that tolerance values below
O(10−3) result in large increases in computational cost for almost no accuracy benefits.
The case in this figure is for the migrating trench test case from Sect. 4.1 with a mesh
size of 10 mesh elements in the x-direction. Similar patterns were observed for other
numbers of mesh elements and thus throughout this work we use a relative solver
tolerance of tol = 10−3 to solve the parabolised form (5).

3 Hydro-morphodynamicmodel

Before applying our mesh-movement hydro-morphodynamic framework to some
fluvial and coastal zone test cases, we must describe and develop the hydro-
morphodynamicmodel. In thiswork,we use the hydro-morphodynamicmodel derived
in Clare et al. (2021b). This model is able to simulate both suspended sediment and
bedload transport taking into account gravitational and helical flow effects. To max-
imise stability, the time derivatives of our model equations are approximated using a
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Fig. 2 An example of the trade-off between discretisation error and computational cost with relative solver
tolerance for the migrating trench test case. The monitor function (23) has been applied to a mesh with 10
elements in the x-direction in the case α = 2, β = 0. Error is shown as a percentage of the fixed mesh case
with 10 mesh elements, whilst CPU time is relative to the adaptive case with tol = 10−8

fully-implicit backward Euler timestepping scheme. Full details of the model and its
development are provided in Clare et al. (2021b).

3.1 Model equations for a wet-dry domain

So far this model has been used for test cases in which the whole domain is wet.
However, in coastal problems, there is often awet-dry interface that must be simulated.
We do this by using the inbuilt wetting-and-drying process in Thetis, which follows
the approach detailed in Kärnä et al. (2011): the total water depth, H , is modified
using the expression

H̃ := η − h + f (H), (8)

where η is the elevation, h is the bed height, and

f (H) := 1

2

(√
H2 + δ2 − H

)
, (9)

as shown in Fig. 3.
Here δ is the wetting-and-drying parameter, which Kärnä et al. (2011) recommend

is set approximately equal to d||∇h|| where d is the typical length scale of the mesh.
Thus, the hydrodynamic equations in our model become

∂ H̃

∂t
+ ∇ · (H̃U) = 0, (10)

∂U
∂t

+ U · ∇U + g∇η = ν∇2U − Ch(H̃)

H̃
||U||U, (11)

where U is the depth-averaged velocity, g is gravity, ν the viscosity parameter and Ch

the bed friction. Following Funke et al. (2017), to avoid non-differentiable functions,
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Fig. 3 Wetting and drying
scheme diagram showing the
relationship between the total
water depth H and its modified
form H̃

we smoothen the approximation to the norm operator in (11) by adding the numerical
parameter ζ to the norm:

||U|| ≈
√

||U||2 + ζ 2. (12)

The value of ζ must be chosen by the user such that it is large enough for the model
not to crash due to non-differentiability issues, but not too large that the friction term
spuriously affects the velocity. In Funke et al. (2017), ζ is set equal to the wetting-
and-drying parameter, but the issue of non-differentiability exists independent of the
wetting-and-drying formulation and so here we do not follow this choice. In the test
case in Sect. 4.2, we experimented with values of ζ between 0.1 and 1 and found a
value of 0.4 is appropriate.

To simulate the suspended sediment transport in the fluid, we use an advection-
diffusion equation for the sediment concentration. The non-conservative form

∂C

∂t
+ ∇ · (FcorrUC) = εs∇2C + Eb − Db

H
, (13)

is described in Clare et al. (2021b) whereC is the depth-averaged sediment concentra-
tion, εs the diffusivity coefficient, Eb the erosion flux calculated usingVanRijn (1984),
Db the deposition flux calculated using the formula in Tassi and Villaret (2014), H
the depth and Fcorr a correction factor that accounts for the fact that depth-averaging
the product of two variables is not equivalent to multiplying two depth-averaged vari-
ables. For full details of the formulae used to calculate Eb, Db and Fcorr see Clare
et al. (2021b). However, the wetting-and-drying scheme used in this work is known
to leak sediment. Thus, in order to ensure sediment is conserved when using this
wetting-and-drying scheme, in this work we use the following conservative form,

∂

∂t
(H̃C) + ∇ · (FcorrUH̃C) = εs∇2(H̃C) + Eb − Db, (14)

where H̃ is themodifiedwater depth given by (8). Instead of solving forC , we solve for
the depth-integrated concentration, H̃C , which allows us to use the same finite element
formulation that is used for the non-conservative sediment equation. To verify that our
conservative scheme has improved the sediment conservation, in “Appendix A” we
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consider the simple Thacker test case of oscillations in a paraboloid bowl (Thacker
1981) using both the non-conservative and conservative sediment equations. We find
that the normalised mass error isO(10−2) for the non-conservative sediment Eq. (13)
but O(10−12) for the conservative sediment Eq. (14), which is close to the numerical
precision of the model. Thus, the conservative sediment equation conserves sedi-
ment much better than the non-conservative scheme and we can confidently use it
to simulate sediment transport in test cases with a wet-dry domain. Note for both the
non-conservative and conservative sediment equations, we set the incoming suspended
sediment flow rate so that the erosion flux, Eb, equals the deposition flux, Db, at the
upstream boundary. This means that sediment equilibrium is established at the inlet
and the bed is not artificially altered at the upstream boundary.

To complete our hydro-morphodynamic model, we use the Exner equation, which
governs how the suspended sediment and bedload transport affect the bed. This is
unaffected by wetting-and-drying and thus has the same form as that given in Clare
et al. (2021b):

(1 − p′)
m f

∂zb
∂t

+ ∇ · Qb = Db − Eb, (15)

whereQb is the bedload transport flux, p′ the porosity, zb the bathymetry (also known
as the bed profile) and m f a morphological acceleration factor used to artificially
increase the rate of bedlevel changes compared with the underlying hydrodynamics
and thus save computational time when simulating long-termmorphodynamic change
(see Clare et al. (2021b) for more details). Throughout this work, we calculate Qb

using the Meyer-Peter-Müller formula

Qb = φs

√

g

(
ρs

ρ f
− 1

)

d350 (cos ξ, sin ξ) , (16)

where φs is the non-dimensional sediment rate, d50 the average sediment size, ρs the
sediment density, ρ f the water density and cos ξ = U1√

U2
1+U2

2

and sin ξ = U2√
U2
1+U2

2

for

U = (U1,U2) (see Clare et al. (2021b) for more details). In practice, the magnitude
and direction of Qb depends on the gradient of the bed, but this is not reflected in
(16). Thus, following standard hydro-morphodynamic model practice (see e.g. Tassi
and Villaret (2014)) we also modify this formula using the slope effect corrections
described in Clare et al. (2021b), which account for bedload transport at a slower rate
if gravity is acting against it and vice versa.

If the bed of interest has complex steep slopes (like in Sect. 4.3) then hydro-
morphodynamic models can generate physically unrealistic slopes. For these cases,
we follow Apsley and Stansby (2008) and implement a ‘sediment slide’ mechanism
(sometimes called an avalanche mechanism) to our model, which prevents the slope
angle exceeding an angle of repose. The mechanism works by adding a component
qaval in the direction of the maximum slope, b̂, to the Exner equation (15), which
becomes

(1 − p′)dzb
dt

+ ∇h · (
Qb + qaval b̂

) = Db − Eb. (17)
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As we are solving a 2D depth-averaged problem, we ignore the z-component of b̂
and thus

∇h · (qaval̂b) = ∇h ·
(

−n2z qaval
sin λ

∇hzb

)

= ∇h · (−γ∇hzb), (18)

meaning the new Exner equation is

(1 − p′)dzb
dt

+ ∇h · (Qb − γ∇hzb) = Db − Eb. (19)

Note in (18), λ is the slope angle, nz is the z-component of the unit normal to the
surface, defined by

n̂z = 1
√
1 + |∇hzb|2

, (20)

and qaval is

qaval =
{
0.5(1 − p′)χ2 (tan λ−tan φ)

cos (λΔt) , tan λ > tan φ,

0, otherwise,
(21)

where φ is the angle of repose, p′ the porosity and χ the length scale that controls
how quickly the sediment is redistributed. In Apsley and Stansby (2008), it is argued
that the value of χ does not need to be very precise, and thus following their work we
set it equal to the approximate mesh step size if the mesh were uniformly distributed.
This mechanism stops the slope angle exceeding φ, although it does not model how
the sediment slides down the slope.

In summary, the wetting-and-drying hydro-morphodynamic model is given by Eqs.
(10), (11), (14) and (15) (or instead (19) if using a sediment slide mechanism).

3.2 Finite element implementation

We solve the hydro-morphodynamic model using the finite element coastal ocean
modelling system Thetis, which is built using the code-generating framework Fire-
drake (Kärnä et al. 2017). Throughout, we use the implicit backward Euler method as
the time-stepping algorithm. Note that due to the complexity and nonlinearity of this
combined system the equations are solved alternately, as opposed to as a monolithic
system,which alsomeans ourmodel is not fully implicit. This does not adversely affect
our results, because the timescale of the morphodynamic changes is much longer than
the model timestep. The hydrodynamic and sediment concentration equations in our
hydro-morphodynamic model are then solved using a discontinuous Galerkin finite
element discretisation (DG) with piecewise linear basis functions. A full description
of the finite element formulation for the hydrodynamic equations and the sediment
concentration equations can be found in Vouriot et al. (2019) and Clare et al. (2021b)
respectively. To solve the Exner equation (15), we use P1 elements with a continuous
Galerkin finite element discretisation (CG) rather than DG. Full details of the imple-
mentation of the Exner equation (15) in CG and the weak form of the terms are given
in Clare et al. (2021b). However, in this work, we also use (19) (a modified version of
the Exner equation), which includes the sediment slide mechanism −∇h · (γ∇hzb).
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The corresponding term in the weak form of (19) is obtained by multiplying it by the
test function, ψ and integrating by parts once to give the following

∫

Ω

−∇h · (γ∇hz
n+1
b ) =

∫

Ω

γ (∇hψ) · (∇hz
n+1
b ) dx, (22)

which is added to the weak form of the Exner equation derived in Clare et al. (2021b).
Here n + 1 indicates the (n + 1)st timestep (because we solve the Exner equation
implicitly) and there is no boundary integral because we assume Neumann conditions
of no flux at the domain boundary and using CG means the centered flux values on
either side of each interior edge cancel each other out over the whole domain. Note,
by using this weak form, we are no longer considering second order derivatives here.

We have thus constructed a full mesh-movement hydro-morphodynamic model
framework, where the mesh on which the hydro-morphodynamic model is solved
is moved from timestep to timestep using the methods described in Sect. 2. This
framework is not currently parallelised, but Thetis itself is already parallelised. Note
further that mesh movement is not constrained to occur at every timestep, meaning we
can choose how frequently the mesh is moved. The framework may now be applied
to a series of test cases with complex bathymetries and/or wet-dry interfaces.

4 Test cases

4.1 Complex bathymetry test case: migrating trench

As a first test case, we consider the complex bathymetry case of a migrating trench,
based on an experiment in Van Rijn (1980). This test case has already been used in
Clare et al. (2021b) for validation of our hydro-morphodynamic model configuration
in the case of a fixed uniform mesh.

Here, we use the same setup and parameter values as those described for this test
case in Clare et al. (2021b). In particular, this means we use the fully wet version of
the hydro-morphodynamic model with no sediment slide mechanism to model both
suspended and bedload transport with magnitude and angle corrections from the slope
effect, and use the Nikuradse friction formula to simulate friction. Additionally, we
use a morphological acceleration factor, m f , of 100 to aid computational efficiency.
The only difference between the set-up here and that in Clare et al. (2021b) is the
value of the diffusivity coefficient εs . Clare et al. (2021b) shows that this test case is
sensitive to εs and altering the mesh resolution will change the effective numerical
diffusivity of the model, which makes assessing performance against experimental
data challenging, due in part to the issue of “getting the right answer for the wrong
reasons”. Thus, we calibrate a value for diffusivity from the experimental data using a
uniform fixed mesh with Δx = 0.05m (320 mesh elements in the x-direction) in the
model. We use a gradient-based optimisation routine to perform optimum parameter
estimation and compute the gradients using the adjoint method. More detail on the
use of the adjoint framework with the hydro-morphodynamic model can be found in
Clare et al. (2021a). We find that the optimum value of the diffusivity coefficient is
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εs = 0.18011 to five significant figures. Throughout this section, this value is used as
the diffusivity parameter.

4.1.1 Fixed uniformmeshes

Before applying mesh movement methods, we study how the error varies on a series
of fixed meshes varying from 320 mesh elements in the x-direction down to only
8 elements in the x-direction. Throughout this work, the error in the bed profile is
calculated at the end of the simulation. The existence of experimental data for this
test case means that we can calculate the total error, which is equal to the model
error (the error due to using a simplified model to approximate a real world problem),
plus discretisation error (the error arising from using a finite mesh to solve the model
equations). In this section, the error is calculated using a pointwise �2 error norm at
the location of the data points in the experiment.

Figure 4a shows the total error between the final bed profile from the experimental
data and from the model output for a series of fixed uniform meshes. In this figure,
the points marked with a star are the results where the number of mesh elements in
the x-direction = [10, 20, 40, 80] and the points marked with a square are those where
the number of mesh elements in the x-direction = 8. This distinction has been made
because for both the star and square points the initial profile of the trench is incorrectly
defined on meshes but in a different way. For example, instead of the second slope
starting at the correct location of x = 9.5m, for the star points it starts at x = 9.6m,
whereas for the square point it starts at 10m. These differences affect the results on
the fixed uniform mesh. For the remaining circle points (number of mesh elements
in the x-direction = [32, 64, 160, 320]), the initial profile is correctly defined. This
difference in the initial trench profile definition results in fluctuations in the error
trend. It is surprising that with 10 elements, the total error is lower than that obtained
on finer meshes. This is likely due to this test case’s sensitivity to diffusivity and the
fact that the effective diffusivity is different at the coarser mesh resolutions. Despite
these fluctuations, the general trend is that the value of the error norm begins to plateau
around 20 mesh elements and by 32 mesh elements the error has clearly converged
to a value of approximately 0.0244m. This is because, once the initial trench profile
is accurately defined on the mesh, as noted in Clare et al. (2021b), the model is then
quite insensitive to changes in Δx and Δt and thus the total error in the solution is
dominated by the model error rather than the discretisation error from the mesh.

To better understand the discretisation error, we calculate the error norm between
the final bed profile for different mesh resolutions compared to the final bed profile
obtained with the finest fixed uniformmesh with 320 mesh elements in the x-direction
(Δx = 0.05m). Figure 4b shows that as the mesh becomes finer the discretisation
error decreases with an order of approximately (Δx)2. Note, we again separate out
visually the number of mesh elements in x-direction = [10, 20, 40, 80] marked with
a star, the number of mesh elements in x-direction = 8 marked with a square and the
remaining marked with a circle. Like with the total error the sets converge at slightly
different rates. Comparing Fig. 4a and 4b shows that, when there are 20mesh elements
or fewer, the total error is dominated by the discretisation error, but after this point
the total error begins to be dominated by the model error. This is because above 20
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Fig. 4 Errors in the final bed profile for a series of fixed uniform meshes for the migrating trench test case.
The marker shapes distinguish differences in the definition of the initial profile on the mesh: for the circle
points the initial trench profile is accurately defined on the mesh; for the star and square points the initial
trench profile is ill-defined but in different ways

mesh elements the initial trench profile is either accurately defined or close to being
accurately defined even on a fixed uniform mesh, and so the discretisation error is
small.

4.1.2 Meshmovement

In order to apply mesh movement to the test case, we must choose an appropriate
monitor function. From studying the fixed uniform meshes, we have determined that
the main source of discretisation error in this test case is due to the fact that the initial
trench profile is not accurately defined on the mesh. Even if a mesh is chosen so the
profile is initially accurately defined, as soon as the simulation starts, the bed begins to
move so the profilemay quickly become ill-defined (hence the differences in total error
even for the circle points in Fig. 4a). Furthermore, there are large sections of the trench
profile that are flat and are relatively unchanged during the simulation, especially at
the inflow. Therefore, a good choice of monitor function for this test case is one that
results in increasedmesh resolution in regions where the bed gradient and/or curvature
is high and reduced mesh resolution where the bed gradient and/or curvature is lower.
In this work, we choose the following monitor function because it allows us to control
the effect of the first and second order bathymetry derivatives on the mesh movement

m(x, y) = 1 + max
x,y

⎛

⎝α

∥
∥H(zb)

∥
∥
F

max
x,y

∥
∥H(zb)

∥
∥
F

, β
‖∇zb‖2

max
x,y

‖∇zb‖2

⎞

⎠ , (23)

where H(zb) represents the Hessian of the bathymetry and ||·||F the Frobenius norm.
Because we want to capture all the areas where the bed gradient or the curvature
is high, our monitor function depends on the maximum of the first and second order
derivatives,meaning that a regionwhere only one of the derivatives is high is not given a
lower weighting than a region where both derivatives are high. This monitor function
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Fig. 5 Snapshots of bathymetry and the underlying mesh for a moving mesh simulation of the migrating
trench test case. The monitor function (23) has been applied to a mesh with 32 elements in the x-direction
in the case α = β = 3. Results are shown at three points in time demonstrating mesh movement to capture
bed evolution to the right

introduces two user-defined parameters, which control the effect of the underlying
bathymetry on mesh movement; α controls the effect of the second order derivative
(curvature), whilst β controls the effect of the first-order derivatives (slope). In order
to be able to compare these parameters across test cases, we choose to normalise the
derivatives in the monitor function. Note that both the Frobenius norm and the 2-norm
are taken on an element-by-element basis and then projected into the P1 space rather
than being calculated component-wise. This is because we found that computing the
norms component-wise results in an insufficiently smoothmonitor function, leading to
model divergence.Using an element-wise formulation introduces additional numerical
diffusion that helps to counteract this.

Figure 5 shows an example of how the mesh is moved using (23) for this particular
test case. Note the mesh hardly moves in the y-direction because the bathymetry is
uniform in this direction.

With the mesh movement method used in this work, we can choose how frequently
the mesh is moved. If the modification to the mesh coordinates proposed by (4) is
only minor then solving this equation at every timestep of our hydro-morphodynamic
model may prove an unnecessary expense. Because of the slow moving nature of this
test case, we can infer that we can set a lowmesh movement frequency without having
an adverse effect on the results. More precisely, Fig. 6 shows the effect of changing the
frequency of the mesh movement. The more timesteps between each mesh movement,
the greater the discretisation error, but the lower the computational cost. This is to be
expected as mesh movement methods have a non-negligible computational cost. Note
that the total number of timesteps in this simulation is 2160 and therefore in the lowest
frequency case the mesh is only moved once during the simulation (at the initial time).
Significantly, the figure shows that if a large enough number of timesteps per mesh
movement is chosen, we can reduce the computational cost below that of using a fixed
mesh and still bemore accurate. This is because although there is a cost associatedwith
using the mesh movement algorithm, the mesh movement simulations require fewer
model iterations to converge and thus when the mesh movement frequency is low, it
is possible to achieve a lower overall computational cost when using moving meshes
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Fig. 6 Trade-off between discretisation error and computational cost due to mesh movement frequency for
the migrating trench test case. The monitor function (23) has been applied to a mesh with 32 elements in
the x-direction in the case α = β = 3. Errors and times are percentages relative to the fixed mesh case with
32 elements

Fig. 7 Comparison of final bedlevels resulting from fixed and moving mesh simulations of the migrating
trench test case on a mesh with 32 elements in the x-direction. The moving mesh simulation applies the
monitor function (23) with α = β = 3 every 40 timesteps. The experimental data from Van Rijn (1980)
and the final bedlevel due to a high resolution fixed mesh simulation are also shown

compared to fixedmeshes. This supports our argument, at least for this simple test case,
thatmeshmovement can not only reduce error but also reduce the computational cost of
the simulation. In the remainder of this section, we choose tomove themesh after every
40 timesteps of the hydro-morphodynamic model (equivalent to moving the mesh 54
times during the simulation), as this provides a good balance between computational
cost and accuracy. Figure 7 compares the final bedlevel obtained by moving the mesh
at this frequency with the bedlevel obtained using a fixed uniform mesh with the same
number of elements, the ‘true‘ value obtained using a high resolution mesh with 320
mesh elements in the x-direction and the experimental data from Van Rijn (1980). It
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shows themeshmovement solution ismuchmore accurate than the fixedmesh solution
relative to the high resolution solution and thus that only moving the mesh every 40
timesteps is sufficient to see notable improvements. Additionally, in most regions the
mesh movement solution is a more accurate approximation of the experimental data
than the fixed mesh solution, although it should be noted that when comparing results
to experimental data, there is an inbuilt model error, which is unaffected by mesh
movement.

The mesh movement method used in this work also allows the user to set the values
of α and β in (23), which control the mesh movement. In order to determine optimum
values of these parameters, we conduct a small sensitivity study, but in future work
will seek a gradient-based approach (see Sect. 5). Mesh movement methods have no
effect on model error, only on the discretisation error and thus for brevity, we only
show the results of the study for discretisation error. Figure 8 shows that for all number
of mesh elements, the discretisation error is minimised when α is approximately 3.
For the smaller number of elements, the discretisation error is significantly smaller
than the discretisation error for the fixed mesh (α = β = 0) and including the first
order derivative of the bathymetry in the monitor function is important (i.e. β 
= 0).
However, as the number of elements increases the effect of mesh movement on the
discretisation error decreases and the first order derivative becomes less important.
There is also a clear distinction in the way the discretisation error varies with α and
β above and below 20 mesh elements. This distinction is also seen in Fig. 4, which
shows that below 20 mesh elements the discretisation error dominates the model error
but above 20 mesh elements the model error dominates the discretisation error. This
distinction exists because above 20 mesh elements the initial trench profile is either
accurately defined or close to being accurately defined even on a fixed uniform mesh
(which is not the case below 20 mesh elements) and so the discretisation error is
already very small (O(10−3)).

Thus, we can conclude that for this test case a good general parameter choice for the
monitor function (23) is α = 3 and β = 0 (for large numbers of mesh elements in the
x-direction) and α = β = 3 (for small numbers of mesh elements in the x-direction).
The greater dependence on the second order derivative than the first order derivative
is predictable because the regions of the trench that are most difficult to capture are
the corners where the second derivative is high.

4.1.3 Introducing a slope in the y-direction

The test case considered so far in this section is effectively 1D with little variation
in the bathymetry or flow in the y-direction. However, most hydro-morphodynamic
problems are effectively 2D in nature and thus we modify the test case by introducing
a slope of 0.1 in the y-direction. All setup parameters are kept the same and the initial
profile is shown in Fig. 9.

The aim of this modified migrating trench test case is to show the generality of our
mesh movement framework and that, if the monitor function parameters are known
for a similar simple test case, then a full sensitivity analysis is not required to find
the parameters for the more complex case. Before using mesh movement, we first
consider a series of fixed uniform meshes, in order to compare their accuracy to the
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Fig. 8 Discretisation error curves for moving mesh simulations of the migrating trench test case under
different values of α and β in monitor function (23)

Fig. 9 Initial bed profile for the modified migrating trench test case

accuracy of the mesh movement framework. We choose 8, 10, 20, 32, 40 and 64 mesh
elements in the x-direction. As the length in the y-direction is one sixteenth that in
the x-direction, we choose the number of mesh elements in the y-direction to be one
sixteenth of the number in the x-direction (rounding up to the nearest integer where
necessary). Note that for the eight elements in the x-direction we use one element
in the y-direction and for ten elements in the x-direction we use two elements in the
y-direction, to allow for some mesh movement in the y-direction.

With the extra slope in the y-direction, we no longer have experimental data to com-
pare against but can still analyse the discretisation error by considering results obtained
on a fixed uniform mesh of 320 mesh elements in the x-direction (Δx = 0.05m) and
20 mesh elements in the y-direction (Δy = 0.055m) as a high resolution approxima-
tion of ‘the truth’. Furthermore, as we no longer have pointwise experimental values,
from this point forward, the error is calculated using the L2 error norm over the whole
domain. We note that for fixed uniformmeshes as the mesh becomes finer the discreti-
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sation error decreases approximately linearly (see Fig. 11b later in the section). Note
the truncation error of the finite element representation and the associated discretisa-
tion of the non-linear shallow water equations used here is known to be second order
(Comblen et al. 2010). However, formal order of convergence of the coupled nonlinear
equations including morphodynamics are hard to derive and therefore a reduction in
the observed order of convergence is expected.

Following our analysis from the originalmigrating trench test case, for thismodified
case, wemove themesh every 40 timesteps. In addition, as we are testing the generality
of our mesh movement framework, instead of conducting a full sensitivity analysis to
determine the parameters in the monitor function (23), we use parameters of the same
magnitude as those found in the original test case. The introduction of an extra slope
though, suggests that a different relationship between α and β may be optimal and thus
we conduct a small study. Figure 10 shows the results of this study and shows that for
small numbers of mesh elements in the x-direction the second order derivative of the
bathymetry is the most important, then for 32 mesh elements the first and second order
derivatives are of equal importance, and finally for more than 32 mesh elements, the
first order derivative becomes the most important. This is predictable from the results
from the original test case because for the latter, mesh movement results in a large
error reduction for small numbers of mesh elements but when the number of elements
is large, it has less of an effect. We infer from this that for the modified test case, for
small numbers of mesh elements, the discretisation error is dominated by errors in the
x-direction and thus the second order derivative is important (as in Sect. 4.1), but as
the number of mesh elements increases the error in the y-direction starts to dominate
meaning the first order derivative becomes the most important due to the linear slope
in the y-direction.

Figure 10 also shows that using monitor parameters with a greater magnitude (a
magnitude of 5) than that used in Sect. 4.1 (a magnitude of 3) results in a greater error
reduction. This is due to the fact that for the modified case, the bathymetry is more
complex and so more mesh movement is required. Therefore, whilst the magnitude of
monitor function parameters obtained from simpler test cases results in error reduction
in more complex problems, optimum mesh movement in this more complex case can
be achieved by increasing the magnitude of the monitor function parameters.

Finally, Figs. 11a and 11b present a summary of our discretisation error results for
the original and modified cases respectively. Figure 11a shows, for a given number of
mesh elements, theminimumdiscretisation error achieved in our sensitivity study from
using mesh movement (optimum parameter set) and the discretisation error achieved
by using mesh movement with our generalised parameter set (α = 3, β = 3 for small
numbers of mesh elements in the x-direction and α = 3, β = 0 for large numbers of
mesh elements). Figure 11b only shows the discretisation error achieved by a gener-
alised parameter set (α = 5, β = 0 for small numbers ofmesh elements;α = 5, β = 5
for 32 mesh elements; and α = 0, β = 5 for large numbers of mesh elements) because
it was not necessary to conduct a full sensitivity analysis for this test case given that we
had already done so for the original case. Moving mesh methods consistently result in
a lower error than fixed mesh methods and furthermore our general parameter choice
produces very similar error results to the optimum values. Thus, we have shown that
mesh movement methods can be used to improve accuracy and reduce computational
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cost for quasi-1D and 2D cases with non-trivial bathymetries. We have also been able
to use this test case to draw some conclusions about general good parameter choices
for (23). In the next section, we test these general optimum parameter choices on a
completely different 2D problem to see if they are again optimum or close to optimum
choices.

4.2 Wet-dry interface test case: beach profile

We have shown that moving mesh methods can improve accuracy and efficiency for
test cases with steep gradients in a fully wet domain. Coastal problems often have a
wet-dry interface, for example as a wave or tide moves up a beach. These problems
have been historically difficult to solve because of their computational expense, but
mesh adaptationmethods provide away to retain accuracy,whilst improving efficiency.
Mesh movement methods have been used previously to successfully simulate a wet-
dry interface, for example in Zhou et al. (2013). However, to the best of our knowledge
they have not previously been used to solve coupled hydro-morphodynamic cases with
wet-dry interfaces.

In this section, we consider the test case of a wave running up a beach slope, with
the initial bathymetry shown in Fig. 12. The figure also shows an example of the
simulated wave surface due to the incoming wave, which is governed by

u = 0.5 cos (0.05t) at x = 0m. (24)

The total simulated time is 60000s (approximately equivalent to 16h) with a morpho-
logical acceleration factor of 250, meaning the full wave passes over the beach just
over two times.

For this test case, we use a similar hydrodynamic setup to that used for the Balzano
test case in Kärnä et al. (2011). Following that work, instead of using the Nikuradse
friction formula as in previous test cases, the Manning friction formula is used to
determine the bed friction

Ch = g
n2

H1/3 , (25)

where n is the Manning drag coefficient set to 0.01 sm−1/3. As we are using wetting-
and-drying, we use the wet-dry hydro-morphodynamic model discussed in Sect. 3.1.
The parameters used in the simulation are summarised in Table 1. Note our model
cannot currently simulate shoaling and breaking waves and thus a relatively high
viscosity value of 1m2s−1 is used in the hydrodynamics to dissipate energy. This
is standard practice, for example Li and Huang (2013) view viscosity as a model
calibration parameter for energy dissipation, rather than a physical parameter.

4.2.1 Fixed uniformmeshes

To begin, we consider a series of fixed meshes varying from a uniform spacing with
700 mesh elements in the x-direction (Δx = 0.5m) to 70 mesh elements (Δx = 5m).
In order to keep the elements in the fixed mesh roughly uniform, an appropriate Δy
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Fig. 12 Initial bathymetry of beach test case with an example of the simulated water surface

Table 1 Parameter values used
in the beach test case

Variable name Variable value

Length in x-direction 350m

Length in y-direction 10m

Timestep, dt . 0.5 s

Bed slope gradient 1/40

Morphological simulation time 60,000s

Morphological acceleration factor 250

Median particle size (d50) 1 × 10−4 m

Sediment density (ρs ) 2650kg m−3

Water density (ρ f ) 1000kg m−3

Kinematic viscosity (ν0) 1m2s−1

Bed sediment porosity (p′) 0.4

Diffusivity (εs ) 1m2s−1

Manning friction coefficient (n) 0.01 sm−1/3

Wetting-and-drying parameter (δ) 0.05m

is also chosen. Note that we set Δt = 0.5 s for all the simulations in this section, in
order to ensure that the wave is correctly defined. Because this is a synthetic test case
for which there exists no real data, we use the model solution at 700 mesh elements in
the x-direction (Δx = 0.5m) and 20 mesh elements in the y-direction (Δy = 0.5m)
as a high resolution approximation of ‘the truth’ and are thus showing the estimates of
the discretisation error. Note for this section the discretisation error is the pointwise �2
error normat y = 5mat evenly spaced intervals. Thus, for a fixed uniformmeshFig. 13
shows that, as themesh becomes finer, the discretisation error decreases approximately
linearly. In Kärnä et al. (2011), they show that, for simple test cases, the wetting and
drying scheme detailed in Sect. 3 results in an order of convergence of 1.5. However,
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Fig. 13 Discretisation error in a simulation of the beach test case based on a fixed uniform mesh. The
reference solution uses a mesh with 700 elements in the x-direction. The discretisation error is the pointwise
�2 error norm

our test case is more complex and includes coupling to morphology changes, and thus
a further reduction as observed here is to be expected.

4.2.2 Meshmovement

We apply mesh movement methods using the same monitor function as that used in
the previous test cases (23). Figure 14 shows an example of how the mesh is moved
using this monitor function for this particular test case. Note that again the mesh
hardly moves in the y-direction because the bathymetry is uniform in this direction.
To understand the effect of this mesh movement, Fig. 15 compares the final bedlevel
obtained by the mesh movement shown in Fig. 14 with the bedlevel obtained using a
fixed uniform mesh with the same number of elements and the ‘true’ value obtained
using a high resolution mesh with 700 elements in the x-direction. This shows that
using mesh movement allows us to capture the steep bed gradients more accurately
than using a fixed uniform mesh of the same resolution.

As discussed in the previous sections, we can also choose the mesh movement
frequency. This is particularly important in a test case like this one with fast flowing
hydrodynamics and therefore we conduct a sensitivity study considering multiple dif-
ferent mesh resolutions. Figure 16 shows that decreasing the number of timesteps per
mesh movement almost always decreases the error and always increases the computa-
tional cost. For the smaller number of mesh elements considered (70 mesh elements in
the x-direction), the error is minimised by using 16 timesteps per mesh movement and
increases when the number of timesteps is decreased beyond this point. We hypothe-
sise that this is becausewhen there are fewer numbers ofmesh elements, frequentmesh
movement can result in numerical instabilities and hence larger errors. By contrast,
for both the larger numbers of mesh elements considered, the error is minimised by
using 10 timesteps per meshmovement and is proportionally larger using 16 timesteps
than at other similar frequencies. Thus, following our observations, in this test case
the mesh is moved every 10 timesteps for all mesh resolutions apart from for 70 mesh
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Fig. 14 Snapshots of bathymetry and the underlying mesh for a moving mesh simulation of the beach
test case. The monitor function (23) has been applied to a mesh with 175 elements in the x-direction with
α = 5 and β = 0. Results are shown at three points in time demonstrating mesh movement to capture bed
evolution to the right

Fig. 15 Comparison of final bedlevel resulting from fixed and moving mesh simulations of the beach test
case on a mesh with 175 elements in the x-direction. The moving mesh simulation applies the monitor
function (23) with α = 5 and β = 0. The final bedlevel due to a high resolution simulation on a fixed mesh
with 700 elements in the x-direction is also shown

elements when it is moved every 16 timesteps. Significantly with this choice of mesh
movement frequency we are able to halve the error relative to a fixed uniform mesh
of the same resolution.

We can also choose an α and β in (23) to minimise the discretisation error. As the
initial bedlevel is smooth (see Fig. 12), the first order derivative of the bedlevel is not
important and thus we set β = 0. Moreover, in the previous section, we found that a
parameter magnitude of 3 for simple cases and 5 for more complex cases provides a
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Fig. 16 Trade-off between discretisation error and computational cost due to mesh movement frequency
for the beach test case. The monitor function (23) has been applied using α = 5 and β = 0 for all numbers
of mesh elements. Errors and times are percentages relative to the fixed mesh case with the same resolution

goodgeneral optimisation of the discretisation error and thuswe conduct our sensitivity
study using similar values.

Figure 17 shows the results of this sensitivity study. Most significantly, using mesh
movement it is possible to more than half the error relative to the fixed uniform mesh
error (α = 0) for almost all mesh resolutions considered. Note that the exception is
280 elements where error reduction is not as large because our model cannot produce
a result for α > 3 because of Courant number restrictions (recall from Sect. 3.2 that
our model is not fully implicit). Additionally, Fig. 17 shows that a general magnitude
of 5 corresponds to an either optimum or very close to optimum minimisation in the
discretisation error for all mesh resolutions considered. This fits with our physical
understanding of the problem because the presence of waves makes the problem more
complex thus requiring a stronger mesh movement factor. Figure 18 emphasises the
significant error reduction achieved by usingmeshmovementmethods on this problem
and importantly shows that for most mesh resolutions the general parameter choice of
α = 5 and β = 0 results in similar error results to the optimum parameter values.

We have thus shown that for this relatively complex wetting-and-drying test case,
mesh movement methods can more than halve the error at most mesh resolutions
compared to a fixed uniform mesh, even when using general parameters that have not
been tuned for this specific test case.
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Fig. 17 Discretisation error curves for moving mesh simulations of the beach test case under different
values of α in the monitor function (23)

Fig. 18 Discretisation error comparison of fixed mesh and moving simulations of the beach test case. Both
general (α = 5, β = 0) and optimum parameters for the monitor function (23) are considered

Fig. 19 Initial bed profile for the tsunami with obstacle test case. Left: Planar view. Right: Transect at x =
7m
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4.3 Complex bathymetry with a wet-dry interface test case: tsunami-like wave
with an obstacle

As a final test of our mesh movement framework, we consider an example with both
a wet-dry interface and a complex initial bathymetry (Fig. 19). So far in this work,
we have mostly considered quasi-1D cases. Thus here we choose a more complex
bathymetry of a cube obstacle on a sloping beach, inspired by the 2D test case in
Hudson and Sweby (2005). To increase the complexity of this test case, we simulate
a series of tsunami-like solitary waves breaking over this beach, inspired by the test
case in Kobayashi and Lawrence (2004). It should be noted that the hydrodynamic
component of the model described in Sect. 3 is governed by the non-linear shallow
water equations, which are not able to exactly represent the propagation of a solitary
wave (Barthélemy 2004; Kazhyken et al. 2021). However, because this is a theoretical
test case, in this section we are not comparing against experimental data but instead
always compare against internally consistent solutions obtained using the shallow
water solver and therefore our mesh movement results are still valid. Moreover, in
Clare et al. (2021a), we consider the original experimental version of the tsunami-like
solitary wave test case in Kobayashi and Lawrence (2004) and find that our model
results agree well with experimental data. This suggests that using shallow water
equations instead of a dispersive wave model does not result in substantial divergence
from the experimental set-up.

Following Kobayashi and Lawrence (2004), we define the incoming wave using
the following formula for a positive solitary wave

η(t) = Hwave sech
2

(√
3Hwave

4h

√
g(Hwave + h)

h
(t − tmax)

)

+ ηdown, (26)

where Hwave is the average wave height, h the still water depth, tmax the arrival time
of the wave crest and ηdown the initial decrease of the elevation at the beginning of the
simulation. In the experiment, the solitary wave is generated 8 times with the bed not
adjusted after each wave. Given we are not matching with experimental data and for
reasons of time, here we only run one wave in our simulation. However, in preliminary
tests, we found that we can set a morphological acceleration factor,m f as high as four
without any noticeable differences between the sped-up results and the results with no
morphological acceleration. Thus, in this test case, we set m f equal to four, meaning
that this one wave simulation is approximately equivalent to simulating four waves. In
addition, in the experiment, the simulation is run for 40 s with tmax = 23.9 s for each
solitary wave, but for the first 20 s the system is stationary. Thus, we run our model
simulation for 20 s with tmax = 3.9 s for each solitary wave.

All the parameters used in the simulation are summarised in Table 2 and taken
from the experiment in Kobayashi and Lawrence (2004) and also Li and Huang (2013)
(which simulated the experiment using Delft3D). Following Li and Huang (2013), we
use the Chezy friction formula defined by

Cchezy = g

n2
(27)
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Table 2 Parameter values used
in the tsunami with obstacle test
case

Variable name Variable value

Length in x-direction 30m

Length in y-direction 8m

Timestep (dt) 0.025s

Morphological simulation time 20s

Morphological acceleration factor 4

Median particle size (d50) 1.8 × 10−4 m

Sediment density (ρs ) 2650kg m−3

Water density (ρ f ) 1000kg m−3

Kinematic viscosity (ν) 0.8m2s−1

Bed sediment porosity (p′) 0.4

Diffusivity (εs ) 1m2s−1

Chezy friction coefficient (n) 65m1/2s−1

Angle of repose 20◦
Wetting-and-drying parameter (δ) 1/60m

Average waveheight (Hwave) 0.216m

Still water depth (h) 0.18m

Initial elevation decrease (ηdown) −0.0025m

Wave arrival time (tmax) 3.9 s

where n is theChezy friction parameter.Note that, as in Li andHuang (2013),we do not
simulate bedload transport because studies have shown that sediment transport due to
tsunami waves mainly occurs due to suspended sediment (Goto et al. 2011). However,
recall from Sect. 3.1 that this more complex bathymetry requires the implementation
of the sediment slide mechanism.

4.3.1 Fixed uniformmeshes

As with the other test cases, we begin by considering a series of fixed meshes with
30, 60, 90, 120 and 150 mesh elements in the x-direction corresponding to 8, 16,
24, 32, 40 mesh elements in the y-direction respectively, meaning the mesh elements
are roughly uniform. Because we have combined two test cases to construct this test
case, we no longer have experimental data available. Thus, we use the model solution
at 600 mesh elements in the x-direction (Δx = 0.05m) and 160 mesh elements in
the y-direction (Δy = 0.05m) as a high resolution approximation of ‘the truth’. The
discretisation error in this section is the L2 error over the whole domain.

When we run our hydro-morphodynamic model on these fixed uniformmeshes, we
find that with only 30 mesh elements in the x-direction, our hydro-morphodynamic
model crashes no matter how small a timestep is used. This is because at such a
coarse resolution, the model cannot accurately simulate the movement of the tsunami-
like wave along the slope and instead unphysical shocks form that cannot be properly
resolved. For the other fixed uniformmeshes, the discretisation error decreases approx-
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imately linearly, as the number ofmesh elements increases, the sameconvergence order
as for the wet-dry test case considered in Sect. 4.2.

4.3.2 Meshmovement

This test case is more complex than the ones considered previously because there are
two regions of potentially complex bathymetry - the first due to the block and the
second due to sediment transport as the wave breaks at the wet-dry interface. Thus,
instead of using the same monitor function as in previous test cases (23), we add a
component that tracks the wet-dry interface so the new monitor function is

m(x, y) = 1 + μ

⎛

⎝max
x,y

⎛

⎝α

∥
∥H(zb)

∥
∥
F

max
x,y

∥
∥H(zb)

∥
∥
F

, β
‖∇zb‖2

max
x,y

‖∇zb‖2

⎞

⎠ + λ

cosh(bλ(η − zb))2

⎞

⎠ , (28)

where η is the elevation, zb the bed level, bλ controls the width of the wet-dry interface
tracker andμ, α, β and λ are all user-defined parameters. Note, we set bλ equal to 1 for
all numbers of mesh elements, apart from for the smallest number of mesh elements
whenwe set bλ equal to 5 to ensure that, despite the small number of elements, the wet-
dry tracker still has an effect. Here we choose to keep the wet-dry tracker outside of
the expression maximising the first and second order bathymetry derivatives, because
the bathymetry gradient and wet-dry interface are independent of each other and so
should be separate contributions in the monitor function.

Figure 20 shows an example of how the mesh moves using this monitor function
with 120 mesh elements in the x-direction. To better show the mesh movement and
bed evolution for this test case with this number of mesh elements, the figure shows
the mesh only and the 3D view of the bathymetry separately. The first and second
order bathymetry derivatives in (28) cause the mesh to deform around the edges of the
block whilst the wet-dry interface monitor tracks the movement of the wave up and
down the slope. To illustrate this tracking movement, the wet-dry interface is plotted
as a thick black line on Fig. 20.

As with the previous test cases, we can choose how frequently the mesh is moved.
Figure 21 shows that increasing the frequency of mesh movement decreases the dis-
cretisation error and increases the computational cost. Whilst the cost of using mesh
movement is always greater than the cost of using a fixed uniform mesh, mesh move-
ment methods always result in an error that is less than half the size of the error from
the fixed uniform mesh. The accuracy improvement seems to plateau at around 20
timesteps per mesh movement and therefore in the remainder of this section, this is
the frequency with which we move the mesh. As the simulation time is 20 s and the
timestep is dt = 0.025 s, this is equivalent to moving the mesh 40 times during the
simulation. Figure 22 compares the final bedlevel obtained by moving the mesh at
this frequency to the bedlevel obtained using a fixed uniform mesh with the same
number of elements and the ‘true’ value obtained using a high resolution mesh with
600 elements in the x-direction. It shows the mesh movement solution is much more
accurate than the fixed mesh solution and thus that moving the mesh at this frequency
is appropriate for this new more complex monitor function (28).
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Fig. 20 Mesh movement using (28) for the tsunami with obstacle test case with 120 mesh elements in the
x-direction and μ = 15 and α = β = λ = 1 (i.e. an equal contribution from the first and second order
bathymetry derivatives and the wet-dry interface tracker). Results are shown with only the mesh at three
points in time with the wet-dry interface shown as a thick black line (LEFT) and in 3D form at two points
in time (RIGHT) demonstrating mesh movement to capture bed evolution to the right

Fig. 21 Trade-off between discretisation error and computational cost due to mesh movement frequency for
the tsunami with obstacle test case. The monitor function (28) has been applied to a mesh with 60 elements
in the x-direction in the case μ = 7, α = 0, β = λ = 1. Errors and times are percentages relative to the
fixed mesh case with 60 elements

We can also choose α, β and λ to minimise the discretisation error. In previous test
cases in this work, we find that a value equivalent to μ ≈ 5 provides a good general
optimisation of the discretisation error and thus we conduct our sensitivity study using
similar values. Figure 23 shows the results of this sensitivity study and shows that again
a magnitude of 5 provides a good general optimisation of the discretisation error. In
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Fig. 22 Comparison of final bedlevels resulting from fixed and moving mesh simulations of the tsunami
with obstacle test case on a mesh with 60 elements in the x-direction. The moving mesh simulation applies
the monitor function (28) with μ = 7, α = 0, β = λ = 1 every 40 timesteps. The final bedlevel due to a
high resolution simulation on a fixed mesh with 600 elements in the x-direction is also shown

all cases, the error is reduced by using mesh movement methods compared to the
fixed uniform mesh (μ = 0). Note that for 30 mesh elements in the x-direction, the
fixed uniform mesh model crashes, which is why no error is plotted for μ = 0 on this
subfigure.

The figure also shows the effect on the discretisation error of different relationships
between α, β and λ in the monitor function (28). The largest mesh movement errors
occur almost always when the monitor function only includes the wet-dry interface
tracker (λ = 1, α = β = 0). This is understandable given that with this monitor
function, the obstacle in the wave-approach is not well-captured. However, in almost
all cases the inclusion of the wet-dry interface tracker with some combination of
the first and second order derivative of the bathymetry results in a decrease in the
discretisation error relative to the tracker not being present. In fact, it is only with
the inclusion of the wet-dry interface tracker that our model can properly resolve the
wave movement on the coarse mesh with only 30 elements in the x-direction. This
highlights that appropriate mesh movement can not only decrease computational cost
and improve accuracy, but also improve model stability and justifies the use of the
more complex monitor function (28) in this test case. A good general choice for the
relationship between α, β and λ isα = β = λ = 1, i.e. an equal weighting between the
first and second order derivatives of the bathymetry and the wet-dry interface tracker.
This makes physical sense because the bathymetry derivatives are necessary to capture
the obstacle correctly and the interface tracker is necessary to capture the erosion and
deposition caused by the incoming wave. Using this general parameter choice, we
can more than halve our model error for the same number of mesh elements when
compared to a fixed uniform mesh, which is a notable result.

We have thus shown that a good general parameter choice for this test case isμ = 5
and α = β = λ = 1, which is the same magnitude as the complex test cases consid-
ered in Sect. 4.1.3 and 4.2 and the same order of magnitude as the simple test case
in Sect. 4.1. Using these general parameters, in Fig. 24 we consider the relationship
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Fig. 23 Discretisation error curves for moving mesh simulations of the tsunami with obstacle test case
under different values of α, β and λ in the monitor function (28)

of simulation accuracy versus computational cost. The figure shows that using mesh
movement methods results in both a significant improvement in accuracy and a signif-
icant reduction in computational cost, even when general parameters are used rather
than optimum parameters. (Note the optimum parameters plotted here are the param-
eters that provide the smallest error and are not necessarily the fastest simulations,
hence why the general parameters perform better in the cost-to-accuracy ratio than
the ‘optimum’ parameters). In many cases, it is possible to halve the discretisation
error for the same computational cost, a notable improvement. This is a particularly
good result if we wish to run this test case more than once for calibration purposes.
In addition, using mesh movement methods reduces the number of mesh elements
to required to achieve a good accuracy, which means that the memory costs of our
simulation are reduced when using adjoint methods through pyadjoint (see Clare et al.
(2021a)).

Therefore, we have shown that for test cases with relatively complex bathymetries
and a wet-dry interface, we can not only in many cases more than halve the error for
the same number of mesh elements but also reduce computational cost and improve
model stability, even when using general parameters that have not been tuned for this
specific test case, a noteworthy result.
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Fig. 24 Computational cost vs discretisation error for fixedmesh andmeshmovementmethodswith general
and optimum parameters for the tsunami with obstacle test case. Note the different points correspond to
different numbers of mesh elements

5 Conclusion

In this work we have implemented a mesh movement scheme as part of a hydro-
morphodynamic model for the first time. We have shown that these mesh movement
methods can be used to improve accuracy and decrease the computational cost of
hydro-morphodynamic test cases with complex bathymetries and/or moving wet-dry
interfaces. Moreover, in certain cases we have demonstrated that mesh movement can
also improve model stability. A highlight is that these improvements are particularly
significant with test cases with wet-dry interfaces, which many coastal zone appli-
cations include. For both the coastal zone test cases considered in this work, using
mesh movement methods results in an error that is less than half the size of the error
from the fixed uniform mesh with the same number of elements. This in turn leads
to a reduction in computational and memory cost, and in future work will allow us
both to simulate more complex wet-dry test cases accurately and efficiently, and to
more readily conduct model calibration as more simulations can be performed for an
equivalent cost.

For the mesh movement method considered, we present a monitor function for
which the scaling factor that optimises the error reduction is fairly predictable from
the physical characteristics of the test case. In particular, we have found that for 2D
cases, and 1D cases with steep gradients, optimummesh parameters have a magnitude
of approximately 5. Thiswill facilitate using thismonitor function on further problems.
In this work, we have used small scale sensitivity studies to obtain these optimummesh
parameters, but in future work, we will use the more rigorous approach of the adjoint
framework within Firedrake to allow us to determine the optimum values for the
scaling parameters. Section 4.1 showed that our hydro-morphodynamic model can be
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combined with the adjoint framework to determine an optimum diffusivity coefficient,
and thus this is a promising line for follow-up research.
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A Appendix: Sediment conservation check

As discussed in Sect. 3.1, the wetting-and-drying scheme used in our model is known
to leak sediment and thus we implement a conservative sediment scheme. To verify
that our conservative scheme has improved the sediment conservation, we consider the
simple Thacker test case of oscillations in a paraboloid bowl with diameter 430,620m
(Thacker 1981). The hydrodynamic version of this test case is presented in Balzano
(1998) and we refer the reader here for more details. The free surface is initially a
paraboloid of revolution with a depth of approximately 50m that oscillates inside the
bowl with no forcing, but does not leave the bowl: the problem is closed hydrodynam-
ically. We introduce a Gaussian blob of sediment in the wet part of the domain defined
by the expression

C(t0) =
{
100 exp−(x2+y2)/100000 H ≥ 0

0 H < 0
(A.1)

and run the simulation for 6h. The principal differences between the conservative
and non-conservative schemes are due to the advection term and therefore to avoid
unnecessary complications we set the diffusion, erosion and deposition terms to zero.
At each timestep, tn , we calculate the normalised mass error using the following
formula ∫

C(tn)H̃(tn) dx − ∫
C(t0)H̃(t0) dx

∫
C(t0)H̃(t0) dx

. (A.2)

123

https://doi.org/10.5281/zenodo.5155816
http://creativecommons.org/licenses/by/4.0/


GEM - International Journal on Geomathematics             (2022) 13:2 Page 37 of 39     2 

Fig. 25 Sediment mass conservation error when using wetting-and-drying with non-conservative sediment
Eq. (13) and with conservative sediment Eq. (14)

Figure 25 shows that the normalised mass error is much lower for the conservative
sediment Eq. (14) but O(10−12) than for the non-conservative sediment Eq. (13) and
thus that the conservative sediment equation conserves sediment at a much better rate
than the non-conservative scheme.

References

Amoudry, LO., Souza, AJ.: Deterministic coastal morphological and sediment transport modeling: A review
and discussion. Reviews of Geophysics 49(2) (2011)

Apsley, D.D., Stansby, P.K.: Bed-load sediment transport on large slopes: model formulation and imple-
mentation within a RANS solver. J. Hydraul. Eng. 134(10), 1440–1451 (2008)

Avdis, A., Candy, A.S., Hill, J., Kramer, S.C., Piggott, M.D.: Efficient unstructured mesh generation for
marine renewable energy applications. Renew. Energy 116, 842–856 (2018)

Awanou, G.: Quadratic mixed finite element approximations of the Monge-Ampère equation in 2d. Calcolo
52(4), 503–518 (2015)

Balzano, A.: Evaluation of methods for numerical simulation of wetting and drying in shallow water flow
models. Coastal Eng. 34(1–2), 83–107 (1998). https://doi.org/10.1016/S0378-3839(98)00015-5

Barthélemy, E.: Nonlinear shallow water theories for coastal waves. Surv. Geophys. 25(3–4), 315–337
(2004)

Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis
and examples. Citeseer (1996)

Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element
methods. Acta Numerica 10, 1–102 (2001)

Benkhaldoun, F., El Mahi, I., Sari, S., Seaid, M.: An unstructured finite volume method for coupled models
of suspended sediment and bed-load transport in shallow water flows. Int. J. Numer. Methods Fluids
72(9), 967–993 (2013). https://doi.org/10.1002/d.3771

Budd, C.J., Williams, J.: Moving mesh generation using the parabolic Monge-Ampère equation. SIAM J.
Sci. Comput. 31(5), 3438–3465 (2009)

Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numerica (2009). https://doi.
org/10.1017/S0962492906400015

Budd, C.J., Cullen, M.J.P., Walsh, E.J.: Monge-Ampére based movingmeshmethods for numerical weather
prediction, with applications to the eady problem. J. Comput. Phys. 236, 247–270 (2013)

123

https://doi.org/10.1016/S0378-3839(98)00015-5
https://doi.org/10.1002/d.3771
https://doi.org/10.1017/S0962492906400015
https://doi.org/10.1017/S0962492906400015


    2 Page 38 of 39 GEM - International Journal on Geomathematics             (2022) 13:2 

Clare, M.C.A., Kramer, S.C., Cotter, C.J., Piggott, M.D.: Calibration, inversion and sensitivity analysis for
hydro-morphodynamic models through the application of adjoint methods (2021a) https://doi.org/10.
31223/X5F327

Clare, M.C.A., Percival, J.R., Angeloudis, A., Cotter, C.J., Piggott, M.D.: Hydro-morphodynamics 2D
modelling using a discontinuous Galerkin discretisation. Comput. Geosci. 146, 104658 (2021)

Comblen, R., Lambrechts, J., Remacle, J.F., Legat, V.: Practical evaluation of five partly discontinuous finite
element pairs for the non-conservative shallow water equations. Int. J. Numer. Methods Fluids 63(6),
701–724 (2010)

Delandmeter, P.: Discontinuous Galerkin finite element modelling of geophysical and environmental flows.
PhD thesis, Universite catholique de Louvain (2017)

Donea, J., Huerta, A., Ponthot, J.P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian methods. Ency-
clopedia of Computational Mechanics Second Edition pp 1–23 (2017)

Farhat, C., Degand, C., Koobus, B., Lesoinne, M.: Torsional springs for two-dimensional dynamic unstruc-
tured fluid meshes. Comput. Methods Appl. Mech. Eng. 163(1–4), 231–245 (1998)

Funke, S., Farrell, P., Piggott, M.: Reconstructing wave profiles from inundation data. Comput. Methods
Appl. Mech. Eng. 322, 167–186 (2017)

Geology Cafe: Chapter 11 - rivers, streams, and water underground. http://geologycafe.com/class/
chapter11.html, accessed on 2020-09-11 (2015)

Goto, K., Takahashi, J., Oie, T., Imamura, F.: Remarkable bathymetric change in the nearshore zone by the
2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology 127(1–2), 107–116 (2011)

Harris, D.L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J.M.,
Parravicini, V.: Coral reef structural complexity provides important coastal protection from waves
under rising sea levels. Sci. Adv. 4(2), eaao4350 (2018)

Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDEs) based on the
equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)

Hudson, J., Sweby, P.K.: A high-resolution scheme for the equations governing 2D bed-load sediment
transport. Int. J. Numer. Methods Fluids 47(10–11), 1085–1091 (2005)

Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V., Deleersnijder, E.: A fully
implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt
Estuary. Comput. Methods Appl. Mech. Eng. 200(5–8), 509–524 (2011)

Kärnä, T., Kramer, S.C., Mitchell, L., Ham, D.A., Piggott, M.D., Baptista, A.M.: Thetis coastal ocean
model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. arXiv
preprint arXiv:1711.08552 (2017)

Kazhyken, K., Videman, J., Dawson, C.: Discontinuous Galerkin methods for a dispersive wave hydro-
sediment-morphodynamic model. Comput. Methods Appl. Mech. Eng. (2021). https://doi.org/10.
1016/j.cma.2021.1136842010.06167

Kobayashi, N., Lawrence, A.R.: Cross-shore sediment transport under breaking solitary waves. J. Geophys.
Res.: Oceans (2004). https://doi.org/10.1029/2003jc002084

Lakkis, O., Pryer, T.: A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35(4),
A2025–A2045 (2013)

Li, L., Huang, Z.: Modeling the change of beach profile under tsunami waves: a comparison of selected
sediment transport models. J. Earthq. Tsunami (2013). https://doi.org/10.1142/S1793431113500012

Maddison, J.R., Panourgias, I., Farrell, PE.: libsupermesh version 1.0. Technical report, University of
Edinburgh (2017)

Mayne, D.A., Usmani, A.S., Crapper, M.: An Adaptive Finite Element Solution for Cohesive Sediment
Transport. In: Proceedings in Marine Science, vol 5, Elsevier, pp 627–641, https://doi.org/10.1016/
S1568-2692(02)80044-4 (2002)

McManus, T.M., Percival, J.R., Yeager, B.A., Barral, N., Gorman, G.J., Piggott, M.D.: Moving mesh
methods in Fluidity and Firedrake. Technical Report July, Imperial College London, (2017) https://
doi.org/10.13140/RG.2.2.27670.24648

McRae, A.T.T., Cotter, C.J., Budd, C.J.: Optimal-transport-based mesh adaptivity on the plane and sphere
using finite elements. SIAM J. Sci. Comput. 40(2), 1121–1148 (2018). https://doi.org/10.1137/
16M1109515

Papanicolaou, A.T.N., Elhakeem, M., Krallis, G., Prakash, S., Edinger, J.: Sediment transport modeling
review - current and future developments. J. Hydraul. Eng. 134(1), 1–14 (2008)

123

https://doi.org/10.31223/X5F327
https://doi.org/10.31223/X5F327
http://geologycafe.com/class/chapter11.html
http://geologycafe.com/class/chapter11.html
http://arxiv.org/abs/1711.08552
https://doi.org/10.1016/j.cma.2021.1136842010.06167
https://doi.org/10.1016/j.cma.2021.1136842010.06167
https://doi.org/10.1029/2003jc002084
https://doi.org/10.1142/S1793431113500012
https://doi.org/10.1016/S1568-2692(02)80044-4
https://doi.org/10.1016/S1568-2692(02)80044-4
https://doi.org/10.13140/RG.2.2.27670.24648
https://doi.org/10.13140/RG.2.2.27670.24648
https://doi.org/10.1137/16M1109515
https://doi.org/10.1137/16M1109515


GEM - International Journal on Geomathematics             (2022) 13:2 Page 39 of 39     2 

Piggott, M.D., Pain, C.C., Gorman, G.J., Power, P.W., Goddard, A.J.H.: h, r , and hr adaptivity with appli-
cations in numerical ocean modelling. Ocean Model. 10, 95–113 (2006). https://doi.org/10.1016/j.
ocemod.2004.07.007

Piggott, M.D., Gorman, G.J., Pain, C.C., Allison, P.A., Candy, A.S., Martin, B.T., Wells, M.R.: A new
computational framework for multi-scale ocean modelling based on adapting unstructured meshes.
Int. J. Numer. Methods Fluids 56(8), 1003–1015 (2008)

Piggott, M.D., Pain, C.C., Gorman, G.J., Marshall, D.P., Killworth, P.D.: Unstructured Adaptive Meshes
for Ocean Modeling. In: Hasumi, H. (ed.) Hecht MW, pp 383–408. Ocean Modeling in an Eddying
Regime, American Geophysical Union, USA (2008)

Piggott, M.D., Farrell, P.E., Wilson, C.R., Gorman, G.J., Pain, C.C.: Anisotropic mesh adaptivity for multi-
scale ocean modelling. Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 367(1907), 4591–4611
(2009). https://doi.org/10.1098/rsta.2009.0155

Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T., Bercea, G.T., Markall, G.R.,
Kelly, P.H.: Firedrake: automating the finite element method by composing abstractions. ACM Trans.
Math. Softw. (TOMS) 43(3), 1–27 (2016)

Tassi, P., Villaret, C.: Sisyphe v6.3 User’s Manual. EDF R&D, Chatou, France (2014)
Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107,

499–508 (1981)
Van Rijn, L.C.: Storm Surge Barrier Oosterschelde-Computation of Siltation in Dredged Trenches: Semi-

empirical Model for the Flow in Dredged Trenches. Deltares, Delft, The Netherlands (1980)
Van Rijn, L.C.: Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. 110(11), 1613–

1641 (1984)
Villaret, C., Kopmann, R., Wyncoll, D., Riehme, J., Merkel, U., Naumann, U.: First-order uncertainty

analysis using Algorithmic Differentiation of morphodynamic models. Comput. Geosci. 90, 144–151
(2016)

Vouriot, C.V.M., Angeloudis, A., Kramer, S.C., Piggott, M.D.: Fate of large-scale vortices in idealized tidal
lagoons. Environ. Fluid Mech. 19, 329–348 (2019)

Wallwork, J.G., Barral, N., Kramer, S.C., Ham, D.A., Piggott, M.D.: Goal-oriented error estimation and
mesh adaptation for shallow water modelling. Springer Nat. Appl. Sci. 2, 1053–1063 (2020). https://
doi.org/10.1007/s42452-020-2745-9

Weller, H., Browne, P., Budd, C., Cullen, M.: Mesh adaptation on the sphere using optimal transport and
the numerical solution of a Monge-Ampère type equation. J. Comput. Phys. 308, 102–123 (2016)

White, A.B., Jr.: On selection of equidistributing meshes for two-point boundary-value problems. SIAM J.
Numer. Anal. 16(3), 472–502 (1979)

Zhou, F., Chen, G., Huang, Y., Yang, J.Z., Feng, H.: An adaptive moving finite volume scheme for modeling
flood inundation over dry and complex topography. Water Resour. Res. 49(4), 1914–1928 (2013).
https://doi.org/10.1002/wrcr.20179

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.ocemod.2004.07.007
https://doi.org/10.1016/j.ocemod.2004.07.007
https://doi.org/10.1098/rsta.2009.0155
https://doi.org/10.1007/s42452-020-2745-9
https://doi.org/10.1007/s42452-020-2745-9
https://doi.org/10.1002/wrcr.20179

	Multi-scale hydro-morphodynamic modelling using mesh movement methods
	Abstract
	1 Introduction
	2 Mesh movement
	2.1 Equidistribution and the Monge-Ampère equation
	2.2 Implementing mesh movement

	3 Hydro-morphodynamic model
	3.1 Model equations for a wet-dry domain
	3.2 Finite element implementation

	4 Test cases
	4.1 Complex bathymetry test case: migrating trench
	4.1.1 Fixed uniform meshes
	4.1.2 Mesh movement
	4.1.3 Introducing a slope in the y-direction

	4.2 Wet-dry interface test case: beach profile
	4.2.1 Fixed uniform meshes
	4.2.2 Mesh movement

	4.3 Complex bathymetry with a wet-dry interface test case: tsunami-like wave with an obstacle
	4.3.1 Fixed uniform meshes
	4.3.2 Mesh movement


	5 Conclusion
	A Appendix: Sediment conservation check
	References




