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Abstract 

The stabilisation of the leapfrog time-stepping scheme provided by the Robert–Asselin filter has enabled 

decades of atmospheric and oceanic research and weather and climate predictions. The unfortunate 

concomitant reduction from second-order accuracy to first-order accuracy inflicted by the filter has recently 

ushered in a new generation of leapfrog time filters that preserve the second-order accuracy, including the 

Robert–Asselin–Williams (RAW) filter and its variants. These modern filtered leapfrog schemes have 

previously been shown to improve numerical simulations made using both simple conceptual models and 

comprehensive general circulation models. However, their performance in standard benchmark 

experiments has not previously been assessed. Here we evaluate these filtered leapfrog schemes in four 

classic benchmark experiments: linear scalar advection; a nonlinear density current in the quasi-

compressible equations; a nonlinear rising warm bubble in the fully compressible equations; and the linked 

behaviour of nonlinear twin tropical cyclones in the rotating shallow-water equations. For a given time-step 

size, the filtered leapfrog schemes are found to compare favourably with the third-order Runge–Kutta 

(RK3) scheme. They are also less computationally expensive than RK3, at roughly one-third to one-half 

the cost per time step. For a given computational expenditure, the filtered leapfrog schemes are found to 

produce smaller errors with respect to the analytical solution (where available) than RK3. Furthermore, the 

filtered leapfrog schemes are found to be numerically stable, even when the discretisation method splits the 

slow advection and diffusion modes from the fast acoustic and gravity-wave modes. Given that 

implementing filter upgrades requires only minimally invasive changes to an existing computer code, our 

results provide support for the continued use of filtered leapfrog schemes in atmosphere and ocean models.  



 

 

1. Introduction 

 

For most of the past five decades, the leapfrog time-stepping scheme, stabilised with a Robert–Asselin (RA) 

filter, has been widely used for weather prediction and climate simulation in atmosphere and ocean 

numerical models. The RA filter was introduced by Robert (1966) to reduce time splitting of solutions at 

odd and even time steps with the leapfrog scheme. Asselin (1972) showed that the filter effectively controls 

numerical instabilities by substantially damping the 2Δt computational mode. Unfortunately, the RA filter’s 

non-zero damping of the lower-frequency physical modes reduces the formal time-stepping accuracy of the 

leapfrog scheme from second order to first order. (Hereafter, unless otherwise stated, order-of-accuracy 

refers to the effects of temporal truncation errors on the amplitude of linear oscillations.) Another way to 

control time splitting is to periodically restart the solution every few time steps with one of the forward 

schemes. While effective at temporarily removing the computational mode, this approach can result in 

undesirable computer code changes, and it also reduces the overall formal accuracy to first order. 

 

Because methods for controlling the computational mode of the leapfrog scheme without reducing the 

overall O(2) accuracy have historically been lacking, many weather forecasting centres now use alternatives 

to the leapfrog scheme. Some of the most popular alternatives are discussed by Durran (1991) and include 

the O(2) and O(3) Adams–Bashforth schemes (e.g., Deardorff 1980; Durran 1991), the Crowley schemes 

(Smolarkiewicz 1982; Schlesinger 1985; Tremback et al. 1987; Wicker and Skamarock 2002), the O(2) and 

O(3) Runge–Kutta schemes (RK2, RK3; Wicker and Skamarock 1998; Wicker and Skamarock 2002), and 

variants of these (Shu 1988; Shu and Osher 1988; among others). Durran (1999) proposed combining the 

O(2) Adams–Bashforth and O(3) Adams–Moulton schemes to produce a predictor–corrector scheme. More 

recently, Wicker (2009) demonstrated the stability and use of this Adams–Bashforth–Moulton predictor–

corrector scheme for integrations using split fast modes (sound and gravity waves) and slow modes 

(advection and turbulence), as proposed by Klemp and Wilhelmson (1978) and Skamarock and Klemp 

(1992), if the available computational memory is sufficient. Nevertheless, the leapfrog scheme remains 



 

 

popular in climate models. The Robert–Asselin–Williams (RAW) filter is a generalisation of the RA filter 

with increased accuracy (Williams 2009, 2011, 2013). The RAW-filtered leapfrog schemes all possess O(2) 

phase errors, but the improved O(3)‒O(7) amplitude errors may be beneficial in simulations whose overall 

numerical accuracy is limited by temporal differencing rather than spatial differencing. 

 

Higher-order temporal and spatial differencing schemes have been shown, both theoretically and 

numerically, to profoundly affect the accuracy of simulated atmospheric and oceanic phenomena, including 

those on the storm-scale, mesoscale, synoptic scale, and planetary scale. Over the past few years, the 

fortunes of the leapfrog scheme have been revived by a series of proposed measures for damping the 

computational mode while preserving the O(2) accuracy of the physical mode. Williams (2009, 2011, 

2013), Moustaoui et al. (2014), Li and Trenchea (2014), and Maurya et al. (2019) have each demonstrated 

how various time-filtered leapfrog schemes with O(3)‒O(7) amplitude errors can be developed while 

retaining the O(2) phase error. These modified leapfrog schemes all have O(2) overall errors. For example, 

Williams (2009) developed the RAW filter to prevent the amplitude error reduction associated with the RA 

filter. Subsequently, Williams (2011) tested the RAW filter in semi-implicit systems, while Williams (2013) 

proposed and tested a family of schemes from combinations of O(2) and O(4) temporal filters. Using these 

filters allows for a family of leapfrog schemes with O(3), O(5), and O(7) amplitude errors to be formed, as 

predicted theoretically, depending on the values of three filter parameters. Finally, Babarsky and Sharpley 

(1997) developed time-centred advection schemes with up to fourth-order accuracy in space and time, but 

they employed the RA filter in their numerical tests, which likely degraded the order of the time accuracy 

in the numerical solutions. 

 

It has been shown with three-dimensional prediction models that the RAW-filtered leapfrog scheme 

improves the skill of medium-term weather forecasts and ocean simulations (Amezcua et al. 2011; Young 

et al. 2014; Amezcua and Williams 2015). The RAW-filtered leapfrog scheme is now the default time-

stepping scheme in the Taiwanese ocean model (Young et al. 2012). Ren and Leslie (2011) found good 



 

 

performance of the RAW-filtered leapfrog scheme in an ice sheet model. Also, Moustaoui et al. (2014) 

demonstrated improved performance of a fourth-order, implicitly time-filtered leapfrog scheme, with an 

improved Courant–Friedrich–Lewy (CFL) criterion, compared to the RA-filtered leapfrog scheme and RK3 

scheme for the nonlinear Lorenz (1963) system, a linear shallow-water problem, and twin tropical cyclones 

straddling the equator in a global shallow-water model. Li and Trenchea (2014) developed a higher-order 

RA-filtered leapfrog scheme, which achieved O(3) errors with specific smoothing parameters. Finally, 

Maurya et al. (2019) developed a family of stable high-order optimised hybrid RA-type time filters for 

leapfrog schemes, which strongly damp the computational modes without significantly damping the 

physical modes. The leapfrog schemes proposed by Maurya et al. (2019) have CFL criteria that are at least 

as permissive as the RK3 schemes. 

 

Despite clear theoretical and numerical evidence that modern filtered leapfrog schemes deliver increased 

accuracy, what is hitherto lacking is a quantitative assessment of the performance of these schemes in 

standard linear and nonlinear multidimensional benchmark experiments. Previous studies of filtered 

leapfrog schemes have generally employed idealised nonlinear problems, as well as statistics from 

comprehensive general circulation models, with relatively little research activity in the middle of the model 

complexity hierarchy. For example, there is a gap in knowledge of how the schemes perform with scalar 

advection by idealised kinematic flow fields such as solid-body rotation. In addition, it is unknown how the 

schemes perform with more complex nonlinear flows that are not complicated by physics parameterisations 

of turbulence, friction, microphysics, and radiation. Problems of this sort include two-dimensional density 

currents (Straka et al. 1993), three-dimensional warm thermals (Carpenter et al. 1990; Tripoli 1992; Bryan 

and Fritsch 2002), and the linked behaviour of twin tropical cyclones in the two-dimensional shallow-water 

equations (Ferreira et al. 1996; Moustaoui et al. 2002; Moustaoui et al. 2014) and other vortex interactions 

such as binary vortices (Holland and Dietachmayer 1993). Finally, the performance of modern filtered 

leapfrog schemes has not previously been studied for geophysical systems solved with time-split 

integrations (Klemp and Wilhelmson 1978; Skamarock and Klemp 1992) involving split slow modes 



 

 

(advection, turbulence, gravity waves, and physical processes) and fast modes (pressure gradients, 

divergence, sound waves, and in some cases gravity waves). 

 

The present study aims to address the above omissions and provide support for the continued use of filtered 

leapfrog models, especially the RAW-filtered leapfrog schemes that are minimally invasive compared to 

the RA filter and require only trivial code changes. The study has various specific goals. First, we aim to 

show that the RAW-filtered leapfrog schemes – hereafter referred to as the Williams filtered leapfrog 

(WFL) schemes – can achieve accurate solutions without the excessively small time steps required by the 

RA-filtered leapfrog scheme. Second, we aim to show that the temporal truncation error of the WFL 

schemes and the RA-filtered leapfrog scheme for advection becomes increasingly important compared to 

diffusion tendencies (solved with an O(1) forward-in-time operator). This can be shown by examining pure 

advection problems, as well as using problems where both advection and diffusion tendencies are important 

and decreasing the eddy mixing coefficient. Third, we aim to show that the WFL schemes can be stably 

integrated in additive fast–slow mode-split models following methods used for leapfrog models. Fourth, 

we aim to show that the total energy and total mass are better conserved with the WFL schemes than the 

RA-filtered leapfrog scheme. 

 

The layout of the present study is as follows. Section 2 summarizes the RA-filtered leapfrog scheme as well 

as the WFL schemes. The O(3) Runge–Kutta schemes (Shu 1988; Shu and Osher 1988; Wicker and 

Skamarock 2002) are summarised as well, as they are used for reference solutions when analytical solutions 

are lacking. The results of the numerical experiments are presented in Section 3. The advection of a cone 

in two-dimensional solid-body rotation is used to evaluate the effects of time integration schemes for a pure 

advection problem (Section 3a). The two-dimensional quasi-compressible equations are integrated for a dry 

density current problem (Section 3b). The three-dimensional fully compressible equations are integrated 

for a dry rising warm plume (Section 3c). The divergence-permitting two-dimensional shallow-water 

equations with full Coriolis force are integrated for the problem of the nonlinear interaction of twin tropical 



 

 

cyclones (with opposite signs of rotation) straddling the equator (Section 3d). The results from each of the 

experiments are compared to analytical or nearly converged numerical solutions. The conclusions of this 

study, which show accurate and stable solutions for the family of WFL schemes, are summarised in Section 

4. 

 

2. Time integration schemes 

 

This section will briefly review the finite-difference approximations that are associated with the various 

time-stepping schemes used in this study. Some of their properties are listed in Table 1. 

 

a) The RA-filtered leapfrog scheme 

 

The RA filter is effective in keeping the leapfrog scheme stable and is trivial to incorporate. The prediction 

of a dependent variable, A, in time can be written as: 

d𝐴𝐴
d𝑡𝑡

= 𝑓𝑓(𝐴𝐴) 
(2.1) 

or in finite-difference form using the unfiltered leapfrog scheme as: 

𝐴𝐴𝑖𝑖𝑛𝑛+1 = 𝐴𝐴𝑖𝑖𝑛𝑛−1 + 2 ∆𝑡𝑡 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛), (2.2) 

where superscript n is the time index and subscript i is a spatial index. The RA filter can be written as: 

𝐴𝐴𝑖𝑖𝑛𝑛∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 + 𝜈𝜈�𝐴𝐴𝑖𝑖𝑛𝑛−1∗ − 2𝐴𝐴𝑖𝑖𝑛𝑛 + 𝐴𝐴𝑖𝑖𝑛𝑛+1� (2.3) 

and the RA-filtered leapfrog scheme becomes: 

𝐴𝐴𝑖𝑖𝑛𝑛+1 = 𝐴𝐴𝑖𝑖𝑛𝑛−1∗ + 2 ∆𝑡𝑡 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛∗), (2.4) 

where asterisks denote filtered values. Use of this second-order filter leads to an amplitude-damped O(1) 

leapfrog scheme that significantly degrades physical modes (Schlesinger et al. 1983; Williams 2009). Only 

one evaluation of f(A) is required per time step. The RA filter along with divergence damping (Skamarock 

and Klemp 1992) for integration of fluids problems with the leapfrog scheme provides computational 



 

 

stability when incorporated in split fast- and slow-mode integrations. A smooth–de-smooth approach could 

be used in an attempt to recover the amplitude (Shuman 1957; Shapiro 1970; Perkey and Kreitzberg 1976). 

 

b) The Williams filtered leapfrog (WFL) schemes 

 

The RAW filter (Williams 2009, 2011, 2013) is a simple modification to the RA filter procedure to reduce 

the amplitude error. First, the prediction of a dependent variable, A, in time can be written in finite 

difference form as: 

𝐴𝐴𝑖𝑖𝑛𝑛+1 = 𝐴𝐴𝑖𝑖𝑛𝑛−1∗∗ + 2 ∆𝑡𝑡 [𝛾𝛾𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛∗) + (1 − 𝛾𝛾)𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛)]. (2.5) 

Here, the single and double asterisks denote values that have been filtered once and twice, respectively, 

using either the O(2) or O(4) filters defined below. A modification to the RA filter can be written using two 

O(2) temporal filters: 

𝐴𝐴𝑖𝑖𝑛𝑛∗∗ = 𝐴𝐴𝑖𝑖𝑛𝑛∗ +
𝜈𝜈𝜈𝜈
2 �𝐴𝐴𝑖𝑖𝑛𝑛−1∗∗ − 2𝐴𝐴𝑖𝑖𝑛𝑛∗ + 𝐴𝐴𝑖𝑖𝑛𝑛+1� 

(2.6) 

and: 

𝐴𝐴𝑖𝑖𝑛𝑛+1∗ = 𝐴𝐴𝑖𝑖𝑛𝑛+1 −
𝜈𝜈(1 − 𝜈𝜈)

2 �𝐴𝐴𝑖𝑖𝑛𝑛−1∗∗ − 2𝐴𝐴𝑖𝑖𝑛𝑛∗ + 𝐴𝐴𝑖𝑖𝑛𝑛+1�. 
(2.7) 

Importantly, this modification can be applied with very little additional coding and essentially no change 

in memory requirements or computational expense in existing models. Replacing the O(2) temporal filters 

with O(4) temporal filters (which invoke a longer time history) leads to: 

𝐴𝐴𝑖𝑖𝑛𝑛∗∗ = 𝐴𝐴𝑖𝑖𝑛𝑛∗ + 𝜈𝜈𝜈𝜈�𝐴𝐴𝑖𝑖𝑛𝑛−3∗∗ − 4𝐴𝐴𝑖𝑖𝑛𝑛−2∗∗ + 6𝐴𝐴𝑖𝑖𝑛𝑛−1∗∗ − 4𝐴𝐴𝑖𝑖𝑛𝑛∗ + 𝐴𝐴𝑖𝑖𝑛𝑛+1� (2.8) 

and: 

𝐴𝐴𝑖𝑖𝑛𝑛+1∗ = 𝐴𝐴𝑖𝑖𝑛𝑛+1 − 𝜈𝜈(1 − 𝜈𝜈)�𝐴𝐴𝑖𝑖𝑛𝑛−3∗∗ − 4𝐴𝐴𝑖𝑖𝑛𝑛−2∗∗ + 6𝐴𝐴𝑖𝑖𝑛𝑛−1∗∗ − 4𝐴𝐴𝑖𝑖𝑛𝑛∗ + 𝐴𝐴𝑖𝑖𝑛𝑛+1�. (2.9) 

The order of accuracy for amplitude errors of O(3) to O(7) is achieved by particular choices of α, γ, and ν 

and the choice of a O(2) or O(4) temporal filter, as shown in Table 1. The phase error is O(2) for all WFL 

schemes, making the overall formal accuracy of the WFL schemes O(2). Only one computation of f(A) is 



 

 

required per time step if γ = 0 or γ = 1, otherwise two computations of f(A) are required. In practice, the 

O(2) temporal filter would be used for the first few time integration steps, until filtered values are available 

as far back as the n-3rd time step, when the O(4) temporal filter can be introduced and used for subsequent 

steps. Mode splitting with the WFL schemes can be accomplished exactly the same as it is with the RA-

filtered leapfrog scheme (Skamarock and Klemp 1992). 

 

c) The third-order Runge–Kutta schemes 

 

The O(3) Runge–Kutta or RK3 scheme (Wicker and Skamarock 2002; called the “Linear-Case RK3” by 

Baldauf 2008, 2010) has become increasingly popular in atmospheric numerical modelling. It is somewhat 

similar to the O(3) Runge–Kutta Total Variation Diminishing (TVD) scheme (Shu 1988; Shu and Osher 

1988) that is popular in some areas of computational fluid dynamics. The popularity of the strong-stability 

RK3 scheme owes in part to it being a forward-in-time scheme without a computational mode, having lower 

computational memory requirements, and having an improved stability regime based on the CFL criterion, 

such that the time step requirement is cΔt/Δx < 1.73 in one dimension (Wicker and Skamarock 2002) and 

cΔt/Δx < 1.73/√2 and cΔt/Δx < 1.73/√3 in two and three dimensions, respectively. The RK3 schemes have 

O(3) errors in time for linear problems, but O(2) errors for nonlinear problems (Baldauf 2008, 2010). These 

schemes require three functions to be computed per time step. Following Wicker and Skamarock (2002), 

the RK3 scheme is written as: 

𝐴𝐴𝑖𝑖∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 +
1
3

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛) (2.10) 

𝐴𝐴𝑖𝑖∗∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 +
1
2

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗) (2.11) 

𝐴𝐴𝑖𝑖𝑛𝑛+1 = 𝐴𝐴𝑖𝑖𝑛𝑛 + ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗∗). (2.12) 

The O(3) Runge–Kutta TVD3 scheme (Shu and Osher 1988) is also a three-stage scheme and is given by: 

𝐴𝐴𝑖𝑖∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 + ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛) (2.13) 



 

 

𝐴𝐴𝑖𝑖∗∗ =
3
4
𝐴𝐴𝑖𝑖𝑛𝑛 +

1
4
𝐴𝐴𝑖𝑖∗ +

1
4

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗) (2.14) 

𝐴𝐴𝑖𝑖𝑛𝑛+1 =
1
3
𝐴𝐴𝑖𝑖𝑛𝑛 +

2
3
𝐴𝐴𝑖𝑖∗∗ +

2
3

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗∗). (2.15) 

It can be rewritten starting each stage at time n for mode splitting: 

𝐴𝐴𝑖𝑖∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 + ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛) (2.16) 

𝐴𝐴𝑖𝑖∗∗ = 𝐴𝐴𝑖𝑖𝑛𝑛 +
1
4
∆t 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛) +

1
4

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗) (2.17) 

𝐴𝐴𝑖𝑖𝑛𝑛+1 = 𝐴𝐴𝑖𝑖𝑛𝑛 +
1
6

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖𝑛𝑛) +
1
6

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗) +
2
3

 ∆t 𝑓𝑓(𝐴𝐴𝑖𝑖∗∗). (2.18) 

Mode splitting of O(2) and O(3) Runge–Kutta schemes has been discussed by Wicker and Skamarock 

(1998, 2002) and Baldauf (2002, 2010). Both RK3 and TVD3 require divergence damping for stability 

when implemented with mode splitting. The RK3 scheme is used to produce the high-resolution reference 

solutions in this study because its order of accuracy is higher than that of the RA scheme. Specifically, RK3 

is second-order accurate in time for nonlinear problems and third-order accurate in time for linear problems. 

Furthermore, RK3 is increasingly used in atmospheric science. With sufficient temporal and spatial 

resolution, RK3 is capable of providing nearly grid-converged solutions (as are all the schemes that are 

stable and consistent). 

 

3. Results 

 

Results from numerical simulations are shown in this section to assess the behaviour of the WFL schemes 

for two-dimensional linear and two- and three-dimensional nonlinear dry fluid flow problems. For each 

experiment, the numerical and physical details are summarised in Table 2. The WFL schemes that are tested 

include the one- and two-function O(3) and O(5) versions and the two-function O(7) version, made with 

combinations of two O(2) and two O(4) temporal filters, where the order achieved is the theoretical 

amplitude order of error for linear oscillations. Reference solutions are obtained using the O(1) RA-filtered 

leapfrog scheme and the RK3 scheme. The TVD3 schemes (Shu 1988; Shu and Osher 1988) were also used 



 

 

to obtain reference solutions, but for the time steps employed in this study the RK3 and TVD3 solutions 

were very similar, and so the TVD3 solutions are not shown. 

 

In the last three problems of Table 2, the forward–backward time-split scheme for velocity and pressure is 

implemented partly following Mesinger (1977) and Klemp and Wilhelmson (1978). First, the advection, 

diffusion, buoyancy, and filtering tendencies are computed using the long time step and stored. Next, the 

stored velocity tendencies are added linearly to the velocity fields on each small time step when the pressure 

gradient acceleration is integrated using the latest value of pressure. Then, the stored pressure tendencies 

are added to the pressure field on each small time step when the divergence term in the pressure equation 

is integrated using the latest velocity fields. This process is repeated for the required number of small steps, 

which is 12 for the leapfrog schemes and six for RK3. 

 

a) Two-dimensional cone advection 

 

The various time-stepping schemes are compared by using a series of two-dimensional numerical 

simulations of passive scalar advection. A cone of height 1 m and radius 8 m is linearly advected by an 

analytical wind field corresponding to solid-body rotation, where the cone centre is offset from the axis of 

rotation of the wind field. Equivalently, the system can be thought of as representing the advection of a 

passive tracer, whose non-dimensional concentration increases conically from zero outside a circle of radius 

8 m to unity at the centre of the circle. This problem is known as rotational translation (Smolarkiewicz 

1982; Schlesinger 1985; Tremback et al. 1987; Smolarkiewicz and Grabowski 1990; Blossey and Durran 

2008). Other tests that were performed include linear translation, deformation, and a combination of 

rotational deformation and convergence. However, results from these tests are not shown for the sake of 

brevity, as they all behaved similarly to the rotational translation example (except for the deformation test, 

for which all schemes used herein performed poorly unless monotonic solutions were enforced by the 

spatial discretisation scheme or by an adjustment). 



 

 

 

The analytical (exact) solution for the rotational translation of a cone is known, so that some exact error 

measures can be computed. The performance measures that will be used to assess the simulated cone height 

field include the domain-wide maximum and minimum scalar values from the numerical solution, the 

domain-wide root-mean-square error in the numerical solution relative to the exact solution, the dispersion 

and dissipation errors (which split up the domain-wide mean-square error into contributions from dispersion 

and dissipation; Takacs 1985), and the domain-wide L∞ error norm (i.e., the maximum absolute error in the 

numerical solution relative to the exact solution). The |1-ΣA2/ΣA0
2| error measure will also be used 

(Tremback et al. 1987), where A is the scalar cone height field, A0 is the exact solution, and both summations 

are taken over the entire simulation domain. 

 

The domain extends from x = 0 to x = Lx = 112 m and from y = 0 to y = Ly = 112 m. The advective flow 

consists of clockwise rotation about the centre of the domain (i.e., x = y = 56 m). The initial condition is 

that the centre of the cone is located at x = xc = 84 m and y = yc = 56 m at t = 0. The analytical cone returns 

to its original location after each complete rotation period, which is 20π s. For the basic experiments, the 

grid spacing is Δx = Δy = 2 m and the time step is Δt = 10π/628 s. The effect of the time step is determined 

by using time steps of 2, 4, 8, 16, and 32 times smaller than the time step used for the basic experiments 

(i.e., 5π/628, 2.5π/628, 1.25π/628, 0.625π/628, and 0.3125π/628 s). In addition, a smaller grid spacing of 

Δx = Δy = 1 m with time steps of 2 and 4 times smaller than the time step used in the basic experiments is 

also considered. 

 

For the spatial differencing, the main experiments use the tenth-order constant grid flux scheme (Tremback 

et al. 1987). However, similar results were found for the tenth-order integrated flux scheme (not shown), 

although the results are slightly more accurate for the constant grid flux scheme. The tenth-order constant 

grid flux scheme collapses to the tenth-order advection scheme when the flow and grid spacing are constant 

(Tremback et al. 1987). The simulations shown and analysed here employ the constant grid flux scheme. 



 

 

Using a high-order spatial discretisation helps ensure that the numerical errors are mostly due to temporal 

differencing rather than spatial differencing. Since the cone stays away from the domain boundaries, open 

boundaries are used without any problems (noting that analytical wind components are available outside 

the domain). No spatial diffusion or numerical filters are used in the simulations shown and analysed here. 

Tests were made with fourth-, sixth-, eighth-, and tenth-order spatial filters, including both non-monotonic 

formulations (Shapiro 1970; Purser 1987) and a monotonic formulation (Xue 2000). These results are not 

shown, as it was found that these filters had little effect on the general interpretation of the results, except 

(depending on the amount of smoothing) to produce slightly smoother solutions and better controlled Gibbs 

phenomena. 

 

For both staggered and non-staggered grids, the values of the velocity components are needed at the edge 

of each grid zone for flux computations. These values may be obtained by averaging the velocities or by 

using the exact analytical velocities. The results presented herein are all produced using the averaging 

approach, which is common in atmosphere and ocean models. The averaging degrades the formal spatial 

accuracy to second order. It is logical that one should use spatial interpolation with an equivalent high-order 

scheme to match the spatial differencing scheme, in order to produce a formally high-order solution 

[personal communication, Bengt Fornberg, University of Colorado (2019) and Chi-Wang Shu, Brown 

University (2020)]. However, some tests (not shown) and some results shown in this paper lead to the 

conclusion that this approach does not always appreciably change the numerical solutions. This finding is 

probably due, at least in part, to the smooth (constant-in-time) flow fields considered with the cone rotation 

tests herein. Importantly, the interpolation order-of-accuracy effects appear to become more important with 

the cone problem using smaller time steps when smaller changes are resolved. Additionally, in cases with 

uneven and stretched grids (not shown), it has been found that it is important to use at least second-order 

spatial interpolation and not averages. 

 



 

 

Figure 1 shows the simulated cone height field after exactly 12 complete rotations, made with the RA and 

RK3 temporal schemes and all the even-order constant grid flux schemes from second- to tenth-order, each 

using Δx = Δy = 2 m and Δt = 0.625π/628 s. Comparison with the analytical solution shows that the O(10) 

spatial differencing largely eliminates the spatial finite-difference truncation errors from the solution. As 

expected, the solutions for both RA and RK3 improve as the order of accuracy of the flux approximations 

is increased, with a cone height amplitude after 12 rotations (whose analytical value at any time is 1 m) of 

0.77 and 0.81 m for the RA and RK3 eighth-order flux solutions and 0.82 and 0.88 m for the RA and RK3 

tenth-order flux solutions. The RA and RK3 second-order flux simulations show little skill in the cone’s 

location, shape, and amplitude retention after the first few rotations, and essentially no skill after eight 

rotations (not shown). There are still noticeable errors using the fourth- and sixth-order flux schemes. The 

cone shape appears only slightly distorted for the eighth- and tenth-order flux computations. There is no 

meaningful improvement found for twelfth- to sixteenth-order flux computations (not shown). From this 

set of experiments, it is concluded that O(10) flux computations limit the spatial differencing truncation 

errors sufficiently (with the temporal and spatial resolution employed for this problem) that the focus for 

all subsequent experiments (which will use O(10) flux computations) can be on the temporal differencing 

and time-step size. 

 

A comparison of cone heights after exactly 12 complete rotations is shown in Figure 2 for the RA, RK3, 

and WFL (W03, WG3, W33, W43, W05, WG5, W55, and W77) schemes, each using Δx = Δy = 2 m. 

Included are examples produced using the RA scheme with five different time steps, ranging from 

Δt = 10π/628 s to Δt = 0.625π/628 s. The solutions for all the non-RA schemes are obtained using the 

largest RA time step (Δt = 10π/628 s). It is seen that as the time step gets smaller, the RA solutions converge 

to a nearly round cone. However, even with Δt = 0.3125π/628 s (not shown), the amplitude of the cone 

height with the RA scheme (0.86 m) is not as well preserved as it is with the RK3 and WFL schemes with 

Δt = 10π/628 s (all 0.87 m), despite their time step being 32 times as large. Moreover, the shape of the cone 

is well preserved with the RK3 and all the WFL schemes for all temporal resolutions considered. As Δt gets 



 

 

very small, the RA cone shape only slowly approaches that produced by the RK3 and WFL schemes. In 

summary, minimal shape distortion is not attainable with RA unless the time step is reduced by a factor of 

at least 16, and even then, the amplitude preservation is still comparatively poor. On the other hand, even 

for the largest time steps, the WFL schemes produce only minor shape distortions that compare favourably 

with those produced by the RK3 scheme, with amplitude preservation that is as good as RK3, and all at 

one-third to two-thirds of the computational floating-point cost of RK3 for the same time-step size. 

 

Various error measures for the cone height field after exactly 12 rotations are shown in Table 3 for the RA, 

RK3, W03, and W77 schemes. The W03 and W77 error measures are representative of the results from all 

the WFL schemes tested. The error measures for these two WFL schemes are very close, even with 64-bit 

computations. Note that in these cone advection simulations (but not in general) the L∞ error norm is exactly 

equal to 1 m minus the maximum cone height value, because the maximum value and maximum error both 

occur at the grid point of the maximum value in the analytical solution. While all the WFL L∞ error norms 

are generally acceptable, the best is obtained with the W77 scheme. The L∞ error norms improve with the 

RA scheme as the time step is reduced. The RK3 L∞ error norm is very similar to those from the WFL 

schemes. The root-mean-square errors and dispersion and dissipation errors all behave similarly to the L∞ 

error norms for all schemes tested. The dispersion error exceeds the dissipation error for each scheme. For 

the RA solutions, the dispersion and dissipation errors are comparable in magnitude for the longest time 

step, but they grow an order of magnitude apart for the shortest time step. For the RK3 solution they are 

four orders of magnitude apart, and for the WFL solutions they are five orders of magnitude apart. 

 

Figure 3 shows time series of the error measure |1-ΣA2/ΣA0
2| for the cone height field up to 12 rotations. 

The RA solution with the longest time step is strongly damped in time, with the error measure reaching 

values of order unity after 12 rotations. Reducing the RA time step partly alleviates the damping, but even 

a time-step reduction by a factor of 16 does not prevent RA from having the largest errors of all the schemes 

studied. The RK3 solution has the next-largest errors and is also slightly damped, with the error measure 



 

 

continuing to grow up to and beyond 12 cone rotations. Each of the WFL schemes performs better than RA 

and RK3, with significantly smaller errors and error growth rates. In particular, the W55, W77, and WG5 

solutions show no detectable error growth between the first and 12th rotations, with the error measure after 

12 rotations being an order of magnitude smaller than RK3. The values of |1-ΣA2/ΣA0
2| for the pure 

(unfiltered) leapfrog scheme are also essentially unchanged for 1–12 and even 24–36 rotations (not shown). 

The error measures for W55, W77, and WG5 can therefore be considered essentially constant up to and 

beyond 12 cone revolutions using 32-bit computations, closely mimicking the behaviour of the pure 

leapfrog scheme. The best WFL scheme appears to be W33, in which the error measure actually decreases 

with time over the first ten rotations, reaching a value nearly three orders of magnitude smaller than the 

RK3 value. 

 

Figure 4 shows additional simulations made with the RK3, RA, W03, and W77 schemes at higher spatial 

and temporal resolutions. Halving the grid length and time step (to preserve the Courant number) improves 

the solutions for all the schemes, as expected. Halving both the time step again (but now at fixed grid length) 

does not appreciably improve the RK3 or WFL simulations any further, but it does lead to further 

improvements in the RA simulations, which are still far from being converged. Note that all simulations 

have varying degrees of problems with the cone shape when coarser resolutions are used. These shape 

errors improve with finer spatial resolution and (to a lesser degree) with finer temporal resolution. The RA 

scheme is by far the worst performer, and the RK3 and WFL schemes are the best, even at the highest 

spatial and temporal resolutions analysed. 

 

Since two-dimensional cone advection is the only problem in the present paper to have an analytical 

solution, we take the opportunity to explore the systematic relationships between time-step size, numerical 

error, and computational cost. We explore these relationships using simulations in which the spatial error 

is converged and the temporal error dominates. Figure 5 shows how the |1-ΣA2/ΣA0
2| cone height error 

measure after 12 rotations varies with the time step. All simulations were run on the same computer using 



 

 

the same compiler with the same compilation options. The RA scheme is clearly non-competitive, with 

errors that are orders of magnitude larger than any of the other schemes. The RA scheme also has poor 

(linear) convergence, as expected for a scheme with first-order formal accuracy. The RK3 scheme exhibits 

cubic scaling down to the smallest time step when double precision and tenth-order interpolation of the 

wind are used, as expected for a scheme with third-order formal accuracy (for linear systems; see Table 1). 

However, when the precision and order of interpolation of the wind are reduced, the RK3 error saturates 

before the smallest time step is reached, indicating that the computations can no longer resolve further error 

decreases, and that rounding errors from finite numerical precision now dominate the error measure. For 

the range of time steps over which temporal truncation errors dominate over rounding errors, the WFL 

schemes generally perform at least as well as RK3, with errors that are typically an order of magnitude (or 

more) smaller than RK3 at the largest time steps considered, even though their convergence is quadratic 

rather than cubic. Note that RK3 uses more computations than the WFL schemes – three times as many as 

WG3 and 1.5 times as many as W33 and W55 – and this increase in computations causes the error saturation 

to some degree. 

 

Figure 5 gives useful insights into the empirical orders of accuracy of the schemes. However, a limitation 

of the figure is that the errors calculated for each time step are not controlled for computational expense. 

This limitation prevents us from using the figure to ascertain which schemes deliver the best accuracy for 

a given computational expenditure. To investigate this question, Figure 6 shows parametric plots of 

computational cost against error as the time-step size varies, allowing us to compare the computational 

costs of the schemes at given attained accuracies. The RA scheme costs many times more than any of the 

other schemes for any specified accuracy, making it a poor use of computational resource. For the range of 

time steps over which temporal truncation errors dominate over rounding errors, the second most expensive 

scheme is RK3, with the WFL schemes requiring the least computational effort to achieve the same 

accuracy. For example, for a specified tolerable error of 10-4, the WFL schemes (W03, W33, WG3, W55, 

W05, WG5, W77) cost up to 70% less than RK3, making them the best use of computational resource. 



 

 

 

To summarise, for the problem of pure linear advection of a scalar by a constant solid-body rotation flow, 

the RK3 and WFL schemes have comparable errors for any given time-step size. RK3 and WFL each 

significantly out-perform the O(1) RA scheme, probably because (for linear problems) their orders of 

accuracy are O(3) and O(2), respectively. Note, however, that RK3 is more computationally expensive than 

the WFL schemes for a given time-step size. When this factor is controlled for in the comparisons, we find 

that all the WFL schemes deliver better accuracy (i.e., smaller errors) than RK3 for a given computational 

expenditure. No particular WFL scheme notably out-performs any of the other WFL schemes, perhaps 

because these schemes are all inherently O(2). The RA scheme, with its O(1) overall temporal errors, 

exhibits the worst performance. 

 

b) Two-dimensional density current 

 

This section describes the use of the quasi-compressible fluid equations to simulate a nonlinear two-

dimensional dry density current, with a constant O(2) eddy diffusion coefficient (Km = 75 m2 s-1; Straka et 

al. 1993; Straka and Anderson 1993). The goals are to examine how the WFL schemes perform for a more 

complicated (but still idealised) flow and how stable the WFL schemes are with mode splitting. The initial 

conditions include a cold elliptical fluid region, with horizontal radius 4 km and vertical radius 2 km, 

containing a cosine-squared potential temperature anomaly of minimum value -15℃ at the centre of the 

ellipse. The cold ellipse is released from rest, with its centre initially 3 km above a lower boundary and 

halfway across a horizontally periodic domain of horizontal extent 51.2 km. There is an upper boundary 

6.4 km above the lower boundary. As time increases, the cold region descends to the lower boundary under 

gravity, and then spreads out symmetrically in both horizontal directions along the boundary as a density 

current. 

 



 

 

When selecting boundary conditions to impose at the upper and lower boundaries in two-dimensional 

density current simulations, many previous studies (e.g., Straka et al. 1993) have chosen to set du/dz = 

dw/dz = dθ/dz = 0 for the horizontal velocity component u, vertical velocity component w, and potential 

temperature θ. However, a few studies (e.g., Klemp and Wilhelmson 1978) have chosen to effectively set 

the vertical diffusion to zero, by applying d2u/dz2 = d2w/dz2 = d2θ/dz2 = 0. To facilitate comparisons with 

the widest possible range of previous studies, here we choose to impose the former (Straka et al. 1993) 

boundary conditions at the upper and lower boundaries, because they seem to be more commonly used in 

the existing literature. 

 

In contrast to the linear cone advection problem, there is no analytical solution for the nonlinear density 

current problem. Therefore, we must resort to using a high-resolution numerical simulation as the reference 

solution. Furthermore, a rigorous assessment of numerical convergence is more difficult with the staggered 

C-grid (as used here) than with the non-staggered A-grid used by Straka et al. (1993). Flow features, 

including their maximums and minimums, are found in different locations for different resolutions and 

schemes, meaning that the computation of errors against a high-resolution reference solution requires one 

of the solutions to be interpolated. We find that interpolating either solution gives essentially the same 

temporal and spatial derivative convergence rates as in Straka et al. (1993; their Figure 5) for the 

perturbation potential temperature simulated using the RA scheme, and therefore these results are not 

shown. Instead, perturbation potential temperature field differences are evaluated with respect to a high-

order temporal scheme (here, RK3) with the same time step and spatial resolution as the test schemes. The 

maximums and minimums of perturbation potential temperature relative to the RK3 reference solution with 

high spatial resolution can also be compared. Finally, changes in the total energy and total mass in each 

simulation since t = 0 are analysed (Bryan and Fritsch 2002), as well as the domain-wide Σθ’2/Σθ’0
2 error 

measure for the perturbation potential temperature, where the subscript 0 here refers to t = 0 rather than to 

a reference solution (Tremback et al. 1987). 

 



 

 

Figure 7 shows the high-resolution RK3 reference solution after 900 s, by which time the cold anomaly has 

descended to the lower boundary and begun spreading out horizontally. The time step for this reference 

solution is Δt = 0.0078125 s and the grid spacing is Δx = Δz = 12.5 m. Similar solutions with the same high 

spatial and temporal resolution using RA, WG3, and W77 (not shown) appear very similar to the RK3 

reference solution. The maximum and minimum values differ between these four solutions by around 0.2% 

for the horizontal velocity, 0.4% for the vertical velocity and perturbation pressure, and less than 0.001% 

for the perturbation potential temperature. This level of agreement is expected for a nearly converged 

solution using a large eddy diffusion coefficient (Km = 75 m2 s-1) and high resolution in both space and time. 

In addition, these solutions are all produced with the same spatial differencing routines and pressure solvers. 

In contrast, most of the solutions presented in Straka et al. (1993) were made using multiple models with 

various advection and pressure solvers. 

 

Figure 8 shows the perturbation potential temperature fields obtained with the RK3, RA, and WFL schemes 

using Δt = 0.0625 s (although this time step was reduced by 25% to ensure stability for the W43 scheme) 

and Δx = Δz =100 m. Unexpectedly, the various solutions are all very similar to each other, perhaps partly 

because we used half the time step used by Straka et al. (1993). (The present solutions are produced with 

tenth-order spatial differences, reducing the maximum stable Courant number to around 0.5383 times its 

value for second-order spatial differences; Straka and Anderson 1993.) More importantly, the diffusion 

term, which is integrated with a time-lagged forward-in-time scheme for stability in the RA and WFL 

solutions, has a significant impact on the solutions (see below). In most cases, similar perturbation potential 

temperature fields (with differences less than 0.2 K) can be obtained with Δt = 0.4 s, the exceptions being 

that RK3 can use Δt > 1.0 s, but W05, WG5, W43, and W77 all need to use Δt < 0.125 s. 

 

Figure 9 shows the temporal evolution of the total (i.e., kinetic plus potential) energy and the total fluid 

mass in the RK3, RA, and W77 simulations. The other WFL simulations are omitted, because they behave 

nearly identically to W77. Although the analytical solution for this problem does not exist, we do know that 



 

 

it must conserve the total energy and mass exactly, and so it is useful to test whether the numerical solutions 

also respect these conservation properties. In general, all the schemes perform quite well, conserving the 

initial energy and mass to within around 10-4% over the first 900 s (as well as up to 3,600 s; not shown). 

However, when examining differences relative to RK3, W77 gains an order of magnitude less energy than 

RA loses. The total mass for all schemes oscillates spuriously with a period of around 40 s, as wave 

emission associated with the adjustment to the unbalanced initial condition challenges the numerical 

schemes. Superimposed on these high-frequency oscillations is a longer-term variation, in which (again 

relative to RK3) W77 loses an order of magnitude less mass than RA gains. We conclude that each 

numerical scheme tested delivers acceptable energy and mass conservation, with the WFL schemes 

generally performing much better than the RA scheme compared to the RK3 reference solution. 

 

To explore the impacts of diffusion, additional simulations were run with the wind and perturbation pressure 

set to zero, leaving diffusion of potential temperature as the only process operating. Two different values 

of the eddy diffusion coefficient (Km = 75 and 30 m2 s-1) were used. All ten schemes listed in Table 1 were 

tested, using Δt = 0.0625 s (reduced by 25% for W43) and Δx = Δz =100 m, and the quantitative diagnostics 

that will be discussed here were similar across the schemes. These simulations are not shown graphically, 

but they allow the inference that diffusion is important in changing the potential temperature fields, with 

the values of Σθ’2/Σθ’0
2 at t = 900 s being around 0.86 (i.e., a 14% reduction since t = 0) and 0.94 (a 6% 

reduction) when Km = 75 and 30 m2 s-1, respectively. However, the full simulations show that there are 

much larger changes when advection and diffusion are coupled together, with the values of Σθ’2/Σθ’0
2  at t 

= 900 s being around 0.34 (a 66% reduction) and 0.43 (a 57% reduction) when Km = 75 and 30 m2 s-1, 

respectively. Whether diffusion acts alone or is coupled with advection, the impacts on potential 

temperature are less when Km is reduced, as expected. When Km is reduced from 75 m2 s-1 to 30 m2 s-1, the 

ratio of the domain-mean absolute advection tendency to the domain-mean absolute diffusion tendency at 

t = 900 s approximately doubles for each of θ’, u, and w, indicating that the advection becomes increasingly 

important when the diffusion is reduced. 



 

 

 

In summary, the two-dimensional density current simulations are diffusion-limited by design (Straka et al. 

1993). Therefore, the numerical solutions have similar errors regardless of the temporal integration scheme. 

The use of a collapsing flux stencil as the vertical boundaries are approached also could be a factor 

controlling or limiting the spatial and temporal accuracy, as could the O(1)-in-time and O(2)-in-space 

approximations for the diffusion and the O(2)-in-time and O(2)-in-space approximations for the pressure 

gradient and divergence. All the schemes tested conserve energy and mass to within around 10-4%, but the 

WFL schemes are an order of magnitude closer to the high-resolution RK3 reference solution than the RA 

scheme is. Importantly, our results show that each of the WFL schemes appears to be stable when using 

split fast and slow modes. However, the WFL schemes that employ fourth-order temporal filters require 

smaller time steps to remain stable with mode splitting. 

 

c) Three-dimensional rising warm plume 

 

A nonlinear warm thermal current (i.e., rising warm bubble) with constant eddy diffusion coefficient (Km = 

2.0 to 7.5 m2 s-1) is used to examine the behaviour of the WFL schemes in a three-dimensional, fully 

compressible model. Unlike the density current experiments, the rising plume set-up avoids the 

complications of the main feature of interest interacting with an impermeable horizontal boundary 

(Carpenter et al. 1990; Tripoli 1992; Wicker and Skamarock 1998; Bryan and Fritsch 2002). The initial 

conditions include a warm sphere of radius 2 km, which contains a cosine-squared potential temperature 

anomaly of maximum value +2℃ at the centre of the sphere. The warm sphere is released from rest in the 

middle of a doubly periodic horizontal domain measuring 12 km by 12 km, with its centre initially 2 km 

above the lower boundary. As time increases to 1,000 s, the warm sphere deforms and develops a rotor as 

it ascends towards (but by 1,000 s does not reach) the upper boundary, which is at a height of 10 km. The 

evolving warm plume is axisymmetric about the vertical axis defined by x = y = 6 km, but the model 

equations being numerically integrated are fully three-dimensional. 



 

 

 

Figure 10 shows the numerical solutions at 1,000 s for the RK3, RA, W03, WG3, W33, W05, WG5, W55, 

and W77 schemes. These solutions were made using an eddy diffusion coefficient of Km = 7.5 m2 s-1, which 

is large enough to dampen the formation of shear instabilities at the top and sides of the plume (Grabowski 

and Clark 1991; Tripoli 1992). The solutions were made using Δx = Δy = Δz = 100 m and mostly using Δt 

= 0.4 s. However, a smaller time step of Δt = 0.05 s was found necessary to ensure stability for the WFL 

schemes that incorporate fourth-order temporal filters (W05, WG5, and W77). The axisymmetric radial 

overturning circulation, which results from stronger convection at the centre of the plume than the edges, 

and which thereby leads to the rotor formation, is clearly visible in Figure 10. In the absence of an analytical 

solution, a high-resolution RK3 simulation with Δx = Δy = Δz = 25 m and Δt = 0.1 s is used as a reference 

solution for comparison. 

 

The rotors seen in Figure 10 are handled well (compared to the RK3 reference solution) by most of the 

schemes, and perhaps best by the RK3 and W33 test solutions. The maximum perturbation potential 

temperatures are systematically 6–12% higher in the RK3, RA, and WFL test solutions than the RK3 

reference solution. Additionally, the maximum vertical velocities are 8–10% stronger for most of the test 

solutions (not shown). In Figure 10, the negative perturbation potential temperatures seen in the ambient 

fluid surrounding the plume are unrealistic artefacts of purely numerical origin. They occur largely due to 

spatial truncation errors, and they are around ten times smaller in amplitude in the RK3 reference solution. 

 

Figure 11 shows simulations made using a smaller eddy diffusion coefficient (Km = 2.0 m2 s-1) and finer 

numerical resolution (Δx = Δy = Δz = 50 m, Δt = 0.2 s), resulting in somewhat different dynamical 

behaviour at 1,000 s, which is described in detail by Grabowski and Clark (1991) and Tripoli (1992). The 

feedback associated with the dynamical instability can be seen in all the state variables for the high-

resolution RK3 reference simulation (Δx = Δy = Δz = 25 m and Δt = 0.1 s) and in the perturbation potential 

temperature field for the test solutions made using the RK3 and RA schemes and the four WFL schemes 



 

 

that incorporate second-order temporal filters (W03, WG3, W33, and W55). The use of a smaller eddy 

diffusion coefficient allows for advection to become increasingly important, and for shear instabilities to 

become more prominent, owing to sharper temperature and velocity gradients. For the perturbation potential 

temperature field, the test solutions that appear most similar to the high-resolution RK3 reference solution 

include the W55 scheme and perhaps the RK3 scheme, especially in the regions of developing instabilities 

on the leading edge of the plume. The maximum values of the perturbation potential temperature are 2–7% 

too high in all the test solutions compared to the reference solution. The positions of the structures on the 

leading edge of the plume in the high-resolution RK3 reference solution are similar to those in the W55 test 

solution, although the maximum perturbation potential temperature in the W55 solution is slightly higher. 

Reducing the time step of the test solutions to one-eighth of the value used above results in a substantial 

increase in the plume structure on its leading edge (not shown). 

 

The results shown here for the rising warm plume indicate that the largest differences seem to be associated 

with the temporal order of accuracy of the schemes that are used. The differences using different time-

stepping schemes become more apparent with higher spatial and temporal resolution when diffusion 

becomes increasingly less important and advection becomes increasingly more important. Here, diffusion 

is advanced with a first-order forward-in-time finite difference, whereas advection is integrated with 

second-order centred-in-time differences (except that they are first-order for RA). Further reduction of the 

eddy diffusion coefficient, or using a weak tenth-order spatial filter, along with smaller spatial resolutions, 

results in even more enhanced shear instabilities and even more differences (consistent with Grabowski and 

Clark 1991 and Tripoli 1992) when compared to the solutions shown here. 

 

d) Two-dimensional twin tropical cyclones 

 

The final set of benchmark experiments considers a large-scale atmospheric problem, in which the Coriolis 

force is critical. The problem is the linked behaviour of twin tropical cyclones (Moustaoui et al. 2002) 



 

 

modelled using the two-dimensional rotating shallow-water equations cast on a β-plane (Ferreira et al. 1996; 

Moustaoui et al. 2002; Moustaoui et al. 2014). In the absence of the Coriolis force, if the two binary vortices 

are close enough together and strong enough, then they can interact via the Fujiwhara effect. In the presence 

of the Coriolis force, however, the twin cyclones can mutually and symmetrically affect each other, with 

the anticlockwise cyclone initialised north of the equator moving to the north-west and the clockwise 

cyclone initialised south of the equator moving to the south-west. This type of coupled cyclone motion 

results from a secondary asymmetric circulation, which is linked directly to the meridional gradient of 

planetary vorticity (i.e., the β-effect). Without the Coriolis force, or on an f-plane rather than a β-plane, this 

deviate motion does not occur. 

 

The numerical model used here is based on rotating shallow-water equations that permit divergence and 

that include the full, un-approximated latitudinal variation of the Coriolis force (Anthes and Hoke 1975; 

Ferreira et al. 1996; Moustaoui et al. 2002; Moustaoui et al. 2014). The simulation domain is 9,600 km 

wide zonally and meridionally, centred on the equator. Vorticity centres with opposite signs are initialised 

at 7°N and 7°S (i.e., around 780 km either side of the equator), with rotational speeds decaying 

exponentially with increasing radius from their maximum value of 30 m s-1. The simulations are run for 

four days (with tests in larger domains up to 12 days). A reference solution is made with the RK3 scheme, 

using temporal and spatial resolutions of Δx = Δy = 20 km and Δt = 7.5 s, whereas the test solutions are 

made using Δx = Δy = 40 km and Δt = 15 s. The smaller time step allows for stable simulations for all 

schemes. 

 

The solutions are shown in Figure 12 and indicate that the cyclones migrate westward and move further 

apart over the first four days. Although there is a known weak instability with forward-type schemes (such 

as forward explicit Euler, RK3, TVD, Lax–Wendroff, etc.; Gadd 1980; Wicker and Skamarock 2002), no 

such instabilities are detected here in the high-resolution reference solution when advancing the Coriolis 

terms with the RK3 scheme, whether using a forward-in-time or forward–backward-in-time operator for 



 

 

the fast (gravity wave) modes. The other schemes tested at a coarser resolution (RK3, RA, W03, WG3, 

W33, W05, WG5, W55, W77) each performed remarkably well compared to the reference solution after 

four days (96 h) of integration, in terms of the maxima and minima of the vertical vorticity and zonal and 

meridional winds. The extent to which the simulations agree is dependent on the coefficient of the sixth-

order filter that is employed, with older studies using second-order filters but more recent studies using 

sixth-order filters. Longer simulations, up to 12 days, also produce remarkably good scheme-to-scheme 

solution appearance and errors (with respect to the maximum and minimum values of all fields), as well as 

good qualitative comparisons with the results of Moustaoui et al. (2014) at 50 and 100 h of simulation. 

 

4. Summary and discussion 

 

The stabilisation of the leapfrog time-stepping scheme provided by the RA filter has enabled large volumes 

of productive atmospheric and oceanic research and decades of successful weather and climate prediction 

outcomes. However, by spuriously damping the physical mode of the leapfrog scheme, our results show 

that the RA filter can unphysically distort dynamical fields and that it violates conservation of energy and 

mass more egregiously than the RK3 and WFL schemes. Only very small time steps reduce the distortion 

and non-conservation to acceptable levels. The distortion is particularly pronounced when the advection 

tendency plays an important role, such as in the linear two-dimensional cone rotation experiments. It is also 

particularly pronounced when weak eddy diffusion (either physical or numerical) is used in more complex 

nonlinear models, such as the density current and rising warm plume experiments, especially when centred-

in-time differences are used for advection and forward-in-time differences are used (as required for 

stability) for diffusion. For example, we find that the O(2) RK3 and WFL solutions are somewhat better 

than the O(1) RA-filtered leapfrog solutions for the two-dimensional density current (with an eddy diffusion 

coefficient of Km = 75 m2 s-1) and the three-dimensional rising warm plume (with Km = 7.5 m2 s-1). When 

Km is reduced by a factor of around two or more, which allows the advection to become more important 



 

 

compared to the diffusion, we find that the problems in the RA-filtered leapfrog scheme worsen when 

compared to RK3 and WFL. 

 

The results presented in this paper confirm that the WFL schemes that were formally shown to be linearly 

stable in Williams (2009, 2011, 2013) are each stable for more complex two- and three-dimensional systems 

of nonlinear equations for quasi-compressible and fully compressible fluid flows. Furthermore, the WFL 

schemes remain stable even when the discretisation method splits the slow advection and diffusion modes 

from the fast acoustic modes. The time-step size, spatial filtering, and divergence damping requirements of 

the WFL schemes that use second-order filters are generally similar to those of the RA scheme (although 

divergence damping is not necessarily needed for time-filtered schemes for the simulations in this paper). 

Importantly, the total energy errors and total mass errors are much smaller in magnitude (and consistent 

with the RK3 scheme) for all the WFL schemes than for the RA-filtered leapfrog scheme. The simplicity 

of the WFL schemes – being explicit rather than implicit – is attractive from the scalability point of view 

for future exa-scale weather and climate simulations. 

 

As noted by Williams (2009, 2011, 2013), simple code modifications (to only a handful of lines) allow an 

O(1) amplitude error and O(1) overall error RA-filtered leapfrog code to be upgraded to an O(3) amplitude 

error and O(2) overall error WFL code. Such upgrades eliminate many of the problems of the RA-filtered 

leapfrog scheme and incur trivial additional computational cost and storage requirements, especially if the 

one-function WFL schemes are used. The two-function WFL schemes require more code modifications, 

but not prohibitively. The two-function WFL schemes may further improve simulations, especially for pure 

(or nearly pure) advection problems, depending on the order of accuracy of the WFL scheme used. 

Exploitation of variables while they are in the fastest layers of computer cache to the largest extent possible 

can improve computational efficiency more than expected. When large diffusion overwhelms any temporal 

truncation error improvement, such as in the present density current simulations, the two-function WFL 

schemes appear to provide no additional significant improvement beyond that provided by either the one-



 

 

function W03 or WG3 schemes. However, the two-function schemes do provide additional improvements 

when diffusion is not as important, as in the present rising warm plume experiments. 

 

The one-function WFL schemes incur about one-third of the computational cost of the RK3 scheme per 

time step for the same time-step size, and yet they have a similar accuracy profile. However, the one-

function WFL schemes (especially those using a fourth-order temporal filter) require a smaller maximum 

time step and use more memory. Nevertheless, even with the 73% longer time step permitted by the RK3 

scheme compared to the pure leapfrog scheme (Durran 1991), the one-function WFL schemes may still be 

more cost-effective overall, given the reduced computational expense per time step. The two-function WFL 

schemes cost more than the one-function WFL schemes per time step, but they are still only about two-

thirds of the cost of the RK3 scheme per time step for the same time-step size. Note also that in the leapfrog 

(RA and WFL) schemes with mode splitting, the small step sequence is looped through once per time step 

(with N small steps per time step). On the other hand, the RK3 scheme loops through the small step sequence 

three times per time step (with N/3, N/2, and N small steps). For example, when N = 12, there are a total of 

22 small step calculations per time step for RK3, compared to only 12 for the leapfrog schemes. However, 

when N = 12 is used for the centred schemes, N = 6 can be used for RK3 (because it is a forward scheme), 

so there could be a total of only 11 small step calculations per time step. 

 

When obtaining mode-split numerical solutions, the WFL schemes that use a fourth-order temporal filter 

were found to require reduced time steps to remain stable, compared to the WFL schemes that use a second-

order temporal filter. This restriction was not found when the fourth-order temporal filter WFL schemes 

were used to obtain non-mode-split solutions, such as in the case of pure advection of a cone. This restriction 

is irrelevant for all WFL schemes when fast and slow modes were not split and integrated explicitly. 

Fortunately, it has been found that this problem can be alleviated in time-split simulations by integrating 

the velocity advection terms using the smaller time step, as has been done previously for the Crowley 

scheme (Tremback et al. 1987; Walko and Avissar 2008), making the integration of many scalar variables 



 

 

efficient (because they do not need the reduced step) when the fourth-order temporal filter WFL schemes 

are used. In particular, the Walko and Avissar (2008) procedure permits stable and long integrations (longer 

than 4 days) as described with the twin tropical cyclones and other simulations not shown in this paper. The 

reasons for the reduced time step requirements of the fourth-order temporal filter are unknown and warrant 

further investigation. 

 

The comparisons presented in this paper allow some provisional recommendations to be made regarding 

the most suitable WFL schemes for various purposes. For flows in which the diffusion is relatively small 

or zero, such as the advection-dominated flow above the planetary boundary layer in the free atmosphere, 

our linear advection and rising warm plume experiments suggest that the two-function W33 and W55 

schemes deliver the best performance. In contrast, for diffusion-dominated flows, such as deep convection 

or the turbulent flow within the planetary boundary layer, our density current experiments suggest that the 

one-function W03 and WG3 schemes are sufficient. Our time-split experiments suggest that W05, WG5, 

W44, and W77 may be poorly suited to high-resolution non-hydrostatic simulations, because these schemes 

have limited stability with split modes. 

 

One of the limitations of this study is that the more complex simulations are run for relatively short 

integration periods, compared to the typical usage of an atmosphere or ocean model. Consequently, it 

remains unclear if the WFL schemes are more suited to short-range numerical weather prediction forecasts 

or long-term climate projections. Longer simulations might produce more degradation of the RA-filtered 

leapfrog solution compared to the WFL and RK3 solutions, as seen in the two-dimensional cone advection 

simulations. Another limitation is that the results do not include comparisons to the filtered leapfrog 

schemes proposed by Moustoui et al. (2014) or Maurya et al. (2019), or to the forward temporal treatments 

used in the higher-order Crowley schemes (Tremback et al. 1987). The stability of the mode-split WFL 

schemes also remains to be formally shown. We call for future work to address these omissions. 
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Scheme Amplitude 

Error 

Phase 

Error 

Filter 

Order 

Function 

Evaluations 

Filter Parameters 

(ν, α, γ) 

RA (Robert–Asselin)  1  2 2 1  0.1, —, — 

RK3 (Runge–Kutta)  3 (2)  3 (2) — 3 —, —, — 

W03 (Williams) 3 2 2 1 0.1, 0.5, 0 

WG3 (Williams) 3 2 2 1 0.1, 0.5, 1 

W33 (Williams) 3 2 2 2 0.1, 0.5, 0.5 

W43 (Williams)   3  2 4 1 0.1, 0, 1 

W05 (Williams) 5 2 4 1 0.1, 0.5, 0 

WG5 (Williams) 5 2 4 1 0.1, 0.5, 1 

W55 (Williams) 5 2 2 2 0.1, 0.5, (3-ν)/(4-ν) 

W77 (Williams) 7 2 4 2 0.1, 0.5, (5-9ν)/[2(4-7ν)] 

 

Table 1. Properties of the numerical time-stepping schemes used in this study, listing the order of accuracy 

of the amplitude and phase errors, the temporal filter order (where applicable), the number of function 

evaluations per time step, and the filter parameter values (where applicable). The amplitude and phase error 

orders are for linear oscillations, unless they appear in parentheses, in which case they are for nonlinear 

oscillations. Apart from RK3, these are all leapfrog-based schemes.  



 

 

System Domain and 
Resolution 

Numerics Initial 
Condition 

System of Equations 

Two-dimensional 
cone in constant 
solid-body rotation 
(Schlesinger 1985) 

•Lx=Ly=112 m 
•T=12-36 rotations 
•Δx=Δy=2 m 
•Δt=10π/628 s 
•Sensitivity for 
Δx=Δy=1 m and 
Δt=(5, 2.5, 1.25, 
0.625, 0.3125)π/628 s 

•10th-order constant 
grid flux (tested 2nd-
16th order; Tremback 
et al. 1987) 
•No filters 

•Cone 
•Height=1 m 
•Radius=8 m 
•xc=84 m 
•yc=56 m 
•angular 
velocity  
ω=0.1 rad s-1 

•Scalar transport 
•Flux form, non-staggered A-grid 
 
 

Two-dimensional 
density current 
(Straka et al. 1993) 

•Lx=51.2 km 
•Lz=6.4 km 
•T=900 s 
•Δx=Δz=100 m 
•Δt=0.0625 s 
•Sensitivity for 
Δx=Δz=12.5-200 m 
and Δt=0.03125-2.0 s 

•10th-order constant 
grid flux (tested 2nd-
16th order; Tremback 
et al. 1987) 
•2nd-order fast modes 
(tested 2nd-10th order) 
•No filters 
•Divergence damping 

•Ellipse 
•Cosine 
squared 
•xc=25.6 km 
•xr=4 km 
•zc=3 km 
•zr=2 km 
•ΔTmin=-15 °C  

•Quasi-compressible (cs=347 m s-1) 
•Straka et al. (1993) 
•Split sound/advection and diffusion 
(forward–backward) 
•Flux form, staggered C-grid 
•Periodic in x 
•Free-slip top and bottom boundaries 
•Constant diffusion Km=75 m2 s-1 

•Sensitivity to Km=30 m2 s-1 

Three-dimensional 
warm plume 
(Carpenter et al. 
1990; Tripoli 
1992; Wicker and 
Skamarock 1998; 
Bryan and Fritsch 
2002) 

•Lx=Ly=12 km 
•Lz=10 km 
•T=1000 s 
•Δx=Δy=Δz=100 m 
•Δt=0.4 s 
•Sensitivity for 
Δx=Δy=Δz=25-50 m 
Δt=0.03125-2.0 s 

•10th-order constant 
grid flux (tested 2nd-
16th order; Tremback 
et al. 1987) 
•2nd-order fast modes 
(tested 2nd-10th order) 
•No filters 
•Divergence damping  

•Sphere 
•Cosine 
squared 
•xc=yc=6 km 
•xr=yr =2 km 
•zc=2 km 
•zr=2 km 
•Δθmax=+2 °C  

•Fully-compressible 
•Similar to Bryan and Fritsch (2002) 
•Split sound/advection and diffusion 
(forward–backward) 
•Flux form, staggered C-grid 
•Periodic in x and y 
•Free-slip top and bottom boundaries 
•Constant diffusion Km=7.5 m2 s-1 
•Sensitivity to Km=2.0 m2 s-1 

Two-dimensional 
twin tropical 
cyclones 
(Moustaoui et al. 
2002; Moustaoui et 
al. 2014) 
 

•Lx=Ly=9,600 km 
•T=12 days 
•∆x=∆y=40 km 
•Δt=15 days 
•Sensitivity for 
Δx=Δy=Δz=20 km 
Δt=7.5 days 

•10th-order constant 
grid flux (tested 2nd-
16th order; Tremback 
et al. 1987) 
•2nd-order fast modes 
(tested 2nd-10th order) 
•6th-order filter with 
K6Δt/Δx6=2.5×10–6 

•Divergence damping 

•Vorticity 
centres with 
opposite signs at 
7°N and 7°S 
•Exponential 
decay from 
extremes 
•Maximum 
velocity  
V0=30 m s-1 

•Rotating shallow-water equations 
•Anthes and Hoke (1975) 
•H0 = 234.86 m 
•Explicit or split gravity wave/advection and 
diffusion (forward–backward) 
•Flux form, staggered C-grid 
•Divergence permitting 
•Radiative lateral boundaries  
•Normal velocity Cgx=58 m s-1, Cgy=5 m s-1 

 

Table 2. Summary of the experimental designs for the benchmark simulations studied in this paper. Lx, Ly, 

and Lz are the domain dimensions; T is the simulation duration; Δx, Δy, and Δz are the numerical grid 

spacings; Δt is the time step; Km is the eddy mixing coefficient; H0 is the initial mean elevation of the fluid 

for the twin cyclone problem; cs is the speed of sound; Cgx and Cgy are the normal boundary condition 



 

 

gravity wave speeds; ΔTmin and Δθmax are the temperature and potential temperature perturbations, 

respectively, of the specified initial conditions; and (xc, yc, zc) and (xr, yr, zr) are the centre and radius, 

respectively, of the specified feature.  



 

 

Scheme Maximum and 

Minimum Values 

(m) 

L∞ Error (m) RMS Error (m) Dissipation and 

Dispersion Errors 

(m2) 

RA 

(Δt = 10π/628 s)  

0.476 

-1.00×10-2 

0.524 2.49×10-2 2.27×10-4 

3.93×10-4 

RA 

(Δt = 2.5π/628 s)  

0.702 

-1.28×10-2 

0.298 1.19×10-2 4.35×10-5 

9.79×10-5 

RA 

(Δt = 0.625π/628 s)  

0.823 

-2.74×10-2 

 0.176 7.04×10-3  4.05×10-6 

4.55×10-5 

RK3 

(Δt = 10π/628 s) 

0.874 

-4.62×10-2 

0.126 7.03×10-3 6.76×10-9 

4.94×10-5 

W03 

(Δt = 10π/628 s)  

0.870 

-6.17×10-2 

0.130 9.32×10-3 1.61×10-9 

8.70×10-5  

W77 

(Δt = 10π/628 s) 

0.872 

-6.63×10-2 

0.128 9.91×10-3 9.51×10-10 

9.83×10-5  

 

Table 3. Values of various error measures for the cone height after 12 rotations, each rounded to three 

significant figures. All solutions use Δx = Δy = 2 m.  



 

 

 



 

 

Figure 1. Cone height (m) after 12 rotations for RA with ν = 0.1 (left column) and RK3 (right column) 

made using the O(2, 4, 6, 8, 10) constant grid flux schemes (top to bottom rows). Values of Δx = Δy = 2 m 

and Δt = 0.625π/628 s are used to minimize the time truncation error. The maximum value (MAX), 

minimum value (MIN), and contour interval (CI = 0.1 m) are stated on each plot. The thin, solid contours 

indicate positive and zero values, and the thin, dashed contours indicate negative values. The thick, dashed 

contours are the superimposed analytical solution at 0.1, 0.5, and 0.9 m. Wind vectors are plotted at every 

second gridpoint. Only the sub-domain from x = 68–100 m and y = 40–72 m is shown.  



 

 

 

Figure 2. Cone height (m) after 12 rotations for all the schemes tested (RA, RK3, W03, WG3, W33, W43, 

W05, WG5, W55, W77). The RA solutions are made using Δt = 10π/628, 5π/628, 2.5π/628, 1.25π/628, and 



 

 

0.625π/628 s. All other solutions are made using Δt = 10π/628 s. All solutions use Δx = Δy = 2 m. The 

maximum value (MAX), minimum value (MIN), and contour interval (CI = 0.1 m) are stated on each plot. 

The thin, solid contours indicate positive and zero values; there are no negative contours with the chosen 

contour interval. The thick, dashed contours are the superimposed analytical solution at 0.1, 0.5, and 0.9 m. 

Wind vectors are plotted at every second gridpoint. Only the sub-domain from x = 68–100 m and y = 40–

72 m is shown.  



 

 

 

Figure 3. Time series of an error measure for the cone height field in the RA, RK3, W33, W55, W77, W03, 

WG3, and WG5 schemes. The error measures are evaluated once per complete rotation, from the start of 

the simulations up to 12 rotations. The error measure plotted is the absolute value of 1-ΣA2/ΣA0
2, where A 

is the scalar cone height field, A0 is the exact solution, and both summations are taken over the entire 

simulation domain. The RA solutions are made using Δt = 10π/628, 2.5π/628 (labelled Δt/4), and 

0.625π/628 s (labelled Δt/16). All other solutions are made using Δt = 10π/628 s. All solutions use 

Δx = Δy = 2 m.  



 

 

 

Figure 4. Cone height after 12 rotations for the RK3, RA, W03, and W77 schemes (top to bottom rows) 

with different time steps and spatial resolutions (left to right columns). The solutions were made using 

Δt = 10π/628 s and Δx = Δy = 2 m (left column), Δt = 5π/628 s and Δx = Δy = 1 m (middle column), and 

Δt = 2.5π/628 s and Δx = Δy = 1 m (right column). The maximum value (MAX), minimum value (MIN), 



 

 

and contour interval (CI = 0.1 m) are stated on each plot. The thin, solid contours indicate positive and zero 

values; there are no negative contours with the chosen contour interval. The thick, dashed contours are the 

superimposed analytical solution at 0.1, 0.5, and 0.9 m. Wind vectors are plotted at every second gridpoint. 

Only the sub-domain from x = 68–100 m and y = 40–72 m is shown.  



 

 

 

Figure 5. Variation of cone height error with time step after 12 rotations. The error measure plotted is the 

absolute value of 1-ΣA2/ΣA0
2, where A is the scalar cone height field, A0 is the exact solution, and both 

summations are taken over the entire simulation domain. The six time-step sizes used (Δt = 10π/628, 

5π/628, 2.5π/628, 1.25π/628, 0.625π/628, and 0.3125π/628 s) are indicated with vertical lines. All solutions 

used Δx = Δy = 2 m. Identical RK3 curves are shown on both panels for reference, with two additional 

schemes requiring a single function evaluation per time step shown on the left panel (RA and WG3) and 

two additional schemes requiring two function evaluations per time step shown on the right panel (W33 

and W55). The simulations were run using either single-precision (32-bit) calculations (SGL) or double-

precision (64-bit) calculations (DBL). The simulations used either 2nd-order (02I) or 10th-order (10I) 

interpolation of the wind. All simulations used the 10th-order constant grid flux scheme (10F). Both axes 

are logarithmic, and the reference lines labelled O(1), O(2), and O(3) indicate linear, quadratic, and cubic 

scaling.  



 

 

 

Figure 6. Variation of computational expense with cone height error for six different time-step sizes after 

12 rotations. The cone height error measure, six time-step sizes, and horizontal resolution are the same as 

in Figure 5. In all cases plotted here, the numerical precision is single (32 bit), the wind interpolation is 2nd 

order, and the constant grid flux is 10th order. Identical RK3 and RA curves are shown on both panels for 

reference, with four additional schemes using second-order temporal filters shown on the left panel (W03, 

WG3, W33, and W55) and four additional schemes using fourth-order temporal filters shown on the right 

panel (W05, WG5, W77, and W43). The computational expense is measured by a Central Processing Unit 

(CPU) factor, which is defined as the total number of floating-point operations required to simulate 12 cone 

rotations (taking into account the relative costs of addition, subtraction, multiplication, and division) 

normalized by that of the RA scheme at the longest time step.  



 

 

 

Figure 7. Reference solution for the two-dimensional density current after 900 s, obtained using the RK3 

scheme with Δt = 0.0078125 s and Δx = Δz = 12.5 m. Plotted from top to bottom are the perturbation 

potential temperature (T-Tb in K), horizontal velocity (U in m s-1), vertical velocity (W in m s-1), and 

perturbation pressure (P-Pb in mb). The maximum value (MAX), minimum value (MIN), and contour 

interval (CI) are stated on each plot. The thin, solid contours indicate positive values, and the thin, dashed 

contours indicate negative values. There is no zero contour in the perturbation potential temperature plot, 

because there are no positive values and the maximum value is slightly less than zero. The zero contours 



 

 

are omitted from the other three plots to keep them uncluttered. The thick, dashed contour is the perturbation 

potential temperature at -0.75 K to indicate the bulk location of the density current. Wind vectors are plotted 

every 800 m horizontally and 400 m vertically. Only part of the lower-left quadrant of the domain from x 

= 6.4–25.6 km and z = 0–3.2 km is shown.  



 

 

 

Figure 8. Perturbation potential temperature (K) for the two-dimensional density current after 900 s, 

obtained using the RK3, RA, and eight WFL schemes. All simulations use Δt = 0.0625 s (except that W43 

uses three-quarters of this value) and Δx  = Δz = 100 m. The first plot shows RK3 and the subsequent plots 

show differences with respect to RK3. The maximum value (MAX) and minimum value (MIN) of the test 

simulations are stated on each plot. The thin, solid contours indicate positive values and the thin, dashed 

contours indicate negative values. The thick, dashed contours are the superimposed RK3 solution at -0.75 K 

to indicate the bulk location of the density current. Wind vectors in the RK3 simulation are plotted every 

800 m horizontally and 400 m vertically. Only part of the lower-left quadrant of the domain from x = 6.4–

25.6 km and z = 0–3.2 km is shown.  



 

 

 

Figure 9. Time series of total energy (left column) and fluid mass (right column) for the first 900 s of the 

two-dimensional density current simulations, using the RK3, RA, and W77 schemes with Δt = 0.0625 s and 

Δx  = Δz = 100 m. The upper row shows errors, which are defined as the percentage change in each 

simulation since t = 0. The lower row shows the corresponding error differences in RA and W77 with 

respect to RK3.  



 

 

 

Figure 10. The three-dimensional rising warm plume after 1,000 s, simulated using the RK3, RA, W03, 

WG3, W33, W05, WG5, W55, and W77 schemes. The first three panels show the radial velocity (U in 

m s-1), vertical velocity (W in m s-1), and perturbation potential temperature (T-Tb in K) in the high-

resolution RK3 reference solution, made using Δx = Δy = Δz = 25 m and Δt = 0.1 s. The following panels 

show the perturbation potential temperature (T-Tb in K) in the test solutions, made using Δx = Δy = Δz = 

100 m and Δt = 0.4 s (except that W05, WG5, and W77 use Δt = 0.05 s). The simulations use an eddy 

diffusion coefficient of Km = 7.5 m2 s-1. The maximum value (MAX), minimum value (MIN), and contour 

interval (CI) are stated on each plot. The thin, solid contours indicate positive values, and the thin, dashed 



 

 

contours indicate negative values. The thick, solid contours in the first two panels indicate the zero values, 

which are omitted from the subsequent panels to keep them uncluttered. The thick, dashed contours are 

the superimposed perturbation potential temperature in the high-resolution RK3 reference solution at 0.1, 

0.6, and 1.1 K to indicate the bulk location of the plume. Wind vectors are plotted every 400 m horizontally 

and vertically. Only the sub-domain from x = 6–10 km and z = 2–10 km at y = 6 km is shown.  



 

 

 



 

 

Figure 11. The three-dimensional rising warm plume after 1,000 s, simulated using the RK3, RA, W03, 

WG3, W33, and W55 schemes. The top row shows the radial velocity (U in m s-1), vertical velocity (W in 

m s-1) and perturbation potential temperature (T-Tb in K) in the high-resolution RK3 reference solution, 

made using Δx = Δy = Δz = 25 m and Δt = 0.1 s. The following panels show the perturbation potential 

temperature (T-Tb in K) in the test solutions, made using Δx = Δy = Δz = 50 m and Δt = 0.2 s. The 

simulations use an eddy diffusion coefficient of Km = 2.0 m2 s-1. The maximum value (MAX), minimum 

value (MIN), and contour interval (CI) are stated on each plot. The thin, solid contours indicate positive 

values, and the thin, dashed contours indicate negative values. The thick, solid contours in the first two 

panels indicate the zero values, which are omitted from the subsequent panels to keep them uncluttered. 

The thick, dashed contours are the superimposed perturbation potential temperature in the high-resolution 

RK3 reference solution at 0.1, 0.6, and 1.1 K to indicate the bulk location of the plume. Wind vectors are 

plotted every 400 m horizontally and vertically. Only the sub-domain from x = 6–10 km and z = 2–10 km 

at y = 6 km is shown.  



 

 

 

Figure 12. The two-dimensional twin tropical cyclones after four days, simulated using the RK3, RA, 

W03, WG3, W33, W05, WG5, W55, and W77 schemes. The top row shows the vertical vorticity (VORZ 

in 10-4 s-1), zonal velocity (U in m s-1), and meridional velocity (V in m s-1) in the high-resolution RK3 



 

 

reference solution, made using Δx = Δy = 20 km and Δt = 7.5 s. In the vertical vorticity plot for the 

reference solution, the solid lines indicate the cyclone tracks since t = 0. The following panels show the 

vertical vorticity (VORZ in 10-4 s-1) in the test solutions, made using Δx = Δy = 40 km and Δt = 15 s. The 

maximum value (MAX), minimum value (MIN), and contour interval (CI) are stated on each plot. The 

solid contours indicate positive and zero values, and the dashed contours indicate negative values. The 

zero contours are omitted from the zonal and meridional velocity plots to keep them uncluttered. Wind 

vectors are plotted every 160 km zonally and meridionally. Only the sub-domain from x = ±2,400 km 

and y = ±2,400 km is shown. 




