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Abstract 

Studies assessing the effects of biochar used as a soil amendment in agriculture and forestry have 

indicated variable results, from significant improvements in growth and health to no effect at all. 

Research into biochar use for trees within the urban landscape are extremely limited. This review is aimed 

at arboricultural practitioners and professionals involved in urban tree landscape management and 

provides a critical analysis of the use of biochar to support tree health and establishment. Biochar, 

specifically wood biomass-based biochar, has the potential to enhance tree establishment and survival. 

However, considerable variability in the physical and chemical properties of biochar currently limits 

universal application. Therefore, practitioners should aim to use biochar types suitable for the desired 

function, such as transplant establishment, remediation of declining mature trees, and pest/disease 

management. Biochar also represents a promising complimentary amendment to more established soil 
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management techniques such as mulching and fertilization, but further long-term studies in a range of 

conditions typical of urban environments are required to fully understand the effects of specific biochar 

types on urban trees. 

Keywords 

Biomass, Root Growth, Soil Amendment, Soil Compaction, Tree Survival. 

Introduction 

Urban forests and green infrastructure not only contribute aesthetically to the municipal environment but 

additionally provide environmental and socio-economic benefits (Roy et al., 2012; Seamans, 2013). These 

benefits include lowering atmospheric pollution, temperature extremes, floodwater runoff, noise 

pollution, and heavy metal soil concentration (Bell et al., 2008; Donovan and Butry, 2009; Hardin and 

Jensen, 2007). Currently, 54% of the global human population live in urban areas, with a predicted rise to 

66% by 2050 (United Nations, 2015), and therefore maximizing the benefits of green spaces and the soils 

that support green infrastructure in urban environments is vital (World Health Organization, 2017). 

Human activity in urban areas is often very intensive and has been shown to damage soil quality through 

the destruction of soil structure or changes in soil mineral and biological composition, which can lead to 

compaction, degradation, and erosion (Bullock and Gregory, 2009; Craul, 1999; Rossiter, 2007). Available 

soil volume is a major factor limiting the growth of urban trees (Day and Bassuk, 1994; Grabosky and 

Bassuk, 1996), whilst soil texture and bulk density also play a role as determinants of root growth 

(Roberts et al., 2006). Biochar, a highly porous material produced from biomass, may provide some 

benefits for improving the urban soil environment. 

Biochar is a product high in complex carbon compounds, produced by pyrolysis of the feedstock biomass 

material at high temperatures (>300°C) in a low oxygen environment (Cha et al., 2016; Lehmann and 
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Joseph, 2009; Sun et al., 2014). Biochar is a common by-product of biofuel or biogas production (Laird et 

al., 2010; Steenari and Lindqvist, 1997), but has also shown potential as a valuable soil additive for 

improving plant productivity demonstrated by its many applications in agriculture (Bhattacharjya et al., 

2016; Ding et al., 2017; Safaei Khorram et al., 2019; Scott et al., 2014). The exact properties of biochar, 

such as pH, nutrient value, stability, and its subsequent influence on the soil environment, are highly 

dependent on the original biomass used to produce it (Al-Wabel et al., 2017; Gai et al., 2014; Panwar et 

al., 2019; Suliman et al., 2017; Vandecasteele et al., 2016). The type of feedstock used to produce biochar 

has been identified as having a stronger impact on plant growth than production temperature (Rajkovich 

et al., 2012). The effect of feedstock on biochar characteristics is demonstrated in Table 1. 

Biochar is primarily applied as a soil amendment to increase soil carbon content, improve soil structure, 

nutrient retention, and plant growth (Elad et al. 2011). In general, the addition of organic matter (OM) to 

soil boosts its functionality, and biochar can be used as a source of OM to aid soil recovery from 

anthropogenic degradation. Biochar addition to the Amazon Preta de Indio soils demonstrated its 

potential to improve soil fertility and structure in the very long term (Lehmann et al., 2002). Charred 

materials applied 9,000 years ago are still detectable in 2010 (Sohi et al., 2010). Biochar is a relatively 

inert compound, usually characterized by low nutrient content unless the biomass used for its production 

was derived from animal manure or contains a large ash content post-production (El-Naggar et al., 2019; 

Scott et al., 2014). Plant nutrition can, however, be improved indirectly through increased soil cation 

exchange capacity and enhanced retention of nutrients in biochar within the soil profile (Foster et al., 

2016; Kolton et al., 2017). The recent literature examining the effect of biochar amendments on urban 

tree growth is relatively sparse, as the majority of studies focus on agricultural crops such as rice, wheat, 

tomatoes, rapeseed, and corn (Griffin et al., 2017; Larbat et al., 2012; Scott et al., 2014; Tian et al., 2020).  

In principle, the positive effects of biochar soil addition observed in agricultural crops should be 

applicable to trees, albeit over a longer duration to reflect their life span. In reality, a wide range of 
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biochar effects on soils has been reported. The International Biochar Initiative (IBI) has attempted to set 

standards for biochar for use in soils, as shown in Table 2 (International Biochar Initiative, 2015), including 

a certification program to ensure biochar is of sufficient quality and safe for soil application. 

Biochar degradation in the soil is extremely slow, usually occurring over thousands of years (Lehmann et 

al., 2006; Liang et al., 2008). There is importance in examining the efficacy of biochar as a soil amendment 

over an extended time period to assess cost-effectiveness for a single application for urban tree plantings, 

which has received little attention. Bare-rooted ornamental trees tend to be more economical to 

produce, transport and plant, and therefore more frequently utilized (Barnes and Percival, 2006; Davies 

et al., 2002). However, the lifting and processing of bare-rooted stock often decrease root mass and 

quality of root architecture (Watson and Himelick, 1997; Wilson et al., 2007). The result is a loss in root 

absorptive area (Watson and Himelick, 1997), the negative impact of which may be alleviated by biochar 

addition (Schaffert and Percival, 2016).  

The aim of this review is to identify issues specific to the establishment of urban tree populations, collate 

existing information on the potential of biochar to improve the success of urban tree establishment and 

to present a coherent information base accessible to arboricultural practitioners. This review also aims to 

indicate areas of opportunity for future biochar research in the urban landscape. 

 

Review methodology 

ISI Web of Knowledge, Science Direct, and Google Scholar were utilized to conduct literature search using 

the following keywords; “biochar, tree growth”, “biochar, soil, urban”, and “biochar tree”, and papers 

published after 2012 only were included.  A number of papers were rejected from the result based on 

title only as they were not pertaining to biochar soil amendment. The lists of references in published 
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reviews (Stavi, 2013; Thomas and Gale, 2015; Verheijen et al., 2014), were consulted as additional 

sources of relevant literature. Studies that defined the product as “ash” instead of biochar were excluded 

due to the different production and properties compared with biochar. For those using the term 

“charcoal” in place of biochar, details of the product applied were determined to ensure their similarity to 

biochar and were provided in this review. Information for each of the 46 studies reviewed here, including 

biochar, soil and tree characteristics for each study, can be found in the supplementary information for 

this publication. 

 

Biochar effects on soil in relation to tree growth and survival 

Biochar is a likely alternative to traditional compost and fertilizer amendments for use within the urban 

landscape due to its broadly positive effects on tree growth and soil properties (Scharenbroch et al., 

2013). However, only limited evidence on the effects of biochar on urban trees is currently available 

(Ghosh et al., 2016; Scharenbroch et al., 2013), with a focus on orchards, fruit-producing species (Eyles et 

al., 2015; Ventura et al., 2014) or on forest restoration projects (Sovu et al., 2012; Thomas and Gale, 

2015). An average increase in total biomass of 41 % was reported across a range of woody species 

following biochar soil amendment, with angiosperms showing greater growth responses than conifers in 

one meta-analysis review (Thomas and Gale, 2015). Research has shown the effects of biochar on trees 

can be highly species-specific, however, the following sections aim to evaluate the potential of biochar to 

ameliorate conditions for trees growing in the urban landscape. 

Root system growth  

Enhanced root growth after planting can facilitate and increase the rate of establishment, especially in 

less desirable environments. The addition of wood-based biochar as a soil amendment reduced root 
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biomass and increased root:shoot ratio of hybrid vpoplar (Populus nigra L. × Populus suaveolens Fischer 

subsp. maximowiczii A. Henry) through improved cation exchange capacity when compared to 

vermiculite and peat (Headlee et al., 2014). Pear (Pyrus communis) trees showed similar reactions to 

transplanting into biochar amended soils, with a 20% reduction in mortality, a significant increase in tree 

crown size by 28%, and improvements in leaf photosynthetic efficiency of 32% compared with untreated 

trees (Schaffert and Percival, 2016).  

Coral gum (Eucalyptus torquata), a xeric tree species, when planted in a sandy soil with biochar 

amendment, improved its below-ground growth compared to no biochar addition, but not in a clay soil, 

which could indicate greater improvements in water retention than drainage (Somerville et al., 2019).  In 

tropical regions of Australia, the use of eucalyptus wood biochar in the rhizosphere of the mesic tree 

species Spotted gum (Corymbia maculata) had no significant effect on root growth response under two 

watering regimes (drought and well-watered). However, a xeric tree species included in the same study, 

Coral gum (Eucalyptus torquata), did show an increase in root growth response in sandy soil (Somerville 

et al., 2019). Water content at field capacity in the sandy soil resulting from the addition of biochar could 

explain the increased growth response in the Coral gum-treated trees. When incorporating pine waste 

biochar to improve root regeneration, significantly higher root biomass was observed when planting 

Small-leaved lime (Tilia cordata) in late Spring (Fite et al., 2019). Total above and below-ground biomass 

production and foliar magnesium (Mg) concentrations of peach trees were significantly higher following 

biochar amendment at all harvesting dates compared to control trees (Atucha and Litus, 2015). Brazil nut 

biochar applied to the soil of two tropical tree species, applied either alone or with fertilizer, improved 

root biomass production up to 85% in White olive (Terminalia amazonia) and Bolaina Blanca (Guazuma 

crinite) (Lefebvre et al., 2019). Biochar nutrient contents, as well as its humic acid and fulvic acid content 

were identified as responsible for these effects (Fagbenro et al., 2015).  
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Water availability to plants 

Increased soil matric potential has been observed, with the greatest improvements when soil is nearing 

field capacity (Eykelbosh et al., 2014). At the same time, woodchip biochar shows high levels of water 

repellency due to the hydrophobicity of lignin and cellulose it contains, potentially lowering soil water 

holding capacity (Brantley et al, 2015). Poultry litter biochar had an even greater water repellency, 

possibly due to the oil or tar content of the original biomass used to produce it (Brantley et al., 2015). 

Examining the performance of dwarf umbrella tree (Schefflera heptaphylla) roots in a potted tree study, 

biochar reduced matric suction by 12% and improved plant water availability within soils by 36%, in 

addition to increasing the water content of the soil from 12 to 17% (Ni et al., 2018). Similarly, positive 

results were observed in larger pot trials, hinting at the wider applicability of these findings for larger 

specimens (Fujita et al., 2020; Zoghi et al., 2019). Three percent (by weight) application of hardwood chip 

biochar achieved a 73% increase of biomass, 38% of photosynthetic rates, and 39% of stomatal 

conductance in pot-grown Chestnut leaved oak (Quercus casteinifolia) in severe water deficit conditions 

(40% field capacity) (Zoghi et al., 2019), and 5% application increased midday stem water potential in Red 

Oak (Quercus rubra) (Zwart and Kim, 2012). When irrigation was completely removed from potted 

Japanese Black pine (Pinus thunbergii), biochar maintained significantly higher internal water potential for 

10 days compared to trees growing in untreated soil whilst increasing root biomass over time (Fujita et 

al., 2020). A cultivar of Manchurian Pear (Pyrus ussuriensis Maxim.) showed significant improvements in 

leaf photosynthetic efficiency after wood chip biochar application, whilst biochar also reduced moisture 

loss from the rhizosphere by transpiration under drought stress conditions (Lyu et al., 2016). Similar 

trends were observed with Black locust (Robinia pseudoacacia L.), with an improvement in shoot growth 

significantly correlated to improvements in soil water holding capacity and available P as a result of 

biochar application in another greenhouse pot trial (Bu et al., 2020). However, caution should be 

exercised in relying entirely on these results as young potted seedlings were used in many biochar trials 
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(Bu et al., 2020; Fujita et al., 2020; Lyu et al., 2016; Zoghi et al., 2019). Benefits of combined compost 

(10%) and biochar (5%) application were determined to be greater than sole application in this tropical 

urban environment, with increased tree growth index (33% and 50%) after 30 months, PAW (104% and 

16%) after 24 months, and reduced bulk density (25% and 33%) 30 months after application in sandy 

clam loam and loamy sand respectively (Somerville et al., 2020).  

During the vegetative period of woody grapevines over a four-year trial, yield increases were observed 

where biochar was applied as a soil amendment despite lower rainfall, highlighting the positive 

contribution of biochar during periods of drought (Genesio et al., 2015). Whilst most examples identified 

using tree species have resulted in positive effects of biochar on water availability and water uptake, 

mixed hardwood biochar tested in an apple orchard in Italy resulted in no effects on soil moisture 

relations or temperature in a particularly unretentive soil media (Ventura et al., 2014). In contrast, 

biochar combined with a clay substrate led to lower soil water content, typically below permanent wilting 

point (PWP), and significantly reduced the period of retaining PAW in sandy soil (Mertens et al., 2017). 

Authors speculated that higher evaporation potential due to the biochar application could result in 

reduced PAW (Mertens et al., 2017). Many other studies have identified significantly positive results in 

applying biochar to sandier soils for improved water retention (Basso et al., 2013; Githinji, 2014; Hariyono 

et al., 2020; Suliman et al., 2017), but much more exploration is required in contrasting climatic regions 

before definitive conclusions can be reached. It is likely that the surface area increased by biochar 

application improves the water holding capacity of sandy soils (Omondi et al., 2016; Wang et al., 2019). 

Pore size distribution and abundance differ between biochars. For example, the range of pore size for 

bamboo-based biochar (0.001 to 1000µm diameter) is wider than that of wood-based biochar (10-3000 

µm diameter) (Thies and Rillig, 2009). This is important as pore size distribution directly influences water 

retention and nutrient capacity when applied to soil (Kameyama et al., 2019). 
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Degraded soils and nutrient availability 

Low nutrient availability is a frequent problem in urban environments. Interestingly, biochar studies often 

target degraded soils in tropical climates typical for their low nutrient content and retention capacity. 

Examining interactions with macronutrients, chicken manure biochar can significantly increase total N 

from 0.53 to 0.90 g kg¯¹, and available P and K from 0.65 and 48.3 mg kg¯¹ to 28.0 and 226.7 mg kg¯¹ 

respectively, although only 2% of the N original content was shown to be available (Lin et al., 2017). 

Wheat straw biochar demonstrated similar results when trialed in a Chinese nutmeg-yew (Torreya 

grandis) orchard (Q. Li et al., 2020), and sewage sludge biochar has shown some degree of efficacy for 

improving plant growth through increasing nutrient availability to trees (Silva et al., 2016). Soil-applied 

biochar has the potential to stimulate soil nitrification through increases in soil ammonia-oxidizer 

(bacterial and archaeal nitrifiers) populations (Prommer et al., 2014), although other research did 

determine the N content of biochar itself is not an indicator of effect on plant biomass production 

(Scharenbroch et al., 2013). In a 13 week trial using Drumstick tree (Moringa oleifera), a highly-valued 

medicinal tree, the main effects of biochar on various plant parameters were positive and significant at 

the highest application of biochar and fertilizer individually. These included increases up to 17% in tree 

height and 20% in stem diameter, respectively (Fagbenro et al., 2015). 

Hardwood biochar produced the most consistent improvements in yield (Spokas et al., 2012). When 

applied to Eucalyptus trees, all biochar treatments had a smaller root:shoot ratio, as well as increased leaf 

chlorophyll content after 30 and 60 days (Silva et al., 2016). Slight phytotoxicity was noted in the first 

week of experimentation after biochar application, potentially due to the release of residual volatile 

organics present in the sewage sludge biochar (Silva et al., 2016). Soil nitrate (NO3-) leaching was 

significantly lower in a highly alkaline soil environment amended with biochar over a short-term trial in 

temperate conditions (Ventura et al., 2013). 
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In a peat-based potting mix, elevated levels of exchangeable K were observed after biochar derived from 

red oak was applied, which in turn led to significantly higher total biomass production in hybrid poplar 

(Headlee et al., 2014). Similar results were recorded when biochar was applied to aspen seedlings 

(Dietrich and Mackenzie, 2018). Chestnut-leaved oak showed improvements in plant productivity 

between 55 and 73%, and increased K uptake by 59 and 78% compared to controls at 70 and 40% of field 

capacity, respectively, as well as increases in soil water holding capacity when biochar was incorporated 

as a soil amendment (Zoghi et al., 2019).   

Although biochar derived from a hardwood (Acacia ssp.) had no significant effect on nitrate (NO-3) or K 

leaching compared to unamended soil, an increased concentration of P in the leachate was observed 

potentially as a result of increased pH, a potentially negative impact of biochar on soil P availability  

(Hardie et al., 2015). In addition, the volume of this leachate collected was significantly higher in the 

biochar treatment, which may not be advantageous in an urban soil situation. This could potentially result 

from larger pore size distribution and near-saturated hydraulic conductivity of biochar-amended soils 

(Hardie et al., 2015). Sawdust biochar increased the supply of P and Ca immediately after surface 

application; these two nutrients are known to limit sugar maple growth in the Ontario region of Canada 

(Sackett et al., 2015), although greater alterations in soil nutrient balance and cycling were observed after 

a time period sufficient to fully incorporate biochar into the soil. In low productivity soils depleted of 

carbon pools and low in pH, biochar at the highest dose rate improved soil P availability and subsequent 

biomass of Fujian cypress (Fokienia hodginsii) by 36% compared to untreated controls (Tarin et al., 2020).  

Fruit trees have exhibited improved growth in response to the combined application of biochar and 

compost, as shown in an apple orchard in Iran where trees were grown in degraded and low fertility soil 

(Safaei Khorram et al., 2019). Plant-based biochar application under young apple trees increased trunk 

girth after three years in sandy loam (Eyles et al., 2015), reduced the incidence of poor growth, chlorotic 

leaf area, and dead leaf presence (Xinfeng, 2017), as well as increased soil nutrient retention in both silty 



11 
 

clay loam and sandy loam soils (Hardie et al., 2015; Ventura et al., 2013). Blueberry fruit benefitted from 

biochar application as improved fruit nutritional quality was observed, resulting from improved nutrient 

availability in low fertility and weakly acidic soil in a temperate monsoon climate (Zhang et al., 2020). 

Nectarine tree growth did not improve significantly after biochar application in an established orchard 

under low soil stress conditions (Sorrenti et al., 2016). Other studies have shown no effects on tree 

growth, mainly where soil conditions are less stressful and more optimal for root growth and 

development, indicating that the beneficial effects of biochar may be less detectable in soils already in 

optimal condition (Ventura et al., 2014).  

Biochar impact on soil pH in relation to plant growth 

Biochar is often alkaline, however, existing soil buffering capacity usually results in less than significant 

changes in soil pH following biochar soil amendment. Chicken manure biochar significantly increased soil 

pH from 4.8 to 5.2 (Lin et al., 2017), although this was still within the range of acceptable pH for a large 

number of tree species. The pyrolysis temperature has been shown to be the deciding factor of pH of 

biochar products as opposed to feedstock, although biochar with greater ash contents such as manure 

biochar can increase pH more significantly (Al-Wabel et al., 2017). Biochar application to low pH degraded 

soil also increased pH values which subsequently improved biomass production of Fujian cypress 

(Fokienia hodginsii) by 36% (Tarin et al., 2020). An increase in autotrophic nitrifying bacteria in response 

to increased pH could in part explain the increased biomass observed (Ghosh et al., 2012).  

At higher application rates of biochar (25%-50% by volume), a decrease in soil pH reduced the 

photosynthetic rate in conifers and fundamentally rendered the soil incompatible with conifer seedling 

growth  (Sarauer and Coleman, 2018), highlighting the need to design appropriate biochar amendment 

soil application rates. The use of biochar in the forestry setting identified the need for future research 

into the impact of biochar on soil and trees in alkaline soils and under Mediterranean or drier conditions 
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(Stavi, 2013). As urban soils are often variable within a small area, practitioners should fully assess the 

existing soil conditions, and where applicable high pH biochar should be avoided for use on alkaline soils 

or for tree species preferring acidic conditions. 

Impact on soil biological conditions for tree growth 

Improved microbial activity as a result of biochar amendment has been observed through community 

DNA analysis, with the most beneficial results achieved when biochar was applied jointly with an N-P-K 

(12:62:0) fertilizer (Zhou et al., 2019).  Microbial population increase in response to biochar is highly 

dependent on using a biochar feedstock to optimize colonization, provide shelter for organisms or alter 

soil conditions such as moisture to favor microbial activity (Ameloot et al., 2013). Improving soil microbial 

activity can be an important goal when rejuvenating degraded soils, although few studies have examined 

the effect of biochar on microbial activity in relation to urban trees. An investigation of soil under a 

Chinese fir (Cunninghamia lanceolata) rotation indicated leaf biochar was more effective at increasing soil 

bacterial diversity than wood chip biochar, particularly P-solubilizing bacteria (Zhou et al., 2020). In 

contrast, microbial biomass and respiration rates generally decreased with wood pellet biochar 

application to containerized Black chokeberry (Aronia melanocarpa) 'Viking' and Sugar maple (Acer 

saccharum) (Sax and Scharenbroch, 2017), suggesting that pelletized biochar of woody biomass origin 

may not be an optimal amendment to improve soil microbial activity and provides further evidence of the 

importance of biochar source material.  

Use of biochar in contaminated or saline soils 

High salinity and accumulation of pollutants such as lead, cadmium, and polycyclic aromatic hydrocarbons 

(PAHs) are problematic during the tree establishment phase in the urban environment. Phytotoxicity of 

heavy metals in the soil is a common occurrence in urban environments (Li et al., 2013). Biochar-

mediated salt tolerance has been observed as a result of the application of wood chip biochar in White 
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gum (Eucalyptus viminalis) and Black wattle (Acacia mearnsii), two species commonly used for soil 

reclamation (Drake et al., 2016). Biochar also mitigated salt damage in potted cherry laurels grown under 

saline soil conditions by reducing sodium retention and K leaching (Di Lonardo et al., 2017). Increasing 

application rates of rice husk biochar significantly decreased cadmium bioavailability, and in turn, 

increased seedling height, diameter, and biomass of oak seedlings (Amirahmadi et al., 2020). Hardwood 

biochar also shows potential to improve soil chemical quality in Montreal urban soils by reducing the 

bioavailability of trace metals and de-icing salts (Seguin et al., 2018). Although compost amendment was 

found to be superior in reducing the availability of zinc, lead, cadmium and copper when compared to 

wood chip biochar in urban soil, biochar still reduced levels considerably (Kargar et al., 2015). 

Comprehensive literature reviews conducted on biochar in relation to reducing soil contaminants under 

agricultural and forestry situations report a consensus that biochar application has more positive than 

negative benefits (Ogbonnaya and Semple, 2013; Rizwan et al., 2016). In addition, the extensive 

knowledge of using biochar as a method of adsorbing contaminants in wastewater and soil may be of 

direct relevance in urban landscapes with polluted soils (Devi and Saroha, 2014; Patra et al., 2017; Paz-

Ferreiro et al., 2014; Puga et al., 2015; Tan et al., 2016). 

Potential use for soil stability in structural soils 

Structural soils are used in the urban landscape for the specific purpose of reducing compaction. These 

soils often feature large aggregates, load-bearing structural frames, or a combination of the two to limit 

damage to the soil rooting environment. Previous work has demonstrated shoot growth can be 114% 

higher when using suspended pavement structural soil, and 37% higher when using structural cells 

compared to conventional planting pits. (Ow et al., 2018). Likewise, in a number of urban planting trials 

throughout Singapore, improvements in above-ground growth were recorded when biochar was added to 

structural soils to establish African mahogany (Khaya grandifolia and Khaya senegalensis), Monkeypod tree 

(Samanea saman), and Northern yellow boxwood (Pouteria obovata) (Ow et al., 2018). These results 
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indicate that there may be a role for biochar in combination with these highly specialized soil types. 

Contrary to this, however, although an increase in growth was observed with a biochar stone blend known 

as Stockholm soil, growth was not as great compared to using structural cells alone (Ow et al., 2018). 

Limited peer-reviewed research has been conducted on the potential use for biochar inclusion in the 

structural soil mix, however this practice has been widely adopted through the Stockholm Biochar Project 

in Sweden (Embrén, 2016). 

Combination of biochar and other amendments 
 

Applying biochar and fertilizer in combination has often been shown to induce synergistic effects by 

improving fertilizer use efficiency in several crop plant species (Kamau et al., 2019; Rafique et al., 2020). 

Such a response has also been observed in two tropical tree species, Guazuma crinita and Terminalia 

amazonia, where granulated NPK 20-20-20 application with brazil nut husk biochar significantly increased 

height, diameter, the total number of leaves, and above- and below-ground biomass of both species 

compared to granulated fertiliser alone (Lefebvre et al., 2019). It was noted that greater synergetic 

effects of biochar and fertilizer addition were present with the early successional tree species Guazuma 

crinita. Some positive impacts of joint application between biochar and a proprietary NPK 9-6-3 organic 

fertilizer were also observed when studying tree growth of Pyrus communis ‘Williams’ Bon Chrétien’ 

(Schaffert and Percival, 2016). Combining the above products enhanced fruit yield per tree and canopy 

coverage by 12%– 49% respectively and also increased tree vitality [chlorophyll fluorescence, leaf 

chlorophyll content (SPAD), photosynthetic rates] compared to the use of each amendment individually 

(Schaffert and Percival, 2016). In the Singapore urban environment, combined compost and biochar 

application yielded positive benefits on tree health and growth of Suregada multiflora and Samanea 

saman trees, whereas biochar applied alone showed a greater improvement in soil conditions only 

(Ghosh et al., 2015). No effects were recorded when biochar was combined with an inorganic fertilizer to 
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establish Drumstick tree (Moringa oleifera) seedlings (Fagbenro et al., 2015), however earlier research by 

the same lead author did indicate a significant increase in dry matter yield with a combined application on 

the same species (Fagbenro et al., 2013). Aside from this, biochar produced from Quickstick (Gliricidia 

sepium), a hardwood commonly planted for shade in cocoa plantations, was deemed a sufficient 

replacement of inorganic fertilizer in the same study. In contrast, when comparing compost and biochar 

as effective amendments for urban tree growth, both were shown equally beneficial, with no added 

benefit from combined use on Spotted gum (Corymbia maculata) (Somerville et al., 2020) and several 

poplar, willow and Locust (Robinia ssp.) trees (von Glisczynski et al., 2016). In an orchard setting, 

application of biochar and compost as a mixture significantly increased soil properties such as water-

holding capacity and aeration (i.e. decreased bulk density), while some positive effects on trunk diameter 

and shoot numbers of three-year-old apple were observed for the first two to three years (Safaei 

Khorram et al., 2019). Similar results on trunk diameter were observed on an apple orchard in the warm 

temperate climate of southern Tasmania, Australia, although observations were made that biochar may 

not be sufficiently beneficial in an environment with high inputs of nutrients and irrigation to warrant the 

cost of application (Eyles et al., 2015). 

Desirable biochar characteristics and application rate  
 

Even though the majority of evidence collated in this review was gathered from studies investigating 

trees planted outside urban areas, the findings are likely to be applicable to urban tree plantings that 

have to contend with a multitude of stressful abiotic conditions. Large scale urban pit plantings in 

Sweden, for example, have shown the benefit of biochar amendment has more than surpassed the cost 

of application, with marked growth and survival improvements over 10 years (Embrén, 2016).  Greater 

retention of water and nutrients by biochar may allow for smaller tree root systems to satisfy the 

transpirational demand of the above-ground part. Alterations of soil carbon content, levels of 
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compaction, and electrical conductivity are likely to result from any biochar soil amendment, but 

subsequent effects on tree growth and physiology tend to be interactive, dependent on climate and 

species (Thomas and Gale, 2015).  

As suggested by the International Biochar Initiative, biochar must be designed and created for a specific 

purpose (International Biochar Initiative, 2015). Currently, there is no literature reporting long-term 

studies detailing which biochar characteristics improve tree growth in urban environments. Biochar 

designed to maximize its surface area and pore variability in soil, for example, would be desirable for use 

in urban soils due to a then higher capacity to retain moisture and improve aeration (Novak et al., 2012). 

Water repellency is a factor in biochar produced from materials with large quantities of lignin and 

cellulosic components (Gray et al., 2014), and this should be considered along with the porosity of the 

char. Biochar produced at temperatures of above 450°c is preferable for use in urban soils, as the 

resulting char has lower water repellency, increased porosity, and stability in soils (Gray et al., 2014; Mao 

et al., 2019; Novak et al., 2012). Most nutrient-related soil improvements in response to biochar 

discussed in this review were derived from animal or agricultural waste biomass. Indicating these may be 

beneficial to improve short term soil nutrient status on those species assessed (H. Li et al., 2020; Lin et al., 

2017; Silva et al., 2016), supported by previous agricultural reviews on the subject (Al-Wabel et al., 2017; 

Scott et al., 2014).  

Biochar nutrient content is generally not a priority for use in urban tree pits, as fertilizer addition typically 

takes place. However, fertilizer effects are short-term and therefore negligible in terms of tree life spans. 

However, biochar contributing higher levels of K has been reported that in turn promote tree growth and 

survival, as well as improving microbial activity, and should be favored in low fertility soils (El-Naggar et 

al., 2019).  



17 
 

Application rate should be considered for each type of biochar feedstock, but in general, most trials with 

a positive effect from biochar application conclude application rates between 4 and 10% by volume (v:v) 

improve either soil or plant health conditions. Several trials in the urban environment found wood chip 

biochar applied at 5% to 10% v:v produced positive effects on soil moisture or tree growth parameters in 

sandy soils (Somerville et al., 2020, 2019). From a practical perspective, the weight of biochar can vary 

significantly depending on the feedstock. Therefore, to ensure the correct amount is applied for surface 

area contact, percentage by volume is a more appropriate measure. We would suggest 5% v:v application 

to soil within the rhizosphere not exceeding 10%, as applications above 25% have resulted in detrimental 

impacts, including reduced plant productivity and the presence of phytotoxicity (Sarauer and Coleman, 

2018). Applications can be either top-dressed or mix into the soil through air tillage or manual 

incorporation method, but application with compost should be preferred to increase the efficacy of the 

biochar amendment. Biochar consistently achieved greater benefits when applied in combination with 

either organic fertilizer or another organic matter input such as compost (Ghosh et al., 2015; Robertson 

et al., 2012; Safaei Khorram et al., 2019; Schaffert and Percival, 2016; Somerville et al., 2020; Sorrenti et 

al., 2016). Finally, particle size has been shown to affect cation exchange capacity, soil moisture retention, 

soil bulk density, and root biomass (REFS), so maximizing surface contact with the soil are important. 

Irregular shapes particles will also effectively increase water storage in coarse soils like those with a high 

sand content (Liu et al., 2017). Wood chip biochar with a range of sized particles sieved will provide 

optimum surface contact with the soil to aid the soil:plant continuum. However, pore size distribution 

within the biochar is far more imperative to provide a wider range of benefits for improving soil 

conditions for urban planted trees (Blanco-Canqui, 2017), particularly employing biochar with a larger 

proportion of pores within the PAW capacity pore size range (0.2–30 μm) (Hardie et al., 2014).  
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Conclusions 
 

Ideally, tree species should be selected for their tolerance to the sub-optimal soil conditions encountered 

in the harsh urban environment. The reality is, however, that selection is based on factors such as 

availability, economic cost, historical use, or aesthetic impact. The survival of trees planted in urban zones 

is more important than their productivity, best illustrated by the high cost of tree planting in urban 

environments and the fact that the benefits of trees to human populations increase exponentially with 

tree maturity. We show that biochar can enhance tree survival by several mechanisms, mostly related to 

improved soil function. Even a small increase in tree survival rates could make biochar application cost-

effective for use by local authorities or tree caretakers. Future research needs to decipher the impact of 

biochar on tree tolerance against environmental stresses in the urban environment, with a focus on 

longer-term studies and the use of diverse biochar types.  
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Biochar raw material pH C:N ratio CEC 

(cmol (+) 

kg-1) 

EC (dSm-

1) 

Ash 

content 

(%) 

Bulk 

density (g 

cm-3) 

Pelletized sawdust  

(Fields-Johnson et al., 
2018; Lin et al., 2017; 
Ow et al., 2018; Rafique 
et al., 2020; Sackett et 
al., 2015) 

6,3, 7.5, 

8.3 

10.5 - 

13.2 

6.2 – 6.4 3.3 3.11 – 

25.7 

0.13 

Wood residues 

(Coniferous) 

(Fujita et al., 2020; 
Phillips et al., 2020; 
Pluchon et al., 2014; 
Sarauer and Coleman, 
2018) 

6.2 – 8.3 66.9 18.6 – 

22.9 

2.2- 3.7 40.3% 

(@980°C) 

0.17 – 0.44 

Wood residues 

(Hardwood) 

(Di Lonardo et al., 2017; 
Safaei Khorram et al., 
2019; Shan and 
Coleman, 2020; 
Somerville et al., 2020) 

6.8 – 9.7 60.4 - 

138 

30 2.6 19.8 0.33 – 0.42 

Chicken manure 

(Domingues et al., 2017; 
Lin et al., 2017) 

9.8 – 11.9 11.9 41 5.8 – 7.4 48.8 - 56 NC 

Rice husk 

(Amirahmadi et al., 2020; 
Häring et al., 2017; 
Wiersma et al., 2020) 

8.1 - 9.1 70.7 18.28 NC 

 

45.2 0.18 - 0.22 
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Nut husk 

(Lefebvre et al., 2019; 
Rajkovich et al., 2012) 

7.66 - 9.6 158 - 181 5.9 - 11.8 1.6 - 1.42 1.69 - 7.8 NC 

Bamboo 

(Ye et al., 2015) 

8.5 – 10.2 24.48 - 

28.92 

NC NC 9.5 – 14.2 NC 

Orchard prunings 

(Genesio et al., 2015; 
Sorrenti and Toselli, 
2016; Ventura et al., 
2014) 

9.8 63.53 101 NC NC 0.33 

Sewage sludge  

(Paneque et al., 2016; 

Silva et al., 2016) 

7.5, 8.41 6.12 NC 7.29 25.6 NC 

Table 1 Summary of the main characteristics of biochar, as affected by raw material used for pyrolysis. NC = not communicated 
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Basic utility properties 
(Category A) 

Toxicant assessment  

(Category B) 

Advanced analysis & soil 
enhancement properties 
(Category C) 

Moisture (% total mass)* Germination inhibition assay 

Pass/Fail 

Mineral nitrogen (NH4+ & NO3-) 

(mg kg¯¹)* 

Organic Carbon (Corg)(% of total 

mass)10% Minimum;  

Class 1: ≥60%, Class 2: ≥30% 

and <60%, Class 3: ≥10% and 

<30% 

Total Polycyclic Aromatic 

Hydrocarbons (mg kg¯¹) 

6 – 300 mg kg¯¹ 

Total phosphorus & potassium 

(mg kg¯¹)* 

H:Corg (molar ratio) 

0.7 maximum 

Dioxins/Furans (PCDD/Fs) (ng 

kg¯¹) 

17 ng kg¯¹ 

Available phosphorus (mg kg¯¹)* 

Total Ash (% total mass)* PCBs (mg kg¯¹) 

0.2 – 1 mg kg¯¹) 

Total Calcium, Magnesium & 

Sulfur (mg kg¯¹)* 

Total Nitrogen (% total mass)* Arsenic (13-100), Cadmium (1.4-

39), Chromium (93-1200), Cobalt 

(34-100), Copper (143-6000), 

Lead (121-300), Molybdenum (5-

75), Nickel (47-420), Selenium 

(2-200), Zinc (416-7400), 

Boron*, Chlorine*, Sodium* (mg 

kg¯¹) 

Available Calcium Magnesium & 

Sulfate-S (mg kg¯¹)* 

pH* Mercury (mg kg¯¹) Volatile matter (% total mass)* 
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1-17 mg kg¯¹ 

Electrical conductivity (dS/m)*  Total surface area (m2 g¯¹)* 

Liming (if pH > 7.0) (%CaCO3)*  External surface area (m2 g¯¹)* 

Particle size distribution* 

% <0.5 mm; % 0.5-1 mm; % 1-2 

mm; % 2-4 mm; % 4-8 mm; % 8-

16 mm; % 16-25 mm; 

% 25-50 mm; % >50 mm 

  

Table 2 Biochar material test categories adapted from IBI's biochar standards version 2.1 (2015); Categories A & B are required 
analyses and Category C is optional but recommended, for all biochar intended for use in soil, with threshold limits included. (* 
denotes no thresholds required for parameter, only need values declared.) 

 


