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Abstract

Air quality (AQ) forecasts are important for helping the public mitigate adverse

health effects associated with episodes of high pollution. In order to create an accurate

AQ forecast, it is important to correctly represent meteorological processes due to their

strong influence on pollutant concentrations.

The aim of this work is to determine the relationship between forecast errors in

surface pollutant concentrations and meteorological forecast errors within the operational

AQ model, Air Quality in the Unified Model (AQUM). This thesis explores three different

approaches of evaluation to determine the impact of meteorological forecast errors in 10 m

wind speed, 1.5 m temperature and precipitation on pollutant errors (O3, NO2, PM10 and

PM2.5). These are point-based, neighbourhood and process-based methods.

Point-based metrics evaluate forecasts against observations, paired in space and time.

The evaluation reveals negative forecast bias in diurnal cycles of summertime NO2 and

positive bias in O3, with a 2-hour lag in timing of the forecast increase of morning con-

centrations. It is shown that night-time 10 m wind speed over-estimation coincides with

the largest O3 and NO2 biases. Point-based evaluation identifies a negative bias in PM

concentrations which decreases by 10% to 25% after under-estimating precipitation.

Neighbourhood evaluation relaxes the spatial constraint for forecast - observation

pairs. It is a novel mechanism of attributing forecast errors in AQ to meteorology.

Strongest positive correlations between night-time O3 and wind speed forecast errors are

shown to occur at a neighbourhood of 100 km2. Forecast error anti-correlations between

NO2 and wind speed reach a maximum at a smaller neighbourhood.

Finally, process-based evaluation is used to test whether statistical relationships be-

tween O3, NO2 and 10 m wind speed forecast errors are caused by the physical process

of entrainment. To quantify the influence of entrainment in the model on forecast total

oxidant (O3 + NO2 = Ox) concentrations, an experiment using the off-line NAME model

simulates tracer dispersion under different meteorology configurations. The experiment

confirms that lag in the forecast morning Ox increase is due to delayed boundary layer

development. In light of the results, it is recommended that model developers implement

a land-surface parametrisation with better urban heat storage to improve modelled sur-

face heat fluxes, nocturnal boundary layer stability and nocturnal winds. Improving these

may result in more accurate surface AQ forecasts.
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1. Introduction

1.1 Motivation

Exposure to pollutants in the atmosphere can pose a risk to human health in the

form of respiratory and cardiovascular diseases. During prolonged periods of elevated

concentration levels, pollutants such as ozone (O3) and particulate matter (PM) can

trigger existing respiratory problems such as asthma, reduce lung function and cause

lung disease. For example, nitrogen dioxide (NO2) has been found to be associated

with symptoms of bronchitis in children already suffering from asthma (World Health

Organization, 2020), while episodes of high O3 concentrations can trigger pre-existing

respiratory and cardiovascular problems, resulting in increased hospital admissions (World

Health Organization, 2006; COMEAP, 2015). As of 2016, an estimated 91% of the

world’s population lives within regions where ambient AQ standards fall short of the safe

exposure limit guidelines, proposed by the World Health Organisation (WHO) (World

Health Organization, 2020). These guidelines are in place for five most harmful pollutants:

O3, PM2.5 and PM10, NO2, carbon monoxide (CO) and sulphur dioxide (SO2).

The problem of pollution is as much an issue worldwide as it is an issue in the

United Kingdom. In the UK alone, an estimated 50,000 premature deaths due to poor

air quality occur annually House of Commons Environmental Audit Committee (HCEA)

(2010). Approximately 85% of UK towns had measured levels of PM2.5 (i.e. particles with

aerodynamic diameter ≤ 2.5 µm) above the safe annual mean threshold of 10 µgm−3,

which is a major contributing factor to lowering the residents’ life expectancy by an

average of 8.6 months (World Health Organization, 2020)

An accurate forecast of short-term (i.e. hourly, daily) surface pollutant concentra-

tions can inform the public and enable them to try mitigating some of the adverse health

risks associated with exposure to elevated concentrations. Producing an accurate pol-

lutant forecast involves careful representation of many different physical and chemical

processes. Surface concentrations of the five aforementioned pollutants are variable on

1



2 Chapter 1. Introduction

regional scales, as their sources and sinks have anthropogenic (e.g. emissions from vehi-

cles, factories, etc.) and natural (e.g. volcano ash, desert dust) components of temporal

and spatial variability. Sources of error within an air quality (AQ) forecast may come

from chemical transformations of atmospheric species; or they may be a result of inaccu-

racies in emissions inventories used within the model; or the errors may be a consequence

of errors in modelling the meteorology. It can therefore be a challenge for an AQ model to

fully capture all the mechanisms which influence forecast pollutant concentrations. The

aim of this thesis is to explore how the accuracy of meteorology in numerical weather

prediction (NWP) models affects the forecast errors of surface pollutant concentrations

on regional scales in the United Kingdom.

1.2 Forecasting air quality and meteorology: a background

Historically, the AQ forecasting and numerical weather prediction (NWP) communi-

ties have engaged in little conversation about the possible feedback effects of one model

type to another, which has led to separation in respective model development (Zhang,

2008; Brunner et al., 2015). Off-line AQ models rely on meteorological input from a

separate meteorological model. However, pollutants and aerosols in the atmosphere can

also affect the meteorology, e.g. through acting as cloud condensation nuclei, which, if

represented incorrectly, could translate to cloud cover errors in the meteorology forecast

and subsequent reduction of downward solar radiation (Bangert et al., 2011). An on-line

modelling framework provides this two-way feedback betwen the AQ and meteorology. It

is only within the last 20 years that the AQ and NWP communities have been working

together, partly in light of increasing computational power, to develop on-line AQ con-

figurations which support feedback effects (Baklanov et al., 2014). These processes are

relevant on the short time-scales of NWP as well as time-scales relevant to climate models

and as such, their representation is important to not only the AQ and NWP communities

but also for climate prediction. On-line modelling frameworks can therefore support a

shorter model time-step, e.g. 5 minutes instead of 1 - 3 hours in an off-line model. As

a result of transitioning from off-line to on-line modelling, regional AQ forecasts have

experienced vast improvements in accuracy over the past decade (Brunner et al., 2015).

Operational, regional AQ forecasts are generally useful at lead times of anywhere

between 24 - 144 hours ahead, where forecast performance tends to degrade with lead

time (Honoré et al., 2008). The accuracy of a coupled chemistry-meteorology AQ model

to predict pollutants in the troposphere is partly dependent on the accuracy of the me-
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teorology fields which influence pollutant dispersion, in addition to their influence on the

chemistry of reactive species (Zhang et al., 2013). For instance, a persistent O3 bias is a

challenge faced by many regional and global AQ models (Brown-Steiner et al., 2015; Im

et al., 2015b; Travis et al., 2016), and surface O3 concentrations are sensitive to a number

of factors rooted in chemistry and meteorology. Small-scale meteorological features (e.g.

local cloudiness, surface heat fluxes and urban heat island effect; Zhang et al., 2012; Eder

et al., 2006; Hogrefe et al., 2007) and circulations (e.g. land-sea breezes; Hess et al.,

2004) are all important for accurate calculation of pollutant concentrations. A realistic

representation of the loss of species from the atmosphere is also important for accurately

forecasting their concentrations: namely wet deposition due to rainfall, dry deposition to

surfaces and ventilation. Furthermore, horizontal and vertical resolution of the AQ model

can result in O3 bias - for example, Brown-Steiner et al. (2015) demonstrate that global

climate - chemistry models have a greater O3 bias over the eastern US when 26 vertical

model levels instead of 56. Higher vertical and horizontal resolution, however, comes at

a greater computational cost. On-line regional AQ models thus need to capture all the

relevant physical and chemical processes within as high degree of accuracy as possible,

while minimising the computational cost of running the model.

Various model-intercomparison studies within the past decade have revealed a large

spread in the accuracy of pollution forecasts in Europe and North America, particularly

for O3. For example, Baklanov et al. (2014) outline various models’ performances and the

feedback effects between specific meteorological and AQ parameters. The survey of 30

European AQ models reveals that 10-m wind speed, precipitation, temperature and short-

wave radiation are some of the most important meteorological factors on the modelled

atmospheric composition. Within the Air Quality Model Evaluation International Initia-

tive (AQMEII) framework, Vautard et al. (2012) evaluate a large number of mesoscale

meteorological models used to drive off-line AQ simulations and report significant vari-

ability in key meteorological parameters for AQ forecasting such as shortwave radiation

and a systematic overestimation in wind speeds during stable conditions. Brunner et al.

(2015) have expanded this evaluation to on-line coupled chemistry-meteorology models

and have found that despite the improvements associated with on-line AQ modelling,

wind speed biases continue to persist, in addition to a large model spread in planetary

boundary layer (PBL) depths and solar incoming radiation. This could indicate that

forecasting wind speed requires more attention within many AQ models.

Since it is not possible to explicitly resolve every chemical and meteorological process
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in a forecast model, parametrisation schemes are used to represent various complex and

sub-grid scale processes. However, the choice of a physical parametrisation scheme could

potentially introduce errors into parameters such as horizontal and vertical wind-speed,

due to the scheme’s use across different models and configurations, each of which requires

fine-tuning and some aspects of a parametrisation scheme may not be compatible with

another scheme. It could also introduce errors within modelling of AQ variables: for

instance, the choice of boundary layer parametrisation will have an effect on the vertical

and horizontal transport of O3, as highlighted by Im et al. (2015b), since the boundary

layer is where most vertical mixing occurs. Meanwhile, forecast errors pertaining to the

choice of cloud scheme have been shown by both Eder et al. (2006) and Ryu et al. (2018)

to influence the amount of short-wave radiation at the Earth’s surface and the amount of

NO2 photolysis, which impacts O3 concentrations.

Various other studies have explored the influence of forecast errors in meteorology

on AQ and O3 in particular. McNider and Pour-Biazar (2020) provide a thorough review

of recent studies on relationships between AQ and meteorology forecasts in the United

States, generally agreeing that modelled wind speed, surface temperature and night-time

boundary layer stability are among the most influential meteorological variables to AQ

forecasting. Im et al. (2015b) conducted an inter-model comparison on the meteorological

impacts on O3 forecast accuracy of regional European AQ models. They suggest that the

vast majority of regional models’ inability to correctly diagnose boundary layer height and

stability is reflected in the persistent large O3 biases. It is one of the first studies of its kind,

where the rigorous evaluation of regional meteorological forecasts over Europe and United

States reveals a systematic winter-time underprediction of O3. Another study by Hanna

and Yang (2001) evaluated 4 mesoscale meteorological models used within AQ forecasting

and confirmed that night-time boundary layer stability is often under-estimated, which

can lead to enhanced vertical dispersion of pollutants and too much mixing.

Savage et al. (2013) suggests that since the night-time boundary layer in mid-latitude

regions is typically stable, misclassification of its stability in regional models may lead to

miscalculation of the overnight concentrations of O3. This could affect the concentrations

of gaseous pollutant species within the entrained air masses into the boundary layer from

aloft, and suggests that due to vertical mixing throughout the boundary layer, entrainment

of polluted air masses may influence surface pollutant concentrations.

Surface wind speed is another variable which has systematic bias in models. The

widely used Weather Research and Forecasting (WRF) model has been shown to over-



1.2. Forecasting air quality and meteorology: a background 5

estimate night-time wind speed in both coastal and in-land regions of the United States,

as well as coastal parts of Spain. As a result of this, AQ configurations associated with

WRF (e.g. WRF-Chem) can experience too much mixing of O3 into the boundary layer

from aloft (Ngan et al., 2013; Lee et al., 2014). Ngan et al. (2012) demonstrated that O3

biases near metropolitan areas present in Community Multiscale Air Quality (CMAQ)

forecasts are minimised when the model is re-configured with improved wind speed fields.

Over-estimating night-time winds speed has also been found to be a common problem

within European AQ models (Brunner et al., 2015), alongside the night-time stability

misclassification.

On the other hand, there exist studies which demonstrate that meteorology is not

the main source of AQ forecast error - particularly for daily and 8-hour O3 maxima - due

to e.g. biases in the NO2 forecast from PREV’AIR (Honoré et al., 2008). However, it

appears that whether or not meteorological processes are the leading factor of AQ forecast

error is dependent on the location of study. For example, the study of Honoré et al. is a

long-term evaluation of the PREV’AIR forecast model over France, which is a continental

country. Their result contrasts that for O3 evaluation in Sydney, Australia (Hess et al.,

2004) where sea-breezes and other meteorological processes dominate the O3 error more

than emissions or chemistry. It is therefore a reasonable hypothesis that a regional AQ

forecast over an island - such as the UK - may experience more sensitivity to meteorology

and lateral boundary conditions (LBCs) than a continental or land-locked region.

LBCs provide pollutant concentrations on the boundaries of limited area models,

which, together with the winds at the boundaries, determine the in-flow of pollution into

the model domain. These LBCs are derived from a larger-domain or global model. The

in-domain concentrations of a given pollutant are dependent on an accurate estimate of

transport through the boundaries and hence on the validity of the LBCs. Any errors

in these boundary concentrations could propagate into the model interior and introduce

errors. Potential errors associated with imposing inaccurate boundary conditions on re-

gional forecast models have been widely studied (Staniforth, 1997; Tang et al., 2009;

Davies, 2014) and it has been shown that LBCs are a significant source of pollutant con-

centration errors over land. In particular, upper-tropospheric winds transport polluted

air masses from continental Europe to the UK under certain synoptic conditions, which

contain both O3 and its precursors.
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1.2.1 Observations: ground-based and remote

Observations of pollutant concentrations on various scales are imperative to evalu-

ating the accuracy of an AQ forecast and providing error information which could be

valuable to improving the forecast. Depending on the spatial and temporal scales of the

forecast - i.e. whether the forecast covers global or regional scales; whether it is daily or

seasonal - different types of measurements are appropriate, such as satellite data, ground-

based operational networks or measurement campaigns focusing on a specific place and

time. The observation type can also be dependent on the lifetime and abundance of the

atmospheric species in question.

1.2.1.1 Satellite observations

Observations of the global distribution of pollutants such as O3, NOx (NO2 + NO)

and aerosol optical depth (AOD) are measured by remote sensors on satellites. These are

generally passive instruments which absorb radiation emitted from atmospheric species

in the atmosphere. Satellite measurements are particularly useful in data assimilation

and verification of global-scale models. Global models assimilate the observed data and

combine them with a knowledge of physics and chemistry to create 3-dimensional pro-

files of e.g. O3. An increase in abundance of global observational data of atmospheric

constituents over the past couple of decades has been made possible by international col-

laborative programmes and satellite missions, e.g. the European Space Agency (ESA)

‘Envisat’ satellite (which ended in 2012); the EU Copernicus Atmosphere Monitoring

Service (CAMS; Schroedter-Homscheidt et al., 2016)1, which used data collected between

2009 - 2014 by the Monitoring Atmospheric Composition and Climate (MACC) project2.

Although the use of satellite data for monitoring and evaluation of column O3 and NO2

is increasing in popularity, routine monitoring of boundary-layer and surface concentra-

tions is made difficult many factors, e.g. lifetime of the species and vertical profile. For

instance, the vertical profile of species such as O3 is such that concentrations are lower in

the troposphere than the stratosphere, which reduces the satellite’s sensitivity to measure

concentrations in the lower troposphere (Kar et al., 2010; Foret et al., 2014). The Ozone

Monitoring Instrument (OMI), which operates in the UV / visible range, is an example

of an instrument with good sensitivity to column tropospheric O3 but weak sensitivity to

surface concentrations, particularly in cloudy conditions, due to O3 UV absorption.

1http://atmosphere.copernicus.eu/, date accessed 20-01-2021
2https://cordis.europa.eu/project/id/218793, date accessed 20-01-2021

http://atmosphere.copernicus.eu/
https://cordis.europa.eu/project/id/218793


1.2. Forecasting air quality and meteorology: a background 7

1.2.1.2 Flight-based and ground measurement campaigns

Specific campaigns are useful for gaining a thorough insight into the nature of pol-

lution at a precise location. Because they focus on a specific place and time, one-off

campaigns typically measure various parameters specific to the research question, such as

pollutant concentrations alongside meteorological variables (e.g. fluxes), which are typi-

cally not included in routine measurements. One-off campaigns generally span periods of

months to years and involve extensive planning. They are particularly useful for studying

a region of interest in greater detail than is possible with just routine measurements,

e.g. megacities with high pollution levels, often using a combination of ground-based in-

struments, instruments mounted on top of high-rise buildings and aircraft measurements.

Large ground-based campaigns have been conducted in recent years to thoroughly inves-

tigate the composition, chemical and meteorological sources and sinks of pollutants such

as O3 and NOx in e.g. London (Bohnenstengel et al., 2015) and Beijing (Shi et al., 2019).

Successful flight campaigns with e.g. the Facility for Airborne Atmospheric Measure-

ments (FAAM; http://www.faam.ac.uk) aircraft have provided airborne measurements

of the chemical composition of e.g. Saharan dust (Ryder et al., 2019) and joint modelling

studies to investigate CO2 from volcano eruptions (Ilyinskaya et al., 2018).

1.2.1.3 Ground-based routine observation networks

Campaigns are a powerful method of gaining thorough insight into pollution within

a specific region and / or time, while satellites are useful to ensure a global coverage

of monitoring O3, NO2 and aerosols at low resolution. However, ground-based moni-

toring networks are still best suited for routine monitoring of regional and near-surface

concentrations. In-situ networks provide direct surface measurements, which are more

accurate within the region they represent than observations with remote sensing. They

also provide data for archives of long-term measurements, from which robust statistical

evaluations can be conducted. One disadvantage of ground-based networks on both global

and national scales is the sparseness of the monitoring stations, which can introduce error

due to poor representativeness of the surrounding area, in addition to uncertainties due

to the sensitivity of the instrument itself. For most pollutants, representative errors in

measurement are more dominant than instrument errors, due to the high spatial variabil-

ity of the pollutant fields. The sparse coverage of measurements in remote areas is not

an issue for a gridded satellite product or a carefully planned measurement campaign.

Even on national scales, the coverage of ground-based AQ measurement sites is irreg-

http://www.faam.ac.uk
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ular. For example the UK, the Automatic Urban and Rural Network (AURN) provides

routine, quality-controlled measurements of various pollutants relevant to human health.

The observations are used to verify the operational Air Quality Configuration in the Uni-

fied Model (AQUM; Savage et al., 2013) i.e. the regional AQ forecast model for the UK.

More information about AURN will follow in section 3.2.1.

1.2.2 AQ forecasting in the United Kingdom

In the UK, the Department of Environmental, Food and Rural Affairs (DEFRA)

issues the public AQ forecast. The 5-day forecast is provided by AQUM from the Met

Office and is based on a 10-point scale called the Daily Air Quality Index (DAQI), corre-

sponding to the highest concentrations of any one of the following: PM2.5, PM10, O3, NO2

or SO2. The 10-point scale is grouped into four bands of risk: ‘Low’, ‘Moderate’, ‘High’

and ‘Very High’. The bands are based on concentrations shown in figure 1.1, which are

calculated as running means over the indicated time periods. The DAQI was proposed by

the Committee on the Medical Effects of Air Pollution (COMEAP) and was last reviewed

in 2011 (COMEAP, 2011).

The purpose of the DAQI is to enable the public to mitigate adverse health risks

associated with short-term episodes of high pollution concentrations. The DAQI levels

are accompanied by recommended actions for people at risk (e.g. children and adults who

suffer with asthma, lung and / or heart problems) - for instance, if the level is within the

‘Moderate’ band and above, at-risk groups should reduce strenuous outside exercise.

Because AQUM is central to this thesis, model specifications merit their own section

Figure 1.1: Daily Air Quality Index based on concentrations of 5 pollutants. Figure from
Connolly et al. (2013).
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and will therefore be outlined in more detail in section 3.4.

1.3 Forecast model verification

It is important the public receive an accurate AQ forecast, so that they can act

accordingly. However, all types of forecast have a degree on uncertainty - a truth experi-

enced by anyone who, after checking the weather forecast, has ever been caught out in a

bout of rain which was not predicted. In order to improve operational forecast accuracy,

it should be routinely compared against a reliable ‘truth’. Because of the many potential

origins of pollutant forecast errors, a range of analysis methods is needed in order to

fully understand the nature of the errors. There are many different types of forecast (e.g.

deterministic, ensemble, probabilistic), with different verification methods best suited to

each. Forecast verification provides a statistical evaluation of the accuracy of a forecast,

and the following section will discuss the importance of this process, outlining the various

methods and how some of them will be used in this thesis.

AQ forecast evaluation is largely based on point-based verification methods. These

methods refer to those where a single grid-box of a gridded forecast is compared against

an observation in the same grid-box - either a point measurement or a gridded field

observation (Ebert, 2008). Alternatively, a single observation point is either compared

to the nearest forecast grid neighbour, or the forecast from neighbouring grid-points

is bi-linearly interpolated onto the observation point. The metrics used to evaluate the

forecast comprise e.g. root mean square error (RMSE), frequency bias (FB) and Pearson’s

correlation coefficient (PCC). Forecast evaluation based on contingency tables often uses

the Equitable Threat Score (ETS; Gandin and Murphy (1992) - also known as the Gilbert

Skill Score (GSS; Gilbert, 1884; Hogan and Mason, 2012)). However, each of the above

metrics has various issues associated with their use: RMSE is dominated by large error

values; PCC shows correlation but not causation; and despite its name, ETS is not

strictly equitable (Hogan et al., 2010). While they are informative on whether a forecast

is generally accurate at grid-point scale, these traditional methods provide no information

about the source or nature of the error and as such, there is little scope for improving

forecast accuracy.

Furthermore, it is important that the forecast matches the observation in both space

and time for point-based metrics. However there exist situations in which an error is

twice-counted for its displacement in both space and time - known as the ‘double-penalty’

problem (Brown et al., 2012b). It is a common phenomenon in point-based verification,



10 Chapter 1. Introduction

especially of high-resolution forecasts, but is only an issue when the features of interest

are a few grid lengths in dimension. Relaxing the spatial or temporal constraints could

allow the distinction of an otherwise useful forecast whose skill is not captured by looking

at grid-point values only, even if the object in question (e.g. a rain band) is predicted at

slightly the wrong time or place.

Methods which relax the spatial constraint are among the neighbourhood-based

group, and include the Fractions Skill Score (FSS; Roberts, 2008), Upscaling (Zepeda-

Arce et al., 2000; Weygandt et al., 2004) and intensity-scale methods (Casati et al., 2004),

all of which have been developed with the evaluation of precipitation forecasts in mind.

Neighbourhood methods such as the Brier Score (BS; Brier, 1950) or the Continuous

Ranked Probability Score (CRPS; Hersbach, 2000) are of the probabilistic nature, and as

such they are best suited to evaluating ensemble forecasts. As the BS will be used later

in this thesis, more detail about it and CRPS will be provided in section 4.3.

In the AQ forecasting community, traditional verification methods (as outlined above)

are commonly used. This is largely due to the deterministic nature of most AQ forecasts.

For example, in the multi-model evaluation of O3 and PM as part of AQMEII (Im et al.,

2015a,b), point-based statistics such as RMSE, PCC, normalised mean standard error

(NMSE) and normalised mean bias (NMB) are used to find common biases between AQ

models. These metrics are adequate to gain general insight into the traditional forecast

errors within model inter-comparison studies. For example, in Im et al. (2015b), hourly

surface O3 is found to be underestimated by 18% on average across a large sample of

coupled meteorology - chemistry models, and the PCC is generally above 0.8. Some

models in the above study over-estimate night-time O3 concentrations, which is attributed

to under-estimating night-time NO2 concentrations. PM10 is generally under-estimated in

both urban and rural areas in Europe, with under-estimations of 66% and 75% respectively

Im et al., 2015a.

However, in order to improve the accuracy of a specific regional pollution forecast,

operational forecasting and model development communities require metrics which could

reveal more information about the spatial or temporal relationship between the mete-

orological and AQ errors. Using a neighbourhood verification method to quantify the

relationships between these two types of forecast is novel, as they are typically evaluated

separately.

Meteorology and AQ forecast errors are not typically evaluated alongside each other,

with long-term availability of both model and observation data. An evaluation with both
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model and observational data is advantageous over model-only or observation-only studies,

because systematic biases and behaviours in the AQ forecast due to the meteorology can

be inferred from comparison against a reliable network of quality-controlled observations.

This thesis uses three flavours of verification methods to quantify relationships between

certain air pollutants and meteorological variables, which are:

1. point-based;

2. neighbourhood-based;

3. process-based methods.

While the first two methods have already been discussed, the last method on the list

is different in nature. It is an evaluation of how physical processes in an AQ model could

influence the concentrations of a chemical species through releasing tracers in an idealised

simulation. For example, one could evaluate how inaccuracies in the representation of

surface energy balance could affect the diagnosis of atmospheric stability, which could in

turn affect the modelling of turbulence and thus vertical mixing of pollutants and their

chemical precursors. All three of the above methods will be used within this thesis, and

will be discussed further within the relevant sections.

1.4 Thesis aims and structure

This thesis is split into three working chapters, each one addressing a particular set

of questions. Due to their differences, each chapter begins with a separate introduction,

literature review and methods section. The AQ and meteorology forecasts used are

from AQUM, with the exception of using meteorology from the UM Global and UKV

configurations of the Met Office Unified Model in chapter 5. The research questions are

outlined below:

1. How are surface AQ forecast errors related to forecast errors in mete-

orological variables when evaluated with traditional, point-based metrics?

The evaluation in chapter 3 is split into two branches: 1) forecast errors in meteorological

variables (10 m wind speed and 1.5 m temperature) are compared against forecast errors

in O3 and NO2 during DJF and JJA 2017; and 2) forecast errors in precipitation are

compared against those in PM2.5 and PM10 during DJF 2015. The evaluations are

done using traditional, point-based metrics (RMSE, PCC), where the AQ variables are
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evaluated at a number of rural and urban background sites, while the meteorology is

evaluated at the nearest corresponding WMO station.

2. Can neighbourhood-based verification metrics provide information

about the spatial relationship between AQ and meteorological errors?

Specifically, chapter 4 uses neighbourhood verification to evaluate the skill of both the

meteorological and AQ forecast within the vicinity of the point observation. The purpose

of this chapter is to find the extent of spatial influence of the 10 m wind speed forecast

error on O3 and NO2 forecasts, and to test whether considering the precipitation forecast

in a neighbourhood of a PM measurement site could provide information about the

nature and effect of the precipitation error.

3. Can process-based evaluation provide information about the cause of

relationships between AQ and meteorological errors?

Chapter 5 builds on the results of the previous chapters. A process-based approach is

used to learn about the contribution of forecast errors in 10 m wind speed and boundary

layer development on surface O3 and NO2 forecast errors. This is done through designing

and completing a semi-idealised tracer experiment using the off-line NAME dispersion

model, where the focus was on evaluating the influence of entrainment on the surface

concentrations of tracers. NWP from the UM Global and UKV configurations of the Met

Office Unified Model were used in the experiment, which was conducted for the period of

JJA 2017.

There is also a final chapter 6, where the main conclusions from the thesis are pre-

sented in the context of existing literature and further discussion.



2. Background

This chapter covers the basic background chemistry (section 2.1) and meteorology

(sections 2.2 and 2.3) required to understand the research completed in this thesis.

2.1 Atmospheric trace constituents

Described in this section are three atmospheric species central to this thesis: PM

(section 2.1.1), O3 and NO2 (section 2.1.2). Chemistry of O3 and NO2 is outlined in terms

of clean and polluted environments, followed by their spatial and temporal variability.

2.1.1 Particulate Matter

Particulate matter (PM) is a family of particles and liquid droplets suspended in air

(“aerosols”) containing both natural and anthropogenic species: mineral or volcanic dust,

sea salt, nitrates, sulfates, black carbon, biomass burning aerosol, organic carbon from

fossil fuels and other secondary organic aerosols. A commonly used definition of the size

of the particles uses aerodynamic diameter and, in general, aerosol diameter ranges from a

few nanometers (nm) to tens of micrometers (µm). For instance, PM2.5 are particles with

aerodynamic diameter ≤ 2.5 µm, and PM10 is ≤ 10 µm. This is based on the diameter

of a sphere in order to simplify the additional complexity of irregular particle shapes.

Particles may be emitted directly (‘primary’) or formed in the atmosphere by be-

ing converted from gas to particle (‘secondary’). Depending on their size, particles are

removed from the atmosphere through various processes. For example, coarse particles

(i.e. diameter ≥ 2.5 µm) can be removed either through depositing to Earth’s surface

(‘dry deposition’), or being physically washed out by falling precipitation (‘wet deposi-

tion’). These particles can reside in the troposphere on the timescale of a few days to

weeks, depending on their size and the meteorological conditions. In the case of particles

being mixed into the free troposphere, they can travel distances long enough to travel

between continents. For instance, the UK and Europe sometimes experience interconti-

13



14 Chapter 2. Background

nental transport of dust from the Sahara desert (e.g. Ansmann et al., 2003), or volcano

ash (e.g. Dacre et al., 2011).

2.1.2 Tropospheric O3 and NO2

NO2 belongs to the family of Nitrogen Oxides (NOx = NO + NO2), the majority of

which is locally emitted through fossil fuel combustion (approximately 34% of which was

from transportation in the UK in 2018 (UK Department for Transport, 2021)). Most of

the surface - emitted NOx is in the form of NO, but is photochemically converted into

NO2 on the timescale of minutes (Dentener et al., 2001). NOx has a relatively short

lifetime of ≤ 24 hours within a polluted boundary layer, but up to 10 days in the upper

troposphere.

O3 is a secondary pollutant which occurs naturally in both the stratosphere and

troposphere. It is naturally produced via photolysis during sunlight hours and by chemical

reactions of its precursors: namely NOx, CO and volatile organic compounds (VOC) (e.g

Crutzen, 1971; Wayne, 2000). Approximately 90% of total atmospheric O3 resides in

the stratosphere and absorbs solar UV radiation, preventing it from reaching the Earth’s

surface. The remaining 10% of O3 found in the troposphere is widely regarded as a

pollutant harmful to human health (e.g. COMEAP, 1998) and vegetation (e.g. Karnosky

et al., 2007). It is therefore important to understand the underpinning physical and

chemical processes which determine tropospheric O3 concentrations, in order to model the,

accurately. Chemical processes such as photolysis of NO2 and VOC oxidation, deposition

to surfaces, horizontal transport and vertical mixing are all important factors for modelling

concentrations of tropospheric O3 in the planetary boundary layer (PBL) (Lee et al., 2003;

McNider and Pour-Biazar, 2020).

Stratospheric O3 can also be transported down to the troposphere. Studies using

global chemistry transport models provide evidence that vertical exchange processes e.g.

from stratosphere-troposphere exchange (STE) can contribute to the surface concentra-

tion levels in both the Northern and Southern Hemisphere (Lelieveld and Dentener, 2000;

Williams et al., 2019). O3 originating from the STE process is usually attributed to

long-range, intercontinental transport of precursors (or O3 itself) above the PBL, where

it must undergo vertical transport across the boundary layer top in order to reach the

surface. This can often occur in the presence of extra-tropical cyclones, where the phe-

nomenon called ‘tropopause folds’ mixes stratospheric air into the troposphere, usually in

the wake of a cold weather front (Gray, 2003). STE accounts for approximately 10% of
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the O3 found in the troposphere, i.e. an estimated 500 Tg O3 a−1 from a global budget

of 5000 Tg O3 a−1 (Wu et al., 2007).

The remaining 90% of tropospheric O3 is produced by photochemical reactions in-

volving the precursor pollutants mentioned earlier. In the absence of VOC emissions, the

amount of total oxidant (Ox = O3 + NO2) remains in photostationary equilibrium within

the troposphere during daytime, and local concentration levels of both constituents near

the surface are dependent on the local and regional concentration levels of their precur-

sors. Photochemical production of tropospheric O3 occurs locally during sunlight hours,

ceasing upon sunset. When local production stops, concentrations decay throughout the

night as molecules are depleted through titration by NO and deposited to surfaces through

dry deposition. As convective processes begin around sunrise, the photochemical produc-

tion cycle begins again. Details of these processes are the subject matter of the following

sections.

Tropospheric chemical loss of O3 is estimated to account for 80% of the global sink

processes, while the other 20% is due to dry deposition to surfaces and uptake by vege-

tation (Brasseur and Jacob, 2017). O3 lifetime within the boundary layer is generally on

the order of a few days.

2.1.2.1 Clean troposphere

Production of O3 in clean, tropospheric air most commonly occurs via photolysis of

NO2 and by oxidation of hydrocarbons and CO in the presence of NOx (Cocks, 1993;

Hobbs, 2000). In the absence of local pollutant emissions, NO2 absorbs photons above a

threshold energy (wavelength λ ≤ 420nm) which efficiently detach the oxygen (O) atom

to form NO and atomic oxygen (Crutzen, 1971):

NO2 + hv
j−→ NO + O(3P) (2.1)

where O(3P) is a ground-state oxygen atom, j is a reaction rate coefficient on the

order of 10−7 to 10−5s−1 (depending on λ), h is Planck’s constant and v represents a

photon, i.e. hv denotes the energy of the absorbed photon, thus the energy required

to disassociate the oxygen atom from NO2. Some of the O(3P) (ground-state) atoms

combine with O2 (Chapman, 1930; Schiff, 1969):

O(3P) + O2 +M
k1−→ O3 +M (2.2)
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where M is another common molecule (such as CO or N2). This is the only chemical

reaction within the troposphere which results in the creation of O3. The newly formed NO

(reaction 2.1) is rapidly oxidised by O3 (from reaction 2.2) to re-form the NO2 molecule

lost in reaction 2.1 and an oxygen atom:

NO + O3
k2−→ NO2 + O2 (2.3)

where k1 and k2 are additional reaction rate coefficients (cm−3s−1). Altogether, reactions

2.1 to 2.3 establish a closed system under a photostationary equilibrium of the total

oxidant, Ox. This assumes that the overall rate of change of [NO2] is zero and thus we

arrive at the description of mixing ratios of Ox, known as the Leighton relation (Leighton,

1961):
[NO2]

[NO]
=
k2

j
[O3] (2.4)

The concentrations of O3 are therefore sensitive to the NOx mixing ratios. The

advantage of combining O3 and NO2 into a single quantity, Ox, is that any changes in

Ox are independent of the rapid photochemical reactions that convert O3 to NO2, and

vice versa. Thus an increase in Ox represents the production of O3 (via transport or

photochemistry) or loss of O3 (via transport or deposition). Ox is an approximately

conserved quantity when the O3 precursor species (NOx, VOCs and the hydroxyl radical,

OH) remain in equilibrium, as will be discussed in the following section.

During the night, O3 is depleted by NO titration, as well as being deposited to

surfaces via dry deposition. Since there is no net production of O3 during the night, this

means that generally, O3 concentrations decrease during the night in both urban and

rural areas.

2.1.2.2 Polluted regions

The photostationary equilibrium can be disrupted by oxidation of CO, or in the pres-

ence of VOCs which can be anthropogenic or biogenic. CO and VOCs act to enhance

the conversion of NO → NO2 without consuming O3. Some of the main sources of non-

methane VOCs in the most recent report (2015) for the National Atmospheric Emissions

Inventory were solvent use (36.9%), production processes (15.4%) and extraction / distri-

bution of fossil fuels (11.4%); road transport only accounts for 2.7%, although it is locally

significant (Tsagatakis et al., 2019). Consequently, high concentrations of O3 may be

observed within or downwind of urban regions, where the amount of non-methane VOCs
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originating from the above sources is favourable for daytime production of O3.

Figure 2.1: Schematic of O3 formation in the presence of VOCs. Figure 1 from Jenkin
and Hayman (1999).

Figure 2.1 depicts the by-production of O3 from VOC degradation by the hydroxyl

radical (OH) present in the atmosphere. The cycle involves fast reactions between organic

peroxy (RO2) and oxy (RO) radicals. OH required in this process can be formed by photo-

disassociation of O3 during sunlight hours (when λ ≤ 310nm) (Biedenkapp et al., 1970):

O3 + hv → O2 + O(1D) (2.5)

O(1D) + H2O→ 2OH (2.6)

HOx and NOx radicals catalyse the oxidation process of the VOCs. The alkyl radical

R is rapidly oxidised by O2, producing the RO2 radical. If NO is present, as it often is in

polluted areas, it reacts with the RO2 to produce RO and NO2, which continues with the

photo-disassociative production of O3 and into the photo-stationary state (see equations

2.1 → 2.3). Meanwhile the RO conversion into the hydroperoxy radical (HO2) can take

on different routes, one of which involves reacting with O2 and producing carbonyl prod-

ucts alongside HO2. (The details of this are outside the scope of this thesis, but more

information can be found in e.g. Jenkin and Hayman, 1999). HO2 reacts with NO to

complete the chain and regenerate OH, subsequently converting more NO→ NO2. Thus,

by degrading VOCs in polluted air, NO2 is produced without the consumption of O3.
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This NO2 can then produce more O3 through photolysis, as per equation 2.1.

2.1.2.3 Spatial and temporal variability

Emissions from road transport, solvent use and production processes are generally

greater in towns and cities than in rural regions, thus NOx concentrations are generally

higher in urban areas. Having outlined the importance of surface emissions in the previous

section, one can understand that there is an equilibrium shift towards a net production

of NO2 during the day in urban areas (see also Cocks, 1993). Typical NOx mixing ratios

within the boundary layer are observed to be at least one order of magnitude greater in

sub/urban areas than in rural regions, and at least 3 order of magnitude greater than

in remote marine locations (Seinfeld and Pandis, 2016). This highlights the influence of

anthropogenic emissions as sources of NOx and its precursors, thus contributing to O3

production or loss, depending on the NO : NO2 mixing ratios (equation 2.4). In particular,

decreasing NO results in increased O3, and vice versa.

Due to the generally higher NOx concentrations in urban than rural regions, O3

production is usually limited by hydrocarbon availability; whereas low NOx concentrations

are the major limiting factor for O3 production in rural areas (Sillman et al., 1990).

Therefore O3 is depleted more rapidly by NO from near emission sources (e.g. from fossil

fuel combustion, vehicle exhausts and chemical manufacturing) in urban regions. The

scavenging of O3 by NO generates NO2 downwind of the local source (equation 2.3), or

the primary NO may react with O2 :

2NO + O2 → 2NO2 (2.7)

which may then go on to also produce O3 as part of the photo-stationary cycle. This is

not a major O3-production pathway, but one which can occur in a NOx-limited scenario.

Studies such as that by Mauzerall et al. (2005) demonstrate the enhancement in O3

production in rural regions, downwind of large point-sources of NOx in the US.

O3 and NO2 have variability on various timescales: daily, weekly and seasonal. For

instance, a study by Bower et al. (1989) shows that annually averaged near-surface O3

concentrations at ground-based UK sites are higher at weekends than weekdays. This

effect is pronounced in urban areas, thus a contributing factor could be smaller NO

emissions on Sundays, when the typical weekday rush-hour traffic is absent. The study

also shows a strong negative correlation between NOx and summertime O3 at 8 rural and
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2 urban sites (correlation coefficient r = −0.91).

However, the complexity of the relationship between O3 and NOx goes beyond their

dependence on sunlight and concentrations of hydrocarbons. The relationship is also in-

fluenced by meteorological conditions, whereby seasonal patterns are noticed even within

the weekend / weekday split. Brönnimann and Neu (1997) expand on the Ox / NOx rela-

tion by considering whether meteorological conditions are favourable for O3 production.

The study, conducted over ground-based sites in Switzerland, finds that during condi-

tions of low average wind speeds, high temperatures and solar radiation (i.e. favourable

conditions), weekend O3 peaks are lower than on weekdays by up to 15%. It contrasts

the findings of Pryor and Steyn (1995), where the opposite effect occurs in Lower Fraser

Valley. Jenkin et al. (2002) model the trajectories linked to photochemical smog events

in the UK and find that high O3 concentrations are, to a large extent, influenced by the

UK’s proximity to the European continent. The study confirms that its geographical

location makes the UK susceptible to elevated O3 concentrations as a result of anticy-

clonic conditions and easterly winds, often occurring during the summer season. They

also find that high O3 episodes are more likely to happen at the end of the working week

(Saturdays and Fridays). They attribute this to the existence of a timescale associated

with chemically transforming the accumulated VOCs and NOx throughout the week into

O3.

Elevated surface O3 concentration levels tend to be a spring-summer phenomenon in

the northern hemisphere largely due to more photochemical production than during the

winter (Monks, 2000). For example, Lelieveld and Dentener (2000) shows that the Mace

Head measurement site in Ireland (53° N, 10° W) experiences a maximum in observed

background concentrations of surface O3 between April - June for the 15 year study period

of 1979-1993. An additional factor could be frequent spring-summer anticyclonic condi-

tions and therefore high pressure, which could enhance accumulation of ground-emitted

O3 precursors such as oxides of Nitrogen and hydrocarbon precursors emitted by motor

vehicles, industrial sources, fuel combustion and solvents near the surface. Accumulation

of these precursors near the surface can aid O3 production.

2.2 Atmospheric boundary layer meteorology

All of the meteorology relevant to this thesis occurs within the lowest parts of the

atmosphere, which includes the troposphere and, within that, the atmospheric boundary

layer (ABL). This is the layer of air nearest to the Earth’s surface, its height defined by a
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temperature inversion which typically occurs at 1000 - 2000 m during the day and 100 -

300 m at night, as depicted in figure 2.2 from Garratt (1992). The boundary layer height

(sometimes also defined as the mixing layer height, specifically when considering aerosols)

typically depends on the time of day, the amount of shear production and buoyant sup-

pression of turbulence. Figure 2.2 illustrates the stages of ABL development. It shows

that shortly after sunrise, solar heating of the Earth’s surface stimulates convection and

the subsequent ascent of air masses which rise to the top of the mixed layer. Throughout

the day, vertical distributions of pollutants are expected to be well mixed in this layer,

therefore almost constant with height. As the sun sets, surface heating ceases and the

mixed layer becomes the residual layer, as part of the growth process of the nocturnal

boundary-layer (NBL). The layer of air within around 300m to the Earth’s surface be-

comes the NBL, which may be decoupled from the residual layer above by a temperature

inversion, i.e. with a layer of air warmer than that below. The inversion is a stable layer

which decouples the ABL from the rest of the troposphere, preventing further vertical

pollutant transport. It therefore acts as a ‘lid’ on pollutant mixing in the vertical. The

process begins again upon sunrise, when the NBL is eroded by increasing thermally gener-

ated turbulence, which eventually becomes larger than the effect of stability. The eroded

NBL thus becomes one with the developing mixed layer during the early morning hours.

Figure 2.2: From Garratt (1992). Typical boundary layer structure throughout the day.
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Harvey et al. (2013) evaluated Doppler lidar observations at Chilbolton (a rural

location in the UK) and demonstrated that the depicted kind of ABL development under

clear-sky conditions occurs only 0.9% of the 3-year study period, making it the 5th most

probable boundary layer evolution. The most common diurnal evolution of the ABL is

that of stable boundary layer with no cloud at night, changing to unstable during daylight

hours. However, despite being the most probable occurrence, it only accounts for 6.4%

of the time, which implies that there is great variability in the types of diurnal boundary

layer development. The formation of the ABL is determined by stability, which is a factor

of solar heating, surface heat fluxes and mechanical turbulence generated by wind shear.

2.2.1 Turbulence in the atmosphere

This section serves as an introduction to turbulence and its role within boundary

layer meteorology. It is important to understand some of the theory of this process, as

later in the thesis it will be demonstrated how the representation of turbulence within

coupled AQ - meteorology models underpins the modelled boundary layer development

and behaviour. The first-order closure problem is introduced in section 2.2.1.2, and an

explanation of how modelled boundary layer stability depends on the Richardson number

(Ri) is given in section 2.2.1.3. A description of the surface sensible heat flux and its

role within boundary layer stability is outlined in section 2.2.1.4. Finally, we arrive at

the concept of turbulent kinetic energy (TKE) and its relation to wind speed in section

2.2.1.5. Although the above processes may seem far-removed from the overarching theme

of AQ forecasting, they underpin the meteorological processes addressed within this thesis

and are therefore important to understand.

2.2.1.1 Turbulence

Turbulence is associated with superposition of small-scale eddies in the atmosphere

which carry small fluctuations of parameters such as horizontal and vertical momentum,

moisture and heat. It is a dissipative process generated by two mechanisms within the

ABL: wind shear and thermal convection. When warm thermals rise from the ground,

positive turbulent kinetic energy (TKE) is generated, while cold surface temperatures and

static stability of the ABL result in TKE consumption by buoyancy. Using Reynolds’

averaging, fluctuations of relevant quantities can be separated from the grid volume-
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average terms. This means that, e.g. buoyancy, B can be defined as:

B =
g

θ
(w′θ′) (2.8)

where g = 9.81 ms−2, θ is the potential temperature, and w′θ′ is the covariance between

vertical wind fluctuations and θ fluctuations, corresponding to a vertical heat flux. When

w′θ′ > 0, the two variables are positively correlated and the environment is statically

unstable. When w′θ′ < 0, the correlation is negative and environment is statically stable.

If we consider an air parcel which has been vertically displaced with no heat exchange

to its surroundings (‘adiabatic’), the relation of its temperature relative to the new sur-

roundings changes. It is considered a ‘neutral’ environment when the air parcel is of the

same temperature as its surroundings. A ‘statically stable’ environment is one where, de-

pending on the vertical profile of the temperature gradient, a vertically displaced parcel

is either (a) colder or (b) warmer than its new surroundings and will be pushed back to

its original position by buoyant restoration (Stull, 1988).

Wind shear generation of turbulence, denoted here as S, is a product of the momen-

tum flux u′w′ and the mean vertical gradient of horizontal transport:

S = −u′w′∂u
∂z

(2.9)

Momentum and heat fluxes are key quantities within turbulence modelling, as they tell

us about transport due to deviations from the mean (i.e. turbulence). Working with

these leads to closure problems, which can be represented in models by making some

assumptions discussed in the following section.

2.2.1.2 First-order closure

When considering turbulent flow, one encounters the closure problem: the number

of unknown terms in an equation is larger than the number of equations. Equation 2.8

contains the vertical heat flux term, which is not closed because in order to solve it,

higher order momentum terms (for which there are not enough equations in the set)

need to be solved. In order to get around this, one can make assumptions about the

higher-order terms in the set of equations needed to solve the problem. For example, by

approximating equations above the zero-order mean variables (e.q. wind, temperature),

only the unknown equations for the second-order moments are left, i.e. the turbulent heat
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flux, w′θ′. Any turbulent flux can be approximated using the first-order, local closure:

u′jξ
′ = −K ∂ξ

∂xj
(2.10)

with scalar quantity K (units of m2s−1) and ξ is any turbulent transport term, e.g.

momentum or heat. When K is positive, the direction of transport of the flux represented

by u′jξ
′ is down the local gradient of ξ̄ - hence, called a first order K-closure theory.

The theory breaks down for large eddy sizes and is only relevant on small turbulent

scales. The scalar K is often referred to as ‘eddy diffusivity’ or ‘eddy viscosity’ (Km for

momentum, KH for heat), and takes the value of zero in the absence of turbulence. Given

the two mechanisms associated with turbulence (wind shear and buoyancy), both heat

and momentum fluxes must be parametrised and the local K-closure theory allows the

following approximations to be made:

w′θ′ = −KH
∂θ

∂z
w′u′ = −Km

∂u

∂z
(2.11)

Both turbulent flux terms are now related to their first-order moments, ∂θ
∂z and ∂u

∂z . This

is useful because the turbulent heat flux can now be expressed in terms of the dry-air

sensible heat flux QH relation (e.g. Ambaum, 2020),

QH = ρcpw′θ′ (2.12)

where ρ is the air density and cp is the specific heat capacity at constant pressure

(1004 Jkg−1K−1). Finally, equation 2.8 can be expressed in terms of QH:

B =
g

θ

QH

ρcp
(2.13)

which will become important in the computation of boundary layer stability in a numerical

model, as explained in the following section.

2.2.1.3 The Richardson number

The Richardson number (Ri) is a dimensionless measure which is used in models to

quantify local stability. Using equations 2.8 and 2.9, the ratio of buoyancy to wind-shear
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production of turbulence leads to the flux Richardson number Rif :

Rif =
−B
S

=
g
θ (w′θ′)

u′w′ ∂u∂z

These local gradients are difficult to measure, but they may be approximated from obser-

vations (e.g. using eddy covariance methods) at discrete model height levels. Substituting

the terms for momentum and heat flux from the set of equations in 2.11, results in the

bulk (RiB) number, which evaluates the gradients at discrete model levels:

RiB =
g
θ

∆θ
∆z(

∆u
∆z

)2 (2.14)

Note that KH and Km are of the same order of magnitude. Ultimately, RiB is a measure

of local stability in non-local terms. If RiB is larger than some critical value (Ricrit),

turbulent flow becomes laminar as buoyant suppression in the numerator of equation 2.14

dominates the ratio. Ricrit is often taken to have the value of 1, but in some model

configurations it can be 0.25, depending on whether certain types of stability functions

are used (Lock et al., 2017).

2.2.1.4 Surface sensible heat flux

As shown in equation 2.13, buoyant forces are dependent on the magnitude and sign

of QH , where a positive value leads to air parcel ascent through convective thermals. QH

represents the loss of energy from the ground to surrounding air.

QH is an important component in determining convective instability, and it also

appears in the surface energy balance equation (Oke, 1987; Best et al., 2006):

C
dTs

dt
= Q∗ −QH −QE −QG (2.15)

where C is the ground heat capacity, Ts is the surface temperature, Q∗ is the net radiation

at all wavelengths, QH and QE are the sensible and latent heat fluxes respectively, and

QG is the ground energy exchange between the urban canopy and soil. When the surface

temperature is at equilibrium, i.e dTs
dt = 0, the energy is conserved. Where QH > 0, the

layer of air above the ground is colder than the surface, resulting in the flow of heat from

the ground to the air. This scenario enables convection, and therefore vertical mixing of

air. Where QH < 0, the layer of air above the surface is warmer than the ground, so
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energy flows from the atmosphere into the ground.

A realistic approach to modelling QH throughout the day is necessary for an accurate

representation of the effects of buoyant forces on turbulence and the representation of

stability of the boundary layer. Correctly representing the nature of stability is crucial

for determining the development of the PBL. Consider the case of QH having the wrong

sign in the model upon sunrise, e.g. if it is negative where it would otherwise be observed

to be positive. No convection would take place and the depth of the mixed layer (figure

2.2) would deviate from reality, as its growth would be hindered by only relying on growth

through wind shear.

During night-time, and especially in the presence of clear-sky conditions, QH is usu-

ally negative, as the main exchange of energy is in the form of radiative cooling of the

Earth’s surface. This is often the case in rural regions. However, according to mea-

surements in larger cities such as London, QH can remain positive throughout the night

(Bohnenstengel and Hendry, 2016). The difference in energy balance between an urban

region and its surroundings contributes to the ‘urban heat island effect’, named thus be-

cause of the characteristic higher temperatures over urban regions than surrounding rural

regions (Oke, 1982). This difference can be on the order of 5 K in London, especially

during clear-sky conditions as shown by Bohnenstengel et al. (2011). Therefore, if the

land-surface scheme used in an AQ model does not resolve the complexity of the surface

energy balance, any errors in modelled QH are likely to propagate into the calculation

of buoyant production of turbulence, which may result in errors relating to the morning

development of the mixed convective boundary layer.

2.2.1.5 Turbulent kinetic energy, wind speed and entrainment

Brasseur and Jacob (2017) state that concentrations of secondary reactive atmo-

spheric species such as O3 are likely to be more abundant downwind of an emissions

source than at its location. It it therefore intuitive that wind speed and wind direction

near the surface is important for horizontal dispersion and vertical mixing of pollutants

within the boundary layer. Wind speed can therefore be used as a proxy for the TKE

within the boundary layer. VTKE is a turbulence velocity scale whose definition comprises

the turbulent wind vector components:

VTKE =

√
1

2
(σ2
u + σ2

v + σ2
w) =

√
TKE (2.16)
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where σu,v,w are the standard deviation of the wind vector components. TKE is a measure

of stability, which in turn determines the mixing ratios of pollutants throughout the

boundary layer, as well as determining the size and strength of eddies which entrain air

masses from the residual layer down into the boundary layer. The residual layer may also

act as a night-time ‘reservoir’ of O3 which had been trapped in previous day’s mixed layer,

before decoupling from the developing NBL by the nocturnal inversion (see the ‘sunset’

part of figure 2.2). It is therefore important to acknowledge that pollutant concentrations

within the boundary layer could be affected by the amount of TKE, especially via the

process of entrainment across the boundary layer top. Using a conservation equation for

the budget of a chemical species, the entrainment flux of air from the residual layer as

the mixed layer grows can be determined (Brasseur and Jacob, 2017):

F(h) = (ρi − ρe)
dh

dt
(2.17)

where F(h) is the entrainment flux at the boundary layer top (defined as positive upwards),

ρi and ρe are the mass concentration of the chemical species within the mixed layer and

the residual layer respectively, and dh
dt is the boundary layer growth rate. When dh

dt > 0

and ρe > ρi, i.e. concentrations above the mixed layer are greater than concentrations

below the boundary layer top while the boundary layer deepens, the entrainment flux

F(h) acts to increase the concentrations within the mixed layer. Entrainment and TKE

are therefore of particular interest in an evaluation of boundary layer concentrations of

pollutant forecasts.

Sun et al. (2012) provide empirical evidence that in neutral and stable boundary

layer regimes, there exists a relationship between TKE and wind speed (v) when the

Figure 2.3: From Sun et al. (2012). Re-
lation between wind speed and turbu-
lence strength (VTKE) during stable con-
ditions.

Figure 2.4: From Sun et al. (2012). Rela-
tion between wind speed and σw during
stable conditions.
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wind speed exceeds critical values (vc) at a range of altitudes. Above the critical wind

speed vc, turbulence generation is mechanical, i.e. Ri is small due to large vertical shear

in the horizontal wind speed and air flow is turbulent. Whereas below the threshold, any

mechanical turbulence is weak and generated through local fluctuations in wind shear.

This means that the relationship between TKE and v < vc is weak. Figure 2.3 shows

that, e.g. for winds measured at a height of 10 m, vc = 4.5ms−1. Furthermore, turbulence

is suppressed by buoyancy when mechanical generation is small.

The vertical velocity variance (σw) component has been singled out in figure 2.4 to

demonstrate its relation with wind speed, v. The relationship is such that at low heights

(e.g 5 m agl), smaller values of wind speed are associated with a specific σw than at higher

altitudes (e.g. 50 m agl). σw is one of the required parameters within NAME’s random

walk parametrisation scheme for transport associated with unresolved mesoscale motion.

Furthermore, σw is required by NAME’s entrainment parametrisation scheme in order to

calculate the flux of particles across the modelled boundary layer top (discussed in section

5.3.1).

2.3 Physical processes and meteorological variables affect-

ing atmospheric species

Vertical and horizontal transport of gases or particles (hereafter collectively referred

to as ‘atmospheric species’) ensures that concentrations are generally equally-distributed

throughout the depth of the mixed daytime layer. However, the concentrations of atmo-

spheric species within the boundary layer can be affected by different processes, depending

on the species’ physical properties. For instance, aerosols such as PM are efficiently re-

moved from the atmosphere by washout (wet deposition), whereas gases such as O3 or

NO2 rely on dry deposition as the main physical sink process, with further dependence

on cloud cover which will be discussed in the following sections.

2.3.1 Surface winds

Winds at low altitudes are variable in direction and speed (i.e. shear production of

turbulence), which means that pollutants are well-mixed but are unlikely to travel far

because of small-scale eddy circulations near the ground. Within the troposphere, at-

mospheric species undergo vertical and horizontal mixing, as well as accumulation and

dispersion, due to a turbulent atmospheric boundary layer. This is particularly impor-
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tant for primary pollutants (e.g. NOx and PM), whose horizontal distribution relative to

their emissions sources is affected by the wind. The nature of the overarching synoptic

pressure systems, and magnitude and direction of the wind speeds, is relevant for disper-

sion away from sources. These processes are also important for the mixing of secondary

pollutants (e.g. O3 and also NOx), but other meteorological variables such as cloud cover

are relevant to chemical transformations: for instance, O3 production is favoured during

sunny, clear-sky days over days which as overcast. For example, Cox et al. (1975) found

that during anticyclonic conditions (characterised by low surface winds, clear skies and

elevated temperatures), observed levels of daytime O3 at three southern-UK sites were

approximately doubled. Prevailing easterly winds during the anticyclonic period of study

provided favourable synoptic conditions for tropospheric, long-range transport of polluted,

O3 rich continental air masses into the UK - a result supported in Jenkin et al. (2002).

In terms of physical sinks, Wu et al. (2007) analyse O3 concentrations within a number

of global models and estimate that although chemical reactions amount to around 80%

of the tropospheric O3 losses, the remaining major sink processes are due to deposition

to surfaces, which is described in the following section.

2.3.2 Dry deposition

Dry deposition is a physical process which needs to be accounted for in an AQ model.

It is a major sink of tropospheric gaseous species and accounts for about 25% of the total

global O3 removal from the troposphere (Lelieveld and Dentener, 2000). The role of dry

deposition is particularly important for O3 over vegetated areas during sunlight hours,

when plant stomata open and O3 deposits to their interior (O’Connor et al., 2014). It is

therefore important to understand this process in order to accurately model daily surface

O3 concentrations in both global and regional chemistry transport models.

Dry deposition involves a direct transfer of chemical species from the atmosphere

onto surfaces on the Earth. Chemical species such as O3 are transported from source

regions to a region within proximity to the Earth’s surface, where they encounter and

are deposited on surfaces such as buildings, vegetation and terrestrial surfaces. This

deposition is enhanced in a turbulent atmosphere, whereby air parcels are repeatedly

brought into contact with surfaces (Wayne, 2000). Therefore it is required for turbulent

mixing to continue near the surface in order for dry deposition to take place during

night-time (Derwent et al., 1998).

Over continents, an average deposition velocity of vd = 0.4 cm s−1 (Seinfeld and
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Pandis, 2016) and a night-time boundary layer depth of around 100m means that air

masses nearest to the mixing height level may be brought into contact with a surface on

the time-scale of 6 hours, i.e. the time-scale of this process is comparable to the duration

of one night and cannot be ignored when evaluating diurnal cycles.

The efficiency of diffusion of the chemical species through the surface depends on

many factors, such as the material, shape, roughness and moisture of the surface; envi-

ronmental conditions such as temperature, humidity and thus season; as well as the nature

of the species in question. Chemistry parametrisation schemes in models therefore have

to account for all of these parameters. Many chemistry schemes, such as United Kingdom

Chemistry and Aerosols (UKCA) (O’Connor et al., 2014) use the dry deposition approach

of Wesely (1989), similar to that of electrical resistances in series, where vd is calculated

as:

vd =
1

rt
=

1

ra + rb + rc
(2.18)

where rt is the total resistance and ra, rb, rc are the aerodynamic, quasi-laminar

layer (i.e. the layer of air closest to the surface), and surface (or canopy) resistances,

respectively. ra is most dependent on the meteorological conditions such as 10m wind-

speed, rb is a molecular diffusion term and rc depends on surface type, thus making it

directly dependent on the land surface scheme used in the model (C. Hardacre, personal

communication). For example, Hardacre et al. (2015) conducted an evaluation of global

chemistry transport models to find substantial differences across the ensemble of 15 models

of O3 dry deposition, driven by differences in land cover. They found vd can range between

vd = 0.1cm s−1 to vd = 2cm s−1, with the largest inter-model differences in O3 dry

deposition over oceans and tropical forests.

2.3.3 Wet deposition

The process involving scavenging of atmospheric species by hydrometeors – such as

rain, snow, cloud or fog droplets – is encompassed by the general term ‘wet deposition’.

The umbrella term refers to a composite of numerous micro– and macro– processes, of

relevant length scales ranging from 10−6 m (e.g. cloud–physics processes) to 106 m (e.g.

synoptic scale fronts). Cloud droplets and raindrops (10−5 to 10−3 m) are involved with

two scavenging processes, through which atmospheric species are brought into contact

with condensed water and removed from the atmosphere by downward transport towards
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the Earth’s surface. These processes are:

• rainout - uptake of species by droplets within the cloud and subsequently precipi-

tating out the scavenged material;

• washout - scavenging of species by collision of falling rain or snow droplets.

Both processes happen in the presence of cloud, while washout occurs specifically in

the presence of falling rain or snow. Physical and chemical micro-processes (e.g. aqueous

chemistry) within the cloud are vastly important for the fate of the scavenged species, as

such both washout and rainout are included in the AQUM model. However, this thesis

considers only the sensitivity of washout on pollutants in the atmosphere; in particular,

what happens to particulate matter in the presence of rain and snow.

A falling raindrop may or may not successfully collide with an aerosol particle, de-

pending on their relative sizes, velocities and their collision efficiency. The efficiency of

removal of species through wet scavenging is therefore dependent on the type and solu-

bility of the species. Collision efficiency (E) is defined as “the ratio of the total number

of collisions occurring between droplets and particles to the total number of particles in

an area equal to the droplet’s effective cross-sectional area” (Seinfeld and Pandis, 2016).

Where E = 1, all aerosol particles within the geometric volume that a falling raindrop

sweeps out are collected, although typically E << 1. Finding analytical solutions for

estimating E becomes a complex fluid mechanics problem when flow patters around the

falling raindrops are considered, and though it is an interesting route to explore the nu-

merical solutions within the model’s treatment of wet deposition, it is outside the scope

of this thesis.

In AQUM, wet deposition is parametrised as a first-order loss rate (Savage et al.,

2013), which is a function of a species-specific scavenging coefficient λ, precipitation rate R

(mm hr−1) and particulate concentration, C (µgm−3) (Jones et al., 2019a). For example,

a first-order removal rate is assumed for mineral dust particles:

δC

δt
= −λRaC (2.19)

where λ is of the order 10−5 to 10−4 (experimentally derived), a = 1 for mineral dust but

a = 2
3 for other particulates such as nitrate or sulphate aerosols. This means that the rate

of PM removal will be greater when concentrations are high than when concentrations are

low (although not proportionally when a < 1). The fact that wet deposition is directly

dependent on the precipitation rate means that there should exist a relationship between
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PM concentrations and rain rate, R.

2.3.4 Cloud cover

The amount of cloud cover present influences daytime and nighttime temperatures,

as well as relative humidity and short-wave solar radiation. With cloud present, the

diurnal range of surface temperatures has been found by Dai et al. (1999) to reduce by

25 - 50% relative to clear-sky days, as daytime temperatures are suppressed by reduced

short-wave solar radiation and night-time temperatures are enhanced by increased infrared

radiation back to the surface. Temperature and insolation can affect photolysis rates and

emissions of biogenic hydrocarbons (e.g. isoprene and monoterpene), where emissions

increase with temperature and reach a maximum at approximately 40°C, then decrease

rapidly (Guenther et al., 1993; Zhang et al., 2018). Due to scattering of UV radiation, high

cloud cover can therefore decrease photochemical O3 production as described in section

2.1.2. Aqueous chemistry within clouds can also reduce tropospheric O3 (especially if

the regime is NOx-rich) as well as other atmospheric constituents (e.g. formaldehyde,

hydroxyl and NO) (Lelieveld and Crutzen, 1990). High cloud cover can also increase

relative humidity, which can enhance dry deposition of O3 by stomatal uptake, thus

reducing O3 concentrations (Kavassalis and Murphy, 2017). In terms of transport, a

thick cloud cover can inhibit ventilation of pollutants out of the boundary layer.

Forecasting cloud cover remains a challenging parameter within NWP due to many

different factors, e.g. the representation of boundary layer turbulence within models, and

the non-linear effect on cloud formation due to anthropogenic aerosols which act as cloud

condensation nuclei (Dabberdt et al., 2004). Some studies exist to quantify O3 forecast

error attributable to forecast errors in cloud cover. For example, it has been shown that

the WRF-Chem model only predicts 55% of clouds in the correct location and under-

predicts optical depth, resulting in over-estimation of summertime hourly surface O3 by

up to 60 ppb (approximately 120 µgm−3)(Ryu et al., 2018).

2.3.5 Summary

Providing an accurate AQ forecast can be difficult because not only do models have to

account for the vast quantity of chemical reactions for each species, but also the underlying

meteorology and physical processes need to be represented accurately, for reasons outlined

in this chapter. Here, some of the main physical (e.g. boundary layer development,

transport and mixing within the boundary layer, dry and wet deposition, cloud cover)
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and chemical (photochemistry of O3 and relationship with NO2) processes have been

outlined. In addition, modelling of secondary pollutants can also be sensitive to the

choice of an emissions inventory for the precursor species (Coates et al., 2016; Travis

et al., 2016), which adds another element of uncertainty to the forecast. It is important

to acknowledge that forecasts always have a degree of uncertainty, and biases may present

themselves upon verification.



3. Point-based evaluation of AQ and me-

teorological variables

3.1 Introduction

AQ models produce gridded forecast fields of pollutant concentrations, which need

to be compared against observations in order to ensure good model accuracy, as well as

to identify areas for model improvement. Forecast verification is a tool used to answer

a variety of questions about the forecast, in order to assess its ‘skill’ or ‘value’, either

relative to another forecast or in an absolute sense (Joliffe and Stephenson, 2012). A

related question is one which asks, e.g. is the current model upgrade better than its

predecessor? In this chapter, an absolute evaluation of the forecast model is conducted,

in the sense that we wish to find out how close is the model representation of the desired

variable to observed values. This question is just as applicable to forecasting pollutant

concentrations as it is to meteorological variables, such as wind speed or precipitation.

Various verification methods serve to answer this question, and the simplest methods

provide the most basic - but still useful - answers.

Some of the point-based summary scores frequently used in both air quality forecast-

ing and NWP are: bias, root-mean-square-error (RMSE), mean error, Pearson-r corre-

lation coefficient (PCC) between predicted and observed values, and contingency tables

(with respect to defined thresholds) (e.g. Wilks, 2020). There is merit in using these kind

of scores, as they provide a simple to understand overview of the model’s performance

based on selected parameters1. For example, mean error is a measure of the difference

between the predicted and observed variable and can be of varying sign and magnitude.

Bias tells us about the systematic error of the forecast model when compared to obser-

vations, averaged over the whole dataset. RMSE is used to check the average magnitude

1A useful source for familiarisation with forecast verification metrics is the website of the Joint Working
Group on Forecast Verification Research (JWGFVR), with contributions from established researchers
in the field of verification: https://www.cawcr.gov.au/projects/verification/

33
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Figure 3.1: From Brunner et al. (2015). A comparison of mean diurnal cycles of 10 m
wind speed from coupled chemistry - meteorology models over a European domain.

of the forecast error, without gaining information about the direction of error deviations.

PCC tells us whether there is a linear relation between two sets of data, but does not

identify whether one set depends on the other, merely shows whether they are correlated.

A first-order answer from these traditional metrics can be sufficient to describe how

well the forecast matches the observations, but it does not necessarily explain the errors

without further investigation. For example, Brunner et al. (2015) successfully compare

meteorological variables from a number of coupled meteorology – chemistry transport

models (CTMs) using, among others, mean error and PCC, and find that many European

models over-estimate surface wind speed (figure 3.1). By examining the diurnal cycle, they

found that the positive bias in surface wind speed is most pronounced at night, when the

boundary layer is most likely to be stable. Because wind speed (and, to some degree wind

direction) is an important parameter for modelling pollutant dispersion and mixing, it

is valuable to know whether it generally has a positive or negative bias. Although more

sophisticated methods are needed to establish the source of the wind speed bias (which

could be related to the use of long-tailed stability functions within operational models’

boundary layer schemes), it is important to acknowledge the bias’ existence (especially

at a particular time of the day) because it may lead to an error in the forecast of other

variables dependent on it, such as pollutant species.

A point-based evaluation of gridded forecast fields using traditional summary metrics

has its drawbacks. For example, area-averaged forecast values will suffer from inability to

represent the sub-grid heterogeneity of the forecast variable (Gilleland et al., 2009). Thus

when compared against a point measurement, the grid-box average is likely to provide
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a general closeness to the isolated measurement but not represent it fully - hence, this

is an issue of ‘representativeness’ (e.g. Haiden et al. 2012). Another way of thinking

about this is to ask: “how well does a point measurement represent the concentrations

within its surroundings?”. It is especially relevant for the more inhomogeneous chemical

species such as NO2, which could have very different local measurements at sites within

a radius as close as 5 km (McNair et al., 1996). If the grid-box spacing is larger than

this, it means that there is sub-grid variability in the pollutant concentrations which, by

definition, is not captured in the model. Furthermore, orography and variable terrain

types surrounding a point measurement can influence the pollutant concentrations at the

measurement site location because of local-scale flow patterns, e.g. within valleys, or in

urban environments. This could lead to an error in the prediction of a pollutant species at

the location, due to unresolved terrain and land-use within the grid-box and its vicinity.

To overcome issues in comparing a gridded forecast to point observations, one could

turn to spatial interpolation of observations onto a regular grid - such as ordinary kriging,

which is already implemented in the AQUM verification suite (Neal et al., 2014). While

this provides some idea of what the observation may be in a region to which a real

measurement was interpolated, the resulting gridded fields are smoothed out and can

under- or over-estimate the values at the interpolated locations. Another way to overcome

the representativeness problem is to use a more sophisticated spatial verification method.

A plethora of such methods has emerged in recent years (described in e.g. Ebert et al.,

2013), some of which will be discussed in chapter 4. These are particularly useful when

evaluating gridded forecast fields against point measurements, as they relax some of the

spatial constraints and consider a neighbourhood around the point observation, thus

minimising (or eliminating) the effect of the “double penalty” error on the perceived

forecast skill (Gilleland et al., 2009).

For the purpose of this chapter, traditional point-based methods only are used to

summarise the overall accuracy of the AQUM forecast for some air quality and mete-

orological variables. The chosen meteorological variables are 10 m wind speed, 1.5 m

temperature and precipitation, while the pollutant species potentially affected by errors

in the above variables are O3, NO2, PM2.5 and PM10.

3.1.1 Research questions

As noted in section 3.1, many coupled meteorology - chemistry models over-estimate

night-time surface wind speed, which may directly affect the modelled transport of pol-
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lutants away from sources. Wind shear can also generate turbulence, which contributes

to boundary layer development and entrainment of air masses from above the boundary

layer. The entrained air masses may have higher or lower concentrations of a particular

pollutant than air within the boundary layer, thus acting to either dilute or enhance con-

centrations within the boundary layer. Thus surface wind speed can also have an indirect

effect on pollutant concentrations. This process is particularly important for O3, whose

concentrations can persist as the daytime boundary layer de-couples from the surface

when night approaches. By chemical associations discussed in previous sections, NO2 is

closely related to O3 and will thus also be affected by the processes which affect O3, i.e.

surface wind speed. There is potential for forecast errors in surface wind speed to directly

affect the forecast atmospheric species through dispersion, thus the first research question

to be addressed in the present chapter is:

1) How are 10 m wind speed and 1.5 m temperature forecast errors related

to O3 and NO2 forecast errors in AQUM?

Surface temperature is included because, as pointed out in Brunner et al. (2015),

daytime 1.5 m temperature is a parameter often under-predicted, with a bias of around 1 K

across the surveyed models. Temperature is influential to chemical species and biogenic

VOCs, whose reactions may be temperature-dependent, thus errors in temperature may

propagate to the prediction of concentrations for certain chemical species via incorrectly

predicting the chemical transformations (as described in section 2.1.2).

Secondly, the effect of precipitation forecast errors on the PM forecast are of par-

ticular interest, as it is well known that precipitation is a major sink of PM from the

atmosphere. Verification of precipitation is an interesting topic in itself, aspects of which

will be explored further in chapter 4. Sometimes, one is just interested in whether it

rains at all, or not - irrespective of how much. This can also be true for the PM forecast,

whereby even a small amount of rain can act to wash out the particulates (see section

2.3.3). The second question addressed in this chapter is therefore:

2) How are forecast errors in precipitation related to AQUM forecast

errors in particulate matter?

An elaboration on the above research questions could explore potential cross-

correlations between the meteorological variables: for example, precipitation is not always

independent of wind speed due to e.g. the passage of a large-scale precipitating front,

where the conditions at ground-level can be windy. Therefore it could be beneficial to

analyse surface wind speed and precipitation together, both in terms of their effect on
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O3 and NO2, as well as PM10 and PM2.5. In addition to wind speed, the direction is

also important for pollutant dispersion, both at the kilometer-scale (e.g. for dispersion

from strong pollutant sources) and for large-scale transport (e.g. continental transport of

desert dust). Two other meteorological variables worth investigating are relative humid-

ity and cloud cover, both of which are closely related to precipitation and can exhibit a

strong influence on the chemistry of atmospheric species (as introduced in section 2.3.4).

Due to lack of time, relative humidity and cloud cover were not evaluated in this thesis. It

was decided that priority should be given to precipitation and wind speed, predominantly

because observations are readily available for both in order to evaluate forecast errors,

and are both continuous in nature which simplifies the evaluation. Wind direction obser-

vations are often registered as ordinal names (‘north’, ‘east’, etc), which could introduce

verification error through comparison with forecast wind direction in continuous polar

co-ordinates, therefore it was decided not to evaluate this parameter.

The remainder of the present chapter is structured as follows. First, section 3.2

provides details of the observational datasets used in the evaluations, including a dis-

cussion on typical types of error present in measurements. Introduced are the AURN

network, the World Meteorological Organisation (WMO) synoptic sites, the Met Office

Integrated Data Archive System (MIDAS) database for the meteorological variables, and

the NIMROD radar measurements for the precipitation. Then, the Met Office Unified

Model will be introduced in section 3.3, followed by an introduction to AQUM in section

3.4. Methodology and results of the air quality forecast evaluation will be presented in

section 3.5, where mean forecast error is calculated for the pollutants aggregated over all

observation sites. Then, wind speed and temperature are evaluated on a diurnal-cycle

basis, while precipitation is compared against radar and rain-gauge observations using

categorical statistics from a contingency table in section 3.6. The results of sections 3.5

and 3.6 will enable the answering of the two main research questions asked in this section,

which will be presented in sections 3.7.1 and 3.7.2, which will investigate direct relation-

ships between the two types of forecast using correlation coefficients: 10 m wind speed

and 1.5 m temperature with O3 and NO2; then precipitation against PM10 and PM2.5

using error composites.

3.2 Observations

This section will introduce the observations used throughout this thesis (AQ and

meteorological variables), followed by an overview of the typical errors these may be
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susceptible to.

3.2.1 Automatic Urban and Rural Network (AURN)

Routine surface observations of pollutants in the UK are provided by the Automatic

Urban and Rural Network (AURN). Funded by DEFRA, AURN forms the largest network

of automatic pollution measurement stations in the UK comprising 228 sites, 150 of which

are active at the time of writing2. AURN is a network of irregularly spaced, surface-

measurement sites found at various types of location: rural, urban, suburban; and are

further split into categories: background, traffic and industrial sites. Because of the

variability in the surroundings of measurement sites, those classified as ‘background’ are

located at a distance away from local sources (e.g. roads, production plants and busy town

centres) and thus give an overview of the ambient concentrations of a pollutant, without

being largely affected by strong local sources. The bulk of the stations are located in

urban areas (139), 60 of which are urban background sites. Those classified as ‘urban’ are

located in towns and cities, while ‘rural’ sites are generally located in remote areas, such

as the countryside. ‘Suburban’ sites are usually located within the outskirts of a city or

town.

The stations measure concentrations of pollutants deemed most harmful to human

health: O3, NO2, SO2, CO, PM2.5 and PM10 (COMEAP, 2011). Although the AURN

network provides mean hourly measurements of the 6 major pollutants listed above, some

stations only measure a selection of them. Data is available from 1973 to present day.

3.2.1.1 Instruments at AURN sites

O3, NO, NO2 and PM are measured at ground level, through the methods of: absorp-

tion of ultraviolet (UV) radiation (O3); chemiluminescence (NO and NO2); and for PM, a

combination of: the Filter Dynamic Measurement System, Beta-Attenuation Monitor and

Partisol (DEFRA, 2019). Measurement uncertainty of instruments must fall within the

European standard compliance target of ±15% for gaseous analysers and ±25% for PM

instruments (Eaton, 2016) for measurements to be valid and accepted to the database.

As of 2015, there exist 81 O3 and 137 NOx active measuring instruments in the AURN

network, with each device undergoing bi-annual quality assurance and quality control

(QA/QC) and inter-calibration. During this process, the response of each analyser to a

2For AURN sites, see https://uk-air.defra.gov.uk/networks/network-info?view=aurn, date accessed
25-09-2020)

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
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specified amount of gas is measured, the results of the whole network are compiled and

problem sites are re-calibrated if their result falls beyond a defined uncertainty thresh-

old of the reference standard (e.g. ±5% for O3 photometers, ±10% for NOx analysers).

Outlier percentages can vary seasonally and annually. For example, out of all the tests

done on O3 analysers in the summers of 2015 and 2016, outlier percentages were 14% and

21.3% respectively, whereas for the winter seasons they were 16% and 33%. Annually, the

overall data capture of O3 for 2015 and 2016 was 93.85% and 94.21% respectively, which

is above the EU Air Quality Directive target of 90% (Eaton, 2016). In conclusion, the

observational data provided by AURN is of high standard and can be reliably used for

the purpose of station-based forecast model verification.

3.2.2 WMO synoptic sites and radar

Ground-based observations of meteorological variables (10 m wind speed, 1.5 m tem-

perature and precipitation) used in this thesis are from the World Meteorological Organ-

isation (WMO) network of land-surface synoptic observation sites (LNDSYN). There are

currently 166 such sites around the UK (figure 3.2a), taking hourly measurements and

undergoing regular quality control checks. Hourly rainfall accumulations are observed

with rain gauge instruments. The gauge measurements are stored in the Met Office Inte-

grated Data Archive System (MIDAS) database, accessible from the CEDA archive, Met

Office (2012). Synoptic sites are located in open areas such that local features (e.g. trees,

buildings, steep ground etc) do not interfere with the measurements. As well as rain gauge

observations, precipitation data used in routine verification of the Met Office forecast also

come from the fully automated Nimrod system (Golding, 1998) which produces the radar

analyses. These comprise hourly rainfall rates gridded to either 1, 2 or 5km resolution.

Although throughout this thesis the radar data is simply referred to as “radar”, it is in

fact a composite of raw observations from satellite, radar and surface synoptic reports,

alongside prediction from NWP. The Nimrod radar product also undergoes a de-cluttering

process at each of the 15 radar instrument sites, in order to remove noise and spurious

echo. Images are subsequently re-mapped to a 5 km grid, spanning the UK as shown in

figure 3.2b. A general overview3, detailed information about the calibration and error

correction processes in the radar product can be found in Golding (1998) and Harrison

et al. (2000). Data is accessible from Met Office (2003).

3A factsheet and brief history can also be found at http://artefacts.ceda.ac.uk/badc_datadocs/

nimrod/factsheet15.pdf

http://artefacts.ceda.ac.uk/badc_datadocs/nimrod/factsheet15.pdf
http://artefacts.ceda.ac.uk/badc_datadocs/nimrod/factsheet15.pdf
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(a) WMO synoptic site locations; image
from Mittermaier and Csima (2017)

(b) Coverage of radar from 15 in-
struments; image from Harrison
et al. (2000)

Figure 3.2: WMO synoptic sites and UK radar coverage.

3.2.3 Typical errors in observations

Both AQ and meteorological measurements are susceptible to different types of error.

The errors can usually be classified into one of the following categories: instrumental,

representivity and sampling error.

Instrumental error is one where the measurement taken by the instrument is not

close to the truth. For example, a tipping bucket raingauge can register an inaccurate

amount of rain by not capturing any raindrops during the process of tipping. A PM filter

could measure an inaccurate amount of particles due to blockage. The measurement

uncertainty, as described in section 3.2.1.1, is typically on the order of ±20%, depending

on the measured species.

Representivity error is one where the spatial resolution of the measurement and

the model do not match, i.e. the measurement resolves a higher spatial scale than the

model is capable of. For example, convective precipitation can occur on the spatial

scales of meters to kilometers, which a radar system will be able to resolve better than

a coarse forecast model. In the case of atmospheric species, such as PM, O3 or NO2,

representative errors will generally have a larger influence on the perception of model

bias than instrument error, because spatial variability in the pollutant fields is larger



3.3. The Met Office Unified Model 41

than the instrument variability.

Sampling error is related to biases in the sample against the overall population.

For example, wrong statistics could be inferred about the NO2 concentrations in a given

area from the measurement taken at one sampling site, if its proximity to e.g. a large

road is not taken into account. This is a reason why the AURN sites are split into

types, amongst which are urban background, urban roadside and urban industrial. Wind

measurement biases can occur if the instrument is located in an area which is sheltered

by nearby objects, e.g. trees or buildings. This could lead to a systematic sampling error

in the measurement of e.g. wind direction, which is why the location and surroundings

of WMO observation sites are carefully considered.

3.3 The Met Office Unified Model

This section provides a general overview of the physical and dynamic structure of the

Met Office Unified Model (MetUM). The MetUM uses a ‘seamless’ approach to modelling,

which means that all of its various configurations share the same dynamical core and

many of the parameterisation schemes to represent sub-gridscale processes (Brown et al.,

2012a). As of 2014, the current version of the dynamical core is ENDGame (Wood et al.,

2014), which uses non-hydrostatic and fully compressible governing Euler equations of

momentum, conservation, thermodynamics and the equation of state (Staniforth and

Wood, 2003). The advection is semi-Lagrangian on an Arakawa C-grid (Arakawa and

Lamb, 1977) and the time-stepping is semi-implicit.

MetUM can be used as a climate model at spatial resolutions of 120 km globally or

4 - 1.5 km regionally; it is also used for numerical weather prediction (NWP) at spatial

resolutions of 10 km globally or approximately 1.5 km within a limited-area regional con-

figuration such as the UKV. It can be used for research purposes at scales of 1 km - 100 m

due to the unified nature. Barriers exist to the capability of the current dynamical core:

namely, increases in resolution and forecast lead-time require ever more computational

power. Singularity complications also exist for a lat-lon mesh at the poles. Future de-

velopments of the dynamical core involve using a uniform mesh under the project name

Gung Ho and a new dynamical core called LFRic, which continues to be developed at the

time of writing (see e.g. Adams et al. (2019)).

More information about the parameterisation schemes used within the MetUM which
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are relevant to this thesis will be provided in section 5.3 and sub-sections within.

3.4 Air Quality configuration of the Unified Model

(AQUM)

AQUM is is an on-line model operating in a limited area spanning the UK and a small

part of continental Europe. The AQUM domain is on a “rotated pole” grid, spanning

45 - 60°N and 12°W - 12°E as shown in figure 3.3. The horizontal grid spacing is 0.11°x

0.11°(∼12 km) and there are 63 vertical model levels up to 39km. The chemistry scheme

in AQUM is the Regional Air Quality (RAQ) scheme, which uses the tropospheric chem-

istry sub-routines from the United Kingdom Chemistry and Aerosols (UKCA) project

(O’Connor et al., 2014). Chemical reactions for 58 atmospheric species are represented in

the RAQ scheme used within AQUM, and photolysis rates are calculated hourly with the

Fast–J photolysis scheme of Wild et al. (2000). In operational mode, AQUM is initalised

Figure 3.3: AQUM domain, reproduced from Savage et al. (2013). The figure shows the
forecast for maximum daily O3 concentrations (µgm−3) for 27th June 2010, overplotted
with squares representing observations.
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once a day at 18 UTC with meteorological lateral boundary conditions (LBCs) provided

by the Met Office Unified Model (MetUM) global forecast. At the domain boundaries,

atmospheric pollutant species are provided by the CAMS global reanalysis from the Eu-

ropean Centre for Medium-range Weather Forecasting Chemistry (ECMWF) at 3-hourly

resolution. Within AQUM’s domain, initial conditions for pollutant concentrations are

taken from its preceding day’s forecast at T+24, where T+X here is defined as X hours

after model initialisation. Forecast output is hourly, with the (T+6) forecast valid at 00

UTC. No assimilation of observational data takes place throughout the model run, but

the chemistry and meteorology are a coupled system, i.e they have a two-way feedback

with a time-step of 5 minutes (Savage et al., 2013; Neal et al., 2017). This means that the

chemistry and aerosols within AQUM also feedback on the meteorology, e.g with cloud

condensation nuclei (CCN) which influence the forecast cloud cover. For its primary emis-

sions of atmospheric species, AQUM uses a blend of 3 datasets. The highest resolution

dataset used is the 1km UK National Atmospheric Emissions Inventory (NAEI, Jones

et al., 2019b), which is an annual inventory, separated into 11 source sectors over land in

the UK. NAEI also includes air-traffic emissions, but only domestic take-off and landing

emissions. Also used in AQUM are the 50 km resolution emissions data from the Euro-

pean Monitoring and Evaluation Programme (EMEP), and for waters around the UK,

the 5 km resolution shipping emissions (EntecUK; Whall et al., 2010) are implemented.

Emissions are spread out vertically across the first 4 model levels (20 m, 80 m, 180 m,

320 m).

3.5 Forecast verification of air quality variables

In this section, standard point-based error metrics such as RMSE, forecast bias and

PCC are used to evaluate the AQUM forecast accuracy for O3, NO2, PM10 and PM2.5.

Hourly forecast data for O3 and NO2 is verified against surface observations taken at urban

background AURN sites. Urban background sites are of particular interest, because there

exists a known negative bias in NO which contributes to a positive O3 bias at urban - but

not rural - (Savage et al., 2013). There are also intricacies associated with representing

areas of less homogeneity, in terms of e.g. land use and boundary layer development,

which will be discussed later in this chapter. Due to the pollutants’ seasonal variability,

the study periods are summer (June, July, August; JJA) 2017 and winter (December,

January, February; DJF) 2017. For PM2.5 and PM10, the study period is JJA and DJF

of 2015 over both urban and rural background sites - this is a different study period due
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to data availability. Forecast lead time ranges between T+6 to T+30, as the forecast is

initialised once a day at 18 UTC, with the first valid forecast time at midnight (i.e. T+6),

running freely for 24 hours.

3.5.1 Diurnal cycles of O3 and NO2

Surface concentrations of O3 and NO2 vary throughout the day, forming distinct

diurnal cycle profiles. There exists a seasonal variability in the diurnal cycle of observed

surface O3 and NO2 concentrations, and as such it is worthwhile to examine seasonal

differences in AQUM’s forecast skill.

3.5.1.1 O3

Top panels of both figures 3.4 and 3.5 illustrate the diurnal profile of surface concen-

trations averaged over 29 urban background sites, meanwhile the bottom panels depict

the normalised rate of change of the mean concentrations. The rates of change have

been normalised by the maximum rate, in order to make a fair comparison between the

observations and forecast.

In figure 3.4a, the observed summertime O3 mean profile has a minimum at 6 -

7 UTC (30.46 µgm−3) and a maximum at 15 - 16 UTC (58.12 µgm−3). Concentrations

are expected to be higher during the day than during the night, as photochemical pro-

duction is the main source of O3 in daylight hours. Throughout the night, O3 is lost

through titration by NO and deposition to surfaces, hence the observed profile has a

downward trend between 0 - 6 UTC. The minimum (30.46 µgm−3) occurs upon sunrise,

when O3 begins to be replenished by the commencement of photochemical production,

as well as entrainment from the residual layer. In the winter (figure 3.4b), the morning

minimum occurs later than in the summer, at 9 UTC due to a later time of sunrise. The

winter morning minimum (36.21 µgm−3) is slightly larger than in the summer, but af-

ternoon maximum (48.29 µgm−3) at 14 UTC is smaller than the summertime maximum

at 16 UTC. Winter day-time maximum concentrations are similar to those at 5 UTC

(both are ∼ 40 µgm−3), and the overall profile shape is significantly different from the

summer with a smaller diurnal range of mean observed concentrations (12.1 µgm−3) than

the summer (27.7 µgm−3).

The regularity of the daily profiles happens because of e.g. regular emissions of

NO2 from road transport during the rush-hour (where differences in road vehicle traffic

result in different emissions patterns between urban and rural regions, thus diurnal cycles
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(a) JJA (b) DJF

Figure 3.4: Diurnal profiles of forecast (red) and measured (black) hourly O3 concen-
trations, averaged over (a) 39 and (b) 41 urban background sites during JJA and DJF
respectively. Shaded regions are 25th and 75th percentiles. The bottom panels show
normalised rate of change of the mean concentrations.

of different amplitude); photochemical production of O3 during daylight hours, and its

deposition to the ground at night. Concentrations of O3 and NO2 are co-dependent due to

chemical reactions which involve both species, in addition to NO and VOCs (as discussed

in section 2.1.2), thus it is appropriate to compare their accuracy side by side.

There is a systematic positive forecast bias in O3 concentrations, which ranges be-

tween 10 - 20 µgm−3 in JJA (figure 3.4a) and 8 - 12 µgm−3 in DJF (figure 3.4b). These

results are consistent with the first AQUM verification of Savage et al. (2013), where the

O3 overestimation averaged over 55 sites for the year-long period of April 2010 - April

2011, was 8.38 µgm−3 with the highest seasonal bias (of around 20 µgm−3) occurring

during the summer. This bias is already known to the community and hypothesised to

be caused by emissions and model lateral boundary conditions. Existing bias is there-

fore minimised during post-processing stage of the forecast (Neal et al., 2014) before it is

published. This section will not further explore the causes of this systematic overestima-

tion, but will explore the potential causes of the missing morning minimum and delayed

increase in forecast O3 during the summer.

Let us focus on the bottom panels of figure 3.4. In the winter, forecast bias is

relatively constant throughout the day because the diurnal cycle in the mean observed

and forecast O3 concentrations is very similar. In the summer, the diurnal cycles in

observed and forecast O3 are slightly different, and thus result in a bias with a temporal

component which is not present in the winter. In the bottom panel of figure 3.4a, the
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modelled maximum increase in average concentration levels during the morning lags the

observations by 1 - 2 hours. This temporal offset is also present for JJA and DJF in

2015 (not shown), thus making it not an anomalous result. Furthermore, the observed

minimum in O3 concentrations at 6 UTC is missing from the forecast, as indicated by

the absence of a negative slope in observed concentrations between 4 - 5 UTC (bottom

panel figure 3.4a. Because this discrepancy between observed and forecast concentrations

is not present in the winter (figure 3.4b), it is possible that some process is missing which

is more prevalent during the summer than the winter time.

The time window between 4 - 9 UTC is an important one for the changes in both O3

and NO2 concentrations, in terms of the physical and chemical changes within the surface

boundary layer happening at this time. Sunrise during the summer in London is between

3:42 UTC at the earliest, and 5:10 UTC at the latest4. During the winter, sunrise occurs

between 6:46 UTC and 8:47 UTC. Due to the onset of solar radiation, photochemical O3

production begins around this time and increases with the amount of sunlight. However,

mixing of air from the residual layer as the boundary layer grows also contributes to this

increase - indeed, figure 3.4a confirms that the observed rate of change becomes positive

between 5 and 6 UTC, and the forecast is already positive at 5 UTC. The slope of both

the observed and forecast increase in concentrations rise fast from 6 UTC. But while

observed rates of increase reach a maximum by 8 UTC, the forecast rate of increase has

a maximum only at 10 UTC. This two-hour difference in maximum rates of increase is

not present in the DJF comparison.

During the winter, both forecast and observed concentrations begin to rise between

8 and 9 UTC. Assuming that there is no seasonally varying bias in the prediction of

incoming solar radiation, the fact that AQUM predicts the correct O3 increase in DJF

after sunrise suggests that the representation of O3 photochemical production is correct

in AQUM. A possible explanation for the seasonal difference in the O3 morning increase is

that the representation of entrainment of O3-rich air into the boundary layer is inaccurate.

There are a few possibilities why the temporal offset is only present in one of the

seasons. Firstly, boundary layer stability differs between the seasons. For example, a

study into lidar and sonic anemometer classifications of boundary layer types at a rural

location (Chilbolton) in the UK (Harvey et al., 2013), shows a clear diurnal and seasonal

pattern in boundary layer types for the period of June 2008 - June 2011. They find

that the fraction of stable-type boundary layers decreases from 0.96 in the night to 0.70

4Sunset and sunrise information from https://www.timeanddate.com/sun/uk/london, note use of BST

https://www.timeanddate.com/sun/uk/london
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upon sunrise (DJF), and respectively from 0.90 to 0.28 in JJA. Summertime months are

therefore more likely to have a neutral or unstable boundary layer shortly after sunrise

than winter months. It is important for the model to accurately predict the stability of

the boundary layer, as the rate of growth depends on its stability type and as such, it is a

key parameter for turbulent mixing of pollutants within the boundary layer (as discussed

in section 2.2). Secondly, within the boundary layer type classifications of Harvey et al.

(2013), which are based on the UK Met Office scheme outlined in Lock et al. (2000),

there are sub-categories based on cloud cover and type. These are important for the

amount of shortwave solar radiation reaching the Earth’s surface, and thus the amount

of sunlight - the key ingredient for photochemical production of O3. For example, by

examining the influence of cloud error on surface O3 in the WRF-Chem model, Ryu et al.

(2018) find that the cloud cover forecast accuracy is particularly important for forecasting

O3 in VOC-limited regions and under-estimating cloud can contribute 40% of the total

maximum daily 8-hour average bias. As such, any mis-categorisation of cloud cover and

type may affect O3 production. Lastly, O3 precursors such as VOCs, CO and NOx are

necessary for the O3 chemical production cycle to occur, as discussed in section 2.1.2. It

is therefore worth considering the accuracy of the NO2 forecast alongside the O3 forecast.

3.5.1.2 NO2

Figure 3.5 is an evaluation of the same sites and study period as figure 3.4, but

for NO2. The diurnal cycle of NO2 at urban sites (predominantly traffic sites, but also

background sites) is strongly influenced by morning and evening rush-hour emissions

from road transport (e.g. Lee et al. (2020)). The morning and evening peaks are stronger

during the winter than summer because of e.g. people’s choice of transport to work and

more domestic heating.

NO2 concentrations generally tend to be lower than O3, with the lowest average

concentrations during the summer (figure 3.5a). In both seasons, NO2 is under-predicted

in AQUM, with the largest mean bias during daylight hours. This is consistent with the

evaluation of Savage et al. (2013), where it is shown that there exists a small, positive

NO2 bias for rural sites, but it is not as large and less significant than the negative bias

at urban sites. This could be because predicted NOx is instantaneously spread-out over

the model grid-box, meaning that predicted concentrations are dispersed away from their

ground-based sources (which, due to road vehicle emissions, are generally higher in urban

regions) and therefore under-predicted. Savage et al. (2013) thus expect the negative
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(a) JJA (b) DJF

Figure 3.5: Diurnal profiles of forecast (red) and measured (black) hourly NO2 concen-
trations, averaged over (a) 39 and (b) 40 urban background sites during JJA and DJF
respectively. Shaded regions are 25th and 75th percentiles. The bottom panels show rate
of change of the mean concentrations, normalised by the maximum rate occurring during
the day.

bias in NO (not shown) to contribute to the positive O3 bias at the urban background

sites through under-estimating the process of titration. Moreover, studies evaluating the

NAEI inventory in London, UK using an eddy-covariance technique with an instrument

mounted on the BT Tower (Lee et al. 2015) and a research aircraft (Vaughan et al. 2016)

both reveal that road transport NOx emissions in NAEI are under-estimated by up to

50%. This error will propagate into the modelled NOx concentrations and thus contribute

to the O3 overestimation.

3.5.1.3 Total oxidant, Ox

Assuming that the fast reactions between O3, NO2 and NO are the leading mechanism

for determining the night-time concentrations, then one would expect the diurnal rates

of change of O3 and NO2 to be anti-correlated.

During the winter, r = −0.93 for observed and r = −0.97 for modelled quantities (p

< 0.01). During the summer, observed rates of change are still anti-correlated, though

with a weaker relation (r = −0.57, p < 0.01), whereas the modelled relation is much

stronger than observed (r = −0.83, p < 0.01).

The similarity between the rate of change of observed and modelled O3 and NO2

concentrations during the winter suggests that chemistry between the two quantities is
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(a) JJA (b) DJF

Figure 3.6: Diurnal profiles of forecast (red) and measured (black) hourly Ox (O3 + NO2)
concentrations, averaged over 29 urban background sites during JJA and DJF respectively.
Shaded regions are 25th and 75th percentiles. The bottom panels show rate of change of
the mean concentrations, normalised by the maximum rate occurring during the day.

represented well in AQUM. However, given the summertime discrepancy between mod-

elled and observed rates of change of both O3 and NO2, there is likely to be another

mechanism contributing to the summertime concentrations which is separate from the

representation of chemistry.

In order to eliminate the fast chemical reactions between O3 and NO2, the sum of

the two species is considered as the total oxidant, Ox. Ox is a conserved quantity in the

photo-stationary state, i.e. in the absence of VOCs and other hydrocarbons. This is a

fine assumption to make when considering urban background sites, as the measurements

are representative of ambient urban concentrations (i.e. as opposed to road-side). Since

the molecular masses of O3 and NO2 are similar (48 g/mol and 46 g/mol respectively), for

convenience their concentrations in µgm−3 are added together without prior conversion

to ppb5, as this should not lead to a gross error. A correct alternative would be to scale

the NO2 concentrations by 48 / 46. Let us assume that the atmosphere is clean. Then,

the observed and modelled Ox are shown in figure 3.6.

In the summer (figure 3.6a), the lag in the morning increase of Ox is evident in

the bottom panel, where observed Ox concentrations start to rise at 5 UTC, followed by

modelled concentrations rising 2 hours later, from 7 UTC. Mean Ox increases continuously

5Conversion from ppb to µgm−3 at 20° and 1013 mb: O3: 1ppb = 1.996 µgm−3, NO2: 1ppb =
1.913 µgm−3 (http://www.apis.ac.uk/unit-conversion)

http://www.apis.ac.uk/unit-conversion
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between 6 - 10 UTC, whereas the modelled quantity reaches a maximum increase only at

10 UTC. This is consistent with the O3 evaluation in section 3.5.1.1. During the winter

(figure 3.6b), the diurnal profile has less diurnal variability than during the summer, which

could be explained by the stronger anti-correlation of both modelled and observed O3 and

NO2, whereby they act to ‘cancel out’ under the assumption of a photo-stationary state

where the main driver of winter diurnal variability is the chemistry.

3.5.2 Summary of O3, NO2 and Ox evaluation

Using point-based metrics, it was established how well AQUM represents O3 and

NO2 at their observed locations, without any additional spatial or temporal information

about e.g. the model’s accuracy within a region surrounding the point observations. It

was shown that Ox has a positive systematic bias and larger diurnal variability in the

summer than winter, meanwhile NO2 has a negative bias and a larger diurnal variability

in the winter than the summer. Strong observed and modelled anti-correlations exist

between the diurnal rates of change in NO2 and O3 during the winter but not during

the summer, suggesting that there is likely a physical mechanism during the summertime

which contributes to the concentrations of O3 and NO2. Lee et al. (2020) recently inves-

tigated the change in observed O3 and Ox concentrations at AURN urban background

sites due to NOx reduction during the 2020 Covid-19 lockdown period. They found that

daily mean O3 and Ox concentrations increased by 11% and 3.2% respectively from the

2015 – 2019 daily mean reference, attributing this increase to the statistically significant

reduction in NO2 concentrations at 89% of the urban sites (compared to the base reference

period). Although Lee et al. (2020) considered the daily mean and median values, their

results support the anti-correlation between O3 and NO2 found in this chapter. However,

their results are slightly removed from mine, because the focus of this section was on the

diurnal rates of change of the pollutants, rather than daily mean values.

In order to eliminate arguments stemming from the representation of chemistry be-

tween the two quantities, one could consider the diurnal cycle of Ox under the assumption

of a photo-stationary state. As with O3, considering the diurnal cycle of Ox confirms a

lag in the modelled morning increase of concentrations by around 2 hours.

It would be useful to eliminate the chemical contributions to the surface concentra-

tions of Ox, and explore only the physical mechanisms such as boundary layer depth, its

rate of growth, entrainment, wind speed, cloud cover, and so forth. Although some of the

highlighted studies in this section use a “bottom-up” approach to e.g. reveal a discrepancy
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in NOx emissions used in AQUM, a development of a “top-down” method of exploring

the physical processes within the boundary layer could show whether entrainment of free

tropospheric air also contributes to the surface concentrations of O3 and NO2.

3.5.3 Diurnal cycles of PM2.5 and PM10.

AQUM uses the CLASSIC scheme (Jones et al., 2019a) to represent all the parti-

cles which contribute to PM2.5 and PM10. These include nitrates, sulfates, black car-

bon, biomass burning aerosol, organic carbon from fossil fuel (OCFF), secondary organic

aerosol (SOA) and nitrate aerosols. Sea salt is not included in AQUM, as it is only present

over the sea within CLASSIC and is not an advected species. The coarse component,

PM10, is notoriously difficult to forecast accurately, as each of the above components

adds an element of possible error to the overall forecast concentrations. For example,

Marécal et al. (2015) demonstrates that most (6 out of 8) of the MACC-II (Monitor-

ing Atmospheric Composition and Climate: Interim Implementation) ensemble of models

under-predict PM10 during DJF 2013, with a mean bias of −4.5µgm−3. There is also a

larger variability in forecast - observations correlations for PM10 than O3 across the mod-

els included in the comparison, due to the variable complexities in aerosol representation.

Largest PM10 under-estimations in the models were due to missing sea-salt emissions, lack

of SOA or coding errors. Diurnal cycles across the models were all similar, which was

attributed to the use of a common emissions inventory containing anthropogenic black

and organic carbon emissions, i.e. dominant sources of PM10. However, mean bias was

consistently worse during the night-time than any other time of day, which the authors

link to uncertainties of the boundary layer depth. Many models in general struggle with

representation of night-time boundary layers, which are usually stable (Harvey et al.,

2013).

In the initial evaluation of AQUM, Savage et al. (2013) find that the mean PM10

forecast concentrations are as little as 50% of the observed concentrations. Figure 3.7

demonstrates a similar mean negative bias as in Savage et al. (2013) but for DJF 2015,

evaluated over 33 and 23 sites for PM2.5 and PM10 respectively. The magnitude of the

overall average negative bias in the PM2.5 diurnal profile (–7.26 µgm−3, figure 3.7a) is

smaller than that of PM10 (–12.48 µgm−3, figure 3.7b). This is because, as discussed

in Marécal et al. (2015), the coarse PM component (2.5 to 10 µgm−3) also encompasses

primary particulates in the form of sea salt, transported dust and road vehicle emissions,

whose exclusion from the forecast likely contributes to the negative bias. A case study
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(a) PM2.5 (b) PM10

Figure 3.7: Mean diurnal profiles of forecast (red) and measured (black) hourly PM10

(left) and PM2.5 concentrations at urban background sites, for DJF 2015. Shaded regions
are 25th and 75th percentiles.

into a high PM10 event which occurred on April 2011 demonstrated that when PM10 is

dominated by secondary aerosols, the forecast bias is improved (Savage et al., 2013).

Notably, both PM components in figure 3.7 show that the mean diurnal profile of

concentrations is close to the 75th percentile, i.e. the hourly distributions are heavily

skewed by extreme values. For the summertime months (not shown), forecast bias for

PM10 (3.83 µgm−3) is still negative but smaller than in winter, while the PM2.5 bias is

slightly positive (1.13 µgm−3). As for the shape of the diurnal profile of PM10 and PM2.5,

unlike for O3 and NO2, there is no distinct diurnal shape - neither in the winter, nor in

the summer. Given that boundary layer depth dictates the vertical extent of mixing, it

is worth investigating the night-time representation of boundary layer depth in AQUM.

This is something we will return to in section 5.4.2.

Despite having mainly discussed the influence of emissions inventories on the mod-

elling of both PM components, physical processes such as precipitation are efficient at

removing PM from the atmosphere - this was discussed in section 2.3.3. The following

section therefore evaluates AQUM’s performance in forecasting precipitation, alongside

other meteorological variables like 10 m wind speed and temperature.

3.6 Forecast verification of meteorological variables

This section uses point-based verification to assess the AQUM forecast accuracy of

some of the meteorological variables key to air quality forecasting. Selected for analysis

are 10 m wind speed, 1.5 m temperature and precipitation. These variables were chosen

on the importance of their specific physical and / or chemical influence on the fate of
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atmospheric pollutants.

Firstly, 10 m wind speed is a key parameter for transport and dispersion of pol-

lutants, both horizontally and vertically (McNider and Pour-Biazar, 2020). Horizontal

transport determines the heterogeneity of pollutant concentrations near the Earth’s sur-

face by transporting particles away from sources of emissions, meanwhile vertical transport

dictates how well-mixed the pollutant concentrations are due to turbulent eddies in the

atmosphere.

Secondly, 1.5 m temperature is key for chemically reactive species such as NOx and

O3 precursors, whose rates of reaction depend on the ambient temperature. The modelling

study of Sillman and Samson (1995) demonstrated that a temperature difference of 5 K

throughout the troposphere can reduce O3 concentrations by 6%, due to increased sinks

associated with precursor chemistry. It is therefore important to evaluate the accuracy of

forecast temperature in AQUM.

Finally, precipitation provides an effective mechanism for physically clearing the air

of aerosols such as PM, via the process of washout - see section 2.3.3. Precipitation can

also act to dissolve some species, although this thesis does not deal with any aqueous

chemistry.

The following sections will evaluate the surface wind speed and temperature fore-

casts from AQUM against ground-based observations from WMO sites. Due to annual

variability in both the 10 m wind speed and 1.5 m temperature, AQUM forecast of both

variables is analysed over the period of 01-12-2016 to 01-03-2017 (DJF) and 01-06-2017

to 01-09-2017 (JJA). Then, section 3.6.3 will introduce and compare two different sources

of rainfall observations: radar and rain gauge, followed by discussion on their suitability

for verifying the precipitation forecast.

3.6.1 10 m wind speed

Forecast data is 3-hourly, and is verified against ground-based observations from 50

WMO sites in various locations around the UK. The sites have been selected according to

their location near to an AURN site measuring O3 and NO2, where “near” means 24 km

or less, i.e. two model grid-boxes. This ensures that the number of such available pairs is

large enough to gauge meaningful statistics, whilst still being representative of the general

meteorological conditions.

First, let us consider the diurnal cycle of 10 m wind speed, shown in figure 3.8. The

two seasons have in common larger magnitude of wind speed during daytime hours (e.g.
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(a) JJA 2017 (b) DJF 2016/2017

Figure 3.8: Mean diurnal cycle of 10 m wind speed at 50 WMO sites for JJA and DJF
2017. Error bars are 1 standard deviation at each 3-hour interval.

12 - 15 UTC) than during the night (21 - 06 UTC) at the selected sites. However, while

there is a positive bias present in both seasons throughout the day, JJA has larger mean

error during the night (0.63 ms−1) than DJF (0.55 ms−1), and the JJA bias is more

pronounced during the night than during the day (figure 3.8a). This effect is enhanced

when one considers the entire set of 158 WMO sites, in which the daytime error reduces

to practically zero (not shown).

Further concentrating on the night-time errors in ground-level wind speed, shown in

figure 3.9a is the fact that the forecast distribution is shifted towards higher values than

those observed. In particular, the forecast gives fewer instances of “low” wind speeds

(< 2.5ms−1) than observed; conversely, there are more instances of forecast wind speeds

between 2.5−7ms−1 than observed. It is also important to note that the cup anemometer

sensitivity to the lowest measureable value is 0.51 ms−1 (1 knot). There is good overlap

between observed and forecast wind speeds above 7.5 ms−1. Figure 3.9b shows that the

positive or negative error magnitude can be as large as 5 ms−1, with most errors falling

within the value range of 0 - 1ms−1 during the night-time.

The first-day wind speed forecast was considered, i.e. T+6 to T+27. It would not

be expected that the forecast accuracy would diverge significantly over this short lead-

time, therefore errors are not attributable to forecast divergence with lead time. The

positive night-time bias seen in AQUM is also consistent with other coupled air quality -

meteorology regional models, demonstrated by an inter-comparison study of such models

by Brunner et al. (2015). Over-estimating night-time wind speed could lead to dilution

of pollutants near their emissions source, which will be explored in a later section.
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(a) Observed (black) and forecast (red). (b) Error (forecast - observations) distribution.

Figure 3.9: 10 m wind speed observations, forecast and error distribution at 55 WMO
sites, sub-sampled by night-time (0-6 UTC) in JJA 2017.

3.6.2 1.5m temperature

As expected, figure 3.10 shows a strong diurnal cycle in surface temperature obser-

vations at the selected urban sites, as well as the forecast. There is little discrepancy

between observed and forecast values in both the winter (3.10a) and summer (3.10b).

The forecast diurnal cycle profiles have marginally reduced variability than the observa-

tions in both seasons. Although there exists a negative mean forecast bias between 12 -

15 UTC in both seasons, the difference is within 1 standard deviation of the observations.

The difference between extreme values is also small: there is a maximum difference of

1.5 K at 12 UTC between the mean maximum observed and forecast temperatures in

(a) (b)

Figure 3.10: Mean diurnal cycle of 1.5 m temperature at 50 WMO sites for (a) DJF and
(b) JJA 2017. Error bars are 1 standard deviation at each 3-hour interval, and dashed
lines are min / max values.
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JJA, and 1 K for DJF also at 12 UTC. Because the mean error and differences in extreme

values are small, they are unlikely to have any significant influence on forecasting the air

pollutants of interest to this study.

An alternative analysis could be to evaluate temperature anomalies relative to a

background reference, e.g. the ERA interim reanalysis. This would enable better under-

standing of how the forecast performs relative to a background ‘truth’ as opposed to a

point measurement, which would also eliminate any errors from extreme values measured

at the point location.

3.6.3 Precipitation

The following section presents a verification of the hourly AQUM precipitation fore-

cast against radar and rain gauge observations, for the same study period as in the

previous section. The forecast is compared first against ground-based observations from

MIDAS, then against gridded rainfall observations from the radar analyses, as described

in section 3.2.2. Radar data was coarse-grained from its native 5 km to AQUM’s 12 km

resolution by using a simple linear interpolation, in order for it to be spatially representa-

tive of the forecast. The resultant smoothing of the radar data diminishes its peak values,

as presented in figure 3.11.

Furthermore, in order to ensure that the precipitation forecast is verified against a

suitable set of observations, radar and rain gauge data are compared with one another

in section 3.6.3.3. Both radar and rain gauge observations come with their own set

of advantages and disadvantages when considered as “truth” for precipitation forecast

verification. For example, radar analyses have been shown to have uncertainty of as

high as a factor of two (Joss and Waldvogel, 1990), and instruments are susceptible to

ground clutter, low-level orography and calibration issues, among other factors which may

influence the recorded measurement. Even though the Met Office Nimrod radar composite

system applies quality control and error correction techniques to the soundings, there will

nonetheless exist measurement uncertainty and unfiltered noise.

Rain gauge observations provide estimations of ground-level precipitation at point

locations and are often used alongside radar soundings to produce quality-controlled radar

analyses. Rain gauge observations are also susceptible to measurement uncertainty, e.g.

errors in the timing of observation, missing rain during the period of a rain bucket tipping,

unfavourable exposure to strong wind (Met Office, 2020b). Because the rain gauge sites

are spatially sparse and distributed unevenly, there are some areas where the distance
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Figure 3.11: A snapshot of the gridded radar at 01/01/2015 15:00 UTC. (a) is the original
5 km resolution; (b) is the coarse-grained 12 km data. Note change in scale of colourbar.

between sites is larger than the grid-box length of some mesoscale models. This means

that rain gauges will not always be representative of an entire model grid-box and as such,

a “truth” analysis with a reliable spatial coverage – such as a radar-rainfall estimate –

is more suited for model verification, accounting for measurement uncertainties (Mitter-

maier, 2008). Radar soundings are more likely to be accurate when the observed rainfall

rate is high, as the signal-to-noise ratio is higher than when precipitation is near to zero

and the radar pulse is too small to be reflected.

Hourly precipitation forecast (mmh−1) from AQUM distinguishes convective and

large-scale precipitation, alongside information on whether it fell in the form of rain or

snow. For the following analysis, the four sub-categories of precipitation were concate-

nated together as total precipitation. The forecast lead time is T+6 to T+30, i.e. the

first “full” forecast day from 00:00 to 00:00 the next day, due to the model’s initialisation

time at 18:00 UTC the day before. The forecast data is in the form of grid-box averages,

where a bi-linear interpolation can be performed onto a chosen point location within a

grid-box (from the 4 neighbouring grid-box values). These locations are co-located with

the ground-based rain gauge observations.
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3.6.3.1 Description of datasets

The MIDAS rain gauge dataset comprises 127 locations. The radar analyses have

been linearly interpolated to the set of MIDAS rain gauge locations, in order to directly

compare both observations’ estimates. In addition, the data has been sub-sampled by close

proximity to AQ sites measuring PM concentrations. This is because we are interested

in how the forecast verifies against both radar and rain gauge observations at locations

of interest involving further work with PM. The maximum distance threshold was set to

24 km, i.e two grid-boxes of the AQUM forecast. Any smaller than that and the sample

becomes very small; any larger than this can compromise the realistic representativeness

of the rainfall estimate at the AQ site. This gives us a data sample size of 20 sites (JF

2015)6 and 23 sites (JJA 2015) out of 127 gauge locations. The year 2015 was selected to

match the PM study period.

Mean error (forecast - observation) when the winter forecast is verified against rain

gauge and radar data is −0.20 mmh−1 and −0.19 mmh−1 respectively. During the sum-

mer, rain gauge verification gives mean forecast error of −0.06 mmh−1, while radar ver-

ification gives −0.09 mmh−1. Although these values do all indicate a negative forecast

bias, the standard deviation is larger than the magnitude of the mean error. This makes

the traditional calculation of the mean error unsuitable.

It is important to note that the precipitation rates are very low, and both the ob-

servations and forecast are dominated by zero values (table 3.1): 74.4% of the hourly

forecast at 127 sites is zero-valued. During the summer, 67.7% of the forecast data is

zero-valued. For rain gauge observations, the amount of zero-valued data is also high:

77.8% in winter, 85.3% in the summer. Radar observations register more rain than the

gauges, as the proportion of no-rain events is 56.7% in winter, 65.5% in the summer. At

the sub-sampled sites, percentages of no-rain events are even higher. The high frequency

of non-events renders the calculation of standard descriptive statistics (i.e mean, standard

deviation, variance etc) unsuitable.

Often, precipitation statistics are calculated over a coarser temporal frequency, i.e.

6h or daily accumulations. For example, the Met Office provide publicly available ‘climate

summaries’ and historical time-series, where consulting a daily or monthly precipitation

accumulation is appropriate. This kind of analysis avoids the high number non-events

present in hourly datasets, making the statistics more robust. On the other hand, this

project deals with detailed evaluations of the hourly precipitation forecast, with the inten-

6December 2014 data was not available for inclusion in the the winter 2015 season dataset.
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Table 3.1: Percentage of hourly “no-rain” events across 127 MIDAS sites (values in brack-
ets show the percentages at sub-sampled sites), i.e. precipitation rate = 0.0 mmh−1

% Gauge Radar Forecast

JF 77.8 (81.8) 56.7 (59.9) 74.4 (78.4)
JJA 85.3 (87.7) 65.5 (68.6) 67.7 (70.7)

tion of linking it to immediate effects on particulate matter. It is therefore not appropriate

to substantially coarse-grain the data in time and lose the details 7. Instead, it is helpful

to treat precipitation as a discrete or even binary quantity, for which categorical statistics

can be used. These are described in the following section.

3.6.3.2 Categorical statistics

Although continuous in nature, precipitation is often treated as a discrete field within

forecast verification. This means that thresholds are applied to evaluate whether the

predicted precipitation amount falls within the observed category, e.g. < 1 mmh−1. As

well as examining the difference in observed and forecast rainfall rate per unit time, it can

be useful to ask whether the observed rainfall was at all forecast, regardless of its rate.

For example, the general public is more likely to consult the forecast in order to decide

whether they will need an umbrella today, than to know how much rain exactly it might

protect them from. Therefore, forecasters often turn to a contingency table (e.g. table

3.2) to glean more insight about the nature of the precipitation forecast other than just

the magnitude of forecast error. Various statistics using any combination of the possible

forecast and event pairs can be calculated, such as forecast frequency bias and accuracy.

Frequency bias is a widely used error metric for categorical forecasts, directly com-

paring the frequency of forecast “events” to observed ones:

Frequency bias =
A + B

A + C
=

hits + false alarms

hits + misses
(3.1)

where 1 is the perfect score, while values > 1 and < 1 signify over- and under-forecasting

respectively. The accuracy score answers what proportion of forecasts were correct, but

is skewed by rare events. The values range from 0 to 1, where 1 is the perfect score. It is

calculated as:

Accuracy =
A + D

A + B + C + D
=

hits + correct negatives

total
(3.2)

7However, in section 3.6.3.3, precipitation forecast and observations are accumulated into 6h windows,
which allows some flexibility in timing offsets at point locations.
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Table 3.2: Contingency table used in verification of categorical variables, such as non-rain
events. Statistics are calculated from combinations of: A, B, C, D where A = hits, B =
false alarms, C = misses and D = correct negatives.

Observed

yes no
Forecast yes A B

no C D

Figure 3.12 presents seasonal partitions of standard error metrics for AQUM forecast

of precipitation compared against rain gauge observations. Mean error and RMSE are

continuous statistics. A value of 0 represents a perfect forecast in both the mean error and

RMSE, but the nature of RMSE is that it is skewed by outliers. In figure 3.12, one can

infer that there is little difference between the seasons in the model’s performance when

rain gauge observations are used for verification. The mean error is marginally smaller for

JJA, though the RMSE is highest at this time of year. This can happen because outliers

of a large magnitude skew the distribution due to the squared term.

For the categorical statistics in figure 3.12, precipitation was treated as a binary

quantity, i.e. it was partitioned into 2 groups: “no rain” and “rain”. One can infer

from the frequency bias that forecast precipitation in JJA is, on average, almost twice

as likely to be a ‘false alarm’ (i.e. predicted to happen when it is dry) than in JF. The

accuracy statistic shows that around 72% of the JJA and 77% of the JF forecasts were

correct, although the extremely high count of “non-events” skews this value, as discussed

Figure 3.12: Continuous (mean error, root mean square error) and categorical (frequency
bias, accuracy) statistics for hourly AQUM rainfall forecast verified against rain gauge
data at 127 sites, for seasonal partitions in 2015.
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in section 3.6.3.1 and shown in table 3.1. Since the hourly forecast percentage of no-rain

events (74.4%) was closer to the rain gauge observations (77.8%) than radar (56.7%), a

naive conclusion might be that verifying the winter forecast against rain gauge would yield

a higher accuracy rate than verifying against radar. In contrast, verifying the summer

forecast (68% of no-rain events) against radar (66%) would appear more accurate than

verifying against rain gauge (85%).

However, it is more useful to also calculate how many non-zero events were correctly

forecast when verified against rain gauge and radar. For the winter, verifying against rain

gauge observations yields 81.7% correctly forecast no-rain hours, and against radar this

is 89.9%. For the summer, those numbers are 72.7% and 82.1% for rain gauge and radar

observations respectively. Firstly, this suggests that the model is better at identifying

no-rain events during the winter than the summer. Secondly, verifying no-rain events

against radar gives the forecast a better ‘hit’ rate, than if it were verified against rain

gauge observations. This could be explained by measurement uncertainties related to

raindrop size, e.g if the radar pulse is not well reflected by very small drops.

A reason for the seasonal differences seen in the above error metrics could be due to

the distribution of observed rain type: convective precipitation dominates over large-scale

fronts during the summer in the UK (e.g de Leeuw et al., 2015), whereas winter months

will experience more large-scale synoptic fronts. This means that precipitation during the

summer is likely to be more localised than in winter, posing representativeness issues for

rain gauges which may not capture the localised convective rainfall.

It can be concluded that in a continuous sense, precipitation is usually under-forecast

in AQUM, with the largest mean error values during the autumn / winter seasons. On

a categorical basis however, there are twice as many forecast rain events than observed

during the summer, with the forecast event frequency closest to the truth during winter.

3.6.3.3 Differences between radar and rain gauge precipitation

The expectation is that a gridded precipitation forecast is better represented by radar

analyses than rain gauge data, in the sense that both the forecast and radar represent

a grid-area average rather than a point measurement. In order to test this, radar and

rain gauge observations are compared first against each other, and then against AQUM

during both JF and JJA 2015. This is done in two ways:

• Calculate the correlation coefficient (r) between radar and rain gauge observations

at each site;
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• Bin the precipitation data into 6h windows and calculate the fraction of “zero-rain”

events across the sites.

Upon calculating the site-based correlations between radar and rain gauge hourly

precipitation at the 23 sites shown in figure 3.13, it was found that the average correlation

value r = 0.617 during the winter, and r = 0.586 during the summer. This suggests that

during the summer, there is a larger discrepancy between the two measurement types

than during the winter, although the seasonal difference is not large.

Because it can be difficult to forecast precipitation at exactly the right location at the

right time, data is binned into 6h accumulations in order to avoid the double-penalty error

associated with point-based evaluation metrics. This also ensures an equal comparison

between the radar and rain gauge measurements, as it is normalised to the amount of

data available and is not penalised by missing data.

Figure 3.14 shows the site-based fraction of zero-valued 6h windows in the rain gauge

and radar data, for winter (3.14a) and summer (3.14b). Each scatter point represents the

observed fraction of zero events at an individual location, as observed by rain gauge and

radar. A value of 0.3 implies that at the given site, rain was recorded over 70% of the

season; a value of 0.5 means that it rained 50% of the time. 20 locations were evaluated

Figure 3.13: Locations of raingauge sites and IDs matched to nearest PM measurement
site, for JF 2015.
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(a) January and February 2015 (b) June, July and August 2015

Figure 3.14: Site-based comparison of proportion of non-precipitating 6-hour windows
within rain gauge and radar observations. Shading represents a factor of 2 out, while
numbers on scatter plots are site IDs (alphabetical).

in the winter, 23 in the summer. Numbers next to the scatter points are the site IDs, as

shown in figure 3.13. Note that site IDs are different between the winter and summer due

to data availability.

In the winter, the fraction of zero events observed by radar and rain gauge instru-

ments at all sites (but one, #8 - Edinburgh, located at 55.933° latitude, -3.33° longitude)

are within a factor of 2, but in general, more no-rain events are recorded by the rain

gauges than with radar. The same can be said about the summer in figure 3.14b, with

one site registering significantly more no-rain events with rain gauges than radar (#2,

Aldergrove, located at 54.667° latitude, -6.233° longitude). This suggests that in order to

compare the rain gauge and radar precipitation, a minimum threshold may be needed.

The minimum amount of rain registered by the gauges is 0.2 mm/h, therefore it would

be appropriate to apply this threshold to radar. It also means that verifying the precip-

itation forecast against radar or rain gauge observations may give a different frequency

of zero-precipitation events, which may have an effect on the perceived relationship with

PM forecast error.

A similar comparison can be made of the two observation types against the forecast

data. Figure 3.15 shows the observed fraction of no-rain events on the x-axis, lined up

against the forecast fraction on the y-axis for winter (figure 3.15a) and for summer (3.15b).

Left panels of both sub-figures are the rain gauge estimates, while the right panels show

the radar.



64 Chapter 3. Point-based evaluation of AQ and meteorological variables

(a) January and February 2015

(b) June, July and August 2015

Figure 3.15: Site-based comparison of proportion of non-precipitating 6-hour windows
within observed (rain-gauge and radar) and forecast fields. Shading represents a factor
of 2 out, while numbers on scatter plots are site IDs (alphabetical).

In figure 3.15a, the forecast fraction of “no rain” for all the sites was within a factor

of 2 when compared against the rain gauge fraction, both spanning 0.4 to 0.8 (figure

3.15a, left). When the forecast is verified against radar estimates, figure 3.15a implies

that the forecast would appear less accurate because fewer “no rain” events are recorded

with radar soundings than are forecast. The fraction of “no rain” events from the radar

analyses is between 0.25 to 0.7. Some sites (sites 8, 9 and 16) are hovering around the

2x factor line, which means that rain events were forecast half as much as they were
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observed. This is important, because if there was a particularly large (or small) bias in

the PM forecast at those sites, one may firstly begin making links with the accuracy of

the precipitation forecast at those sites, and secondly start to think about which “truth”

was used for the verification.

In the summer time, the overall collection of scatter points shifts along the x-axis for

both radar and rain gauge precipitation, relative to winter. This means that radar is now

the better representation of “no rain” events, with most (but one) sites’ forecast falling

within a factor of 2 of the radar observations. The anomalous site is ID #2, which also

happens to be the anomalous site for rain gauge observation, but forecasting not enough

“no rain” events in relation to the gauge observations. The anomalous readings could

be influenced by the site’s location near to both the Belfast International Airport and

Lough Neagh: a lake with surface area measuring over 300 km2 which could influence the

formation of local convection.

3.6.3.4 Conclusions

Although precipitation does not have a diurnal cycle, it does vary seasonally and

locally. Its sensitivity to orography can be problematic for relatively coarse models –

such as AQUM – which are prone to under-resolve orographic features. This can result

in forecasts which are not accurate when compared against “truth”. What data is used

as “truth” and the evaluation statistics used can also influence the perception of how

close the forecast was to reality. It was found that rain gauge and radar readings can

sometimes provide similar versions of “truth”; other times they differ greatly. Previous

work of Song et al. (2017) indicates that differences in accuracy of radar and gauges

could be a result of relative humidity (RH): when RH is low, radar has been shown

to over-estimate rainfall. RH is generally low when no rain is present, therefore the

conclusion drawn from figure 3.15 - that radar registers fewer non-precipitating instances

than rain-gauges - are consistent with Song et al. (2017). Another study of Biggs and

Atkinson (2011) demonstrates that gauge and gauge-corrected radar provided a better

representation of an extreme hydrological event than radar, although the latter is better

at representing rainfall in mountainous terrain. Bearing in mind that the radar analyses

used in this evaluation do also encompass rain gauge observations during quality control,

they are most likely to be useful for verification methods where spatial fields are concerned,

e.g. the Fractions Skill Score (FSS; Roberts and Lean, 2008) or “Structure, Amplitude,

Location” (SAL; Wernli et al., 2008). For point-based verification, rain gauge readings
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provide the most accurate truth at the ground level, although the network is sparse

and the instruments can provide unrealistic result if e.g. the tipping bucket gauge is

blocked by snow. For summer months, the distinction between the two observation types

matters more than during winter, likely due to the prevalence of localised, convective-scale

precipitation which does not occur as often during winter. For the rest of this chapter

where precipitation is concerned, both measurement types will be considered.

3.7 Relationships between air quality and meteorological

forecast errors

3.7.1 10 m wind vs O3 and NO2

An evaluation of the diurnal profiles of seasonal 10 m wind speeds, as well as their

forecast error distributions, revealed a night-time bias in the forecast (section 3.6.1).

Using point-based correlations, forecast errors in 10 m wind speed are going to be tested

for correlations with O3 and NO2 forecast error and lag discussed in section 3.5.1. Since

it was shown that the 1.5 m temperature forecast is close to observations, thus errors

are too small to influence the pollutant forecast, only the effect of over-forecasting 10 m

wind speed on the pollutants will be considered. In light of results from section 3.6.1, this

section aims to test the following hypothesis:

Over-estimating night-time 10 m wind speed increases the negative fore-

cast bias in NO2 and positive bias in O3.

Firstly, the scatter of 10 m wind speed error against the O3 and NO2 error at in-

dividual sites is explored. Two sites have been chosen due to their distinct locations:

Leeds Centre (‘LEED’) which is a large, landlocked city in the north of England (53.804°

latitude, -1.546° longitude) and Southend-on-Sea (‘SEND’), a smaller town on the south

coast of England (51.544° latitude, 0.678° longitude). Because of the different nature of

their locations, air quality and meteorology at these two measuring sites are expected to

be different as a direct result of their surroundings, thus the two sites can be used as case

studies for variability in relationships between air quality and meteorology within differ-

ent surroundings. For example, the Leeds Centre site has a larger O3 and NO2 forecast

error than the Southend-on-Sea site, irrespective of the magnitude or sign of the 10 m

wind speed forecast error. This is shown in figure 3.16. However, it is difficult to assess

the strength of any existing relation between 10 m wind speed and O3 or NO2 error at

each individual site, as the variability of forecast error in both components is very large.
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(a) (b)

(c) (d)

Figure 3.16: Scatter plots of night-time 10 m wind speed bias vs. O3 or NO2 forecast bias
at Leeds Centre (a,c respectively) and Southend-On-Sea (b,d respectively) as example
sites.

For example, considering PCC of 10 m wind speed error and O3 or NO2 error in figure

3.16, it is generally of the expected sign but small magnitude, although p-values are small

(p < 0.05 in all cases) so the result is statistically significant to 95% confidence level.

For the sites of Leeds Centre and Southend-on-Sea, r = 0.219 and 0.129 (for O3 error vs

wind speed error) respectively, and r = −0.238 and −0.181 (for NO2 error vs wind speed

error). It is clear from figure 3.16 that though the expected relationship between 10 m

wind speed and O3 and NO2 forecast error exists, the large amount of scatter reveals that

is is weak.

A number of different factors unique to each site can affect the O3 and NO2 errors, e.g.

proximity to strong emissions sources, coastal areas or mountains. This means that there

is a large variability in the magnitude of pollutant forecast errors across the sites in the

dataset and as such, it is more useful to examine all the sites’ aggregated data to identify

the existence of a relationship, rather than evaluating them individually. Furthermore,
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Figure 3.17: Site-based relations between average 10 m wind speed forecast error and O3

forecast error, JJA 2017. Error bars are standard error on the mean.

a bias-correction method is needed to minimise the effect of any forecast bias (unique

to each site) on the perceived relationship. Figure 3.17 shows the average wind speed

forecast error and O3 forecast error aggregated over all the sites, (i.e. calculating the

mean over the scatter data as in figure 3.16 for each site). It is difficult to identify any

kind of linear relationship between the 10m wind speed forecast error and the O3 forecast

error (similarly for NO2, not shown) in figure 3.17 because no bias-correction was applied

to this data. One method of bias-correcting the data is by removing each site’s mean

bias from each data point in order to account for any systematic bias individual to each

location. However, this does not make the relationship appear any stronger (not shown).

Another bias-correction method is to take the two tails of each site’s forecast error

distribution and compare them to each other. This method bypasses the problem of

inter-site variability of the local aspects discussed above. By sub-sampling the wind

forecast error distribution by the lowest 10th and highest 90th percentiles at each site,

one can determine whether the corresponding O3 and NO2 mean error is of different sign

or magnitude from the full dataset.

Figure 3.18 demonstrates the correlations between pollutant forecast errors during

the lowest and highest wind error percentiles, focusing on night-time only (i.e. 0 - 6 UTC).

Firstly, it is clear that pollutant error magnitude is strongly dependent on the site itself

- perhaps its location, local emissions or topography - rather than whether 10 m wind

speeds were strongly over- or under-predicted. For example, O3 forecast error is generally

larger at site ‘GLKP’ than ‘SEND’, and NO2 mean error magnitude is larger at site ‘HIL’

than ‘SEND’, likely due to differences in local NO emissions. The meteorology of each
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(a) O3 (b) NO2

Figure 3.18: Site-based relations between mean forecast and observed O3 and NO2 during
under-predicted (“lowest 10th percentile”) and over-predicted (“highest 90th percentile”)
10 m wind speed events during JJA 2017, sub-sampled by 0 - 6 UTC. Dashed line is
one-to-one.

individual site is thus a second-order factor to determining pollutant error magnitude.

In general, the points lie close to the 1:1 line in figure 3.18b, suggesting a site-

dependent relationship between the 10m wind speed error and NO2 forecast error. For

O3, there is more scatter. However, there are more sites underneath the one-to-one line in

figure 3.18a than above it, meaning that within the sub-sample of large and positive 10 m

wind speed bias, O3 also tends to have a larger positive bias than usual. Another way

of thinking about this is that the mean O3 over-estimation is smallest when 10 m wind

speeds are under-predicted. The same but opposite conclusion can be drawn from the

NO2 profiles in figure 3.18b: the largest wind speed over-estimations are correlated with

greater NO2 under-estimations than usual (note that NO2 already has a mean negative

mean bias). And vice versa: small wind speed forecast error correlates with smaller NO2

forecast error. This is consistent with the notion that because NO2 is a primary species,

it is likely to be affected by too much dispersion near sources (e.g. cities).

3.7.2 Precipitation vs PM2.5 and PM10.

We have already discussed the efficiency of washout to remove PM from the air (sec-

tion 2.3.3), evaluated the precipitation forecast (section 3.6.3) and PM forecast (section

3.5.3). The precipitation evaluation demonstrated that AQUM has a negative bias in the

amount of rainfall predicted, especially during the winter months. We also know that

both PM10 and PM2.5 are generally under-predicted in the winter, although the cause

for this could be a combination of emissions, chemistry in the model and meteorological
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factors, such as rainfall washing out the particulates, or dispersion through wind.

In this section, the influence of precipitation forecast error on the error in PM2.5 and

PM10 is explored. When precipitation is under-predicted, one might expect insufficient

amounts of PM to be removed from the atmosphere, leading to an over-estimation of

PM. However, because the PM forecast already has a negative bias in AQUM (in both

fine and coarse components), insufficient removal by precipitation could in fact lead to a

‘cancellation’ of the PM bias, thus resulting in a diminished bias overall. The aim of the

present section is to test the following hypothesis:

Under-estimating precipitation acts to decrease particulate matter fore-

cast error.

Although it is acknowledged that surface wind speed error could be a valuable pa-

rameter to evaluate against the PM error, as it was for O3 and NO2 in section 3.7.1, wind

speed was not evaluated here. One reason for this is that it was felt that its distinct

diurnal forecast error variability was inconsistent with the lack of a diurnal cycle in PM

error.

This hypothesis is based on a non-bias-corrected version of the PM forecast. The

forecast can also be assumed to not have a negative bias through a simple bias-correction

method of subtraction of the mean error - in this case, the hypothesis would have to

be amended to reflect this correction and read as ‘under-estimating precipitation acts

to increase particulate matter forecast error’, consistent with our understanding of the

well-known and observed relationship between rainfall and PM. Both versions will be

discussed later in the present section.

Firstly, as an illustrative example of the error pattern that PM2.5 and precipitation

exhibit alongside each other, figure 3.19 shows a time-series of the two variables’ errors

for Reading New Town over the winter period. A centred 6-hour rolling mean was plotted

because the hourly variability in precipitation is too sporadic to distinguish any relation-

ship with PM2.5 errors simply by looking at it. Thus, any obvious patterns between the

time-series of precipitation error and PM error can be identified visually. For example, in

figure 3.19, it appears that the PM error (red line) reduces in magnitude whenever it fol-

lows a peak in either the blue or purple line (precipitation forecast error, verified by radar

and rain gauge respectively). This data has not been bias-corrected. All the other sites

in the evaluation show a similar pattern: both the PM2.5 and precipitation are generally

under-estimated in AQUM (in line with results from sections 3.5.3 and 3.6.3) and peaks in

precipitation are often followed by a reduction in PM error. The numbered circles identify
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Figure 3.19: Example of a 6-hour centred rolling mean time-series for PM2.5 forecast error
in Reading New Town (‘REA1’), overlaid with precipitation forecast error against rain-
gauge and radar measurements. Note missing radar data at this site after 03/02/2015.
This figure forms the basis of how figure 3.20 is created.

the precipitation error peaks, which form the centres of time-windows during which the

PM error will be evaluated in the following section. Some precipitation peaks are clearly

followed by a decrease in PM2.5 error (e.g. 2, 3, 8), while others lead to a sign change of

the PM2.5 error from an under- to an over-prediction (e.g. 4, 5, 6). Figure 3.19 therefore

illustrates the process of identifying the precipitation error peaks within the time-series of

a single site. This process will be repeated across the time-series of all the sites, and the

associated PM behaviour will be aggregated into a single composite figure, as described

in the following section.

3.7.2.1 Identification of precipitation error events

To find out whether the precipitation errors have a statistically robust correlation

with the PM2.5 or PM10 errors across all sites, the following steps are taken:

1. Identify paired WMO and particulate matter sites within a 2-model grid-box dis-

tance, i.e. 24 km 8;

2. For each pair, identify local “peaks” in the precipitation hourly error time-series

using (1) rain gauge measurements and (2) radar. For example, let us assume that

a precipitation under-estimation peak occurs at 00:00 on 01-01-2015.

3. Define a 24-hour time window centred on each peak, ensuring that windows are

independent. This means that windows do not overlap and only the first event

8Although this may seem like a long distance between sites, reducing it to e.g. one model grid-box (i.e.
12 km) would make the data sample insufficient.
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counts. In the above example, this means 18:00 on 31-12-2014 to 00:00 on 01-

01-2015 as the “before” window; and 00:00 to 06:00 on 01-01-2015 as the “after”

window.

4. Match up the PM2.5 and PM10 hourly forecast errors within the 12-hour window

(rejecting any window with missing data points);

5. Composite the PM error windows.

The magnitude of precipitation error “peak” is not taken into account, as the question

under investigation is whether the presence of precipitation error alone influences the PM

forecast, rather than by how much. Furthermore, since precipitation is an efficient PM

sink, the mere presence of raindrops – regardless of the rainfall rate – already reduces

particulate concentrations.

For both PM10 and PM2.5, the total number of PM error peaks using rain gauge and

radar data to verify the precipitation forecasts is 108 and 128 respectively. This is a suffi-

cient number of data points to create a composite mean profile of the particulate matter

errors (with standard error on the mean) before and after an instance of a precipitation

error peak.

3.7.2.2 Analysis of PM errors following precipitation under-estimation

Figure 3.20 shows the resultant composite sub-sample of PM forecast error, for PM10

(left) and PM2.5 (right). The purple, dotted line is the average PM forecast error of the

sub-sample based on precipitation forecast errors verified by rain gauge measurements;

meanwhile the blue, dashed line is the PM error mean for the radar-verified precipitation.

6-hour averages in the forecast error were calculated across the 24 hour windows and

shown as bold horizontal lines. In figure 3.20a, the mean error is shown with no bias

correction, meanwhile in figure 3.20b mean bias has been removed from the mean error,

such that the mean error lines pass through the axis origin, (0,0). This is done in order to

provide a clarification in how to best interpret the results, as the implication from figure

3.20a may be counter-intuitive.

In figure 3.20a, the 6-hour PM error averages highlight the reduction in both PM10

and PM2.5 error after the precipitation error event. Table 3.3 gives the corresponding

absolute PM error values and the error percentage decrease following the precipitation

error event.

Mean PM10 forecast error in the 6 hours prior to the precipitation error is
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(a) No bias correction

(b) With bias correction

Figure 3.20: Composite of forecast mean error in PM10 (left) and PM2.5 (right) before
and after instances of precipitation under-estimation (x = 0) verified with rain gauge
(purple, dotted) and radar (blue, dashed) observations. Shaded area is standard error of
the mean. (a) is the mean error, while (b) is the mean error bias-corrected by removing
the mean bias.

−14.65 µgm−3 and −14.14 µgm−3 for rain-gauge and radar respectively. In the 6 hour

window following the precipitation error, those errors decrease to −11.76 µgm−3 and

−11.80 µgm−3 respectively. This change in PM10 error amounts to an overall decrease

when the precipitation forecast is verified by rain gauge (19.7% decrease) and radar (16.5%

decrease) measurements.

In the 6 hours prior to the precipitation error, the PM2.5 error is −10.28 µgm−3

(rain-gauge) and −10.12 µgm−3 (radar). The mean error decrease after a precipitation

event is similar to PM10 in absolute terms, but appears larger percentage-wise: the PM2.5

errors decrease by 25.8% for rain-gauge measurements (reaching −7.62 µgm−3). For

radar-verified precipitation, the PM2.5 error has a smaller decrease than for the rain-



74 Chapter 3. Point-based evaluation of AQ and meteorological variables

gauge precipitation, where the absolute error decrease is less than half (1.05 µgm−3 for

radar, 2.66 µgm−3 for rain-gauge). This value has an asterisk in table 3.3, as the absolute

decrease in error is actually largest within the T+6 to T+12 hour window following the

precipitation error. This can be seen in both sub-figures 3.20a and 3.20b, where the radar

error local maximum (blue line) occurs between 6 to 12 hours after the precipitation

error onset. Considering the delayed effect in PM2.5 error decrease with radar-verified

precipitation in figure 3.20a, the peak decrease has an absolute value of 2.53 µgm−3 (25%

decrease). Therefore the peak error decrease with radar-verified precipitation matches

that of the rain-gauge verified precipitation forecast, although it occurs within the T+6

to T+12 hour window rather than the T+0 to T+6 window.

Through removing the mean bias as in figure 3.20b, the result can be interpreted in

the opposite way to reflect the assumption of no underlying bias in the PM10 and PM2.5

forecasts, and thus focusing only on the error fluctuations as a direct result of the precip-

itation error. The figure demonstrates that after the precipitation error onset, both the

PM10 and PM2.5 forecast errors are positive, peaking at 5 - 6 hours after the precipita-

tion error. Although the additional process of removing the mean bias was involved, this

interpretation makes more intuitive sense than the original because it demonstrates that

if there was no underlying PM forecast bias, the under-estimation of precipitation would

indeed result in insufficient wet deposition of PM from the atmosphere, further leading

to accumulation of the particulates in the model and hence a positive mean error.

Whichever interpretation is adopted, the original hypothesis is either proven true, or

is rejected. The initial interpretation, i.e. that from figure 3.20a, supports the original

hypothesis that an under-estimation of precipitation leads to a decrease in the PM forecast

error in AQUM. The second interpretation, i.e. that from figure 3.20b, supports a flipped

version of the original hypothesis, while making the assumption that the mean PM forecast

Table 3.3: Comparison of decrease in PM10 and PM2.5 mean error 6 hours prior to and
after a precipitation error event, verified by rain gauge and radar measurements. Absolute
values (µgm−3) and percentages.

Precipitation
verification

Mean error during
T - 6 to T - 0

(µgm−3)

Mean error during
T + 0 to T + 6

(µgm−3)

Absolute
decrease
(µgm−3)

% error
decrease

PM10
gauge -14.65 -11.76 2.89 19.7
radar -14.14 -11.80 2.34 16.5

PM2.5
gauge -10.28 -7.62 2.66 25.8
radar -10.12 -9.07* 1.05* 10.4*
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bias is zero.

3.7.2.3 Discussion

Considering the underlying hourly error lines on figure 3.20, it is surprising to see

that the maximum PM error peak occurs approximately 6 hours after the precipitation

peak (except for PM2.5 with radar verification, where the peak is closer to 9 hours after

the precipitation error onset). One would expect a more dramatic change in PM error

sooner, due to the efficiency of the washout process to remove PM from the atmosphere.

For example, Ouyang et al. (2015) demonstrate that the first 5 - 10 minutes of rain sig-

nificantly contribute to removal of PM2.5 in a study over Beijing. The coarse component

was not evaluated in the Beijing study, but perhaps it might be “washed out” even faster

than PM2.5 if a similar observational study were to be conducted. The delayed response

of the PM forecast error to the precipitation error could be enhanced by secondary com-

pounding factors, e.g. surface wind speed error, which could result in too much or too

little horizontal transport and mixing of the particulates. The results presented in this

section could therefore be made more robust by taking the potential effects of wind speed

forecast error into account.

Furthermore, the differences between PM2.5 and PM10 error decrease are surprisingly

small. One might have expected removal of particulates through washout to be more

effective on the coarser particles (i.e. PM10) due to their larger aerodynamic diameter.

Below-cloud scavenging is more efficient for coarse particles (because of physical impact

and inertia) and for very fine particles on the sub-micron scale (because of Brownian

motion) (Dacre et al., 2020). Particles in the intermediate range, such as PM2.5, tend

to fall around streamlines of precipitation and are not captured as efficiently. Therefore,

to see such similarities in these results is intriguing. Perhaps this is due to the make-up

of PM10 represented in AQUM, where PM2.5 makes up a major sub-group of the coarse

particles and therefore the effects of precipitation forecast error in the model are similar

for both PM2.5 and PM10.

3.8 Summary, discussion and conclusions

In this chapter, the forecasts of four air quality variables (O3, NO2, PM2.5 and PM10)

and three meteorological variables (10 m wind speed, 1.5 m temperature and precipitation

accumulation) were evaluated using traditional point-based metrics such as mean error
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and Pearson-r correlation coefficient (PCC). The study periods were summer and winter

of 2015 and 2017.

3.8.1 O3, NO2 and 10 m wind speed

Forecast concentrations of O3 and NO2 were compared to observations in urban

background sites during JJA and DJF 2017. A systematic bias was found in the AQUM

forecast of both variables, where O3 observations are generally over-estimated, while the

NO2 observations are under-estimated (especially during the daytime in JJA). The diurnal

profiles of observed and forecast concentrations, aggregated over 29 urban background

sites, showed that AQUM replicates both the observed NO2 and O3 concentration profiles

in DJF. It is therefore possible that there exists an additional source of forecast error in

O3 and NO2 which is unrelated to the representation of atmospheric chemistry or surface

emissions. The diurnal profiles of concentrations are less accurately forecast in JJA,

suggesting that there is a mis-representation of some physical mechanism responsible for

the temporal error in the forecast of concentrations dominant during the summer. My

suggestion is that this mechanism could be related to the surface wind speed forecast,

and therefore hypothesise that there is a relationship between O3, NO2 and 10 m wind

speed forecast error at the locations of interest.

It was found that 10m wind speed is overestimated between 0 - 6 UTC, which coin-

cides with the O3 night-time overestimation. A possible reason for the night-time wind

speed bias could be due to the use of stability functions within the boundary layer scheme

of Lock et al. (2000). These functions artificially introduce additional diffusion and mixing

of higher momentum air down to the surface, in order to reduce a bias in surface tem-

peratures. This could also explain why the temperature forecast has insignificant bias,

although this was not investigated further within this thesis.

Furthermore, it was found that there is a 1 - 2 hour offset in the timing of the morning

increase of the total oxidant (sum of O3 and NO2) surface concentrations between AQUM

forecast and AURN observations. Thus, a potential link between the temporal offset in

total oxidant and inaccuracies in 10 m wind speed or 1.5 m temperature was explored.

The main findings of this study were:

• When only the 90th percentile of wind speed forecast error is considered, the cor-

responding forecast of NO2 has a larger negative bias than usual. Conversely, O3

forecast concentrations have a larger positive bias than usual. This suggests that

over-estimating night-time 10 m wind speed coincides with too much O3 and not
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enough NO2 in the forecast, which supports the hypothesis. This relationship could

be explained by enhanced dispersion of NO2 and mixing of O3 from the residual

layer, however exploring this further will require a process-based evaluation of the

atmospheric constituents and wind speed, as well as a study of boundary layer

entrainment. This is not possible with a point-based evaluation of the forecast-

observation pairs alone, thus a process-based method to investigate this is proposed

in chapter 5.

• Although other meteorological factors may have a larger influence on the air quality

forecast, it can be concluded that 10m wind speed is one variable whose

improvement within the model could lead to an improvement in O3 and

NO2 summertime forecasts during the night and early morning hours.

• 1.5 m temperature was found to have a negligible daytime bias which is unlikely to

influence the pollutant forecast error.

Chapter 5 will explore the use of a process-based evaluation to further understand the

physical relationship between wind speed error, the total oxidant and O3 and NO2 indi-

vidually. Specifically, it will be further investigated whether the meteorological processes

are causing the lag in the morning increase of modelled total oxidant.

3.8.2 PM and precipitation

The relationship between forecast errors in PM and precipitation were directly com-

pared through the process of compositing errors. First, through the use of categorical

(e.g. frequency bias; accuracy) and continuous (e.g. RMSE; mean error) statistics, it

was found that the precipitation forecast was generally under-estimated in AQUM. It

was also found that during the summer, non-zero rain events are forecast twice as much

in AQUM as they are observed at point locations. These results are consistent with the

model inter-comparison study of Brunner et al. (2015), who showed that many coupled

chemistry-meteorology models slightly under-estimate precipitation in the European do-

main on a monthly basis. They conclude that differences in models’ removal of PM is

likely to be influenced more by the specifics of their wet scavenging schemes than the

rainfall rates. It is also likely that biases are rooted in the cloud scheme and / or the

aerosol feedback on radiation, which is an additional factor that could be influencing the

precipitation bias seen in AQUM.

In the absence of other compounding factors, an under-estimation of rainfall is ex-
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pected to result in an over-estimation of PM due to a reduced influence of the washout

effect. However, by direct comparison of the AQUM forecast and AURN observations, PM

was found to be generally under-estimated for the winter season. There is an overall nega-

tive bias in the DJF 2015 forecast for both PM2.5 (−4.6 µgm−3) and PM10 (−10.5 µgm−3).

This suggests that other factors may be playing a role to result in a negative PM bias,

such as wind speed or emissions. It has been suggested by Savage et al. (2013) and others

via personal communication (P. Agnew, Met Office) that the PM forecast has a negative

bias due to the emissions inventory used, alongside the fact that some particulates are

not represented in the model. It was therefore the role of this chapter to evaluate the

immediate influence of the precipitation forecast error on the PM error, outside of any

statistical emissions inaccuracies.

The compositing of PM errors within a 24-hour window centred on the precipitation

forecast error instance could be interpreted in two ways. Firstly, it was evaluated in a

manner that is true to the forecast as it stands with no bias correction. The analysis

served as a search for evidence to support the hypothesis that the precipitation under-

estimation acts to reduce the PM forecast error (before bias-correction). However, for

the purposes of finding out the near-immediate effect of precipitation error on PM, the

systematic negative PM forecast bias can be removed by a simple subtraction of the

mean error. Thus the original hypothesis can be flipped, to read more intuitively as

‘precipitation under-estimation acts to increase the PM forecast error’. Both scenarios

were presented in the chapter, where the main findings are as follows:

• Without applying a bias-correction method to the PM forecast, its error decreases

soon after the event of a precipitation under-estimation; however, the sharpest re-

duction in PM error does not occur until up to 6 - 7 hours following the precipitation

error event;

• PM10 bias is between 16% to 20% smaller after the precipitation error event than

prior to it. For PM2.5, the error decrease within 6 hours after the precipitation

error is between 10% to 26%. However, the maximum PM2.5 error reduction occurs

around 9 hours after the precipitation event when verified against radar measure-

ments, and reaches a 25% reduction also.

The above results provide evidence for existence of a relationship between errors in

the precipitation forecast and the PM forecast. Furthermore, supporting evidence for the

original hypothesis that precipitation under-estimation reduces the PM forecast error has
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been shown. When the mean PM forecast bias is corrected, the hypothesis is adapted to

reflect the change: that precipitation under-estimation increases the PM forecast error.

In both cases, this is likely to be because of the reduced effect of washout of PM in the

model when precipitation is under-estimated. As it stands, the results in this chapter

suggest that the PM forecast is more accurate when the precipitation is under-estimated

than it would be if it were improved. The consequence for model developers is that if the

precipitation forecast improves, it may actually increase the PM under-estimation if the

main PM forecast bias is not addressed. One way of addressing this the systematic PM

bias would be to improve the spatial and temporal representation of primary emissions

in the model. Another factor which could be influential is the wind speed and direction,

which has not been evaluated in this chapter in the context of the PM forecast due to lack

of time. Given more time, it would have been beneficial to conduct sensitivity studies

of how the PM forecast error is affected within different points on a joint precipitation -

wind forecast error distribution.

Precipitation is widely recognised as a sink of soluble gases and aerosols via wet

deposition (Brunner et al., 2015), and the findings from this chapter agree with previous

studies such as Gong et al., 2006, where an under-estimation of precipitation resulted in

inadequate deposition of aerosols or tracers, hence over-estimating their concentrations.

The results presented in this chapter are novel in the sense that, to the best of my

knowledge, there is a gap in the literature with respect to systematically evaluating the

near-immediate change in PM forecast error before and after a precipitation bias event.

It is worth asking whether replacing point-based evaluation metrics with a neigh-

bourhood methods could reveal a stronger relationship between the precipitation and PM

errors. Results presented in this chapter do not enable us to come to a strong conclusion,

although a relationship clearly exists. One problem with the method of compositing in-

dividual precipitation error “events” is that although it considers a 12-hour time window

at either side of the “event”, it does not account for any spatial errors which could falsely

penalise the forecast. This relationship is explored further in chapter 4 using probabilistic

neighbourhood verification methods.
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4. Neighbourhood forecast verification

4.1 Introduction

There exist verification methods which aim to provide a deeper understanding of the

nature of the forecast error than is possible to extract with traditional grid-point based

methods such as the root-mean-square-error (RMSE). Continuous advancements in grid

resolution of AQ models pose a need for the development of verification techniques appro-

priate for the scale of the forecast, in order to avoid problems relating to verification of

high resolution forecasts, such as the double-penalty problem. Where a precise matching

between a high-resolution forecast and observation of a variable is required, the double-

penalty effect can increase the false-alarm rate due to small displacement errors, which

would have otherwise been a ‘hit’ in a coarser forecast (e.g. Gilleland et al., 2009). The

need for development of non-traditional verification methods was identified within the last

couple of decades, where some of the first discussions of novel verification methods for

precipitation forecasts are presented in Davis and Carr (2000). Non-traditional techniques

can generally be classified into two types: object-oriented and neighbourhood-based.

Object-oriented techniques, such as cluster analysis (Marzban and Sandgathe,

2006), are useful for evaluating well-defined ‘objects’ within the forecast, such as a thun-

derstorm or a squall line. Hoffman et al. (1995) presents a method which evaluates the

structure and amplitude of the displaced ‘object’ within the forecast against observations.

Ebert and McBride (2000) present another object-oriented technique which introduced

‘contiguous rain areas’ (CRA), where the accuracy of the forecast is determined from

evaluating the overlapping area of the forecast and observed rainfall. A subsequent three-

dimensional verification method called Structure - Amplitude - Location (SAL; Wernli

et al., 2008) followed, with specific uses for e.g. quantitative precipitation forecasts (QPF)

around a river catchment. It separately considers the three dimensions of the forecast in

relation to the observations, thus providing useful information into which one needs the

most improvement in order to create a more accurate forecast. Outside of precipitation

81
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forecasts, SAL could also be used for evaluating the accuracy of e.g. an urban plume

forecast (Dacre, 2011).

Neighborhood-based verification methods relax the requirement of a precise

spatio-temporal matching between the forecast and the reference observation, thereby

giving credit to “close” forecasts. Grid cells within a defined neighbourhood are assumed

to have an equal probability of correctness. They also bypass the requirement of match-

ing objects and are applicable to less well-defined features. Many of the commonly used

neighbourhood verification methods were specifically developed for verifying precipitation

forecasts against high-resolution radar or raingauge measurements (Ebert, 2008). Precip-

itation forecasts are generally difficult to predict accurately in both space and time due to

the sporadic nature of convective rain. Neighbourhood-based verification of such forecasts

takes this into account. They include Upscaling (Yates et al., 2006; Zepeda-Arce et al.,

2000), “Fuzzy logic” (Damrath, 2004), Intensity-scale Casati et al. (2004), and Fractions

Skills Score (FSS; Roberts and Lean, 2008), among others. Upscaling involves averaging

across multiple grid-cells or time-steps to a coarser resolution in order to match the ob-

servations, but is prone to smoothing out sharper features, e.g. flash floods. Fuzzy logic

determines whether a given forecast is correct more often than it is incorrect. Intensity-

scale methods determine whether the forecast’s structure is more accurate than random

observations. FSS answers the question, “What are the spatial scales at which the forecast

resembles the observations?”

The neighbourhood methods mentioned thus far are all useful for understanding how

modellers can improve the precipitation forecast; or even extend this analysis to e.g. air

pollution from wildfire events. These methods are mostly of a ‘neighbourhood-observation

neighbourhood-forecast’ (NO-NF) nature, which intuitively require a densely populated

set of observations, e.g. precipitation radar or satellite imagery. Unfortunately for ground-

based forecasts for AQ in particular, lack of regularity in the locations of measuring sites

is one of the limitations to accurately verifying an operational pollutant forecast. Gridded

observation datasets can be created through interpolation methods such as ordinary krig-

ing and subsequently used in object-based evaluation techniques such as SAL. However,

kriging can be an additional source of inaccuracy itself (Dacre, 2011). Single-observation

neighbourhood-forecast (‘SO-NF’) methods are therefore more suited to evaluate forecasts

whose observational datasets are irregularly spaced. Forecast neighbourhoods of varying

sizes are centred on a single observation, and forecast grid-cells are compared against the

observation with an equal probability of being the ‘correct’ forecast. Mittermaier (2014)
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builds on the SO-NF techniques of Ebert (2009), using ground-based observing sites to

verify meteorological variables from convection-permitting NWP models, not just precip-

itation. They demonstrate the usefulness of the SO-NF method, especially when directly

evaluating the forecast skill of deterministic and ensemble forecasts in the same manner.

Furthermore, Mittermaier and Csima (2017) highlight that regardless of the origin of

error relating to model resolution, the loss of predictability at the grid-scale, as introduced

by Lorenz (1969), has important implications on forecast accuracy. Using varying sizes

of a neighbourhood forecast centred around the observation, they demonstrate that the

decrease in forecast accuracy with lead time of e.g. precipitation is faster for high than

for low resolution forecasts, due to the larger error growth rate. An ensemble forecasting

approach at the kilometre scale is therefore appropriate to minimise the influence of small-

scale error on the forecast skill at longer lead times, with an appropriate verification

framework to match (Mittermaier and Csima, 2017).

AQUM is a deterministic forecast; as such, the use of ensemble verification techniques

is generally inappropriate. However, the SO-NF method enables a near-probabilistic

method of evaluating the forecast, by creating a pseudo-ensemble from the neighbourhood

around the observation. Since the AURN network of AQ measurement sites is neither

densely populated nor regular, adapting an existing spatial verification method - such as

SO-NF, which relaxes the requirement of a spatially regular dataset for use within AQ

forecasting - could be beneficial. This idea is explored further in the present chapter.

4.1.1 Chapter aims

The SO-NF technique is not commonly used within routine AQ forecast verification,

thus we are presented with a unique opportunity to test its usefulness within the opera-

tional pollution forecast model, AQUM. For its routine forecast verification, AQUM relies

on the previously discussed traditional point-based verification metrics such as RMSE,

correlations and Odds Ratio. Instead, given the success of neighbourhood-based verifi-

cation methods for rainfall (Ebert, 2009) or oceanic (Crocker et al., 2020) forecasts, a

neighbourhood verification method such as SO-NF could provide additional information

to aid improvement of the AQ model, where traditional methods cannot.

The overarching goal of this chapter is therefore to build on the point-based evaluation

carried out in chapter 3 by using a SO-NF verification technique in both the AQ (O3,

NO2 and PM) and meteorological (precipitation and 10 m wind speed) forecast variables

from AQUM. Specifically, two skill scores will be used: Brier Score (BS; Brier, 1950) and
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Continuous Ranked Probability Score (CRPS; Matheson and Winkler, 1976) to evaluate

forecast accuracy within neighbourhoods of different sizes, centred on either the AQ or

meteorological measurement. Research into using spatial verification methods for the

forecast of surface pollutant species as well as meteorological variables within AQUM

could create a pathway for its implementation within routine verification.

4.1.2 Research questions

Building on the results from chapter 3, the following specific questions will be ad-

dressed within the present chapter:

1. How do wind speed forecast errors within the vicinity of an air quality monitoring

site influence the Ox forecast?

2. Does the precipitation forecast error have a spatial component of influence on the

PM forecast error?

3. What is the optimal neighbourhood size for which the meteorological forecast errors

influence the pollutant species forecast errors the most?

Firstly, the High Resolution Assessment (HiRA; Mittermaier, 2014) framework of

verification is introduced in section 4.2. HiRA is a verification tool which has recently

been jointly developed by a number of forecasting centres, in order to achieve a common

verification tool across many types of forecast models. In this chapter, HiRA is used for

its ease of skill score calculation across large datasets. Because HiRA uses a probabilistic

approach to verifying an otherwise deterministic forecast, it is a novel method of analysis

and serves both as 1) a unique exploration of the relationships between spatial forecast

errors in meteorology and air quality variables, and 2) a ‘testbed’ to determine whether

HiRA is a potential candidate framework for verifying future air quality forecasts of higher

resolution.

Section 4.3 introduces the probabilistic verification scores used in HiRA and how

they have been used in the analysis within section 4.4. Section 4.5 presents the results of

the analysis for 10 m wind speed and Ox forecast errors, while 4.6 presents the results of

finding relationships between precipitation and PM forecast errors.
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4.2 High Resolution Assessment (HiRA)

HiRA is one of the many tools within the overarching verification framework, MET

(Model Evaluation Tools). This is a package created and maintained by the DTC (De-

velopment Testbed Centre), initially with the purpose of verifying the WRF (Weather

Research Forecasting) model. Since its initiation by DTC in 2006, MET has been further

developed and freely used by the model research, verification and operational communi-

ties. The idea behind such a framework is to create a freely-available, unified verification

package which can be commonly used in forecasting centres globally. This means that

meteorological forecasts from different models can be compared with a common verifica-

tion tool. The present work uses MET version 8.1 and the user documentation can be

found in Newman et al. (2019).

The first versions of MET included statistical tools for evaluation by traditional veri-

fication methods for continuous and categorical forecasts, e.g. RMSE. It also included two

categories for evaluating spatial forecasts: “object-based” and “neighbourhood-based”.

A strategy for inclusion within MET, proposed by Mittermaier (2014), HiRA is based

on evaluating the square neighbourhood around a point observation. Throughout this

chapter, this technique will be referred to as ‘SO-NF’, as described earlier. SO-NF ver-

ification is based on the concept of creating a pseudo-ensemble of the forecast within a

defined size of a neighbourhood around the observing site. Each model grid-box (akin to

a single ensemble member) is equi-probable, in that the value of a variable in the grid-box

near to the observation point is assumed to be just as likely to be the outcome as a grid-

box farther away within the neighborhood. Therefore if the neighbourhood becomes too

large, this assumption is violated. What neighbourhood size is “too large” will depend

on the variable being tested. Thus, the skill of an ensemble forecast is affected by the

size of the ensemble (Ferro et al., 2008). Similarly, it is expected that the size of the

neighbourhood used in a SO-NF technique for an otherwise deterministic forecast is also

of importance. The verification score should reflect the changes in the accuracy of the

pseudo-ensemble, thus probabilistic measures like the BS and CRPS can be used to verify

a deterministic forecast in a probabilistic way. It is important to note that the conven-

tional use of BS and CRPS as measures of ‘skill’ (rather than just ‘accuracy’) involves

comparison to a reference forecast (e.g. persistence or climatology), in order to evaluate

the ‘skill score’ (SS):

SS = 1− BS

BSref
(4.1)
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This is usually done e.g. in order to compare the perceived improvement of a model

upgrade from one version to another; or to compare the skill of two or more different

forecasts against a common baseline. The skill of a forecast is therefore a second order

measure, while accuracy is a first-order measure. It is acknowledged that the importance

of calculating the full skill score in reference to a baseline; however in this chapter, only the

raw values of the scores (i.e. not the ‘skill score’) are presented, as the aim here is not to

compare the skills of two forecasts - rather, the aim is to use a non-traditional probabilistic

metric to glean potential relationships between variables within the meteorological and

AQ forecasts.

4.3 Probabilistic Verification Scores

4.3.1 Brier Score

The Brier score (BS; Brier, 1950) is used for categorical variables such as thresholded

wind speed and 6 h precipitation accumulations. Using a threshold value for a continuous

quantity such as wind-speed translates the forecast into a binary value which answers

the question: when the observed 10 m wind-speed is < Xms−1, what is the fractional

proportion of the model neighbourhood which satisfies the threshold limit? The larger

the neighbourhood fraction which matches the observed value (either 0 or 1), the smaller

the difference between the forecast and observation. This difference is represented by the

BS, thus ranging from 0 to 1, where 0 is the perfect score.

BS is a simple and familiar metric within the forecast verification community. Murphy

(1973) demonstrated that the score can reveal more information beyond a single value

by partitioning it into three components of reliability, resolution and uncertainty. These

partitions are insightful for checking the forecast’s statistical properties relative to the

observed event. The value of BS shows the magnitude of the probability forecast error:

BS =
1

N

N∑
i=1

(pi − oi)2 (4.2)

where oi is the observed quantity at time-step i, with value oi = 1 if the event happened,

or 0 if it did not. In theory, pi is the probabilistic forecast composed from the model

grid-boxes within the neighbourhood of size K, such that

pi =
1

K

K∑
k=1

pk (4.3)
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pk =


1, if event is forecast

0, otherwise

but within MET, while the above holds true, pi is taken to be the mid-point of the

probability bin in which it resides. Probability bins are used within BS because it is a

discrete score, unlike e.g. CRPS, which does not require probability bins. Thus, while

in theory the range of BS is [0, 1], where 0 is perfect, in practice HiRA gives a range of

[0.0025, 0.9025] due to a squared factor of pi and a dependence on whether the ‘event’

is observed or not. Let n.i represent the total number of ‘events’ within each binary

observation category. For instance, n.1 = 1 and n.0 = 0 if the event is observed; but

n.1 = 0 and n.0 = 1 if it is not. Then

BS =
1

T
n.1(p1 − 1)2 (4.4)

=
1

T
(p1 − 1)2 (4.5)

if the event is observed, and

BS =
1

T
n.0(po)

2 (4.6)

=
1

T
(po)

2 (4.7)

if it is not observed. T represents the number of time-steps over which the BS is taken -

in the present evaluation, T = 1 as only the spatial - not temporal - constraint is relaxed.

More details about equations 4.5 and 4.7 can be found in Newman et al. (2019).

As an example, consider the following case of a grid-scale evaluation (i.e 1x1 neigh-

bourhood), where the only two possible values of BS are 0.025 or 0.9025 due to the binary

nature of this metric:
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Case 1: Correct forecast.

o = 1 and pi = 0.95. Then n.1 = 1 and n.0 = 0. So by equation 4.5,

BS =
1

T
[n.1(p1 − 1)2]

=
1

T
[1 (0.95− 1)2]

= 0.0025

which is the lowest possible score in this framework.

Using only the nearest grid-point to the point observation is not recommended for

deterministic forecasts (Mittermaier and Csima, 2017). As soon as a neighbourhood is

introduced, more probability thresholds are involved:

Case 2: False alarm.

o = 0, so n.1 = 0 and n.0 = 1 . Consider a 3x3 neighbourhood where 7 out of 9 of

the model grid-boxes forecast an event. In this case, pi = 0.75 (because 7
9 sits in the

probability threshold bin of [0.7, 0.8]) and thus pi takes on the mid-point value. By

equation 4.7,

BS =
1

T
[n.0(p0)2]

= [1 (0.75)2]

= 0.5625

BS is a base for other error metrics when a number of thresholds are evaluated at the

same time, e.g. the Ranked Probability Score (RPS) is a multi-threshold version of the BS

useful for categorical variables like cloud cover; or CRPS, which is a continuous version of

the RPS and useful for continuous variables such as temperature. Therefore BS is a useful

metric when a single threshold is considered in order to distinguish the skill of specific

forecasts, e.g. how well does a model predict low wind speeds, or high precipitation?

Identifying forecast skill for specific parts of the distribution of the meteorological variable

will be useful for understanding its influence on the pollutant forecast.

4.3.2 Continuous Ranked Probability Score

CRPS is a probability score with an infinite number of classes of infinitesimal width,

which can be expressed as an integral of the Brier Scores over all possible thresholds

(Hersbach, 2000). CRPS is therefore a multi-threshold extension of the BS and is useful
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Figure 4.1: Schematic of the Continuous Ranked Probability Score (CRPS) in terms of the
cumulative distribution function (CDF) of an observed event and an ensemble forecast.

for continuous variables1 which follow a normal distribution, such as surface temperature.

CRPS is calculated by evaluating the integral of squared differences between the

cumulative distribution functions (CDF) of the forecast and observed event,

CRPS =

∫ ∞
−∞

[Pf (x)− Po(x)]2 dx (4.8)

where Pf (x) and Po(x) are the CDF values for the forecast and observation evaluated

at x, as in figure 4.1. In figure 4.1, the continuous variable x is shown in terms of

discrete probability bins ki (which are of infinitesimal width). The red arrows represent

the differences between the observation and ensemble forecast CDFs. Note that the

observation CDF is a step function due to it being a binary variable - either the variable

in question (e.g. temperature) has value x or not. The ensemble forecast has a larger

spread of probability bins, therefore its CDF forms a curve based on a normal distribution.

If reduced to a deterministic forecast, the CDF would also become a step function and

thus CRPS is equivalent to the mean absolute error (MAE) because of the square in

equation 4.8. This is also true for when a grid-scale forecast is considered rather than a

neighbourhood, i.e. the pseudo-ensemble in the present evaluation.

4.4 Using spatial forecast verification with non-gridded ob-

servations

Verification methods where the spatial constraint is relaxed are better suited to fore-

casts where a precise spatio-temporal matching is not required. To demonstrate the ben-

1Although continuous in nature, wind speed is a variable which does not follow a normal distribution,
therefore is better suited to the BS.
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efit of this, figure 4.2 depicts a hypothetical example of a 5x5 neighbourhood (602 km2),

containing a WMO meteorological site and an AQ measurement site. In all three sub-

figures, there is an observed mean 10 m wind field u from the bottom-left corner of the

grid, with a forecast wind field uf of a larger magnitude but same direction. The AQ

site is located downwind of the WMO meteorological site, for hypothetical illustration

purposes.

In example 4.2a, precipitation is forecast downwind of the meteorological site, but not

within the grid-box of its location. Let us assume that the grid-box forecast is correct, i.e.

no observed and no forecast precipitation. This means that if we were to only consider

a traditional, point-based verification metric such as the mean error, we would not be

able to see that the forecast incorrectly predicted some precipitation downwind of the

meteorological site. Although no rain is forecast at the AQ site, forecast concentrations

of horizontally advected pollutants like PM will be affected by the incorrect rain prediction

upstream of the AQ site. This is a case of an inaccurate but “close” precipitation forecast,

which still deserved merit.

In example 4.2b, there is an urban source of pollution situated downwind of the me-

teorological site, i.e. between it and the AQ site. As indicated by the different sizes of the

arrows in the bottom left corner, forecast wind speed is larger than observations within

the region marked by the grey grid-boxes. This means that pollutants such as PM or NO2

(which tend to have larger concentrations in urban areas) may be advected downwind,

(a) (b)
(c)

Figure 4.2: Schematic depicting a model neighbourhood around a meteorological site
paired to an AQ site. u and uf represent the observed and forecast wind vectors respec-
tively. (a) precipitation upwind of AQ site (plan view); (b) urban pollution upwind of
AQ site (plan view); and (c) enhanced vertical mixing / entrainment from the residual
layer above AQ site (3-d view). Diagrams are not to scale.
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resulting in an over- or under-estimation of concentrations at the AQ measurement site,

due to dispersion which is stronger in the model than is observed. Using a neighbour-

hood approach enables us to determine the size of the wind speed forecast error ‘spatial

footprint’ for each individual pollutant species. For example, species which have more

spatial variability are likely to be affected by wind speed errors which are more local to

the pollutant sources than species which are more homogeneous in nature, such as O3.

A traditional metric only gives information about the wind speed at the location of

observation - it might be known that there is a positive bias, but it is not known how

“close” the forecast was to being accurate. However, if a neighbourhood-based, threshold

error metric - such as BS - is used, there is more information to be gleaned about the

shape of the “footprint” in the forecast, and subsequently how it affects the pollutant

measurement at the AQ site. Consider a wind speed threshold of particular interest,

Uthresh (where U = |u|). If the observed wind speed U < Uthresh < Uf in a significant

proportion of the neighbourhood, BS can give a simple interpretation of the error (i.e.

that the wind forecast is too high in this case) without additional information about the

magnitude by which the threshold was exceeded, if this information is not required.

However, neighbourhood verification of wind speed could also be useful for evaluating

the influence of its forecast error on species such as O3. Therefore, the relationship

between horizontal winds and turbulent mixing is considered. In example 4.2c, imagine

that the wind speed is still over-estimated (as in example 4.2b) but now let us focus on

the process of entrainment. One could hypothesise that within regions of over-estimated

wind speed, there is enhanced vertical mixing within the boundary layer and possibly

from the residual layer above it (as outlined in section 2.2.1.5). Considering a forecast

evaluation within a neighbourhood instead of only a grid-box, one could determine the

spatial extent of the wind speed error, and therefore how it might affect entrainment

further downwind, directly above the AQ site.

Although the AURN point observations in this dataset are irregularly spaced, they

form a set of long-running and reliable ground-based air quality measurements. In the

absence of a dense and regularly distributed network of surface pollution measurements,

the AURN data is the best choice for this analysis. However, a secondary issue is that the

air quality and the meteorological sites (WMO) are not co-located. Therefore in order

to conduct an evaluation of how meteorological variables affect pollution concentrations,

it was necessary to first create a set of matched pairs of air quality sites to their nearest

WMO sites, subsequently filtering out pairs where the distance is > 24km (approximately
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2 AQUM grid-lengths). This is done to ensure that the meteorological conditions at the

WMO site resemble the conditions at the air quality site. A quantitative analysis has not

been conducted of the correlations in meteorological conditions between the location of

the air quality and its corresponding WMO site as a function of distance, but one would

expect that in non-mountainous terrain (i.e. a large part of the UK), synoptic weather

conditions will be similar at two locations within a 24 km distance of each other.

4.5 Relationship between total oxidant and 10 m wind

speed forecast errors

With an understanding of the potential benefits of using spatial verification to assess

the skill of a forecast, a hypothesis can be formed on how neighbourhood verification

could help us understand some of the issues with the AQ forecast introduced in chapter

3. To recap, in chapter 3 a point-based comparison of total oxidant (Ox) and 10m wind

speed forecast is presented.

As a reminder, O3 concentrations are generally over-predicted throughout the day,

with a mean bias of 17 ± 5 µgm−3. Meanwhile, the NO2 concentrations have a smaller

diurnal variability than O3 and are generally under-predicted. The NO2 mean bias has a

diurnal cycle, where the largest increase in bias (8 µgm−3) occurs between 4 - 6 UTC and

remains near-constant until 22 UTC. Error tendencies in O3 and NO2 are anti-correlated

at night due to chemical reactions between NO and O3, producing NO2 (see section 2.1.2).

Thus combining NO2 with O3 and examining the error in the total oxidant eliminates

errors due to NO emissions, particularly during the early morning hours.

Results of chapter 3 showed that accuracy of the O3 and NO2 forecasts had a site-

based relationship with errors in the 10 m wind speed forecast. It was also shown that

night-time wind speeds are overestimated, which could influence the amount of shear-

generated turbulence within the NBL and, consequently, morning entrainment. However,

a point-based evaluation does not reveal information about any spatio-temporal forecast

errors. It is therefore worth considering the strength of the relation of wind speed and

total oxidant Ox within a gridded neighbourhood, in order to gain a more comprehensive

understanding of the spatial forecast error features.

In this section, the first hypothesis to be tested is that during night-time, forecast

error in Ox is positively correlated with night-time over-estimation of 10m wind-speed,

and the correlation is stronger when a forecast neighborhood is considered rather than a
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single location. This is tested through an evaluation of night-time concentrations of Ox for

the summer of 2017 (June, July, August) at 18 urban background and 6 rural background

sites. Included in this evaluation are only the sites which measure both O3 and NO2,

rather than exclusively only one of the species. Omitted are urban sites predominantly

located in London, i.e. Hillingdon, Kensington, Haringey Priory Park South, as these

sites systematically skew the distributions due to anomalous NO2 underestimation in

the forecast. It is possible that the NO2 forecast is systematically underestimated at

these sites, due to findings of a recent campaign which used eddy-covariance methods

to measure NOx in central and outskirts of London, showing that the NAEI emissions

inventory tends to underestimate ground NOx by up to 150% (Vaughan et al., 2016).

The NAEI inventory is used in AQUM as input emissions, and thus may contribute to

the systematic underprediction at the London-based sites. The site at Rochester Stoke

is also omitted from the analysis, as its anomalous concentrations may be a result of

re-circulation of polluted air by the sea-breeze effect due to its proximity to the coast

(e.g. Harrison and McCartney, 1979; Blumenthal et al., 1977; Lyons and Olson, 1973;

Mavrakou et al., 2012). The above sites have therefore been excluded from the evaluation.

4.5.1 Spatial correlations of O3 and NO2 observations

The heterogeneity of a forecast within a neighbourhood around a measurement site

will vary on the nature of the atmospheric species, e.g. its average life-time and sink

processes. Figure 4.3 shows a simple correlation method for determining the similarity

of hourly observations taken at sites located at an increasing distance away from each

measurement location, in JJA 2017. The y-axis represents the overall correlation of one

site’s collection of hourly measurements to another site’s, located at a particular distance

away marked on the x-axis.

The slower drop-off rate in correlation with distance in surface O3 than NO2 concen-

trations implies that O3 concentrations form a more horizontally homogeneous field than

NO2.

For O3 concentrations, the line of best fit suggests that correlation is high (0.5 on the

y-axis) for sites located ≤ 100 km away, whereas for NO2 at the same distance, spatial

correlation is 0.3. In fact, NO2 correlations between the measurement sites are ≤ 0.5 at

most distances. This implies that NO2 concentrations are characteristic to each individual

site, whereas there exists some similarity in O3 concentrations between locations.

Differences in homogeneity of fields between the two pollutants is in part due to
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Figure 4.3: Spatial correlation of hourly O3 and NO2 observations between site locations.

the local nature of NO2 emissions, some of which are subsequently converted into O3

and other chemical species. The lifetime of tropospheric O3 (days within the boundary

layer; weeks within the free troposphere) is longer than the lifetime of NO2 (hours). NO

concentrations are also lower at higher altitude, which decreases titration and loss of O3

through formation of other species (e.g N2O5). The longer lifetime of O3 means that it

can be transported over larger distances by the wind, and is therefore more well-mixed

than NO2.

Because the forecast bias of O3 and NO2 is of different sign and magnitude, the

implication is that AQUM does not capture some of the observed sources or sinks of the

two species (which have already been discussed in section 2.1.2). One of the physical

sources of O3 into the boundary layer could be entrainment from the residual layer,

which may act as a night-time reservoir of O3 following the de-coupling of the daytime

mixed boundary-layer from the surface. In the morning, entrainment can therefore mix

down O3-rich air into the developing boundary layer from above, especially during windy

conditions when generation of atmospheric turbulence is dominated by shear. This section

aims to analyse the contribution of O3 vertical transport from the free troposphere to the

forecast surface Ox concentrations by examining the 10 m wind speed forecast within the

neighbourhood of an AQ measurement site. The next section introduces the methodology

for the 10 m wind speed verification.
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4.5.2 Neighbourhood verification of surface wind speed

Mean error in 10 m wind speed from AQUM at 24 sites is shown for the period of

JJA 2017 in figure 4.4. 24 hr smoothing has been applied to filter out the diurnal cycle

in forecast error across all sites. There is a clear positive bias in both urban and rural

sites, with the rural locations generally exhibiting a greater positive bias than urban sites

by around 0.3 ms−1 (which is small relative to the observed mean diurnal range of 3 -

5 ms−1).

In this section, 10 m wind forecast from AQUM is assessed on a neighbourhood basis

using a threshold – based BS. To calculate BS, wind speed (v) threshold criteria were

set as: v < 4.0ms−1, v < 6.0ms−1, and v < 9.0ms−1. One would expect the relationship

between v and turbulent kinetic energy (TKE) at low wind-speeds during stable conditions

to be weak (Sun et al., 2012). Furthermore, because turbulence is suppressed by buoyancy

when mechanical production is small, a strong relationship between wind speed BS and

Ox forecast error is not expected for wind speed < 4.0ms−1.

Using a threshold higher than e.g. 9ms−1 is unsuitable in this analysis because the

wind distribution is non-Gaussian, i.e. the probability distribution function has positive

skew, where wind speeds above 9ms−1 are a rare event. This implies that for a large

threshold value, the binary threshold is satisfied and BS is 0 most of the time. On the

other hand, assessing cases where the wind speed is too low, e.g. < 4ms−1, may be

mis-informative due to the weak relationship between TKE and low wind speeds.

Figure 4.5 shows the percentage of observed and forecast wind speed data which

Figure 4.4: Mean error in 10 m wind speed evaluated at 20 urban (orange) and 4 rural
(blue) sites over JJA 2017, with 24 hr smoothing.
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satisfies v < 4.0, < 6.0 or < 9.0 ms−1 in the form of an average diurnal cycle within the

study period. It is clear in all three sub-plots that a larger sample of the data counts

satisfies the threshold criteria during the night. It was also shown in section 3.6.1 that

the diurnal cycle of the observed and forecast 10 m wind speed (for the combination of

urban and rural locations), has a night-time (0 - 5 UTC) forecast error ranging between

-5 to 5 ms−1, with mean error of 0.9± 0.1 ms−1 which decreases throughout the day.

When the thresholds are used to create a binary forecast for evaluation using the BS,

these wind speed data for 0 - 5 UTC can be understood as follows:

• (a) The sample size of observations where v < 4.0ms−1 is between 70 to 75% of

the entire study period. The sample size of wind speed forecasts satisfying this

condition is smaller (between 57% to 62%) than the observations. This means that

between 10% to 20% of the forecasts are ‘missed events’, due to the over-estimation

of the wind speed. Therefore, one would expect the equivalent percentage of the

wind speed BS for v < 4.0 ms−1 to be non-zero.

• (b) For v < 6.0 ms−1, between 85% to 90% of forecasts and 90% - 93% of observa-

tions satisfy the threshold criterion. This means that only around 5% to 8% of the

Brier scores are going to be non-zero.

• (c) Most of the data (> 95%) from the entire study period is included when consid-

ering wind speeds v < 9.0ms−1, consequently a very small proportion of the data

will have a non-zero BS.

The smaller the proportion of non-zero BS values, the more difficult it is to extract any

existing correlation in the forecast error between wind speed and Ox. Therefore, a high

Figure 4.5: Percentage of data used for different wind speed thresholds.
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threshold such as v = 9.0ms−1 is unsuitable for this evaluation, as results will not be

statistically significant. Much of the following analysis rests on evaluating relationships

in forecast errors for a wind speed threshold of v = 6.0ms−1.

4.5.3 Forecast error correlations

In this section, correlations between forecast errors in 10 m wind speed (using BS)

and in Ox (using mean absolute error) are presented. A reason for using mean absolute

error for Ox is that for now, the magnitude rather than sign of the forecast error and its

relationship to the errors in wind speed is of interest. In addition, mean absolute error

is the grid-scale equivalent of CRPS, which will also be used in section 4.5.3.4 and thus

consistency between the analysis metrics used is maintained.

The Pearson correlation coefficient r was calculated over the study period for each

hour of the day, in order to recognise which points of the day there may exist a relationship

between wind speed forecast error and Ox forecast error. The hypothesis is that if such a

relationship exists, it would be most prominent at night because this is when 10 m wind

speed forecast has the largest mean error. Furthermore, there is no net photochemical

production of O3 during the night, so in order to focus on errors rooted in the wind speed

forecast (thus minimising potential sources of error arising from the modelled chemistry),

the present evaluation is based on early morning hours. Since AQUM is initialised at

18 UTC, the forecast lead time evaluated in this work is T+6 to T+30.

4.5.3.1 Grid-scale comparison

If, for each hour of the day, the wind speed forecast BS (for v < 6.0 ms−1) is directly

compared against the mean absolute error for either O3, NO2 or Ox at the grid-scale,

there is no clear correlation. This makes sense, because the wind speed BS has only

two possible values when calculated over a single grid-box. It is more useful to evaluate

diurnal correlations between the forecast errors when a neighbourhood on the wind speed

forecast is considered, as this could inform us of the importance (or not) of accurately

predicting the wind speeds around an AQ measurement site.
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4.5.3.2 Diurnal variability of forecast error correlations at urban and

rural sites

First, the Ox forecast error is compared with the 10 m wind speed BS for v ≤ 6.0ms−1

separately for urban and rural sites, and presented as a mean diurnal profile in figures

4.6a and 4.6b. Wind speed BS will then be compared with CRPS for O3, NO2 and Ox in

section 4.5.3.4.

The analysis for urban background sites (18) in figure 4.6a shows a statistically

significant (90th percentile confidence level) positive correlation between MAE of Ox and

wind speed BS (r > 0.4 for all neighbourhood sizes between 00 – 05 UTC). Although there

is some suggestion of a weak negative correlation for during the day (6 UTC onward), the

correlations are not statistically significant. For rural sites (6) in figure 4.6b, there is some

evidence to suggest that night-time correlations between Ox and wind speed forecast error

are weak but positive. However, the only statistically significant correlations occur during

the evening and night (20 – 00 UTC), and are only significant for neighbourhoods 5x5 and

larger. This means that the null hypothesis (i.e. that this could have happened by chance)

cannot be rejected outside of the 20 – 00 UTC window and for small neighbourhoods. A

reason for the low level of significance in the analysis of rural sites is likely to be the small

sample size of 6 sites.

This above results suggest that for urban sites, the wind speed forecast error is

correlated with Ox error at night only. This is reasonable, because (1) wind speed forecast

error in AQUM is larger (and usually positive) during the night than daytime; and (2) Ox

is a chemically conserved quantity during the night, in the absence of photolysis through

sunlight. The existence of statistically significant positive correlations at urban sites for

00 – 05 UTC supports the hypothesis that night-time Ox concentrations in urban regions

are strongly influenced by errors in the wind forecast, more so than during the day.

Separate O3 and NO2 correlation diurnal profiles are not shown here. This is because

both pollutants exhibit a similar pattern: significant correlations at 00 – 05 UTC at urban

sites (r is between 0.2 to 0.5 for O3) while rural O3 errors have no significant correlations

with wind speed throughout the day. NO2 has negative error correlations during the

night at urban sites, but they are significant to a lower (80th percentile) confidence level.

However, positive correlations during the daytime (r is between 0.25 to 0.6 during 10 –

19 UTC) suggest that daytime NO2 MAE in urban areas is larger if wind speed over-

estimation is larger. This is reasonable, because one might expect an over-estimation of

wind speed to result in too much NO2 dispersion from anthropogenic sources in urban
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(a) 18 Urban background sites

(b) 6 Rural background sites

Figure 4.6: Diurnal correlations of the BS for wind speed v ≤ 6.0ms−1 and Ox mean
absolute error over the study period 01/06 - 01/09/2017, for (a) urban background sites
and (b) rural background sites. Different coloured lines are neighbourhood sizes for the
wind speed forecast around the measurement sites.

regions. For rural sites, there is very little significance in results, except for negative

correlations during the night (r is between -0.6 to -0.8 for 22 – 05 UTC) at grid-scale

and 3x3 neighbourhoods (80th percentile confidence level). The lack of significance could

also be because the NO2 forecast error at rural sites is near zero on average, whereas the

urban sites exhibit a systematic negative bias (−8± 6 µgm−3).

Furthermore, there is some spread in correlation strength between neighbourhood

sizes in figures 4.6a and 4.6b, but it is small. For both urban and rural sites, correlations

are generally weakest for the grid-scale evaluations throughout the day (except rural NO2

during the night). Since only night-time correlations have significance across all three

pollutant species, the following section will explore the relationships between wind speed
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forecast error and Ox, O3 and NO2 forecast error during 00 – 05 UTC.

4.5.3.3 Night-time correlations for O3 and NO2 at urban sites

In order to focus on the time of day when the correlations are statistically significant,

figure 4.7 only considers the morning hours and urban background sites. Here, sub-plots

4.7a, 4.7b and 4.7c simply show the correlations between 00 – 08 UTC for Ox, O3 and

NO2 forecast error respectively (in the same format as figure 4.6a). The BS for wind

speed has been calculated by using the threshold of v ≤ 6.0 ms−1. Figure 4.7b shows

that the O3 error correlation with wind speed forecast error is positive throughout the

night. However, p ≤ 0.1 only for the largest neighbourhoods (7x7 and 9x9) between 02

- 05 UTC, when r ranges between 0.4 - 0.5. Sensitivity of the correlation strength to

neighbourhood size is smaller for O3 than it is for Ox, as shown by lines which are closer

together.

For NO2 across all the neighbourhoods, r = −0.35± 0.1 but results are only signifi-

cant (to 80th percentile confidence) for neighbourhood sizes 3x3 and 5x5. The existence

of statistical significance in the results for smaller neighbourhoods for NO2, but larger

neighbourhoods for O3, suggests that the spatial footprint of influence of the wind forecast

is smaller on the NO2 than the O3 forecast errors. In other words, only local wind speed

forecast errors (on the scale of e.g. ≤ 362 km) influence the surface NO2 forecast error.

The night-time differences in correlations between O3 and NO2 could be due to many

factors. O3 and NO2 have different sources and sinks throughout the night: there is no

chemical production of O3, whereas NO2 emissions (e.g. from vehicles and manufacturing)

do still occur near the surface. Both species are involved in chemical reactions producing

N2O5, which results in a net loss of both NO2 and O3. A physical explanation for the

(a) Total oxidant (b) O3 (c) NO2

Figure 4.7: Forecast error correlations in wind speed BS and the mean absolute error for
(a) total oxidant, (b) O3 and (c) NO2, averaged over 18 urban sites throughout the study
period (JJA 2017).
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differences in the effect of wind speed over-estimation on both species is that enhanced

winds could be causing too much vertical mixing in the model, thus creating a spurious

source of O3 from the residual layer (as discussed in section 3.8.1). This effect is likely to

be spatially uniform, therefore it would be expected that the horizontal gradients in O3

concentration fields are small. This reasoning is consistent with the spatial homogeneity

in observed O3 concentrations which were discussed in section 4.5.1. Conversely for NO2,

enhanced winds could lead to too much dispersion, which may have local effects such as

dilution of forecast NO2 concentrations near the sources (i.e. urban regions).

4.5.3.4 CRPS for O3 and NO2

The previous section demonstrated that a neighbourhood verification metric can be

used to evaluate the forecast of a meteorological variable (i.e. 10 m wind speed) in order

to glean more information about its spatial error. It was compared against the mean

absolute error of Ox, O3 and NO2 at a point location. In the following section, we are

able to find out more information about the spatial forecast error of the AQ variables

as well, through the use of CRPS (introduced in section 4.3.2). The 10 m wind speed

BS for increasing neighbourhood sizes around the AQ site is directly compared against

CRPS for the pollutant at equivalent neighbourhood sizes. This method could be useful

to understand how the spatial error in the wind speed forecast affects the spatial error of

the AQ variables.

In figure 4.8, the wind speed BS for increasing neighbourhoods around 16 AQ urban

background sites has been directly compared against CRPS for Ox, O3 and NO2. Panel

4.8a is the Pearson-r correlation coefficient (PCC), while panel 4.8b shows their respective

p-values as functions of neighbourhood size. The correlations at each neighbourhood size

were calculated from the pool of CRPS and BS scores aggregated across 00 - 05 UTC,

i.e. night-time. Only the evaluation for urban background sites is shown here, as it

was demonstrated in section 4.5.3.2 that night-time correlations in forecast errors are not

significant at rural sites due to a small sample size.

In figure 4.8a, Ox and O3 forecast error correlations are positive for all neighbourhood

sizes, with the strongest correlations for Ox at a 5x5 neighbourhood (r = 0.62), while O3

error correlations are strongest for a 7x7 neighborhood (r = 0.42). NO2 forecast errors

are anti-correlated with wind speed forecast errors at all neighbourhood sizes, with the

strongest relationship at a 3x3 neighbourhood (r = −0.35). Figure 4.8b reveals that all

but one of the correlations are statistically significant to 95% confidence (the insignificant
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(a) PCC (b) p-values

Figure 4.8: Forecast error correlations for wind speed BS based on the threshold of
6.0 ms−1and Ox (blue, cross), O3 (orange, circles) and NO2 (green, diamonds) CRPS
as a function of neighbourhood size. This is calculated for 00 - 05 UTC.

correlation is for NO2 at a 9x9 neighbourhood size).

Evaluating the wind forecast around a neighbourhood larger than a 3x3 area and

trying to link it to influences on local NO2 is inappropriate due to the local nature of

NO2 and its short lifetime in the boundary layer. It will travel shorter distances than

O3, and thus will be influenced by wind fields from around a smaller area nearby. This

could be a reason for the strongest correlations for NO2 and O3 forecast errors to fall at

different neighbourhood sizes: 3x3 and ≥ 7x7 respectively.

The same analysis was also done for rural locations (not shown). The only statistically

significant results (p-value ≤ 0.05) is for NO2 forecast error correlations at the grid-scale

and 3x3 neighbourhood, where r = −0.65 and r = −0.4 respectively. The negative

correlation of NO2 forecast error with 10 m wind speed error is stronger in rural than

urban regions on local scales. This is interesting, because the mean NO2 bias in rural areas

throughout 00 – 05 UTC is close to zero, meanwhile in urban areas it is around−10 µgm−3.

The wind speed bias is larger in rural than urban areas by around 0.3 ± 0.3 ms−1 (see

figure 4.4), which is small relative to the absolute values, and the urban / rural difference

in mean error during 00 – 05 UTC is within 0.1ms−1. This suggests that there is no

significant difference in wind speed error between urban and rural regions during the

night / morning, and that the difference in correlation strengths is instead related to the

difference in magnitude of NO2 error.
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4.5.4 Summary and conclusions for this section

Assessing the performance of a forecast model with a neighbourhood method across

varying neighbourhood sizes can reveal information about the spatial scales over which

meteorological errors influence AQ errors. In that vein, the neighbourhood size at which

the forecast error correlations are strongest have been assessed. In physical terms, this

questions the spatial footprint of influence of the wind field on the pollutant concentrations

at the AQ measurement site in question.

The main results of the evaluation are:

• There is a statistically significant positive correlation between 10 m wind speed

forecast error and both Ox and O3 forecast errors between 00 – 05 UTC at urban

locations only.

• The NO2 forecast error correlation with wind speed error is negative between 00 –

05 UTC at both rural and urban sites.

• At rural sites, correlations across all neighbourhood sizes between Ox and O3 fore-

cast errors and wind speed errors are weak and not statistically significant. Only

the NO2 forecast error correlations show significance, for 3x3 neighbourhoods and

smaller. The correlations are negative, which means that over-estimating wind

speeds under-estimates NO2 at local scales (3x3 neighbourhoods and less). This

effect is stronger at rural sites (r = 0.5± 0.1) than urban sites (r = 0.3± 0.1).

It can be concluded that the spatial footprint of 10 m wind speed forecast error

influence is smaller for NO2 forecasts than for O3 forecasts. Differences in the correlation

strengths at varying neighbourhood sizes may be because of the opposing signs of the

forecast error and locality of the sources: enhanced winds may be causing mixing and

even entrainment of O3 into the boundary layer (as discussed in section 2.2.1.5), while

NO2 experiences too much dispersion of the local pollutant. This means that NO2 is more

sensitive to neighbourhood size used for the wind speed forecast evaluation than O3, as

the spatial footprint of influence of the wind speed error is small.
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4.6 Relationship between PM and precipitation forecast er-

rors

It is well established that wet scavenging by precipitation serves an important role for

removal of particulates from the atmosphere, which was introduced in section 2.3.3. Due

to the efficiency of wet deposition acting to reduce PM concentrations in the boundary

layer, one might expect to find a relationship between forecast errors in precipitation

and both PM2.5 and PM10. It was confirmed in section 3.7.2 that under-estimating

precipitation at a point location was soon followed by a reduction in the (negative) PM

bias.

However, sometimes precipitation may be observed at a point location, but the fore-

cast could be misaligned in space and / or time. Point-based metrics (RMSE and PCC at

individual sites) do not acknowledge the potential skill of the forecast within the vicinity

of the matched point location. It is therefore appropriate to extend the point-based anal-

ysis of PM and precipitation errors to the neighbourhood methods described in section

4.3. A neighbourhood technique may reveal more information about how forecast errors

in rainfall within a neighbourhood of the PM receptor site may influence it. Therefore

the second hypothesis explored in this chapter is:

• Precipitation forecast error is positively correlated with PM forecast error when a

neighbourhood verification technique is used.

Furthermore, one might expect that increasing forecast neighbourhood size will be

able to capture the observed relationship between PM and precipitation better than at

the grid-scale because precipitation elsewhere in the neighbourhood may influence the

PM at the monitoring station. Therefore, comparing forecast errors in precipitation and

PM at the grid-scale only is likely to miss this relationship. In this section, it will be

tested whether expanding the neighbourhood of evaluation will increase the relationship

between precipitation forecast error and PM forecast error.

4.6.1 Data and methodology

AQUM provides an hourly forecast for PM concentrations, which is operationally

verified against the AURN network. However, the precipitation forecast data available

for this study has a coarser temporal resolution of 6 h accumulations. Therefore 6-hour

mean PM observations and forecasts were calculated, resulting in mean PM forecast error
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values every 6 hours to match the precipitation accumulations.

Rainfall observations are from the ground-based WMO gauge network. The instru-

ments are well maintained and provide long-term, quality controlled precipitation data.

Gauge data is more accurate in measuring precipitation which actually reaches the ground

than measurements from radar, which may include precipitation aloft. Radar data is also

susceptible to noise from e.g. wind farms or clutter, although quality control does well

to remove data defects. There are different benefits for using either type of precipitation

measurement as ‘truth’ as outlined in section 3.6.3.3, but one should not be used to verify

the other due to e.g. representativeness issues (Ciach and Krajewski, 1999). The merit of

using a neighbourhood verification technique within HiRA is that it compensates for the

sparseness of the gauge network. A gridded radar dataset is more suited to a verification

method such as the Fractions Skill Score. It also provides area-averages which are not

strictly consistent with localised rainfall accumulations specific to a site in question.

Therefore, rainfall gauge observations were chosen for this evaluation in order to keep

the consistency with point-based forecast verification work discussed in section ??. WMO

rainfall gauge locations were matched with nearest AQ sites which measure PM: 25 urban

and rural background sites were sub-sampled for the evaluation. The study period for

this section is 22/11/2016 to 22/02/2017. This is a different time period than the one

used for the analysis in chapter 3, partly due to convenience of the data format which

was used within HiRA, and partly due to the fact that AQUM would have experienced

model upgrades since the 2015 data used in chapter 3, which one might expect would

mean that the model is at its most accurate. Using a different winter period should make

little difference to the statistical analysis of relationships between errors in precipitation

and PM forecasts. This is because the PM sites of interest are background (urban and

rural), which are representative of the ambient concentrations, and should therefore be

unaffected by local emissions e.g. from vehicle transport. A winter season was chosen

rather than the summer because of the generally higher frequency of elevated PM episodes

which occur during winter.

First, PM data for the study period is described with diurnal cycles as per section

3.5.3. For comparison with precipitation forecast error, first the mean error in both

variables at point locations is used in order to seek out any obvious relationship for this

study period. Zero-precipitation events (either observed or forecast) are filtered out due

to their dominance in the dataset. Then, the BS is used for analysis of forecast error

correlations between precipitation and PM. When using the BS, one has to be cautious in
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choosing an appropriate threshold for the case of ‘no rain’, as rainfall gauges may register

some amount of rainfall > 0 over a given time period - e.g. an hour - where the rainfall

may just be highly localised and brief. Because rain gauge measurements are recorded

in discrete values of 0.2 mm/6h, the term ‘no rain’ is re-defined as accumulation amount

R < 0.2 mm/6h.

4.6.2 Relationships between forecasts and observations

Before analysing relationships between forecast errors of PM and precipitation, it is

useful to know how the diurnal cycles of the forecasts and observations compare within

the study period. Here, it will also be confirmed whether an anti-correlation between

precipitation and PM forecasts and observations exists for the study period.

Figure 4.9 depicts the DJF diurnal cycle in observed and forecast concentrations

of PM10 and PM2.5, averaged over 25 urban and rural background sites in the UK. It is

clear that the forecast concentrations for the coarse component (figure 4.9a) are similar to

the fine component (figure 4.9b), whereas the observed concentrations are more different

between the two sub-groups. In other words, despite the difference in observations between

PM10 and PM2.5, the mean diurnal profile of the forecasts looks similar because PM2.5

dominates the PM10 in the model. This means that the PM10 mean forecast error is

−6.4± 2.3µgm−3, while for PM2.5 it is −1.7± 2µgm−3. There is a greater negative bias

in the PM10 forecast because in AQUM, a significant proportion of PM10 is made up of

the fine particulates, and any generation of secondary aerosol is always of the PM2.5 sub-

(a) (b)

Figure 4.9: Average diurnal cycle of observed (black, crosses) and forecast (red, circles)
concentrations of (a) PM10 and (b) PM2.5 at 25 locations, for DJF 2016 / 2017. Shading
represents the 25th and 75th percentiles.
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group. Furthermore, some coarse component (e.g sodium nitrate) is not represented in

the CLASSIC scheme used in AQUM, while other species such as sea salt are not emitted

over land. Any inaccuracies in the representation of other coarse component sub-groups,

such as dust, pollen or smoke, may further increase the difference between forecast PM2.5

and PM10. This means that the PM10 forecast more closely resembles the PM2.5 forecast

than it does observations.

There is also a potential effect of the boundary layer representation on the differences

between observed and forecast diurnal cycles of PM, previously suggested in section 3.5.3.

It is expected - and indeed observed - that the PM concentrations rise during the morning

‘rush hour’ (7 - 9 UTC). However, the forecast peak in PM concentrations is higher

relative to that observed. A possible reason for this could be because of a delay in the

increase of the boundary layer depth in AQUM (which will be discussed in further detail

in section 5.4.2), which may result in the trapping of pollutants within a layer which is too

shallow, hence a sharper rush-hour peak. Furtermore, dilution of pollutants associated

with entrainment of cleaner air aloft doesn’t occur until 1 - 2 hours after the modelled

boundary layer starts growing.

6h-accumulations of precipitation have a log-normal distribution due to the frequency

of zero and small-valued accumulations, and as such it is useful to log-transform the data

and / or remove zero-precipitation events from the data sample. In DJF 2015 / 2016, PCC

for the observed 6-hourly mean PM2.5 and log-transformed precipitation is r = −0.254,

whereas for the forecast values the relationship is weaker, at r = −0.134. These results

suggest that the anti-correlation of forecast 6-hour precipitation accumulations and PM2.5

in AQUM is not as strong as the observed relationship. There could be many reasons

for this; one of them being the systematic under-estimation of precipitation, which could

result in insufficient washout of particulates in AQUM.

4.6.3 Comparison of errors in PM2.5 and precipitation

The next step was to compare the 6-hour precipitation accumulation forecast error

with the 6-hour averaged PM2.5 mean error. In section ??, a first-order relationship

between PM and precipitation was discussed. As a reminder, because both PM10 and

PM2.5 are generally under-estimated, under-prediction of rainfall would wash out less PM

from the atmosphere than is observed, thus any negative PM error would be made less

negative (i.e. a negative error correlation). Similarly, if there is too much rainfall forecast,

it would be expected that there is too much wet deposition of PM, thus worsening the
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Figure 4.10: Relationship between the 6-hour averaged PM2.5 mean error and precipitation
mean error, calculated at 25 sites for every 6-hour window in DJF 2016 / 2017.

negative bias. However, unlike the total oxidant and wind speed evaluation, one would

not expect to see any diurnal relationship in the precipitation and PM forecast errors

because although PM may have a diurnal cycle due to emissions, the precipitation does

not.

Figure 4.10 shows a direct comparison of the two error types, composited over 25

sites in the evaluation. All zero-precipitation events (either observed or forecast) have

been filtered out because the large number of non-precipitation events was dominating

the data. This originally resulted in a dominant cluster of scatter points around x = 0 on

the plot, because non-precipitation events tend to be forecast correctly in DJF (as shown

in section 3.6.3.1, where 78% of forecast data and 74% of observations in DJF 2015 were

zero-valued). However, the remaining data which forms the scatter plot shown in figure

4.10 does not show any obvious relationship between the precipitation and PM2.5 forecast

errors. In fact, there is significant clustering of data around both the x and y axes, i.e.

near-zero precipitation error and near-zero PM2.5 error. This is counter-intuitive because,

as discussed earlier, one would have expected a precipitation forecast with a large error to

have a strong influence on the PM forecast error. Perhaps a case study of a particularly

poor precipitation forecast episode is required to gain more insight into how it affects the

PM forecast, instead of analysing the whole study period as a whole.

However, the mean error in precipitation has very little bias (mean bias =
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Figure 4.11: The distribution of 6-hourly PM2.5 forecast error, partitioned by cases of
over- and under-estimation of 6-hour precipitation at 25 locations (DJF 2016 / 2017).

0.02 mm/6h) and is centred on zero. Therefore it makes sense to partition the PM2.5

error distribution based on whether the corresponding precipitation forecast is under- or

over-estimated. Figure 4.11 demonstrates that there is very little difference in the PM2.5

error distributions when the precipitation is over- or under-estimated. In both cases, the

distribution peak is < 0, but it is clear that there is no obvious relationship between

the precipitation and PM forecast errors. Given the above analysis, the use of BS as a

neighbourhood technique be will explored next to learn about whether the spatial error

in precipitation is influencing the PM2.5 forecast error - a relationship that would not be

obvious at the grid-scale.

4.6.4 Precipitation BS and its relationship with PM

Finally, this section presents the methodology and results of comparing the precipita-

tion forecast error in terms of the BS against the PM mean error. Using the thresholds of

6 h rainfall accumulation < 0.1, < 0.5, < 1.0, < 2.0 and < 4.0 mm/6h, BS were calculated

for each 6 h window over the neighbourhoods of 1x1, 3x3, 5x5, 7x7 and 9x9. This was

repeated for all 25 locations. PM2.5 forecast error in this case is treated instantaneously,

i.e. the value of the forecast error was taken at the end of every 6 h window instead of

calculating the 6 h mean error. Due to the hourly variability of PM2.5, it is appropriate

to consider the instantaneous errors rather than averaging over a temporal window.
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4.6.4.1 Precipitation BS at grid-scale

Figure 4.12 shows the 6 hr precipitation BS at grid-scale, for the threshold of R <

1.0 mm/6h. This relatively low threshold is evaluated because using a higher threshold

such as 4 mm/6h means that few of the BS values are non-zero due to the rarity of extreme

rainfall. As a reminder, BS = 0 is the perfect score (i.e. both forecast and observation

falls either within (‘correct forecast’) or outside (‘correct negative’) the specified threshold

value); meanwhile BS = 1 indicates maximum possible error (i.e. only one of either the

forecast or observation is larger than threshold value). BS takes on a binary value at the

grid-scale, because the forecast grid-box can only either satisfy the threshold criterion or

not. It is impossible to distinguish whether a non-zero BS value is due to an under- or over-

estimation of precipitation, because it only indicates whether the threshold criterion was

met. As such, the data has been split into two cases within figure 4.12: under-prediction

(sub-figure 4.12a) and over-prediction (sub-figure 4.12b) of precipitation.

Figure 4.12a depicts the distribution of PM2.5 error when precipitation is under-

predicted. In this case, it does not matter by how much; it only matters that the pre-

cipitation forecast error is negative. If the outlier values are considered, there is large

variability in PM2.5 forecast error (y-axis) when the precipitation BS is small; i.e. when

both the forecast and observation are within the 1.0 mm/6h threshold. Some of the largest

PM2.5 under- and over- predictions occur in this scenario, as the error ranges from -60

to 40 µgm−3. Where the cluster of points sits at BS = 1, this indicates that either the

forecast or observed precipitation is larger than 1.0 mm/6h (but is still under-predicted).

In this scenario, PM2.5 error has smaller variability (range from -35 to 20 µgm−3).

(a) Under-estimated precipitation (b) Over-estimated precipitation

Figure 4.12: 6h precipitation BS for grid-scale forecasts and PM2.5, aggregated over 25
locations and separated into (a) under-predicted precipitation and (b) over-predicted
precipitation. Whiskers are 5th and 95th percentile.
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In section 3.7.2, it was shown that an under-estimation of precipitation is followed

by a reduction of PM2.5 forecast error. The grid-scale evaluation in figure 4.12a supports

the above statement, as the PM2.5 error inter-quartile range (IQR) is smaller when BS

= 0.9025 (“bad” forecast) than when BS = 0.0025 (“good” forecast). However in both

cases, median PM2.5 error is negative (−1 µgm−3).

In figure 4.12b, the effect of over-predicting the precipitation is not very clear. The

PM2.5 forecast error IQR is almost the same regardless of whether BS is low or high, and

the median error in both cases is negative.

The result is similar for threshold values of 0.5 mm/6h and 2.0 mm/6h, therefore the

equivalent plots are not shown.

4.6.4.2 Precipitation BS over larger neighbourhoods

When a neighbourhood around the precipitation observation is introduced, BS can

take on more values due to its probabilistic nature. Physically, a ‘mid-range’ BS value

means that only some of the neighbourhood satisfies the threshold criterion. When a 3x3

or larger forecast neighbourhood is taken into account, a pseudo-ensemble forecast has

been created under the assumption that each grid-box is equally-likely to be a correct

forecast.

Figure 4.13 shows the 3x3 and 7x7 neighbourhood equivalent of figure 4.12. The

panels have been split into under- and over-estimation of precipitation (as it happens at

the grid-scale). It appears that using a 3x3 and 7x7 neighbourhood slightly reduces the

spread of the PM2.5 error at either end of the BS range in both cases, e.g. the range of

PM2.5 error values for BS = 0.9025 is smaller in panel 4.13c than in panel 4.13a. This is

mainly due to the migration of the large negative outlier values at BS = 0.9025 (present in

the 3x3 neighbourhood) which are not there in the 7x7 neighbourhood. This makes sense,

because although the bin-size has been kept the same in both cases (each probability bin

is 0.1), evaluating the forecast over more grid-boxes enables the BS to take on more of the

‘mid-range’ values, thus some of the large PM2.5 forecast errors appear to migrate over

to the mid-range of the precipitation error values. However, increasing neighbourhood

size for the precipitation evaluation has little effect on the IQR of PM2.5 error, and the

median values remain near-zero or negative for most possible BS values.

Of course, a different threshold could be used other than 1.0mm/6h to further analyse

the impact of using a neighbourhood verification for the precipitation forecast. It would

be expected that using a smaller threshold would decrease the number of precipitation
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(a) 3x3 (b) 3x3

(c) 7x7 (d) 7x7

Figure 4.13: The same as figure 4.12, but for a 3x3 and 7x7 neighbourhood. Panels (a),
(c) are based on under-estimation of precipitation at grid-scale; panels (b), (d) are based
on over-estimation of precipitation at grid-scale.

forecasts and observations which match the threshold criterion. This may increase the

PM2.5 forecast error variability towards the BS = 1 end of the scale for grid-scale pre-

cipitation forecasts, as well as increasing the abundance in the mid-range BS for larger

neighbourhoods. The opposite would be true for higher thresholds, as more forecasts

would satisfy the criteria and therefore BS would be closer to 0 across all neighbourhood

sizes.

4.6.4.3 Site-specific BS evaluation

The aim of the neighbourhood evaluation is to seek systematic behaviours and error

correlations within the entire dataset. However, the evaluation presented in section

4.6.4.2 showed no systematic change in PM2.5 error when the BS was used to evaluate

precipitation over varying-size neighbourhoods. The aim of this section is to determine

the extent of specificity within the individual sites, and whether this is affecting the
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(a) Threshold = < 0.5 mm/6h (b) Threshold = < 2.0 mm/6h

Figure 4.14: Site-based error correlations between PM2.5 forecast error and precipitation
BS, based on a threshold of (a) < 0.5 mm/6h and (b) < 2.0 mm/6h. Only showing sites
and neighbourhood sizes where correlations are statistically significant (p ≤ 0.1)

overall picture. For each site, PCC of the BS and PM2.5 forecast error time-series was

calculated at varying neighbourhood sizes and BS thresholds. Only sites whose results

are statistically significant are shown in figure 4.14.

The most obvious comparison between figures 4.14a and 4.14b is that the number

of sites with significant correlations decreases as the BS threshold increases. This is

reasonable: when too much data satisfies the high ( 2.0 mm/6h) threshold criterion, the

pool of BS scores is saturated with low (‘good’) scores. This means that there is little

variability in the precipitation error, which is not comparable against the large variability

in the PM2.5 forecast error. Consequently, only three sites display statistically significant

correlations in figure 4.14b, though their values are low (range of r is 0.1 to 0.18 across

all neighbourhood sizes).

For the lower threshold of 0.5 mm/6h, 6 sites exhibit statistically significant positive

error correlations (which range between 0.08 to 0.14), and 3 sites have negative correlations

(ranging between -0.2 to -0.1). Within these results, the strongest correlations seem to

occur at the grid-scale and 3x3 neighbourhoods (sites ‘EB’, ‘COAL’, ‘GLKP’, ‘LEAM’,

‘NOTT’, ‘REA1’, ‘ROCH’ and ‘SEND’). However, even the highest PCC values are low,

indicating that the relationship in PM2.5 and precipitation forecast errors is weak, and

the sign of the correlation is site-dependent.
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4.6.5 Conclusions: neighbourhood evaluation of relationships in precip-

itation and PM errors

The present section presented an evaluation of (1) the skill of the precipitation fore-

cast and the PM10 and PM2.5 forecasts for the study period of DJF 2016 / 2017, and

(2) attempted to evaluate the relationships between the forecast errors in terms of a

probabilistic metric and varying neighbourhood sizes. Similar to section 4.5, the aim

of introducing a neighbourhood verification metric for the precipitation forecast was to

further our understanding of the PM forecast errors associated with spatial errors in pre-

cipitation. At the beginning of this chapter, the question was asked whether the forecast

verification technique should consider the skill of the precipitation forecast in the neigh-

bourhood of PM10 and PM2.5 measurement site, rather than only at the point location?

The answer to this question is not simple, because it appears that this depends on how

heavy the rainfall is. In conclusion:

• Considering a neighbourhood around the measurement site and using the BS shows

some reduction in precipitation forecast error, but only for rainfall accumulation

thresholds of < 1.0 mm/6h and less. Otherwise, the reduction in forecast error due

to using a larger pseudo-ensemble is negligible because almost all of the grid-points

considered meet the threshold, resulting in a reduced variability in the BS.

• There exist correlations between precipitation BS and mean forecast error of PM10

or PM2.5, but they are small.

• PM2.5 forecast error has a similar distribution when the precipitation forecast errors

are partitioned by sign. This translates to very little difference in PM2.5 errors when

the precipitation BS is small or large.

• Where relationships between precipitation BS and PM2.5 exist, they are weak and

their sign is site-dependent. This suggests non-systematic behaviour.

The purpose of this section was to seek out systematic relationships between the

PM forecast error and the precipitation error, when the spatial constraint is relaxed.

However, the results are not systematic, indicating that the relationship between PM and

precipitation forecast errors is not as simple as initially suggested. One reason could be

that errors in the PM forecast are more strongly influenced by factors such as emissions (in

the vicinity of specific measurement sites) and transport than precipitation errors. Wind

speed and direction could be another source of meteorological forecast error influence on
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the PM error, which has not been evaluated in this work. We have already seen from

the point-based analysis in chapter 3 that the magnitude of mean precipitation error in

AQUM is not large; perhaps this simply means that precipitation is thus not a considerable

factor in the magnitude of PM forecast error. Perhaps an evaluation involving a case study

would be more insightful. A series of poor precipitation forecast events could be evaluated,

alongside their individual impact on the PM forecast error at a single site, calculating a

skill score in reference to a baseline forecast. This approach could be more insightful than

conducting a study which involves averaging over many sites or a long time-period.

4.7 Chapter summary and conclusions

In this chapter, two neighbourhood verification metrics were used to evaluate the role

of meteorological forecast error on air quality forecast error within AQUM. The BS, used

for probabilistic and ensemble forecasts, is useful when considering a range of thresholds

to evaluate forecasts in a binary manner, pertaining to a contingency table.

First, the BS is used to evaluate wind speed forecasts in AQUM for a range of thresh-

olds in order to find out whether overestimating wind speeds affects the pollutant forecast.

A night-time overestimation of wind speed was identified, and it was hypothesised that

it could be related to the forecast errors in night-time total oxidant, as well as O3 and

NO2 separately. The hypothesis that night-time overestimation in wind is influencing the

forecast of O3 and NO2 was supported by the results presented in this chapter, which

evaluated forecast errors during the JJA 2017 period. The results showed a positive sig-

nificant correlation between night-time (00 - 05 UTC) surface wind speed forecast error

and both O3 and total oxidant forecast errors at urban background sites only. The wind

speed forecast error was anti-correlated with NO2 forecast error at both urban and rural

sites.

Extending the neighbourhood verification to the AQ forecasts, the Continuous

Ranked Probability Score (CRPS) was used to evaluate Ox, O3 and NO2 forecasts. Us-

ing this approach was an exciting opportunity, as it is novel to AQ verification. Results

presented in this chapter demonstrate that there are potential benefits to employing this

verification technique in the future, as resolution of AQ forecasts increases. All three AQ

variables showed significant correlations in their CRPS values against wind speed error

across all neighbourhood sizes at urban sites. Ox showed the strongest correlations in

a 5x5 neighbourhood, for O3 is was a 7x7 neighbourhood, meanwhile NO2 CRPS had

strongest correlations with wind speed forecast at a 3x3 neighbourhood. This suggests
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that the NO2 forecast is affected more by local wind speed errors than errors farther away

within urban areas; meanwhile O3 forecast errors have more dependence on wind speed

errors farther afield.

A reason for this could be that if wind speed is stronger than e.g. 5 ms−1, it can

contribute to vertical exchange of air masses from the residual layer into the boundary

layer. Given that the O3 forecast error shows a positive correlation with night-time wind

speed values below 6 ms−1, the results suggest that boundary layer entrainment could

be acting as an additional reservoir of O3 from the night-time residual layer, affecting its

forecast at the surface. This effect could further dilute NO2 concentrations, which are

also anti-correlated with wind speed. This could be due to enhanced dispersion from local

sources within and around urban areas.

The second part of this chapter focused on neighbourhood verification using BS for

the forecast error relationships between precipitation and PM2.5 and PM10. The results

show that this relationship is weak. As for the precipitation forecast alone, there is some

improvement in forecast skill when a pseudo-ensemble is created by including a neigh-

bourhood around the point location instead of just the grid-box. This improvement is

only visible for rainfall accumulation thresholds of 1.0 mm/6h. This suggests that for

smaller rainfall thresholds, there may be merit in evaluating the precipitation forecast by

using a neighbourhood, however it does not have a significant effect on the PM forecast

error. The analysis involved a certain amount of averaging in space and time, therefore

conducting some case studies into poor precipitation forecasts and / or poor PM forecasts

at specific locations could help us understand more about the influence of precipitation

error within a neighbourhood of the PM measurement site than we have learnt from the

present evaluation. Another point to consider is the varying spatial scales of precipita-

tion: convective rainfall may be more responsive to a neighbourhood verification method

(in terms of assessing the accuracy of localised rainfall and its impact on nearby PM re-

ceptor sites), than large-scale precipitation as a front comes through at a point location.

Furthermore, wind speed and direction could be a secondary variable affecting the PM

forecast error in relation to the precipitation.



5. Process-based evaluation of boundary

layer development and forecast errors

in O3 and NO2

5.1 Introduction

Near-surface O3 contributes to the formation of photochemical smog and can trigger

breathing difficulties. In order to make accurate ground-level O3 forecasts, it is impor-

tant to understand the processes that control the magnitude and evolution of surface

O3 concentrations. As highlighted in chapter 1, sources of O3 and its precursors may

originate from emissions near the surface, from long-range inter-continental transport, or

from the free troposphere acting as a reservoir for O3 produced the previous day (e.g.

Purvis et al., 2005). This chapter examines the role of morning exchange of air masses

between an O3-rich residual layer and the boundary layer in determining diurnal pro-

files of surface O3 concentrations, alongside one of the other atmospheric species key to

its life-cycle: NO2. The Lagrangian atmospheric dispersion model NAME (Numerical

Atmospheric-dispersion Modelling Environment) is used to perform an idealised study

of the impact of boundary layer characteristics on downward entrainment of pollutant

from the decoupled night-time residual layer. The sum of O3 and NO2 will henceforth be

referred to as the total oxidant, Ox.

Vertical mixing is a physical process which enables the movement of atmospheric

constituents - including O3 molecules - within as well as above the planetary boundary

layer (PBL). A temperature inversion at the top of the PBL usually prevents air masses

from mixing across the boundary layer top, unless a strong up- or down-draught enables

the mixing. This physical process is called ‘entrainment’ (i.e. the movement of air masses

from the free troposphere or residual layer down into the PBL) or ‘detrainment’ (i.e.

ventilation of air masses) - see also section 2.2.1.5. Maximum average entrainment veloc-

117
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ities are reached during the morning period of the PBL development, as the night-time

boundary layer (NBL) transitions into the daytime mixed layer. Buoyant convective ther-

mals originating near the ground rise into the troposphere and, as they rise, they may

overshoot into the residual layer, mixing down air upon returning to the boundary layer

(Stull and Ahrens, 2000; Trousdell et al., 2016).

At certain times of the day, atmospheric species such as O3 may have lower concen-

trations within the boundary layer than above it. This is because as the mixed daytime

layer transitions into the shallower NBL, O3 is deposited to surfaces or undergoes titration

by NO (Logan et al., 1981). When the daytime boundary layer erodes, a ‘residual layer’

decouples from the diminishing surface layer and some O3-rich air masses end up residing

in the separated residual layer overnight. Because the residual layer is decoupled from

the PBL, O3 in this region undergoes no physical deposition processes and fewer chemical

reactions due to a lower abundance of NOx in the free troposphere. Thus the O3 lifetime

is longer in this region than near the surface (Brown and Stutz, 2012). A positive O3

concentration gradient can therefore exist between the boundary layer and the residual

layer in the early hours of the morning.

When air masses containing a scalar quantity (e.g. water vapour, or an atmospheric

species like CO2 or O3) are entrained from the residual layer, they will either enhance

or dilute concentrations within the boundary layer and even near the surface, depending

on the concentration gradient. For example, observational studies show that entrained

air masses from the residual layer with low CO2 concentrations relative to the boundary

layer dilute the surface concentrations, particularly during the ’morning transition’ period

(de Arellano et al., 2004). For O3, there exists observed evidence of the opposite effect

due to a positive gradient across the boundary layer top: entrainment of O3-rich air can

enhance surface concentrations both on land (Jaffe, 2011) and over the marine boundary

layer (Parrish et al., 2010).

While many studies concentrate on accurate representations of local photochemical

production and loss processes of O3, the contribution of existing residual layer O3 to

surface background concentrations is often overlooked. For example, in an extensive

AQ-model inter-comparison framework in Europe and North America, (Solazzo et al.,

2013) attributed boundary layer O3 error mostly to surface emissions, transport and

photochemistry. In a subsequent study, Solazzo and Galmarini (2016) conclude that

O3 bias due to input fields (e.g. emissions and boundary conditions) has the largest

influence on the mean squared error and is likely to be the primary focus for improving AQ
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modelling systems in the near future. However, their O3 error decomposition technique

reveals that modelling processes including boundary layer depth are also important for

the diurnal variance component of the overall mean squared error metric. Another case

study by Travis et al. (2016) evaluating the GEOS-Chem model with ozonesonde data in

the Southeast US concludes that although NOx emissions inventories are an important

source of error, excessive boundary layer mixing is a major source of positive model bias

for daytime surface O3.

Some model studies have been conducted in recent years to estimate the contribution

of entrained O3 and Ox to surface concentrations. For example, Kaser et al. (2017)

compare observed surface O3 concentrations against concentrations modelled by WRF-

Chem. By calculating an Eulerian O3 budget, they show that growth of the boundary

layer through entrainment before 11 LT (local time) leads to an increase in boundary

layer O3 (and Ox) concentrations. Further growth after 11 LT has the opposite effect

on O3 concentrations due to the reversal of the O3 vertical gradient across the boundary

layer top. The study concludes that morning entrainment contributes ∼ 4.8 ppbv h−1 (∼

10 µgm−3h−1) to surface O3 concentrations during the morning transition period. For

Ox, this value is ∼ 3.3 ppbv h−1 (∼ 7 µgm−3h−1). The findings of the Kaser et al. (2017)

study form a useful base for verifying the results of the Lagrangian simulations presented

in this chapter, and will be further discussed in section 5.6.2.

It is well-established that certain synoptic meteorological conditions, such as anti-

cyclonic conditions associated with clear skies and high surface temperature are favourable

to O3 production, while minimising ventilation because of stagnant conditions due to

subsidence (Mukammal et al., 1982). Boundary layer structure can be strongly affected

by synoptic-scale circulations. Sinclair et al. (2010) conduct an idealised experiment to

demonstrate that the sign and magnitude of heat fluxes in the presence of a passing

cold front between a high- and low-pressure region dictates the boundary layer structure.

For example, heat fluxes behind a passing cold front are positive, leading to deep and

convection-driven boundary layers due to an unstable potential temperature profile. Due

to the positive heat fluxes, entrainment of air from the free troposphere to the boundary

layer occurs, regardless of whether winds throughout the boundary layer are strong or

weak. Meanwhile in the warm sector ahead of the cold front, heat fluxes are negative and

the boundary layer is shallow (or moderately deep if wind speeds are high) and shear-

driven, with warm air initiating large-scale ascent (i.e. a low pressure system). This

means that in the warm sector of the cyclone, boundary layer conditions are generally
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neutral or stable.

Therefore, a factor which could affect the performance of an AQ forecast model is its

responsiveness to synoptic-scale meteorological conditions. Modelling studies such as Eder

et al. (2006) demonstrate that the Community Multiscale Air Quality (CMAQ) model

over-predicted O3 concentrations in August 2004 during periods of cyclonic and cloudy

conditions, but performed well during clear-sky, anti-cyclonic conditions. In the case of

CMAQ, too much O3 forecast near the tropopause was transported down to the surface

by downdraughts associated with convective clouds. It is therefore worth conducting a

process-based investigation of the impact of synoptic conditions on AQUM’s Ox forecast.

5.2 Chapter aims

In chapter 2, a 1 - 2 hour offset between forecast and observed O3 concentrations

was identified, but point-based verification could not tell us much about the source of

the timing discrepancy. This chapter investigates the influence of potential errors in

the modelling of boundary layer processes on forecast errors in surface Ox concentrations.

Specifically, the chapter concerns the delay in the onset of modelled boundary layer growth

and entrainment, and the relation of those processes to the timing offset in morning Ox

increase. Having already evaluated O3 and NO2 forecasts against observations in chapter

2, the evaluation is extended to include Ox in urban background regions, for June 2017.

In the presence of a positive concentration gradient across the boundary layer top,

the process of morning entrainment should act to enhance the boundary layer O3 con-

centrations, and subsequently the amount of O3 and NO2 forecast at ground-level. In

this chapter, a semi-idealised tracer-release experiment has been designed and carried

out to quantify the proportion of tracers which are entrained from the free troposphere

into the boundary layer and which eventually reach the surface, against ’locally’ emit-

ted tracers, i.e. those originating and always residing near the ground. The experiment

implements a novel tracer tagging methodology using the Lagrangian off-line dispersion

model NAME III (Jones et al., 2007) to investigate vertical exchange. The tracer has

been constructed to simulate aspects of the behaviour of tropospheric Ox without the

complication of chemical transformations. The novelty of this work is that - to the best

of my knowledge - a Lagrangian process-based evaluation of top-down mixing processes

in terms of air quality modelling has not been done before. Although boundary layer

top entrainment and mixing has been widely studied for the purposes of improving the

representation of e.g. convection and the ‘grey zone’ in NWP, there is little information in
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the way of implications for air pollution modelling. A benefit of using a Lagrangian dis-

persion model to run this experiment is that the dynamics are grid-independent, therefore

allowing a more general investigation into the influence of top-down mixing on modelled

atmospheric species, which is not bound to a particular air quality model.

Another possible route of evaluation would be to use a simple box model, as in the

thesis of Peake (2012), where the influence of a coastal outflow diurnal cycle on O3 is

assessed. Box model studies are useful for simplifying the research question and breaking

it down into known parameters (i.e. sources and sinks of tracers, advection into or out

of the box, ventilation, etc). Box model studies are often used for studying chemical

emissions, as the equilibrium budget analysis of the variable in question (e.g. a specific

chemical species) is computationally inexpensive. While using a box model to represent

and evaluate a particular process can be useful for understanding the generalities, it

is usually an idealised configuration and therefore not suitable for representing specific

scenarios. Because a systematic evaluation is required of the process of entrainment at

a number of locations (rather than just with one general, simplified representation), a

Lagrangian dispersion model was chosen as the best approach.

This chapter aims to answer the following specific scientific questions:

1. How does the diurnal evolution of O3 depend on the rate of growth in modelled

boundary layer depth?

2. What is the contribution of non-locally produced Ox to local surface concentrations

during stagnant or unsettled meteorological conditions?

Background information and experimental details are set out in this chapter as fol-

lows:

• Section 5.3 is an introduction to the three models used in this study: the off-line

NAME model, the UKV and the UM Global configurations of the Met Office UM;

• Section 5.3 also introduces the boundary layer scheme used in UM Global and the

UKV, as well as the land-surface representation;

• Comparison of physical parameters in the NWP, such as surface sensible heat flux,

boundary layer depth and vertical velocity, follow in section 5.4;

• Methodology for initiating semi-idealised tracer release experiments with NAME in

order to study entrainment of free-tropospheric air masses are outlined in section

5.5, and results follow in section 5.6;
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• A summary, key findings and further work conclude the chapter in section 5.7.

Primary data generated through experiments is available at Milczewska and Dacre

(2021), http://dx.doi.org/10.17864/1947.325.

5.3 Model configurations and key parametrisation schemes

The following section introduces three NWP models whose meteorological data pro-

vides input for the experiments using the NAME atmospheric dispersion model. The

three models are the UK variable resolution model (UKV), the global configuration of

the Unified Model (UM Global) and AQUM. The study period for this chapter is June

2017, where differences between UKV, UM Global and AQUM are evaluated in terms

of boundary layer depth and the surface sensible heat flux, QH. This leads to a discus-

sion of the boundary layer parametrisation schemes used in the models, and the role of

land-surface representation in determining boundary layer stability. Understanding the

differences in these parameters is relevant to understanding the physical processes which

contribute to surface concentration forecasts of O3 and NO2.

AQUM, UKV and UM Global are all configurations of the Met Office Unified Model

(MetUM), while NAME is a separate atmospheric dispersion model. The MetUM is a

”seamless” modelling strategy such that the fundamental dynamics and physical processes

are closely related in the different configurations. Although the three configurations stem

from the MetUM and therefore share numerous characteristics, some differences exist and

are important to note - the following section will highlight those relevant to this study

and introduce the configurations’ shared parametrisation schemes. Please refer to section

3.4 for a full description of AQUM.

5.3.1 NAME

The Numerical Atmospheric-dispersion Modelling Environment (NAME III vn. 7.1;

Jones et al., 2007) is a Lagrangian model which simulates dispersion of particles, track-

ing their movement either in forward or inverse mode. It can have a large number of

variable concentration particle sources, released within any domain on a user-specified

co-ordinate system. It is an off-line chemistry-transport model (CTM) which requires

three-dimensional gridded meteorological data input. This can be from deterministic or

ensemble configurations of the MetUM (e.g. UM Global and UKV), or global forecasts

and / or reanalysis products from ECMWF. This data is required by the flow module in

http://dx.doi.org/10.17864/1947.325
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NAME, which supplies parameters (e.g. mean flow) to the parametrisation scheme. Rep-

resentation of processes such as advection, turbulence and both dry and wet deposition

will influence the transport and accumulation of particles in a NAME simulation. Par-

ticles can either be passive tracers, or can be modelled as chemical species by specifying

the use of one of NAME’s chemistry scheme configurations (e.g. a comprehensive gas and

aqueous tropospheric chemistry scheme). Tracers are specified with properties such as

source emissions, lifetime and deposition characteristics.

Because the horizontal and temporal grid is not prescribed, the user can tailor the

output of particle concentrations and meteorological fields over a uniform grid or a non-

uniform grid e.g. for time-series at point locations or defined regions. In line with the

point-based verification of chapter 3, the focus is on the time-series of boundary-layer

averaged tracer concentrations at AURN site locations, rather than entire regions.

5.3.1.1 Homogeneity of the NAME boundary layer scheme

NAME can read boundary layer depth from the NWP input and apply it during

the simulations. Resolved mean wind velocities ū from NWP input advect particles in

three dimensions, while deviations from the mean wind are simulated with a random walk

scheme. The un-resolved scale transport is further sub-divided into mesoscale motions

and turbulence, which are treated independently. The equation of motion for a particle

from position xt in time ∆t is:

xt+∆t = xt
(
ū(xt) + u′(xt) + u′m(xt)

)
∆t (5.1)

where ū is the resolved advection, u′ is motion due to treatment of turbulence scales and

u′m is that of the unresolved mesoscale motions.

Turbulent velocity components required for modelling boundary layer turbulence

include velocity variance profiles (σ2
u,v,w) and Lagrangian timescales (τu,v,w). Velocity

variances are used in the calculation of Lagrangian timescales, which have different for-

mulations depending on the boundary layer stability - for details, see Jones (2017).

Two different versions of the NAME boundary layer scheme can be used:

Inhomogeneous: vertical profiles of the velocity variances vary with height; or

Homogeneous: vertical profiles are treated as a boundary-layer average.

The homogeneous scheme is typically used with a long-range Wiener (’diffusive’)

random-walk model and is less computationally-intensive than the inhomogeneous scheme,
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thus it can be used for long-range dispersion. Short-range dispersion is better suited to

a scheme with particle velocity memory, which models particle dispersion from a point

source linearly along the travel direction axis (for short travel times) and parabolically

(for longer travel times), which is closer to observations (Taylor, 1922). However, because

the inhomogeneous scheme has a memory of particle velocity from the previous time-step,

it is naturally much more computationally intensive to run simulations. Therefore, where

the main concern is to analyse long-range particle transport, the homogeneous scheme

provides adequate accuracy while minimising computational power.

The downside of using the homogeneous scheme is that it results in a discontinuity in

turbulent fluxes across the boundary layer top, due to the use of a fixed value within the

free troposphere. An entrainment parametrisation scheme (Webster and Thomson, 2011)

permits particle movement across the discontinuity, using vertical velocities at either side

of the interface to determine whether to transmit or to reflect each particle. For the

scheme to work, particles are assumed to be non-sedimenting. The vertical velocity of

a transmitted particle (wt) depends on its incident velocity (wi) and relationship of the

effective velocity variance of the particle at the incident side (σw(i)) and the other side

of the interface (σw(t)). The velocity of the transmitted particle follows the relation:

w2
t = σ2

w(i)

[
w2
i

σ2
w(i)

+ log

(
σ2
w(t)

σ2
w(i)

)]
(5.2)

= σ2
w(i) β (5.3)

In other words, the exit velocity of the particle incident on an interface is determined by

the incident velocity. In the case of β > 0, the particle is transmitted with velocity wt,

otherwise it is reflected with velocity wr = −wi.

Because resolved velocity is used in the NAME entrainment scheme, this parameter

is worth investigating further within the model configurations used in this chapter. The

next section will therefore focus on the evaluation of vertical velocities w at boundary

layer top, boundary layer depth and QH from the UKV and UM Global meteorology fields

used for the NAME simulations outlined in section 5.5.

5.3.2 UKV

The necessity of producing an accurate weather forecast at a local scale has led

to development of the variable resolution model over the UK domain. The result is

the UKV, which has 70 vertical model levels up to 40km. At its highest resolution,
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UKV has a uniform 1.5 km horizontal grid (0.0135°× 0.0135°) and smoothly transitions

to 4km towards the outer edges of the domain. A horizontal grid resolution which is

fine enough permits convection processes to be modelled explicitly in place of using a

parametrisation scheme. UKV belongs to the family of such near-convection-permitting

models, which result in e.g. improved forecasts of precipitation over land terrain (Clark

et al., 2016). Because UKV uses LBCs provided by the UM Global, the coarser resolution

at the edges allows for better compliance between the two grid-lengths. As with AQUM,

the boundary layer scheme in UKV is also that of Lock et al. (2000), but cloud and

convective precipitation are modelled explicitly. This may lead to differences in the two

models’ forecast of solar radiation reaching the surface. Another difference between UKV

and AQUM is their representation of land use. Differences between urban and rural

regions are better represented within the land surface parametrisation in UKV than in

the simpler version within AQUM. This is because parameters such as buildings and street

canyons are considered in UKV’s land scheme, but not in AQUM (Porson et al., 2010).

The surface energy balance is thus also better represented in UKV than AQUM and will

be discussed in more detail in section 5.3.5.

5.3.3 Global configuration of the Unified Model

UM Global provides a deterministic, medium-range weather forecast as well as bound-

ary conditions for higher- resolution configurations (such as UKV and AQUM). Although

the operational grid resolution of the UM Global now is 10 km at mid-latitudes, model

resolution was at 17 km during the study period of this chapter (i.e. June 2017). It has 70

vertical model levels up to 80 km. UM Global also uses the Lock et al. (2000) boundary

layer parametrisation scheme, whose details are outlined in the following section.

5.3.4 The Lock boundary layer parametrisation scheme

AQUM, UKV and UMG all share the Lock et al. (2000) parametrisation scheme

to represent most sub-grid scale processes and the dynamical boundary layer processes

outlined in section 2.2. The scheme diagnoses the mixing layer height (i.e. depth of

the boundary layer) by two separate methods based on the atmospheric boundary layer

stability profile:

• Stable layers: local Richardson number (Ri) based scheme, first-order mixing

length closure scheme;
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• Unstable and neutral layers: dry parcel adiabatic ascent based scheme, non-

locally specified.

Boundary layer depth is taken as the maximum height from the Ri number or parcel ascent

methods. This generally results in using a method involving the Richardson number Ri

for stable conditions, and the parcel ascent method for unstable or neutral conditions (see

section 2.2 for a reminder on Ri).

The critical Richardson number (Ric) is used to determine the height at which buoy-

ant suppression and shear generation of turbulence result in a laminar flow, which is

taken as the boundary layer depth. In atmospheric models, the value of Ric often ranges

from 0.25 to 1, but can be set to as high as 1.3 (e.g. in NAME). This method is used in

stable atmospheres (initially identified at the surface when QH < 0). This is a first-order

K-closure, meaning that the turbulent fluxes are defined in terms of local gradients (of

momentum, potential temperature etc) and eddy diffusivity profiles for momentum (Km)

and scalars (Kh). These are defined in terms of Ri – see also section 2.2.1.2. The lowest

vertical half-level of the model at which Ri > Ric is used to define the boundary layer top.

In the parcel ascent method used for unstable boundary layers (QH > 0), the height at

which the adiabatic lapse rate intersects the environmental profile is determined. Simul-

taneously, a descent from the cloud top (diagnosed by the Smith (1990) cloud scheme)

takes place because sources of turbulence may originate at both ground level and cloud

top. In the unstable boundary layer, turbulent fluxes and the K profiles are calculated

using a non-local scheme, as air parcels are influenced by characteristics of large-scale

convection. The non-local scheme also incorporates an explicit entrainment parametri-

sation for momentum fluxes, based on the depth of the inversion. If the unstable layer

is well-mixed, then the height at which the ascending moist parcel reaches its level of

natural buoyancy, zpar, is taken to be the boundary layer height.

In the case of an unstable but cumulus-capped atmospheric boundary layer, its height

is set to the cumulus cloud base at the lifting condensation level (LCL), and all processes

above this height are parametrised either by the mass-flux convection scheme of Gregory

and Rowntree (1990) in AQUM, or modelled explicitly in the case of UKV due to it being

a convective-scale model. Further details can be found in Lock et al. (2017).

For non-cumulus-capped boundary layers, the depth is calculated within the bound-

ary layer scheme with the parcel ascent method. Correct diagnosis of boundary layer

stability is important for cloud-top turbulence and entrainment of air from the free-

troposphere. For example, entrainment is closely related to the rate of change of the
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boundary layer depth, as it is one of two processes which causes its growth (the other

process being convergence of air below the boundary layer top, causing upward motion),

i.e.
∂zi
∂t

= we + ws (5.4)

where zi represents boundary layer top, we is the entrainment velocity and ws is the

large-scale motion (i.e. convergence / subsidence) (Stull, 1988).

The model inter-comparison study of Brunner et al. (2015) finds that AQUM calcu-

lates a significantly higher summertime planetary boundary layer depth between 00 - 06

UTC over the European continent than most other regional models. The UK4 (AQUM)

model was found to exhibit a night-time mean bias of approx. 350 m when evaluated

against 17 radiosonde locations in continental Europe. A difficulty in diagnosing the

stable boundary layer depth may originate in the representation of surface heat fluxes

and therefore the stability of the surface layer - especially in urban regions - as will be

described in section 5.3.5. Alternatively, any errors in the local Ri-based approach could

propagate to the boundary layer depth diagnosis, as Mauritsen and Svensson (2007) point

out that even in strongly stable regimes where Ri > 1, observed turbulent fluxes are non-

zero which should make the modelled boundary layer even deeper. NWP models therefore

use different fine-tuning methods to correct for too much or too little stability, such as

the stability functions based on Ri (Lock et al., 2017).

The diagnosed boundary layer depth, alongside other variables such as surface tem-

perature, surface heat flux and stomatal conductance are derived with the boundary layer

scheme and subsequently used in the dry deposition processes within UKCA sub-routine

(see section 2.3.2). It follows then that the boundary layer scheme is important not only

for the correct representation of turbulence, energy dissipation, advection of moisture,

heat and pollutants among other quantities; but it also plays a role in the physical and

chemical transformations of atmospheric species within the coupled UKCA configuration.

Many inter-related processes take place within the boundary layer parametrisation,

some of which are related to the representation of surface stability via buoyancy fluxes

and QH . Their sign and magnitude is variable depending on the kind of land-use (i.e.

whether the model grid-box is representing a rural or urban area) and terrain. Given the

complexity of different land structures - streets, buildings, rivers etc - a kilometer-scale

model (or coarser) needs to use a land-use parametrisation of some kind. The following

section introduces the current land-use schemes used in the UKV, UM Global and AQUM

and gives an overview of how well they represent urban regions in particular.
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5.3.5 Urban land tile schemes: Best and MORUSES

Complex terrain types, such as those in urban areas, have a simplified representation

in models through the use of surface land schemes. The approach used for this simplifi-

cation in AQUM and the UM Global is the Best (2005) scheme, based on the concept of

multiple tiles of varying terrain type within a grid-box outlined by the Met Office Surface

Exchange Scheme (MOSES2.2; Essery et al., 2003). In Best (2005) (henceforth referred

to as the ‘Best scheme’), each model grid-box is a linear combination of up to 9 land

types, of which the urban tile is one. Based on the type of land cover, each tile calculates

its own surface energy budget:

C
dT∗
dt

= RN −QH −QE −G (5.5)

where C [JK−1m−2] is the heat capacity, T∗ is the canopy temperature, RN [Wm−2] is the

net radiation, QH [Wm−2] is the sensible heat flux, QE [Wm−2] is the latent heat flux and

G [Wm−2] is the ground heat flux (see also section 2.2.1.4). There is no anthropogenic heat

source in equation 5.5, which is likely to have a large contribution during the winter (Best,

2005). Within each tile, also calculated are the canopy moisture content; snow masses

and snow melt rates. The Best scheme uses bulk parameter values for e.g. emissivity and

albedo, and does not depend on building geometry.

Due to the complex nature and sub-grid variability of urban areas, a single tile repre-

Figure 5.1: From Porson et al. (2010). Schematics of MORUSES and the Best scheme.
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sentation is inadequate for accurately capturing the surface energy budget, or representing

the urban heat island effect (Bohnenstengel and Hendry (2016), internal report). In par-

ticular, building roofs and street canyons are made of different materials and therefore

store different amounts of heat due to differences in the surface energy fluxes (Harman and

Belcher, 2006). The Met Office Reading Urban Surface Exchange Scheme (MORUSES,

Porson et al., 2010) therefore replaces the single-urban tile (urban- 1t) with a 2-tile ap-

proach, which distinguishes the energy fluxes between roofs and street canyons. Figure

5.1 is a schematic from Porson et al. (2010) which demonstrates the differences between

MORUSES and Best scheme in terms of the coupling between the ground heat flux G

and the surface, and the effect of using two tiles instead of one to represent the urban

canopy. MORUSES takes into account urban geometry, which means that parameters

such as emissivity, albedo and heat capacity have variable bulk values rather than one,

prescribed value. Therefore MORUSES better represents the variety of terrain and build-

ing types in urban areas on sub-grid scales, which is beneficial to the modelling of surface

heat fluxes and thermal eddies. This also has implications for modelling dispersion of

pollutants and air quality in cities (Porson et al., 2010), as will become evident in the ex-

periments performed in this chapter. Some of the main differences between the MORUSES

and Best scheme are outlined in table 5.1. MORUSES was implemented in UKV during

the Parallel Suite 37 (PS37) upgrade of the MetUM in March 2016.

PS37 sensitivity experiments described in Bohnenstengel and Hendry (2016) suggest

that differences in modelling surface wind speeds and fluxes arising from the implemen-

tation of a more complex urban tile is most pronounced during calm, sunny days and

cloud-free nights, as any insulating effects by cloud-reflection of long-wave radiation back

into the boundary layer are minimised. This means that errors in the modelling of low-

level urban temperatures and thermal instabilities can be, in a large proportion, explained

by the modelling of surface fluxes and heat storage of the variable surface materials. On

Table 5.1: Major differences in the land representation scheme used in UM Global and
AQUM (Best, 2005), and in UKV (MORUSES, 2011)

Best (2005) MORUSES (2011)

Single tile to represent urban areas Two tiles: street canyon and roof

Bulk values for emissivity, albedo,
heat capacity, conductivity, roughness
length for momentum and heat

Variable parameters, as it takes urban
geometry into account. Bulk values for albedo
and emissivity for radiative exchange.

Error in timing and amplitude of QH Realistic phasing and amplitude of QH

Total ground heat flux calculated by
aggregation of all tiles

Parametrised storage of heat and heat transfer to soil
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clear and calm days, differences in wind-direction are considerable, but the sensitivity

tests do not reach a conclusion on any differences in boundary layer depth or structure,

recognising that more research is needed in this area. This finding, combined with the

role of surface heat fluxes in diagnosing boundary layer stability as explained in section

2.2.1.4, may relate to the difficulty experienced by AQUM (among various other regional

meteorological models) to represent the stability of the nocturnal boundary layer depth,

particularly in urban regions (e.g. Savage et al., 2013; Brunner et al., 2015).

In summary: representation of the surface energy budget and heat fluxes, through

accurately modelling heat storage and capacity in urban areas, is important for capturing

an accurate boundary layer development. For example, if the sign of QH is diagnosed

incorrectly, it may impact the amount of turbulent mixing throughout the boundary

layer, and also near the inversion. Whether there is too little or too much buoyancy-

driven turbulence is important for entrainment at the boundary layer top, which, as

discussed earlier, may act as a top-down reservoir of O3. If this effect is not accurately

represented, it will have implications for the surface concentrations of O3 and NO2. Sub-

grid heterogeneity related to heat storage within the urban canopy is better represented

when the bulk parameters are allowed to vary with building geometry, as is the case in

the MORUSES scheme implemented within UKV after 2016. It is therefore useful to

compare output of QH from UKV against that from UM Global, since UM Global was

still using the Best scheme for the study period of June 2017.

In the following section, QH , boundary layer depth and ws from UKV and UM Global

are directly compared.

5.4 Evaluation of physical parameters

AQUM and UKV not only vary in horizontal grid resolution, but also in their rep-

resentation of urban land-use. By studying modelled values of QH , one can gain some

insight into differences between the two models’ treatment of boundary layer stability

in urban areas as a consequence of the differing urban land-tile approach. Differences

in boundary layer stability may subsequently impact tracer mixing and concentrations,

which will be explored later.

This section focuses on modelled night-time and morning boundary layer depth and

QH from the employment of two different surface land schemes. Also discussed is the

vertical velocity ws at model level nearest to the modelled boundary layer height. The
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UKV and UM Global meteorology input to NAME have hourly and 3-hourly temporal

resolution respectively. QH and boundary layer depth were output from NAME at 53

locations corresponding to urban-type AURN sites, over a 0.2 x 0.2° latitude-longitude

(approximately 22 km2) area around the point locations. This area size is in line with

the AURN definition of an ‘urban’ location as representing an area of “a few km2”. For

AQUM, archived gridded model output for QH and boundary layer depth was interpolated

using bi-linear interpolation of gridded model fields to the same 53 latitude-longitude point

coordinates as above.

5.4.1 Meteorological conditions

The study period for this evaluation is 01-06 to 30-06-2017. The period was marked

by varied conditions across the UK, as summarised in Met Office (2020a)1. The first part

of the month (1 - 10th) was unsettled and characterised by strong winds alongside heavy

and persistent precipitation, caused by a series of cyclone passages (figure 5.2a). Between

10th - 16th June, the weather conditions became more settled across England and Wales,

though with some intense showers at the beginning of the period. Between 14th - 16th

June, the south of the UK was more settled and sunny than the north, which experienced

cloudier conditions and also some rain (figure 5.2b).

In general across the UK, higher pressure conditions prevailed throughout the period

of 16 - 22nd June, with lighter winds and warm weather, with thunderstorms towards the

end of this period (figure 5.2c). For the rest of the month, cloudier and cooler conditions

set in across the UK, with rain and wind in the north (figure 5.2d). These variable

conditions render June 2017 a suitable study period for relating meteorological conditions

with the ground-level air quality forecast. Within the following sections, references to ‘low’

or ‘high’ pressure days relate to a classification by visual inspection of surface pressure

charts, such as those shown in figure 5.2.

1https://www.metoffice.gov.uk/research/climate/maps-and-data/summaries/index, last accessed
2021-02-16

https://www.metoffice.gov.uk/research/climate/maps-and-data/summaries/index
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(a) 05-06-2017 (b) 14-06-2017

(c) 18-06-2017 (d) 25-06-2017

Figure 5.2: Surface reanalysis charts at 00:00 UTC from the Met Office, sourced from
https://www.wetterzentrale.de/

https://www.wetterzentrale.de/
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5.4.2 Boundary layer depth

Since the boundary layer depth defines the depth through which pollutants experience

vertical and horizontal mixing, modelling its extent correctly is important for achieving

an accurate regional forecast of surface pollutant concentrations. This section analyses

differences in modelled boundary layer depth within urban and rural regions.

5.4.2.1 Urban regions

Results of the evaluation of boundary layer depth in urban regions from UKV, UM

Global (and, for completion from AQUM) are shown in subplots of figure 5.3. The top

panel (plots a, b and c) represents average boundary layer depth in UKV, UM Global

and AQUM over (a) the entire study period, (b) during high-pressure days and (c) low

pressure days. The bottom panel (plots d, e and f) shows average boundary layer depths

but simulated with NAME’s own boundary layer parametrisation scheme. Since the pur-

pose of the plots in the bottom panel is to depict how the change in parametrisation

scheme influences the modelled boundary layer depth (and hence the change in boundary

layer-average tracer concentrations in the experiments), in addition to not using AQUM

meteorology within the experiments due to incompatibility with NAME, AQUM is omit-

ted from the bottom panel of figure 5.3. Boundary layer depths from AQUM are only

shown in the top panel for comparison against the UKV and UM Global configurations

of the Met UM.

UKV data has been coarse-grained from hourly to 3-hourly resolution in order to

eliminate the question of whether differences in the boundary layer evolution between the

UKV and UM Global exist only because UKV has a finer temporal resolution than UM

Global. Note that AQUM remains in its original hourly resolution, as it is only shown

to confirm that UM Global data can be used as a proxy for AQUM meteorology. It can

be seen in figure 5.3 that this is not the case, and there are clear differences between the

two profiles even when the resolutions match. The sub-plots can be analysed in terms of

4 distinct stages of the boundary layer evolution:

1. nocturnal boundary layer (NBL);

2. morning transition;

3. daytime mixed layer;

4. evening collapse.
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From the shape of the diurnal cycle, the NBL can be defined as the period from

21 - 06 UTC in the UKV, but 00 - 06 UTC in the UM Global and AQUM because the

modelled boundary layer depth is still decreasing, while the UKV rate of change is much

smaller between 21 - 00 UTC. NBL depth in UM Global and AQUM is largely comparable

(550 - 600 m agl), whereas the UKV boundary layer depth is significantly shallower (300

- 400 m agl). The morning transition period in UKV happens between 06 - 12 UTC,

when mean boundary layer depth increases steadily from 600 m to 1000 m. In AQUM

and UM Global, the mean boundary layer deepens from 550 m to 900 m until 12 UTC,

but continues on to reach a peak of 1000 - 1050 m between 15 - 16 UTC which can be

called the daytime mixed layer. Note that from 15 UTC, the UKV boundary layer already

begins to deepen steadily, while the UM Global has a shallower decrease until 18 UTC,

when the collapse intensifies.

It is evident from figure 5.3(a) that the overall behaviour of boundary layer develop-

ment in UM Global and AQUM is comparable. This is expected because both models use

the same Ri criteria for diagnosis of boundary layer depth. When the UKV data is not

Figure 5.3: Diurnal cycle of mean modelled boundary layer depths averaged over 53 urban
locations in (a,d) June (01-06-2017 to 30-06-2017), (b,e) high-pressure days and (c,f) low-
pressure days. Top panel shows the modelled boundary layer depths calculated within
each NWP separately; bottom panel shows the UKV and UM Global when switched to
the NAME boundary layer scheme, i.e. using a common Ric. Shading represents the
standard deviation of boundary layer depth across all locations.
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coarse-grained, it shows that UM Global and AQUM lag the UKV maximum boundary

layer growth in the morning by at least 1 hour. This lag coincides with the lag in the rise

of O3 + NO2 concentrations discussed in section 3.5.1.1.

When only high-pressure days are considered (figure 5.3b), the UKV and UM Global

NBL profiles are closer in magnitude (200 m and 400 m respectively). Although the

UKV profile again shows a steeper increase than the UM Global during the morning

transition, the mean boundary layer depth is shallower than when all days are considered,

as both configurations reach a maximum average depth of 900 m at around the same time.

Meanwhile, the AQUM boundary layer continues to increase until 17 UTC, before it starts

collapsing in the evening. For the low-pressure days only (figure 5.3c), mean boundary

layer depths across all three configurations are deeper at all times of the day than during

high-pressure days. Interestingly, while the UKV profile deepens from 3 UTC, the UM

Global profile decreases between 0 - 9 UTC, which is closely matched by the AQUM

profile.

Significant differences between the UKV and UM Global representation of the bound-

ary layer depth could be related to their differences in the diagnostic used during stable

conditions. One way to determine whether the differences described above are caused

by different criteria for critical Richardson number (Ric) during stable conditions is by

enabling NAME to use diagnostics from UKV and UM Global in order to diagnose bound-

ary layer depths with a common value of Ric. Figure 5.3d shows that the NBL, daytime

mixed layer and evening collapse are all consistent between the UKV and UM Global

when using the same Ric, but the morning growth is not. This behaviour is consistent for

low and high pressure synoptic conditions (figure 5.3(e,f)). The only obvious differences

between the UKV and UM Global profiles is the timing of the start of boundary layer

growth and collapse.

5.4.2.2 Rural regions

When 22 rural locations are considered (figure 5.4), the daytime maximum peak in

June reached by UKV and UM Global is 800 m (900 m for AQUM), which is shallower

by around 200 m than in urban areas. The most significant observation about rural areas

is that the timing offset in the morning transition is not evident. Furthermore, the offset

disappears completely upon using NAME’s own boundary layer scheme over rural areas,

whereas the urban regions still experience an offset during this time. This suggests that

something about differences in the representation of urban regions within UM Global and
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Figure 5.4: Diurnal cycle of mean modelled boundary layer depths averaged over 22 rural
locations in (a,d) June (01-06-2017 to 30-06-2017), (b,e) high-pressure days and (c,f) low-
pressure days. Top panel shows the modelled boundary layer depths with own NWP
scheme; bottom panel shows the UKV and UM Global when switched to the NAME
scheme, i.e. using a common Ric. Shading represents the standard deviation.

UKV influence the treatment of the boundary layer evolution. Physically, a significant

difference between a rural and an urban region is the heterogeneity of land use, e.g.

the spatial and vertical distribution of buildings, green areas, farms, etc. In particular,

the surface energy budget has varying contributions - QH represents how much heat the

ground emits, which will be different depending on whether a grid box is covered by

open grassland or buildings. In light of the results of the boundary layer depth analysis

discussed in this section, section 5.4.4 explores the representation of QH in urban regions

within UKV and UM Global configurations of the MetUM. First, let us consider the

vertical velocity ws contribution to boundary layer evolution as per equation 5.4.

5.4.3 Vertical velocity

Vertical motion across the boundary layer top is associated with two processes: turbu-

lent entrainment of free-tropospheric air into the boundary layer, and mesoscale vertical

motion across the inversion due to horizontal divergence or convergence of air, which

causes subsidence or upward motion (Stull, 1988). Here, entrainment velocity is denoted

as we, while the mesoscale vertical advection velocity is ws. In order to parametrise
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Figure 5.5: Vertical velocity ws distributions at boundary layer height from 53 locations
in UKV and UM Global for June 2017. Filled circles are 3-hour averages and vertical
bars are standard deviation, σ.

entrainment of free-tropospheric air into the boundary layer, NAME requires values for

vertical velocities ws and the variances, σw at boundary layer top. Figure 5.5 shows the

diurnal distribution of instantaneous ws from both the UKV and UM Global, discretised

to the nearest 50m of the boundary layer top. Values of ws were pooled into 3-hourly

windows across the entire month (essentially, each category 00 - 03, 03 - 06 UTC etc

altogether had 30 days × 3 hours × 53 locations), and the mean and standard deviation

σ were calculated.

Figure 5.5 shows that throughout the day, UKV consistently resolves higher average

values of ws than UM Global, which are one order of magnitude greater (10−2 ms−1, while

mean values in UM Global are on the order of 10−3 ms−1) as well as having larger σw.

Observations of mean ws can be difficult to measure accurately, as aircraft measurements

often have a mean bias larger than the magnitude of ws. However, some published exper-

imental aircraft observations measure ws to be on the order of ±0.2 cm s−1 (Dodson and

Small Griswold, 2021). The distributions in figure 5.5 are therefore of the correct magni-

tude, although σ of the UKV values is large. In the NAME entrainment parametrisation

scheme, ws is an important parameter in that its value determines whether a particle

is transmitted or reflected from the boundary layer top interface. The clear difference

between the two models will have implications for how much tracer is entrained through

the boundary layer top.
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5.4.4 Surface sensible heat fluxes

Having discussed the role of QH in determining boundary layer stability in section

2.2.1.4 , this section studies the direct influence of QH on boundary layer depth within

the present evaluation. Figure 5.6 shows distributions of modelled QH from 53 urban

locations in the UK for the study period as a function of hour of day. Average diurnal

cycles of QH from UKV and UM Global are shown to have differences in time of daytime

maximum, rate of morning increase and sign at night. Between 00 - 06 UTC, median

values in UM Global are negative, whereas the UKV medians remain positive. This means

that during the night, different criteria are used to diagnose boundary layer depth in the

two model configurations at some locations: local Ric while QH ≤ 0 (UM Global) and

adiabatic parcel while QH ≥ 0 (UKV). There is a significant difference in QH between

the two models at 06 UTC, when the boundary layer starts to grow: while QH in UM

G remains negative, there is no buoyant production of turbulence, and consequently

no thermally-driven boundary layer growth. Meanwhile, UKV fluxes are positive and

buoyant generation of turbulence is already contributing to boundary layer growth, as

evident in figure 5.3a. Furthermore, since the boundary layer remains neutral in this

scenario, the nocturnal inversion will be weaker, thus thermals are more likely to break

down the inversion and entrain O3-rich air from the residual layer reservoir aloft. Both

models’ QH values increase from 06 - 12 UTC as solar radiation acts to increase the

energy at the surface. But while UKV reaches a daytime 3-hourly maximum at 12 UTC,

QH in UM Global continues to rise until 15 UTC. Both the mean and median daytime

QH values are higher in UKV than UM Global throughout the day until 18 UTC, when

solar radiation weakens. This implies that the land-surface parametrisation in UKV

(MORUSES) is not only able to store more urban heat throughout the night, but also

that this continues throughout the daytime. The mismatched timing of QH increase and

peak seen in figure 5.6 is consistent with the findings of by Bohnenstengel and Hendry

(2016). Their report evaluates sensitivity tests on the performance of the MORUSES

land tile against the previous JULES urban single-tile scheme, which is also the surface

tile used in both AQUM and UM Global (Best et al., 2011). The differences between

the two tile schemes was already introduced in section 5.3.5, but the main difference

is that MORUSES employs a variable bulk representation of sub-grid parameters such

as heat capacity due to buildings. The MORUSES tile scheme thus models QH values

which are generally positive in urban areas (shown in figure 5.6). The positive night-time

values of SSHF from these UKV simulations match the findings of King (2015), who
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Figure 5.6: Distributions of modelled QH between 01-06-2017 - 30-06-2017 at 53 urban
locations in the UK. Data are hourly from UKV (red) and from UM Global (“UMG”,
blue). Boxes represent the 25th - 75th percentile range, and whiskers are 5th and 95th
percentiles. Average values are represented by horizontal line in each box, while the
median is a circle (UKV) or a cross (UMG).

demonstrate the similarity of the diurnal cycle in observed SSHF and UKV simulations

using the MORUSES scheme, comparing it also to the urban-1t scheme, at one London-

based observations site (Kings College London). The report finds that the improvement

in representation of SSHF with using MORUSES in place of urban-1t is clearest during

the daytime: the mean maximum values reached are better captured with MORUSES

than urban-1t when compared against observations, and the timing of the peak occurs

1 - 2 hours later in MORUSES, which is more representative of what happens in urban

areas.

5.5 Methodology for idealised NAME experiments

Having discussed some of the main differences in the underlying meteorological pa-

rameters from UKV and UM Global, this section will describe the NAME experiments

which use the above model data as input. In this section, the configuration of the semi-

idealised experiment simulating downward entrainment of O3 from the free troposphere

into the boundary layer is presented. The experiment requires archived data from the me-

teorological models, a definition of particle sources and a tagging mechanism to allow us

to distinguish whether particles have spent any time in the free troposphere before being

entrained into the boundary layer. Thus, the aim is to quantify the relative contribution

to surface concentrations of tracer originating above the boundary layer, in relation to

the local surface emissions.
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An overview of the tracer sinks and sources in the simulations is provided in table

5.2, with supporting information described in more detail in sections 5.5.1 to 5.5.4.

5.5.1 NWP input

Instantaneous and time-averaged UM Global meteorological fields (e.g. for cloud and

precipitation) are used at 3 h resolution as input to NAME. Each file input to NAME

contains forecast data from successive forecast cycles valid over a 6 h window, i.e. cycles

initialised at 00 UTC, 06 UTC, 12 UTC and 18 UTC. Instantaneous fields from a 4-d

variational data assimilation analysis are supplied for T+0, as well as the subsequent T+3

forecast value (Jones, 2015).

5.5.2 Tracer sources

‘Particles’ can be regarded as moving air parcels within a Lagrangian framework to

enable a study of dynamics within the boundary layer, rather than as physical molecules.

Throughout this chapter they will simply be referred to as ‘tracers’. Tracer properties have

been designed to simulate aspects of the behaviour of O3 and NO2 without the complexity

of introducing chemical transformations. This has been achieved by (i) regarding the

tracer to represent the sum of O3 and NO2 (Ox), which is a conserved quantity in the

photo-stationary state where rapid interchange between NOx and O3 occurs; (ii) using

a simple loss term at the surface, analogous to dry deposition with a defined deposition

velocity - values of vd = 1, 5 or 10 cm s−1 are used - to represent loss of the tracer within

the boundary layer; (iii) setting appropriate lateral boundary conditions which result in

higher tracer concentrations above the boundary layer than below.

Table 5.2: Overview of tracer sources and sinks used in the simulations.

Sources Sinks

Surface

- Release height: 0 - 100m dry deposition, vd 1, 5 or 10 cm s−1

- Sinusoidal strength between
09:30 - 16:30, zero otherwise

wet deposition
by rainfall in
underlying NWP

- ‘SBL’ if within the BL
transport out of
domain

by advection in
underlying NWP

- ‘SFT’ if above the BL

Lateral

- Release height: 0 - 5000m
- Uniform strength between 0 - 800m
- Double release strength above 800m,
decreasing with height
- ‘BGBL’ if within the BL
- ‘BGFT’ if above the BL
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Two types of tracer are released in the simulations: tracers originating at the surface,

and tracers originating at the lateral boundaries. Surface tracers are uniformly released

throughout 0 m - 100 m above ground level, over all model grid-points where land is

present. This was achieved by creating an input file with independent tracer emissions

sources spanning the UK landmass, created from the UM Global topography file. There

is a diurnal variation in relative strength of release in order to simulate the daytime

photochemical production of O3, although no weekday variation is applied. The relative

release strength varies sinusoidally, beginning at 09:30 UTC, reaching a maximum of 1 at

12:30 - 13:30 UTC, and ending at 16:30 UTC. There is no tracer released outside of these

hours. The hours have been chosen to reflect NOx emissions from road vehicles during

a typical week-day in the UK, to a first-order. A more accurate method of achieving

this effect would be to represent the diurnal variation in NOx emissions from the NAEI

inventory; however, for this idealised experiment a more approximate representation of

surface emissions is adequate.

Lateral boundary tracers are released within a rectangular border around the do-

main. The dispersion domain has outer corners counting clockwise from the SE corner

at coordinate locations of (-10.5°, 49°), (-10.5°, 59°), (2.5°, 59°) and (2.5°, 49°). The

dispersion domain width measures 0.3° in the southern- and northern-most part of the

domain, while the east-west thickness is 0.6°. A schematic is shown in figure 5.7a. This

(a)
(b)

Figure 5.7: (a) Schematic representation of tracer dispersion domain, with vertical release
at the red boundary up to an altitude of 5000 m. (b) demonstrates the tagging method
with 4 tracer groups: surface-released (‘SBL’ [red] and ‘SFT’ [blue]) and tracers from
lateral boundaries (‘BGBL’ [yellow] and ‘BGFT’ [green]). zi represents boundary layer
top. Not to scale.
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was a convenient lateral boundary dispersion domain to configure in the simulation, as

it is within the span of the UKV domain, whose meteorology is needed to advect tracers

in from the configured boundaries. Moreover, the domain has a vertical height of up to

5000m above sea level, and tracers are released uniformly throughout the vertical span.

It is important to account for the reduction in air pressure with altitude, as this will

impact the tracers released within the lateral boundaries. An idealised constant mass

mixing ratio (α = mtr
mair

, where mtr and mair are the mass of tracers and air respectively)

is used throughout the boundary layer (α = 1 kg kg−1) and in the free troposphere

(α = 2 kg kg−1) in order to resemble the vertical profile of morning O3 concentrations

as observed at the rural background site in Mace Head (Purvis et al., 2005). The 2x

step-increase in α is applied at a height of 800 m, which was chosen as a constant median

boundary layer depth. Alternatively, a diurnally-varying boundary layer depth could be

applied to mark where the step-change in α occurs, but this was not tried in the present

experiment.

In order to deduce the ratio of tracer density within the free troposphere (ρtrFT)

to tracer density within the boundary layer (ρtrBL), we consider the equation of state,

which can be expressed in terms of the mass mixing ratio α, relating tracer and air mass

densities as ρtr = αρa:

p(z) = ρaR
′T (z) ρtr =

αp

R′T (z)
(5.6)

where R′ = 287J K−1 kg−1 is the specific gas constant for air and T (z) is the temperature

at height z.

Assuming that T (z) decreases linearly with altitude under adiabatic conditions,

T (z) = T0 − Γdz (5.7)

= T0

(
1− Γdz

T0

)
(5.8)

where Γd = 9.8×10−3K m−1 is the dry adiabatic lapse rate. This means that the equation

of state (equation 5.6) can be expressed in terms of equation 5.8 and the equation for the
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approximation of atmospheric pressure p(z) dependence on height as:

ρtr = α

(
ρ0e

−z
H

R′ (T0 − Γdz)

)
(5.9)

= α

(
ρ0

R′T0

)(
e

−z
H

1− Γdz
T0

)
(5.10)

= α

(
ρ0

R′T0

)
F (z) where F (z) =

(
e

−z
H

1− Γdz
T0

)
(5.11)

where T0 = 288 K is the surface temperature and ρ0 is surface pressure. The scaling

factor F (z) (plotted in figure 5.8) is the factor applied to tracer concentrations above

the surface relative to surface concentrations in order to account for the decrease in

atmospheric pressure while keeping α constant within the boundary layer and in the free

troposphere.

The tracers in the simulations represent the sum of O3 and NO2, which involve pho-

tochemical production within the boundary layer. Some of the photochemically produced

O3 in the preceding days will remain in the residual layer, where it undergoes long-range

transport and subsequent re-entrainment into the boundary layer the following day. Thus

equation 5.11 ensures that the concentrations of tracer advected into the domain from

lateral boundaries are greater in the free troposphere than in the boundary layer, and α is

Figure 5.8: Scaling factor F(z) i.e. second component of equation 5.11 which ensures
constant mixing mass ratio α of tracer to air as atmospheric pressure decreases with
height.
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kept constant. The vertical gradient sets up a configuration which is representative of the

morning O3 gradient across the boundary layer top, thus air masses entrained from above

800m in the simulations should act to increase the mean boundary layer concentrations.

5.5.3 Tagging: tracking movement of tracers

Figure 5.7b is a simplified schematic of the different tracer groups in the NAME

simulation, which also shows the domain size for the experiment. At the first time-step

after release, t0, tracers are prescribed with either a ‘boundary layer’ (BL) tag if their

position is below the NWP boundary layer depth, or a ‘free troposphere’ (‘FT’) tag if

they are released at a height above it. During the simulation, if at any time-step a ‘BL’

tracer is mixed to a height above the diagnosed boundary layer, it irreversibly switches

its tag to ‘FT’. Conversely, any tracer initialised with ‘FT’ tag remains thus throughout

all time-steps.

The tracers have a prefix of either ‘S’ if released over land surface, or ‘BG’ (back-

ground) if released within the lateral boundaries. Thus four families of tracer may be

distinguished at any location or time: ‘SBL’ and ‘BGBL’ (boundary layer-bound tracer

released at surface or at the lateral boundaries respectively); ‘SFT’ and ‘BGFT’ (tracers

which have spent at least one model time-step above the boundary layer, released at sur-

face or at lateral boundaries respectively). Tracers are prescribed a lifetime of infinity.

After about 36 hours of simulation time, the domain-integrated mass of particles reaches

a steady-state. Using vd = 5cm s−1, the domain-integrated mass of particles is around

2× 108 g.

It is important to note that the concentrations of tracer after partitioning into the

4 groups is affected by the boundary layer depth, and thus by the use of either NWP

or NAME-diagnosed boundary layer depth in the simulation. The experiment is there-

fore also conducted with NAME’s own boundary layer scheme, results of which will be

discussed in section 5.6.

5.5.4 Tracer sinks

It has already been mentioned that no chemical sinks exist within the experiment,

tracers are not prescribed a decay rate and have infinite lifetime. Therefore the only

tracer sink is through dry deposition or exit from the domain by lateral boundaries. The

dry deposition velocity vd is tuned in a way such that tracer concentrations within the

boundary layer form a realistic diurnal cycle. The values of vd used in the experiments
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are 1cm s−1, 5cm s−1 and 10cm s−1. Section 5.6.1.1 will present results of the sensitivity

tests of varying the value of vd and its impact on the tracer diurnal cycle.

5.5.5 Boundary layer schemes in experiments

Instantaneous hourly boundary-layer-average tracer concentrations are analysed over

a 0.2° latitude × 0.2° longitude (approx. 20 km2, < 2 AQUM grid boxes) area around

53 urban background locations from the AURN pollutant monitoring network. By con-

sidering boundary-layer averaged concentrations, the effect of entrainment from the free-

troposphere to the boundary layer can be examined. The boundary layer depth directly

from NWP is used in the simulations, rather than allowing NAME to re-calculate its own

values based on the atmospheric profiles and Ri specifications. It will be shown later

that there is little difference in boundary layer-average tracer concentrations between

simulations where boundary layer depth is calculated with NAME’s own scheme, or used

directly from NWP.

Furthermore, the homogeneous boundary layer scheme is used in NAME for the sim-

ulations, which means that turbulence parameters do no vary with height and turbulence

is fixed within the free troposphere (introduced in section 5.3.1.1). This configuration re-

quires an entrainment parametrisation at the boundary layer top due to a step change in

turbulence parameters. The homogeneous boundary layer scheme is less computationally-

intensive than the inhomogeneous boundary layer scheme, which in these simulations

could only be run for one week due to exceeding computation time.

5.6 Results of NAME tracer experiments

Firstly, presented in section 5.6.1 are differences in the diurnal cycle of all types

of tracers, driven by UKV and UM Global meteorology. The mean diurnal cycle of

tracers is of interest, as it is directly comparable with the diurnal cycle of forecast and

observed O3 + NO2 concentrations presented in section 3.5.1 (which is what the tracers

are representing). All tracer families are considered in the initial evaluation in order for

the reader to familiarise themselves with how the diurnal profiles of the different tracer

families relate to one another.

Then, in section 5.6.1.1 the focus is only on the background entrained tracer family,

‘BGFT’, as the purpose of this experiment is to evaluate the contribution of entrained

tracer to boundary layer-averaged concentrations during the morning transition period.



146 Chapter 5. Boundary layer development and pollutant errors

The boundary layer-average concentrations are compared against AQUM forecast and

observed Ox concentrations near the surface, as well as the rate of change of their diurnal

cycle. This is presented in terms of vd sensitivity, as the results are variable depending

on how strong the surface deposition is. This makes sense in light of an Eulerian tracer

budget equation, where the boundary layer flux gradient of tracer concentrations is in

part dependent on the deposition flux. Therefore, the Lagrangian NAME simulations

are compared with an analogous study using an Eulerian budget closure method for

calculating the contribution of entrainment to boundary layer-average O3 concentrations.

Finally, it is explored how the above differences are affected by high and low pres-

sure days in June 2017, which leads to a discussion on the influence of the turbulence

parameters and entrainment parametrisation on the tracers within the boundary layer

scheme.

5.6.1 Diurnal variability

Firstly, let us consider the diurnal evolution in boundary layer-averaged concentra-

tions of all types of tracer in the simulation. Figure 5.9 shows the mean diurnal cycle

at 53 locations for all 4 tracer families: surface, BL (SBL, red); surface, entrained from

FT (SFT, blue); background, BL (BGBL, yellow) and background, entrained from FT

(BGFT, green). Black lines are the total tracer boundary layer-averaged concentrations.

Sub-plot (a) is for the simulations using UKV meteorology, and (b) is the UM Global

simulation. Dry deposition velocity here is 10cm−1, the highest value in all experiments.

Figure 5.9: Diurnal cycle of boundary layer average concentrations for all 4 tracer types,
averaged over 53 locations for simulations using meteorology from UKV (a; solid lines)
and UM Global (b; dashed lines). Dry deposition velocity vd = 10cm−1. Note that the
BGBL (yellow) contribution is very small and therefore negligible.
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All tracer types in simulations with both the UKV and UM Global meteorology

exhibit a diurnal cycle which resembles the Ox diurnal cycles presented in section 3.5.1.

Total tracer concentrations shown in black begin to increase smoothly after around 4 UTC

in the UKV simulations (figure 5.9a), while in the UM Global simulations the rise in

tracer concentrations has a sharp increase point at around 10 UTC (figure 5.9b). Both

simulations have a definite afternoon peak (15 - 16 UTC) and collapse again towards the

evening and throughout the night.

The surface-released tracers (‘SBL’ and ‘SFT’) do not contribute to the total con-

centrations as much as the entrained tracer (‘BGFT’). This is likely to be an artefact

of the experiment set-up, where the relative source strength of tracer emitted over land

varies sinusoidally between 0 - 1, but could instead be scaled up to match the order of

magnitude of the BGFT tracer. As expected, the SBL tracer (red) follows its sinusoidal

source strength prescribed in the experiment configuration, which peaks at 15 UTC. The

SFT tracer (blue) is more interesting, as it represents the tracers emitted over land which

end up being mixed up into the residual layer and are subsequently re-entrained back

down into the boundary layer as it grows in the morning. Consequently, there will nat-

urally be less SFT than SBL tracers because SFT tracers must undergo two processes

to be included within the blue line of plot 5.9: firstly, they need to reach the altitude of

the free troposphere to gain the ‘FT’ tag; secondly they need to be re-entrained into the

boundary layer during the day. The first process requires significant vertical mixing and

/ or convective updraughts, which are only likely during neutral or unstable conditions.

Because the SBL tracers simply remain within the boundary layer, they are more likely

to remain within the domain (i.e. not deposited to the surface or advected out of the

domain) to be included within the red line in figure 5.9 than the SFT tracers, hence the

difference in magnitude between the red and blue lines in figure 5.9.

Differences between the simulations using UKV and UM Global meteorology are

most evident in the BGFT tracer (green), i.e. background tracer released at the lateral

boundaries and entrained in from above the boundary layer. The amount of BGFT

tracer entrained with UKV meteorology is larger than the amount entrained with UM

Global meteorology throughout the day, reaching a factor of 1.5x at 16 UTC. This result

is the first indication that there are significant differences in the representation of the

entrainment process between the NAME-UKV and NAME-UM Global simulations, which

will be explored further in sections 5.6.3 and 5.6.4 by comparison with observations and

AQUM forecast.
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One reason for these differences could be that there are differences in horizontal

resolution of the NWP input (UKV is 1.5 km while UM Global is 17 km); there are also

differences in the vertical resolution. One possible method of evaluating the differences

between the simulations with the two NWP inputs would be to average the UKV output,

so that it matches the resolution of UM Global. Resolution of the underlying NWP is

an important consideration, as it dictates the scale of resolved processes (e.g. advection

and turbulence), and is used to define default values of σu and τu for treating unresolved

mesoscale motions. Additionally, we have already seen in figure 5.5 that the diurnal

distributions of large-scale vertical motion ws at boundary layer top is much larger in the

UKV than in UM Global. For example, in the morning (e.g. 06 - 09 UTC), ws = 3 ×

10−2±0.2 ms−1 in UKV, but ws = 2×10−3±0.03 ms−1. This means that the entrainment

parametrisation in NAME runs with a larger magnitude of ws for the UKV simulations

than UM Global throughout the day, which could be a cause of higher entrained tracer

concentrations within the boundary layer in the UKV simulations. The influence of ws

on entrainment flux will be explored further in section 5.6.2.

5.6.1.1 Dry deposition sensitivity tests

In order to account for all loss mechanisms, including chemical losses which are not

explicitly represented in the simulations, the experiment uses high dry deposition values.

These values are higher than observed, in order to re-create a tracer diurnal cycle which

resembles the observed Ox concentrations. This will enable a pathway to calculate the

contribution of entrained tracer to the surface concentrations, and translate the findings

to observed Ox. It is important to note that the resultant diurnal tracer profile could

match the observations and / or the forecast, but for the wrong reasons. I acknowledge

this and make the assumption that the tracers represent real-world Ox as if it were a

chemically inert quantity, whose boundary-layer concentrations were only dependent on

meteorological conditions, surface deposition and horizontal transport out of the domain.

Figure 5.10 shows the mean diurnal cycle of BGFT tracer concentrations within

the boundary layer when the value of vd is changed between 10 cm s−1, 5 cm s−1 and

1 cm s−1. Note that a realistic range for vegetated surfaces would be between 0.2−2cm s−1

(Hardacre et al., 2015). The lowest value used was vd = 1cm s−1, where the expected

diurnal cycle was only re-created for the UM Global simulation, but not in the UKV, as

shown in figure 5.10. Clearly, the value of vd needed to be increased, thus the following

sensitivity tests attempt to answer the question: how large should vd be, and should it
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be the same for both the UKV and UM Global simulations?

There are some clear differences in the diurnal cycle of tracers under the varying

values of vd in figure 5.10. In the two simulations with vd >= 5cm s−1 (panels a and

b), the BGFT tracer has a diurnal cycle profile which has the ‘expected’ shape, i.e. low

concentrations overnight and in the morning, then rise between 6 - 12 UTC and reach a

maximum by the afternoon before declining again. The balance between boundary layer

entrainment as tracer source and dry deposition as tracer sink is different when vd =

1cm s−1, i.e. the smallest value in this experiment, and the closest to a realistic one. Here,

the average night-time UKV tracer concentrations are approximately 2x the UM Global

concentrations (figure 5.10c)). There is also a reversed diurnal profile in the simulations

driven by UKV meteorology but not for UM Global meteorology. My hypothesis is that

enhanced entrainment reverses the vertical gradient of tracer concentrations, resulting in

an inverted diurnal cycle of boundary layer tracer concentrations. This would occur if

entrainment was acting to dilute the boundary layer concentrations by bringing down

air masses with lower tracer concentrations. Throughout the night, when the boundary

layer is shallow, existing tracer accumulates and results in high average concentrations.

Because those concentrations may now be higher below the inversion than above it, air

masses entrained in the morning can dilute the concentrations within the boundary layer.

This can happen because when deposition to surface is small, the rate of tracer depletion is

smaller than the rate of replenishment through entrainment from the residual layer. The

resultant reversal of the diurnal profile suggests that the UKV simulations are unphysical

when vd is small. The experiment was specifically set up to ensure a positive mixing mass

ratio gradient across the boundary layer top, whereas the reversal of the diurnal cycle

profile implies a negative gradient.

Figure 5.10: Diurnal mean hourly boundary-layer averaged background free-tropospheric
(BGFT) tracer concentrations for the period of 01-06-2017 to 30-06-2017, driven by UKV
and UM Global meteorology. (a) vd = 10 cm s−1, (b) vd = 5 cm s−1 and (c) vd = 1 cm s−1.
Shading represents the 25th and 75th percentile range.
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5.6.1.2 Normalised rate of change in diurnal tracer concentrations

In order to check whether the lag in the O3 + NO2 forecast is replicated within the

semi-idealised experiment, the rate of change of the BGFT tracers throughout the day is

evaluated. This is shown in figure 5.11.

As before, each subplot refers to a value of vd = 1, 5 or 10cm s−1. The red and blue

lines represent the average rate of change of BGFT tracer from NAME simulations using

UKV and UM Global meteorology respectively. These have been normalised to their

respective diurnal profile maximum
(
d[C]
dt max

)
i.e. at hour h,

normalised
d[C]

dt
=

(
d[C]
dt

)
h(

d[C]
dt

)
max

(5.12)

The black lines represent the rates of change of observed (AURN; dashed) and forecast

(AQUM; solid) surface concentrations of O3 + NO2 at urban background sites - these are

the same throughout all three sub-plots of figure 5.11 and are used as reference for the

simulated tracer.

Relative to the BGFT entrainment rate in UKV, the rate of change of UM Global

tracer is largely unaffected by changes to vd. In panels a, b of figure 5.11, peak increase

in UM Global-driven tracer occurs around 11 - 12 UTC and consistently lags the peak in

AQUM total oxidant by 1 hour. After around 8 UTC, d[C]
dt of tracer simulated with UM

Global meteorology is comparable with the AQUM forecast of O3 + NO2, and in panel c

the similarity is also consistent during the early morning.

The peak increase in UKV simulations for vd > 5cm s−1 is comparable with AURN

Figure 5.11: Normalised rate of change of background free-tropospheric (BGFT) tracer
concentration averaged over 53 locations for UKV (solid, red) and UM Global (dashed,
blue), overlaid with rate of change of observed total oxidant (dashed, black) and forecast
(black, solid), all normalised by their respective maxima. (a) vd = 10 cm s−1, (b) vd =
5 cm s−1 and (c) vd = 1 cm s−1.
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observations, i.e. between 6 - 8 UTC in panels 5.11a, b. However throughout the early

stages of the morning (0 - 5 UTC), both the UKV and UM Global tracer concentrations

are increasing in panels (a,b) and have a smaller magnitude but opposite sign to to

observed and forecast observations. This means that tracer concentrations in both the

UKV and UM Global simulations are slowly increasing throughout 0 - 5 UTC, whereas

the observed concentrations are decreasing until 4 UTC (6 UTC for AQUM forecast).

This suggests that the balance between the sinks of tracer (i.e. deposition) and sources

(i.e. entrainment, advection) - which may also include tracer accumulated within the

boundary layer from the day before - is unequal and not enough tracer is depleted. Note

also that total tracer deposition is proportional to average tracer concentrations within

the boundary layer. Therefore using vd > 5cm s−1 in UM Global simulations means

that although there is potential to deplete more tracer to the surface, the boundary-layer

average concentrations are less than with a smaller vd (e.g. in figure 5.10) and so the

vertical gradient in tracer concentrations across the boundary layer top is large. A large

tracer gradient means that the entrainment flux into the boundary layer is also large, and

potentially larger than the deposition flux (since the amount of tracer in the boundary

layer is small), leading to accumulation and hence a positive value of d[C]
dt , despite the

larger deposition value. Figure 5.11 thus suggests that in UM Global, using vd > 5cm s−1

is unsuitable.

However, simulations with UKV meteorology show that the diurnal profile evolution

is more sensitive to the choice of vd than simulations with UM Global. This suggests that

the balance between entrainment and deposition is different in the UKV simulations. For

example, in UM Global simulations, d[C]
dt is negative between 18 - 00 UTC for all values

of vd, whereas for the UKV simulations this is only the case when vd = 10cm s−1. When

vd = 1cm s−1, entrainment in the UKV simulation is larger than deposition in the evening

(e.g. the tracer increase reaches a maximum at 18 UTC). This supports the hypothesis

that the gradient in tracer concentrations reverses sign and results in an un-physical

profile, consistent with the postulation that when vd is small, morning entrainment acts

to dilute boundary layer-average concentrations.

In the UKV simulations, the BGFT normalised rate of change at e.g. 05 UTC is

0.6 of its diurnal maximum, but only around 0.2 in UM Global (figures 5.11a,b). This

is further evidence that entrainment of free-tropospheric air into the morning boundary

layer occurs earlier in UKV than in UM Global.
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5.6.1.3 Conclusions of sensitivity tests

Testing the sensitivity of tracer diurnal cycles from the UKV and UM Global simu-

lations to the use of different values of vd helps us explore the optimal balance between

tracer sources and sinks within this semi-idealised experiment. Based on the timing of the

afternoon peak and overall tracer concentration profile, the most ‘realistic’ diurnal cycle

of tracers is given by using vd = 1cm s−1 with UM Global meteorology, and vd = 5cm s−1

with UKV meteorology. The fact that UM Global - but not UKV - maximum rate of

increase in tracer concentrations lags the observations in all three vd scenarios offers a

direct link between the semi-idealised model set-up and the observations, showing that

differences in the behaviour of tracers are a consequence of differences in the NWP me-

teorological fields used in the simulations.

One of the questions that this chapter aims to answer is: how does the diurnal

evolution of O3 depend on the rate of growth in modelled boundary layer depth? The

results presented thus far suggest that the shortcomings of the UM Global / AQUM

boundary layer scheme is contributing to the delay in onset of forecast Ox increase in the

morning. It was decided that in order to best answer the above question, the focus should

instead be on Ox as a chemically-conserved quantity which can be represented by inert

tracers. This eliminates fluctuations in O3 concentrations due to chemical reactions with

NO2 in the photo-stationary state.

In order to re-create the observed and / or forecast Ox concentrations within the

boundary layer, the tracer budget must be represented correctly. The tracer budget will

be explored further in section 5.6.2, where an attempt to quantify the contribution of

entrained tracer to the boundary layer-average concentrations will be analysed.

5.6.2 Comparison with Eulerian budget study

The study of Kaser et al. (2017) quantifies the contribution of entrained O3 (also

Ox) to the surface concentrations by calculating the O3 concentration budget within the

boundary layer. They use simulations from the WRF-Chem model (Grell et al., 2005)

and observations taken during a campaign in summer 2014, in the Colorado Front Range.

The study concludes that morning entrainment of O3 from the residual layer contributes

significantly to the morning rate of change of surface concentrations. In this section,

the Eulerian budget method from Kaser et al. (2017) (henceforth referred to as ‘Kaser

study’) is used to calculate the vertical tracer flux gradient from the Lagrangian NAME
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experiments and subsequently the contribution of the entrained tracer to boundary layer-

average concentrations.

5.6.2.1 Methodology

By conservation of a scalar quantity ψ - in this case O3 or Ox concentrations, or

tracers in the NAME experiment - the rate of change is given by:

∂ψ

∂t
= −Ui

∂ψ

∂x
− ∂w′ψ′

∂z
+ Pnet(ψ) (5.13)

(Lenschow et al., 1981) where the first term on the right hand side represents mean hori-

zontal advection, second represents the vertical flux gradient and the last term represents

net sources and sinks. An assumption is made that the horizontal advection term is small,

due to the horizontal homogeneity of O3 (discussed in section 4.5.1). Only the ‘BGFT’

entrained tracer is considered (i.e. no boundary layer production); thus, the last term

equals zero.

The middle flux term in equation 5.13 represents the net contribution of turbulent

vertical transport of ψ to concentrations within the boundary layer and can be expressed

as the ψ entrainment flux at boundary layer top minus deposition flux at the surface:

−∂ψ
′w′

∂z
= −

[
−w∆ψ − vdψ

zi

]
(5.14)

=
w∆ψ

zi
+
vdψ

zi
(5.15)

where vd is the dry deposition velocity (vd = 5 cm s−1 is used in NAME simulations

with UKV meteorology, vd = 1 cm s−1 with UM Global meteorology). ∆ψ represents the

difference in ψ concentrations between a defined layer below zi and above. Depending

on the boundary layer evolution profile, this layer can be as large as 300 m (as in the

Kaser study), which estimates the proportion of the residual layer from which air will be

entrained down into the boundary layer over a 2-hour period, assuming near-linear growth

until 16 UTC. In the present case, a mean summertime morning boundary layer growth in

the UKV and UM Global models is closer to 200 m over a 2-hour period (90 ± 30 mh−1).

Because the boundary layer is considered as a box-model in this budget equation, the

entrainment flux term and the dry deposition flux term act as a tracer source and sink

respectively, thus work in opposite ways and should be treated with opposite signs.

In equation 5.14, entrainment velocity we can be estimated by considering the growth
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of the boundary layer to be a sum of contributions from (1) turbulent entrainment of

air from the residual layer, and (2) large-scale vertical motion caused by convergence /

divergence of tropospheric air masses (ws). From equation 5.4, it follows that

we =
∂zi
∂t
− ws (5.16)

The Kaser et al. study do not use vertical velocity measurements, but their WRF-Chem

simulations give a mean value of ws = −1.3±1.0 cm s−1. They therefore acknowledge that

their calculated we will be under-estimated by around 25% when represented only with

∂z
∂t . While UKV and UM Global values for ws are available, the values are instantaneous

and are incompatible with the rest of the hourly-averaged quantities such as ∆ψ or ∂zi
∂t .

Furthermore, it is logical that the hourly-averaged ws should be zero, as there is no reason

why there should be more updrafts or downdrafts. We also know that the UKV resolves

larger instantaneous values of ws than UM Global, which is likely due to its significantly

larger resolution - smaller grid-boxes are more likely to capture large instantaneous spikes

in draft velocity than larger grid-boxes, where the velocities are unresolved and averaged

over the entire grid-box. Therefore, the contribution of ws to we in equation 5.16 is not

included, and it is acknowledged that the entrainment values will be over-estimated due

to average hourly ws being non-zero between 00 - 15 UTC (2.5 ± 0.5 cm s−1 in UKV,

0.3± 0.2 cm s−1 in UM Global).

The diurnal cycle of dO3
dt is aggregated over 6 sites in the Kaser et al. study from

simulations and observations, and is shown in figure 5.12. The plot also shows the diurnal

Figure 5.12: Diurnal rate of change of surface O3 at 6 sites from the Kaser et al. (2017)
study. Red line represents WRF-Chem simulations, black are observations, with shading
showing the minimum and maximum values. Circles represent entrained O3 through
boundary layer growth, with error bars as minimum and maximum values.
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cycle of O3 entrainment through boundary layer growth. At 7 - 9 LT, the entrained O3

in both model and observation matches the observed average surface O3 rate of increase.

This implies that entrainment through boundary layer growth accounts for most, if not

all, of the observed morning O3 increase and is the most important mechanism for surface

O3 increase before 10 LT. After this time, other processes such as chemical production

and loss, deposition or advection have a greater influence on the surface concentrations

than entrainment.

5.6.2.2 Results of Eulerian comparison

First, let us consider the individual terms contributing to the vertical gradient flux in

equation 5.14, which are shown in figure 5.13. Tracer gradient (∆tracer) at boundary layer

top (5.13 a), rate of change of boundary layer depth (5.13 b) and boundary-layer average

tracer concentrations (5.13 d) are all individual components of the entrainment flux (5.13

c). Boundary-layer average tracer concentrations are also used in the dry deposition flux

term (5.13 f), alongside the boundary layer depth zi (5.13 e). It is clear from the ∆tracer

distributions that tracer concentrations in the free troposphere are systematically greater

than concentrations within the boundary layer. This is contrary to the Kaser et al. study,

where the gradient is positive during the early morning but changes sign further into the

afternoon due to accumulation of O3 following morning entrainment and larger source

terms such as photochemical production within the boundary layer. In order to ensure

a diurnal cycle of ∆tracer which matches that in the Kaser et al. study, surface-released

tracers could also be considered within the budget equation. However, even with mean

positive ∆tracer throughout the day, there is a negative entrainment flux term in the

afternoon (figure 5.13 c) due to a decreasing boundary layer depth after 12 - 15 UTC in

figure 5.13 b, whereas this remains positive until 16 LT in the Kaser et al. investigation.

Consequently, tracer entrainment flux into the boundary layer is positive between 3 -

12 UTC in both UKV and UM Global simulations, as expected from comparison with

figure 5.12.

The dry deposition flux in figure 5.13 f is interesting because not only are the UKV

values much greater than UM Global, but they are also much larger than the UKV

entrainment flux, nearing an order of magnitude difference between 0 - 6 UTC. The depo-

sition term is larger in the UKV simulations than UM Global for two reasons: firstly, the

boundary layer-average tracer is greater in UKV than UM Global simulations by a factor

of 1.5 - 2 throughout the day (figure 5.13 d). Secondly, the value of dry deposition velocity
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Figure 5.13: Mean and standard deviations in NAME simulations with UM Global (blue)
and UKV (orange) simulations for (a) tracer gradient across the boundary layer top zi,
(b) rate of change of boundary layer (dzidt ), (c) entrainment flux (i.e. first term of equation
5.15), (d) boundary-layer average tracer concentrations, (e) boundary layer depth zi and
(f) deposition flux term (i.e. second term of equation 5.15).

vd = 0.05ms−1 in the NAME simulations using UKV meteorology, while vd = 0.01ms−1

for the UM Global simulations. The larger value of vd for the UKV simulations is intended

to compensate for the over-estimation of entrainment in UKV, as discussed earlier in the

chapter. However, even by forcing the tracer concentrations in UKV simulations to have

a realistic diurnal profile with a larger value of vd, the problem of budget closure in the

UKV simulations persists. The assumption of ws = 0 is invalid for the UKV simulations,

because mean ws at boundary layer top is non-zero and positive (see section 5.4.3).

The vertical flux gradient (i.e. equation 5.15, difference between entrainment flux

and deposition flux) from NAME simulations using both UKV and UM Global meteo-

rology is directly compared against the rate of change of boundary-layer averaged tracer

concentrations from the simulations in figure 5.14, as a like-for-like comparison with figure

5.12.

For the NAME tracer simulation using UM Global meteorology, the relationship be-

tween rate of change of tracer (red line) to the vertical flux gradient (black dots) resembles

the relationship of observed dO3
dt and entrainment in the Kaser et al. study. This is re-

flected in the maintenance of a realistic diurnal cycle of boundary layer tracer within the

NAME simulation. In the morning (6 - 9 UTC), the Eulerian budget calculation coincides
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(a) UM Global (b) UKV

Figure 5.14: Average rate of change of boundary layer-average tracer in NAME simulations
with (a) UM Global meteorology and (b) UKV meteorology, over 53 locations. Shaded
area is the standard deviation. Black circles represent the Eulerian budget representation
of entrainment at the same locations, with error bars representing standard deviation.

with the Lagrangian tracer rate of change, confirming that entrainment via boundary layer

growth dominates the changes in boundary layer-average tracer concentrations during the

morning. For 9 - 12 UTC, entrainment still contributes to at least 50% of the changes in

boundary layer-average concentrations, but now other processes not accounted for in the

budget (e.g. horizontal advection) are likely to contribute to the tracer concentrations.

Note that there are no chemical transformation in the simulations, so unlike in the Kaser

et al. study, chemical sources and sinks are not contributing to the total rate of change.

In the afternoon (from 12 - 15 UTC onward), the gradient flux becomes negative due to

gradient reversal of the boundary layer growth seen in figure 5.13b.

Conversely, the UKV simulation shows a constantly negative vertical gradient flux

in figure 5.14, as it is dominated by the much larger deposition (figure 5.13f) than en-

trainment flux term (figure 5.13c). This means that the tracer budget is not closed for

the UKV simulation. However, its boundary layer-average tracer diurnal profile is similar

in shape to the UM Global simulation (figure 5.13d), which could mean that there is a

missing term in the budget equation for the UKV simulation, or an invalid assumption

(other than ws = 0) was made.

5.6.2.3 Conclusions of Eulerian budget comparison

In the NAME simulations with UM Global meteorology, entrainment of free-

tropospheric tracer via boundary layer growth is a dominant mechanism in the morn-

ing increase of boundary layer-averaged concentrations (and therefore also the surface
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concentrations, due to the tracer being well-mixed). Lagrangian NAME simulations were

compared against the O3 closure equation used in an equivalent O3 budget study of Kaser

et al. (2017), who also conclude that entrainment is a dominant source for surface O3 con-

centrations before 11 LT. Unfortunately, this also reveals inconsistencies with the NAME

simulation using UKV meteorology, for which the value of vd already had to be multiplied

by 5x more than in the UM Global simulations, with the intention of reproducing the

diurnal cycle. The tracer budget equation for UKV simulations cannot be closed because

the assumption that ws = 0 is invalid, but including this term results in unphysically

large entrainment velocity we. Therefore, comparing the NAME tracer study with the

Kaser study has enabled us to better understand why the UKV tracer simulations result

in much larger values of entrained tracer than UM Global simulations. The implication is

that large values of resolved vertical motion ws at the boundary layer top are dominating

entrainment in UKV simulations with NAME.

In this section, results were presented to show that there is a problem with using large

values of ws in the NAME tracer simulations. One might expect large ws to be associated

with unstable or neutral boundary layers (due to strong buoyant generation of turbu-

lence, or strong wind shear). Higher wind speeds are likely to result in shear-dominated

generation of turbulence, therefore stronger TKE and larger vertical motion across the

boundary layer top than during low wind speed conditions. Stronger winds are generally

associated with low-pressure synoptic conditions. Weaker winds are often present dur-

ing high-pressure synoptic conditions, which are also associated with high incoming solar

radiation (and thus buoyant production of turbulence). The following section applies a

synoptic low- and high-pressure partitioning to the analysis of NAME tracer simulation

diurnal cycles and examines their differences within the different synoptic regimes.

5.6.3 Synoptic variability: diurnal cycles

In order to further characterise the role of meteorology on tracer behaviour, the study

was sub-sampled by low and high pressure days through a visual inspection of the Met

Office surface pressure analysis charts, as described in section 5.4.1. The UKV evaluation

for vd = 1cm s−1 was not included due to it being un-physical as discussed in the previous

section. Here, June 2017 is sub-sampled into days of generally high pressure and anti-

cyclonic conditions (11 days), and low pressure with cyclonic conditions and / or stronger

winds based on isobars from surface charts (9 days). Some days (10) are undetermined

and therefore not included in the analysis.
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Figure 5.15: Rate of change of boundary layer-averaged background free-tropospheric
(BGFT) tracer concentrations for low pressure days in June 2017, using UKV and UM
Global meteorology and averaged over 53 sites. (a) vd = 10 cm s−1, (b) vd = 5 cm s−1

and (c) vd = 1 cm s−1. d[C]/dt is a dimensionless quantity due to normalisation factor,
but native in µgm −3h−1.

Figure 5.16: Same as figure 5.15, but for high pressure days.

From figures 5.15 and 5.16, it is clear that the maximum rate of increase in observed

Ox concentrations (dashed, black line) occurs later in the day (around 12 UTC; figure 5.15)

for low-pressure days than for high-pressure days (around 7 UTC; figure 5.16). The rate

of change in AQUM forecast lags the observations in both pressure regimes. However,

peak rate of increase occurs at the same time in forecast and observations (11 UTC)

during the low pressure days (figure 5.15), despite the forecast lagging the observations

throughout the morning (4 - 10 UTC).

The maximum rate of increase for tracers with UKV tracer is sensitive to both the

pressure regime and choice of vd. During the low pressure days and with vd = 10cm s−1

(panel a), there is similarity between the morning (00 - 10 UTC) profile shape of the

UKV tracer and observed Ox concentrations; likewise, the UM Global profile resembles

the AQUM concentrations between 4 - 12 UTC. The similarities break down when vd =

5cm s−1 is used, more so for the UKV than UM global simulations as the UKV d[C]
dt

profile has a sharp peak at 15 UTC. The UKV profile is non-comparable by the time

vd is decreased to 1 cm s−1 and is therefore not shown in 5.15c. Panel b suggests that
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in low-pressure conditions, even when vd = 5cm s−1, the UKV still entrains too much

tracer-rich air and produces an unrealistic diurnal cycle.

For vd = 10 or 5 cm s−1, the UKV and UM Global tracer profiles are more alike

during the high-pressure than the low-pressure sub-sample (compare figure 5.15 b,c to

5.16 b,c). A possible reason for this is because wind speeds are generally lower during

high-pressure than low-pressure conditions, and wind shear is one method of generating

turbulence. It would therefore be expected that in high-pressure conditions, there is

less interchange of air masses across the boundary layer top than during low-pressure

conditions. This would mean that ws is more similar between the two models during high-

pressure than low-pressure conditions. There is also a possibility that the sub-sample of

low pressure days (9) is too small to provide robust results. One way to make the study

more robust would be to increase the sample size by evaluating also July and August.

The high pressure days have a negative rate of change of forecast and observed

pollutant between 17 UTC through to 5 UTC (6 UTC for the forecast), meanwhile the

tracer experiments using both UM Global and UKV meteorology remain positive from

23 UTC and through into the morning and afternoon for vd > 5cm s−1. The positive

gradient throughout the night means that the tracer experiments experience too much

night-time tracer entrainment from the residual layer relative to tracer loss, as clearly

both the observations and the forecast experience the opposite effect. This only happens

during the high-pressure sub-sample of the data. In fact, the average boundary layer

concentrations of BGFT tracer during high pressure days are smaller than during low

pressure days. This could be an artefact of the nature of the semi-idealised experiment

configuration, whereby some tracers released at the lateral boundaries of the domain

might never never reach the land surface if transported by weak winds.

The fact that both tracer simulations behave similarly during high pressure condi-

tions, but differently during low pressure days, could indicate that the regime - and in

particular, vertical and horizontal wind speed - influences the amount of large-scale trans-

port of air into and out of the boundary layer in the NAME simulations. This could be a

physical problem due to the use of the entrainment parametrisation scheme within NAME

when the homogeneous boundary layer scheme is used. This is tested through the use of

both the inhomogeneous and homogeneous boundary layer schemes with both UKV and

UM Global tracer simulations, over a period of one week, 19-06-2017 to 25-06-2017. This

period was chosen because synoptic conditions over the UK are generally within a high

pressure regime for the first part until 22-06, after which a front comes through and the
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country is under a low-pressure regime from 23-06. The change in synoptic regime has

implications for entrainment, where is it expected that stronger wind speeds within the

low-pressure regime will enhance the entrainment process. The homogeneous and inho-

mogeneous simulations are also compared against Ox observations and AQUM forecast

concentrations.

5.6.4 Synoptic variability: case study of one week

The UK experienced an episode of widespread moderate surface O3 concentrations

between 19 - 22nd June (see figure 5.17). On the 21st June, 6 separate AURN sites

exceeded hourly O3 concentrations of≥ 180 µgm−3, accompanied by anomalously elevated

concentrations as measured throughout the AURN network. This event can be attributed

to the prolonged stagnant, high pressure conditions (P. Agnew, personal communication).

Concentrations throughout the country began to reduce in the evening of the 21st June

with the influx of colder air from the Atlantic, as depicted in figure 5.17. The time-series

simulated with vd = 5cm s−1 looks very similar but is not shown.

For the same week, superimposed on figure 5.17 is the BGFT tracer profile from

UKV and UM Global simulations with the homogeneous boundary layer scheme. Con-

centrations are averaged over 53 locations, beginning at 0 UTC on 19th June 2017 and

the simulations use vd = 10 cm s−1. For the first 66 hours, the variability of mean BGFT

tracer concentrations throughout the boundary layer using both the UKV and UM Global

meteorology is comparable to the AQUM forecast and surface observations. As the syn-

optic regime changes from high- to low-pressure, the mean tracer profiles diverge and

become significantly different from 0 UTC on 22-06 until 22 UTC on 25-06.

The UKV tracer profile in figure 5.17 suggests that during low pressure conditions,

greater amounts of BGFT tracer contribute to boundary layer-average concentrations

than during high pressure conditions. On the other hand, the UM Global tracer pro-

file during the second half of the week is similar to the AQUM forecast, although it

over-estimates the observations after 23-06. The entrainment parametrisation scheme in

NAME was discussed in section 5.3.1.1, where it was shown that the scheme uses resolved

vertical winds ws to determine whether particles are transmitted through the boundary

layer top. There are large differences in resolved vertical winds ws between UKV and UM

Global (shown in section 5.4.3), and those differences are likely to be exacerbated during

strong wind conditions.
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Figure 5.17: 7-day time-series (19 / 06 / 2017 to 26 / 06 / 2017) of boundary layer-average
concentrations of entrained background free-tropospheric tracer, averaged over 53 urban
locations using vd = 10cm s−1. Homogeneous boundary layer scheme averages using UKV
meteorology (red) and UM Global meteorology (dark blue), plotted along inhomogeneous
results using UKV meteorology (orange, dashed) and UM Global meteorology (light blue,
dashed) - all corresponding to left y-axis. AQUM forecast of Ox (solid, black) and the
AURN surface observations (black, dashed, hatched shading) averaged over the same
locations, both corresponding to the right y-axis. Shading represents inter-quartile range.

5.6.5 Inhomogeneous boundary layer simulations

One way to confirm that the distribution of ws at boundary layer top in UKV sim-

ulations is influencing entrainment is to repeat the experiment using the inhomogeneous

boundary layer scheme in NAME (introduced in section 5.3.1.1), as it bypasses the require-

ment to parametrise entrainment at boundary layer top. This means that any differences

in the representation of entrainment, directly related to the varying magnitudes of ws

between the UKV and UM Global simulations, are neglected.

The experiment is repeated over the period of 19-06-2017 to 25-06-2017, again with

vd = 10cm s−1 and shown with the dashed lines in figure 5.17. The model spin-up period

(00:00 19-06 to 00:00 20-06) is omitted. For the UKV tracer, results of the inhomoge-

neous case are significantly different from the homogeneous case, especially during the

low-pressure conditions. Where in the homogeneous experiment, UKV tracer was show-

ing signs of un-physical rates of entrainment into the boundary layer from 22-06, the

inhomogeneous case gives values which are comparable to the UM Global tracer. Inho-

mogeneous UKV tracer concentrations are smaller by around 2 × 10−3 µgm−3 than the

UM Global tracer during low-pressure conditions. During the high-pressure conditions

(20-06 to 22-06), the inhomogeneous UKV and UM Global simulations capture the larger

diurnal variability in concentrations seen in the observations and AQUM forecast.
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The boundary layer-average tracer concentrations profile for the UM Global simula-

tions with the inhomogeneous scheme is very similar to the homogeneous profile through-

out both synoptic regimes. This result suggests that using the cheaper homogeneous

scheme in NAME is fine for low-resolution NWP input (i.e. UM Global), but will lead to

significant differences for higher resolution NWP data (i.e. UKV).

Using the inhomogeneous scheme, which bypasses the requirement for an entrainment

parametrisation at the boundary layer top, gives results for the UKV tracer which are

much closer to UM Global tracer during windy conditions than when using the homoge-

neous scheme. This is evidence to support the postulate that the entrainment scheme in

NAME is unsuitable to deal with large vertical velocities from high-resolution NWP (i.e.

UKV) and should be used with caution. Therefore, when high resolution NWP data is

used for dispersion modelling with NAME, it is best to use the inhomogeneous boundary

layer scheme, although it is much more memory intensive than the homogeneous scheme.

This has implications for the results of this chapter, where if the entire month’s worth

of UKV simulations were to be repeated, the contribution of entrainment to boundary

layer-average tracer may not be as significant as it is when using the homogeneous scheme.

This is an important result for future development of air quality and dispersion models,

especially as NWP resolution increases and, as seen with the UKV data, could result in

over-estimation of pollutants during windy conditions.

5.7 Summary of results, conclusions and discussion

The process-based method of forecast evaluation presented in this chapter was mo-

tivated by results found in chapters 3 and 4. It was suggested in chapter 3 that errors

in the diurnal profile of modelled O3 concentrations are influenced by the diurnal profile

of the boundary layer depth. Here, the hypothesis was tested that a temporal lag in the

growth of urban boundary layer depth in the air quality forecast model AQUM results

in a lag in the modelled Ox concentrations in the morning due to a delay in downward

vertical transport of O3-rich air from the residual layer. Using a free-tropospheric tagging

technique in NAME, tracers originating from above the modelled boundary layer which

are entrained into it were identified. The meteorological data used in the experiments are

from UKV and UM Global configurations of the MetUM, which differ substantially in

their modelled boundary layer depth in the morning hours and rate of change throughout

the study period.

The second research question concerned the reflection of changes in synoptic pressure
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conditions within the O3 and NO2 forecasts. Of particular interest were tracers trans-

ported from outside of the domain or entrained from the residual layer - i.e. no local

land sources. A one-week case study was identified where synoptic conditions in the UK

changed from predominantly anti-cyclonic to cyclonic, with an evaluation of the ability

of the tracer simulations with UKV and UM Global meteorology to capture this change

in regime for non-local tracer.

5.7.1 Summary of results

The main results from this study are as follows:

• Entrainment and deposition processes alone can re-create the diurnal evolution of

Ox when UM Global meteorology is used.

• There is a lag of at least 1 hour in the rate of maximum increase of entrained tracer

from lateral boundaries (‘BGFT’) between the UM Global and UKV simulations.

This temporal lag is due to the delay in initiation of morning boundary layer growth

in UM Global, compared to the UKV. Because AQUM is a similar model configu-

ration to the UM Global, the lag in boundary growth in the latter could result in a

delay in the morning increase of surface Ox within the AQUM forecast.

• By calculating the vertical gradient flux from an Eulerian perspective, entrainment

accounts for all of the tracer increase between 6 - 9 UTC in UM Global simula-

tions, which is consistent with the findings of another modelling study verified by

observations (Kaser et al., 2017). The contribution of entrained tracer to boundary

layer-average concentrations decreases in the afternoon. UKV simulations have an

entrainment flux term which is much larger in amplitude than the rate of change of

mean tracer concentrations. The implication of this is that the UM Global simula-

tions realistically represent the process of entrainment and can be compared with

forecast and observed Ox, whereas the UKV simulations have some imbalance. The

entrainment flux term is negative throughout the day in the UKV simulations, which

implies constant detrainment if resolved vertical wind component ws is (incorrectly)

assumed to be zero in the budget equation. Otherwise, including a non-zero ws term

makes the vertical gradient flux un-physical.

• There is a loss of diurnal cycle and larger differences between tracer concentrations

from UM Global and UKV during windy or low-pressure conditions than during

high-pressure conditions.
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• During low-pressure conditions, NAME with UKV meteorology simulates bound-

ary layer-average tracer concentrations which are significantly too large, when both

vd = 5 and 10 cm s−1 are used. This happens when NAME’s homogeneous bound-

ary layer scheme is used, which is less computationally intensive to run than the

inhomogeneous scheme.

• However, when the inhomogeneous scheme is used, the magnitude of UKV

boundary-layer average tracer during windy conditions is much smaller than with

the homogeneous scheme. The tracer amount is then comparable to that from UM

Global, although both simulations now have less boundary-layer tracer than the

AQUM forecast or observations.

5.7.2 Chapter conclusions and discussion

This chapter investigated the influence of different NWP input on Ox-like tracers

within a NAME simulation. The 1 - 2 hour lag in Ox concentration increase in the AQUM

forecast is mirrored by tracers within the NAME-UM Global simulations, which shares

most of AQUM’s parametrisation characteristics. The offset in initialisation of morning

surface tracer increase is less evident in the NAME-UKV simulations, which is likely

due to its more realistic representation of the surface energy budget with the MORUSES

surface tile scheme, which results in more accurate timing of boundary layer development.

This difference suggests that a better representation of the surface heat fluxes in AQUM

could result in a more accurate timing of the forecast Ox morning increase, by improving

the modelling of boundary layer development. Because the simulated tracers are directly

comparable to Ox concentrations within AQUM, a main conclusion of this chapter is that

the representation of boundary layer development directly influences the morning increase

timing offset between the AQUM forecast and observations.

Morning boundary layer growth is important for surface pollutant concentrations

for many reasons, including but not limited to the fact that the process of its growth is

related to entrainment of air (and any molecules) from the free troposphere; and also its

depth dictates the volume that the molecules can occupy. Entrainment is a process that

could contribute significantly to the morning increase of boundary layer-average Ox, and

thus also to surface concentrations (assuming a well-mixed daytime boundary layer).

One of the aims of this chapter was to quantify this contribution. Results from this

Lagrangian framework were compared against an Eulerian budget evaluation, where it

was found that the entrainment contribution to surface tracers within the NAME-UM
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Global simulation dominated between 6 - 9 UTC, and still contributed to at least 50%

between 9 - 12 UTC. Because UM Global shares most of its parametrisation characteristics

with AQUM, it can be concluded that the underlying meteorology in AQUM - including

the entrainment process - is an important factor in determining the diurnal profile of

the forecast surface Ox concentrations, even in the absence of chemical production and

losses. Entrainment should therefore not be overlooked within future air quality model

development.

In contrast, the budget for the NAME-UKV simulations was not closed due to invalid

assumptions about vertical velocities (ws) at the boundary layer top. The assumption

that ws could be set to zero was invalid, because UKV resolves larger values of ws at the

boundary layer top than UM Global, possibly as a direct result of smaller grid spacing.

This resulted in too high an entrainment flux within NAME’s entrainment parametrisa-

tion scheme. This effect was found to be enhanced in low-pressure synoptic conditions,

consistent with the expectation that vertical (and horizontal) mixing could be greater

than during high-pressure conditions, thus resulting in greater magnitudes of resolved

vertical velocities, and hence enhanced entrainment. A lesson learnt from the above is

that resolution of the underlying NWP, as well as whether boundary layer mesoscale pro-

cesses are resolved, needs careful consideration if NAME is to replace AQUM as the UK’s

operational air quality forecast model, as well as for research case studies.

One way of bypassing the use of the parametrisation scheme is to set the turbulence

parameters to vary with height within the boundary layer (‘inhomogeneous’ scheme),

instead of taking the vertical average (‘homogeneous’ scheme). By considering a one-

week case study, it was shown that the use of the more expensive inhomogeneous scheme

resulted in more realistic entrainment values within the NAME-UKV simulations during

both low- and high-pressure days. From this, it can be concluded that modelling studies

using NAME should beware errors in the concentrations of atmospheric species arising

from the use of the computationally cheaper homogeneous scheme. Alternatively, they

could consider using a short simulation time-step and particle synchronisation time (e.g.

5 minutes instead of 15). This also applies for future development of air quality models

in general, as the Met Office are currently investigating how to re-purpose NAME for

operational air quality modelling.

The study presented in this chapter was mostly limited by computational power

and available time. The question of how much influence does the difference in model

resolution between the UM Global and UKV make to perceived tracer results has not
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been addressed, and it may well turn out that resolution could have an important role to

play. If more time were available, the resolution of the UKV input to NAME could be

down-scaled to match that of the UM Global, before re-running the experiments. One

way of further ensuring robustness of results would be to extend the study period from

just 30 days to one or more summer seasons, thus vastly increasing the data sample - in

particular when the study period is further partitioned into synoptic conditions. Further-

more, the inhomogeneous scheme could be used instead of the homogeneous scheme, in

order to bypass the inconsistencies demonstrated with the use of higher resolution UKV

data within NAME’s entrainment scheme. The expected benefit of using the inhomoge-

neous scheme would be that the enhanced entrainment rates simulated with the UKV

meteorology would be significantly reduced. However, the computational time that this

would take would be greatly increased. A sensitivity study over a shorter period with

the inhomogeneous scheme would suffice to demonstrate this. Thus, I acknowledge the

possibility that the importance of entrainment to surface tracer concentrations may have

been over-estimated by using the homogeneous boundary layer scheme in the experiments

with UKV meteorology due to the use of NAME’s entrainment parametrisation scheme.

Another consideration is the use of high values for dry deposition, vd. This was used

as a proxy for chemical losses, which are not represented explicitly in the simulations, in

order to re-create a valid mean diurnal profile of the tracers. For example, in the UKV

simulations, vd was set to an unrealistically high value of 5 cm s−1 (where the observed

range over land is 0.5 - 1 cm s−1) in order to correct the tracer concentration gradient

caused by enhanced entrainment (relative to the UM Global simulations). In other words,

a wrong value of vd is used to correct for errors in the representation of entrainment. This

presents an issue because the resultant diurnal profile may seem ‘correct’, but for the

wrong reasons. The gradient reversal, which is corrected with the use of high vd, is

likely caused by the relatively large magnitude of resolved vertical velocities ws in the

UKV simulations, which result in inconsistencies within the entrainment scheme when

the homogeneous boundary layer scheme is used. Once again, if the experiment were to

be repeated using the inhomogeneous scheme, perhaps dry deposition rates could be set

to a more realistic value in the UKV simulation, as there may not be a need to offset the

reversed vertical tracer concentration gradient.

Consistent with the findings of e.g. Travis et al. (2016), and despite the outlined

limitations, the present study provides evidence to support the hypothesis that diurnal

errors in surface Ox forecasts are strongly related to errors in the evolution of boundary
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layer depth, whose importance should not be overlooked within the realm of improving

surface pollutant forecasts. Although single observation campaigns such as the one of

Trousdell et al. (2016) use observed entrainment velocities to determine the contribution

of photochemical production to surface O3 in rural areas, there does not currently exist

a network of routine observations of entrainment velocities. Given that this would likely

involve eddy-covariance methods, it is unlikely that such a network will exist in the future,

and observation studies are likely to be campaigns over a specific area and period in time.

This semi-idealised tracer experiment thus offers a simple but insightful technique for

statistical analysis of the effect of modelled boundary layer entrainment on surface Ox

concentrations. It could also be extended to work with other pollutants transported from

farther afield.



6. Conclusions

The work in this thesis was completed in order to determine the influence of mete-

orological forecast errors on the forecast errors of regional AQ variables within AQUM,

through implementing various categories of evaluation methods. Meteorology serves an

important role in AQ forecasting, because boundary layer processes such as precipita-

tion, dispersion, turbulence and entrainment are all responsible for transporting and /

or removing pollutants on both small and large length-scales (Seaman, 1999). Errors in

meteorological variables are likely to propagate to the pollutant forecast, as confirmed

by modelling studies such as Zhang et al. (2007) which demonstrates the uncertainties

in predictability of an elevated urban O3 concentrations event by perturbing initial me-

teorological conditions, such as surface wind speed and temperature. Therefore, through

identifying and understanding errors in wind speed, the representation of boundary layer

stability and entrainment, or precipitation within a coupled AQ-meteorology forecast

model, developers can begin to improve the AQ model so as to minimise pollutant fore-

cast errors rooted in meteorology.

This thesis has demonstrated an initial evaluation of the suitability of neighbourhood-

based (Ebert, 2009; Mittermaier, 2014) and process-based verification techniques in order

to learn more about the relationships between the forecast errors than those demonstrated

with traditional point-based verification metrics. For example, the SO-NF method (Ebert,

2008) allows some degree of displacement between the observation site and the grid-point

forecast, accepting that the forecast can still be useful even if the feature (e.g. a pre-

cipitation front) was not predicted to be in quite the right place at the right time. It is

proposed that through constructing a distribution of possible values from within a neigh-

bourhood around the point observation, a deterministic forecast can be evaluated against

the observation on a probabilistic basis, which can be beneficial for high resolution fore-

casts of certain meteorological variables (Mittermaier, 2014). By evaluating the forecast

over a neighbourhood rather than at grid-scale only, the existence of grid-scale relation-

ships between any forecast errors could be amplified when larger areas are considered.

169
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For example, meteorological errors close to, but not at, the measurement site could be

influencing pollution forecast error. The neighbourhood scale at which the relationships

are strongest may therefore be used to better understand the nature of the relationships,

furthering any knowledge gained about the forecast errors from point-based metrics. Re-

cently, the SO-NF method was successfully applied in oceanography (Maksymczuk et al.,

2020; Crocker et al., 2020) but to the best of my knowledge has not yet been applied to

AQ. It was a unique opportunity to test the suitability of the SO-NF method to evaluate

AQ forecasts directly within the HiRA framework.

The remainder of this chapter is structured as follows: in sections 6.1 through to 6.3,

main conclusions arising from this thesis will be presented in the context of the original

research questions from section 1.4. A summary of the research questions and answers

follow in section 6.4, with a discussion and further questions yet unanswered in this thesis

will be presented in section 6.5.

6.1 Impact of 10 m wind speed errors on O3 and NO2 fore-

cast errors

Point-based metrics

In chapter 3, the 10 m wind speed forecast was demonstrated to have the strongest

positive bias during the night and early morning, similar to that of other European AQ

models (Brunner et al., 2015). This coincides with an over-estimation of mean surface O3,

where the morning increase in forecast concentrations lags the observations by 1 - 2 hours.

The mean NO2 forecast diurnal profile has a negative bias and is anti-correlated with the

observations, most likely because of its close association with O3 via chemical processes.

It was hypothesised that the leading cause of the morning lag in the increase of O3 and

NO2 is a physical process, rather than a chemical one. This hypothesis is consistent with

Im et al. (2015b), where it is shown that differences in the chemical or meteorological

configurations within the same model framework can lead to significant differences in the

prediction of O3 concentrations.

In order to address the first overarching research question, “How are the forecast

errors in O3 and NO2 related to forecast errors in 10 m wind speed?”, a comparison

between the top percentiles of the point-based error distributions was done. The compar-

ison of O3, NO2 and 10 m wind speed forecast errors directly revealed that the top 10th

percentile of the wind speed errors coincided with above-average O3 (positive) errors, and
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conversely with above-average NO2 (negative) errors. The strength of this relationship

leads to the conclusion that, when evaluated at the grid-scale, over-estimating night-time

10 m wind speed in AQUM increases the negative forecast bias in NO2 and positive bias

in O3. Consequently, 10 m wind speed is one variable whose improved forecast accu-

racy within AQUM could lead to a reduction in the biases of O3 and NO2 summertime

forecasts between 00 - 08 UTC.

One possible way of reducing the surface wind speed bias would be to consider the

effect of using stability functions at night. Specifically, the ‘long-tailed’ stability functions

are currently used within the boundary layer parameterisation scheme in order to increase

mixing during stable night-time conditions, which reduces radiation cooling to keep the

surface temperatures accurate.

Neighbourhood-based metrics

One of the other research questions posed at the beginning of this thesis was, “Can

a probabilistic neighbourhood evaluation provide insights into the nature of relationships

between meteorological and pollutant forecast errors?”. Chapter 4 therefore explored

whether the spatial footprint of the surface wind speed forecast error contributes to the

enhanced forecast O3 concentrations and greater dispersion of NO2. In order to evaluate

the impact of 10 m wind speed forecast errors within the vicinity of an AQ monitoring

site on errors at the location, the SO-NF method was applied to the wind speed, O3

and NO2 forecasts, using BS and CRPS error metrics. These scores were calculated by

forming a pseudo-ensemble forecast from a square neighbourhood of grid-boxes around a

point-observation in increasing size, i.e. 3x3, 5x5, 7x7 etc. The larger the neighbourhood

over which error correlations appear the strongest, the larger the footprint of influence.

A statistically significant negative correlation was found between 10 m wind speed

(4 - 6 ms−1) and NO2 forecast errors during the morning hours at both urban and rural

locations, for neighbourhoods of size < 3x3 (362km). This means that over-estimating

wind speed > 6 ms−1 is related to larger negative NO2 bias, perhaps due to too much

dispersion in the model on local scales. No significant correlations were found for neigh-

bourhoods larger than 3x3. However, while the O3 and Ox evaluation with wind speed

revealed a positive correlation in the forecast errors at urban background sites during the

morning, the strongest correlations were found at 5x5 (602km) neighbourhoods for Ox,

and 7x7 (842km) for O3. This finding supports the hypothesis that an over-estimation of

moderate wind speed is related to increased error in O3 and Ox concentrations on regional
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scales.

A reason for this could be that for 10 m wind speeds exceeding a threshold (noted by

Sun et al. (2012) to be around 5 ms−1 during stable conditions), turbulent kinetic energy

can still result in exchange of air masses across the boundary layer top, i.e. entrainment.

As previously noted, the residual layer can have higher concentrations of O3 than the

boundary layer below, as the previous day’s O3 would have accumulated and become de-

coupled upon the emergence of the shallow and stable nocturnal boundary layer during

the evening. This results in a positive gradient in O3 across the boundary layer top in the

early morning hours, which means that air entrained from the residual layer would lead to

enhanced concentrations within the boundary layer. Because of the positive bias in wind

speed over a large neighbourhood shown in chapter 4, entrainment could be contributing

more O3 than is observed, thus resulting in larger O3 forecast error.

Limitations

Both the point-based and the neighbourhood approaches to this evaluation spanned

short study periods of just one season. This means that the sample size was small, and

very particular conditions within each season imply that the study cannot be generalised

to other years. A simple way of ensuring robustness of the study would be to increase

the sample size by considering e.g. winters or summers spanning an appropriate number

of years - 3 or 4 would suffice. A further limitation to this, however, is that AQUM has

been only been operational since 2013 and has since then undergone many fundamental

changes in configuration, which would introduce a further complexity in the analysis of

comparing like-for-like.

Another limitation, perhaps more specific to the neighbourhood approach than the

point-based approach, is that independence of sites has not been ensured (apart from the

removal of all London sites but one). There may be other overlapping regions of nearby

sites, especially when larger neighbourhoods are evaluated. Independence of variables is

important for a robust statistical evaluation, therefore the experiment could be improved

by ensuring that the sites are far enough apart to represent unique regions within the

domain.
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6.2 Impact of entrainment representation on O3 and NO2

forecast errors

The contribution of boundary layer entrainment to surface O3 and NO2 forecast

error was examined by designing a tracer dispersion experiment within NAME (Jones

et al., 2007). This evaluation examined the impact of boundary layer development and

entrainment on the pollutants, therefore addressing another science question outlined at

the beginning of this thesis: “Can process-based evaluation be used to inform us about

the relationship between meteorological and pollution forecast errors?”. The point based

methods of chapter 3 and neighbourhood verification methods explored in chapter 4 pro-

vide two complementary techniques of analysing the relationship between the represen-

tation of boundary layer processes (i.e. wind speed, boundary layer development and

entrainment) with O3 and NO2 forecast errors.

In order to minimise potential errors due to emissions or chemistry, Ox was repre-

sented in the simulation with inert tracers, using different representations of boundary

layer development from the UKV and UM Global models. The simulation was set up

such that there were no sources within the domain, no chemical reactions and no sources

/ sinks other than dry deposition to the Earth’s surface and advection in / out of the

domain. The resulting average diurnal profile of the simulated tracers closely resembled

the observations in June 2017, as in chapter 3 where a lag in the morning increase of

forecast O3 concentrations was identified.

It was concluded from the month-long simulations that the delayed rise in Ox concen-

tration levels is the morning is due to the delayed onset of efficient mixing and subsequent

entrainment of air from the night-time residual layer to the growing daytime mixed layer.

This finding is consistent with e.g. Hanna and Yang (2001), where too much mixing of O3

from aloft was shown to be a result of weak night-time temperature inversions at modelled

boundary layer top. The evaluation in section 5.4.2 showed that boundary layer develops

later in AQUM and UM Global than it does in the UKV, coinciding with the timing of the

O3 error lag. The late boundary layer development in UM Global (and therefore AQUM)

relative to UKV is likely due to the representation of the surface energy balance. AQUM

and UM Global both use a single-tile approach to parametrise urban regions (Best, 2005),

which has been shown to be less accurate than the 2-tile approach of MORUSES (Por-

son et al., 2010) used in e.g. the UKV. The representation of the surface sensible heat

flux directly influences the model’s diagnosis of boundary layer stability, and hence the
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amount of vertical advection and turbulent mixing, thus boundary layer development.

A one-week case study was selected to demonstrate that during a synoptic high-

pressure period, the large diurnal variability in forecast and observed Ox was replicated

with tracers from both UM Global and UKV simulations. This confirmed that under

calm, stable conditions, the meteorology of the tracer simulations alone is able to replicate

the forecast and observed cycles, thus emphasising the importance of meteorology on the

transport of pollutants in the model. However, during the latter half of the week, synoptic

conditions were more unsettled upon the passage of a weather front. During this time,

the forecast and observed diurnal cycles reduced in amplitude and were replicated only

with the UM Global tracer simulations. Tracer concentrations from the UKV simulations

were over-predicted and required further investigation.

Through using the Eulerian budget approach of Kaser et al. (2017), it was concluded

that entrainment is a process that contributes significantly to the morning increase of

boundary layer-average Ox, and therefore also to surface concentrations, if the day-time

boundary layer is well-mixed. The results show that entrainment is the leading source

of tracer concentration increase in the morning (between 6 - 12 UTC) in the UM Global

simulations, which is consistent with Kaser et al. However, because of failing to close the

budget within the UKV simulation due to inconsistencies within the entrainment scheme

when the ‘homogeneous’ boundary layer scheme is used, the hypothesis that entrainment

is a dominant source of morning Ox is not supported with the UKV simulations presented

in section 5.6. Instead, it should be noted that any future work with NAME should con-

sider the underlying NWP resolution and whether it explicitly represents or parametrises

turbulent parameters, in order to avoid double-counting of turbulent parameters across

the boundary layer top.

Limitations

It was assumed that the mean resolved vertical velocity (ws) was negligible, which

could result in under-estimation of the entrainment velocity. This is a fine assumption to

make for the UM Global simulation as mean ws is small. However UKV resolves higher

values of ws than UM Global, which directly feed into the entrainment parametrisation

scheme in NAME, used within the homogeneous boundary layer scheme. Therefore if

the resolved vertical velocities ws are large, the entrainment scheme could result in too

much exchange of air masses, as in the case of the UKV simulations. This is likely

because the horizontal grid-spacing of UKV (1.5 km) is much smaller than UM Global
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(17 km in this dataset, although currently it stands at 10 km), therefore UKV can resolve

smaller-scale structures and processes. This could lead to double-counting of turbulent

motions - ones which are already resolved in UKV, and ones which are parametrised by

the NAME homogeneous boundary layer scheme - thus resulting in an un-physically high

rate of entrainment, as shown by the mean UKV tracer profile during unstable condi-

tions. Indeed, switching the NAME boundary layer scheme to the inhomogeneous scheme

(without the requirement of the entrainment parametrisation scheme) results in smaller

tracer concentrations being entrained through the boundary layer top, which are closer to

the observations and forecasts than when using the homogeneous scheme. However, the

inhomogeneous scheme is computationally more expensive and takes around 5 times as

long in real-time for each model time-step due to retaining the particles’ memory. There

is currently on-going work at the Met Office to adapt NAME’s entrainment scheme to

work with higher resolution UKV data in the homogeneous boundary layer framework

(P. Agnew, personal communication).

It is important to be aware of the advantages and disadvantages of using a com-

putationally cheaper boundary layer scheme, especially in light of using NWP data of

increasing resolution in both off-line and on-line AQ models. Current on-going work at

the Met Office points to the possibility of adapting NAME to work more efficiently with

higher resolution meteorology data in order to provide a routine AQ forecast in place

of AQUM. It is evident from results presented in chapter 5 that the representation of

boundary layer processes and especially entrainment in subsequent iterations of air qual-

ity forecast models - whether that is AQUM, a version of NAME or anything else - should

not be overlooked.

6.3 Impact of precipitation errors on PM2.5 and PM10

Point-based metrics

The other relationship explored in chapter 3 aims to answer one of the remaining

research questions: “How are forecast errors in PM10 and PM2.5 related to forecast

errors in precipitation?”. Using point-based metrics, it was demonstrated that when

precipitation is under-estimated, the PM forecast error is reduced. In other words if the

precipitation bias was removed, the PM forecast error would be worse. This is because

PM2.5 and PM10 both have negative bias in AQUM, therefore the under-prediction of

rain has the effect of not removing as much PM as is observed, and thus the negative PM
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bias appears smaller. Although it might be expected that this effect should be immediate

due to the efficiency of precipitation as a PM sink, the composite error analysis showed

that the expected reduction in PM error is delayed by a few hours. The delay could be

caused by the fact that the precipitation forecasts are not verified at the same locations

as the PM forecasts, since the AURN and WMO sites are not co-located. This means

that although care has been taken to ensure that the PM forecast error is compared to

the precipitation forecast error at the nearest available WMO site location, there does

exist a spatial discrepancy.

Ebert (2009) states that indeed a biased forecast could be more useful than an un-

biased one if the errors are compensating. A ‘bad’ forecast for a modeller may actually be

a ‘good’ forecast for the end user, if it produces accurate results for the wrong reason. For

example, in chapter 3 it was found that if the precipitation forecast were to be improved,

the PM2.5 error would increase. Thus, in the absence of fixing any discrepancies in primary

emissions input, the AQ forecaster might actually prefer the underlying meteorology to

have biases (e.g. in the precipitation) in order for the PM errors to compensate.

Neighbourhood-based metrics

Because of spatial discrepancies associated with precipitation forecasts in particular,

it is of interest to the scientific community to test the suitability of a neighbourhood fore-

cast verification technique, in order to minimise the double error penalty of the precipita-

tion forecast skill caused by the differences in location. The SO-NF evaluation presented

in section 4.6.4 revealed that where relationships between precipitation BS and PM2.5 ex-

ist, they are weak and their sign is site-dependent. For PM10, there were no statistically

significant results. It can therefore be concluded that statistical neighbourhood-based

evaluation methods are not useful for characterising sources of PM forecast error related

to precipitation forecast error.

Limitations

This study faced a number of limitations, some of which were discussed in section

4.6.5. Firstly, seen as though precipitation error itself was shown to not be large in re-

lation to hourly accumulation, there may be other compounding factors which impact

the precipitation and PM relationship - namely wind speed, wind direction and emis-

sions, which were not evaluated in conjunction with precipitation but could potentially

strengthen some of the relationships presented. Therefore one way of establishing the
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influence of meteorological factors on PM could be to include a wind speed / direction

analysis alongside the precipitation, as was also proposed for the O3 and NO2 work.

Secondly, because this was a statistical evaluation over numerous sites, no case stud-

ies were conducted to evaluate specific error patterns at individual sites or even specific

meteorological conditions. It was shown that PM forecast errors errors were unique to

each site (e.g. due to local emissions, geographical location, elevation, etc), therefore

perhaps it would be appropriate to evaluate some case studies of impact of a particularly

poor precipitation forecast on the PM forecast errors in relation to a baseline reference

forecast (e.g. persistence). Especially in the context of using a neighbourhood approach,

individual site analysis would ensure that the act of increasing the neighbourhood does

not deteriorate the dataset by e.g. falsely including parts of the sea within a large neigh-

bourhood, thereby potentially leading to more conclusive results about the strength of

these relationships at different neighbourhood sizes.

Finally, the sites included in the study were not necessarily independent of each other,

which could lead to inaccuracies of the results within overlapping neighbourhoods. If the

experiment was repeated, it should be ensured that sites are independent.

6.4 Summary

This thesis has explored numerous avenues of identifying the impact of meteorolog-

ical forecast errors on AQ forecast accuracy. In particular, these 4 main were questions

addressed:

1. How are forecast errors in O3 and NO2 related to forecast errors in 10 m

wind speed?

There is a positive correlation between the top wind speed error percentiles and

both O3 and NO2 forecast errors at the grid-scale in AQUM.

2. How are forecast errors in PM10 and PM2.5 related to forecast errors in

precipitation?

An error composite evaluation showed that under-estimating precipitation results

in a reduced PM forecast error within 6 hours of the error ‘event’ - this relationship

is thus because the PM forecast in AQUM already has a negative bias.

3. Can a probabilistic neighbourhood evaluation provide insights into the

nature of relationships between meteorological and pollutant forecast
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errors?

It can, although it is more insightful for establishing the spatial footprint of influence

of wind speed forecast error on O3 and NO2, than it is for determining relationships

between precipitation and PM2.5 or PM10.

4. Can process-based evaluation be used to inform us about the relationship

between meteorological and pollution forecast errors?

Process-based evaluation can certainly help us understand how modelled bound-

ary layer processes within coupled AQ - meteorological forecasts could result in

pollution forecast errors. In particular, the impact of entrainment of O3 into the

boundary layer from aloft could be evaluated with an idealised simulation, whereas

determining this contribution with a standard point-based analysis would not be

viable.

6.5 Further questions and discussion

Although the semi-idealised tracer study is a good proxy for analysing the meteoro-

logical influence on forecast Ox concentrations, it would enhance the robustness of the

results to directly conduct sensitivity tests within a research configuration of AQUM.

How would the AQUM pollutant forecast respond to a direct change in boundary layer

development as a result of using the two-tile urban surface scheme in place of the current

one-tile scheme? Another sensitivity study could be to vary the magnitude of night-time

wind speed bias, which, if set to zero, would either provide further evidence to support,

or disprove, the hypothesis that O3 and NO2 forecast errors are influenced by the wind

speed bias.

One of the other remaining questions arising from the research presented in this thesis

is whether the SO-NF technique to evaluate error relationships between precipitation

and PM would be more insightful in the case of a high resolution forecast - as it was

intended - rather than the regional resolution of AQUM. We might expect to see a stronger

relationship between precipitation and PM when using SO-NF if the model gridspacing

were smaller. Neighbourhood techniques are particularly beneficial to demonstrate the

improvement of precipitation forecasts from a low to a higher resolution (Mittermaier,

2014), therefore it would be particularly interesting to see whether a future high-resolution

development of AQUM could be evaluated against the current configuration using HiRA.

Zooming out further, it is possible that developing a higher resolution forecast than
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AQUM’s 12 km gridspacing would represent both the meteorology and pollution finer

scales (i.e. urban areas) with more accuracy. There is currently on-going work at the Met

Office to incorporate accurate convection modelling in city-scale NWP (Lean et al., 2019),

whereby the improved representation of surface temperature and convective overturning

could be useful to routine AQ forecasting, due to high detail of urban-scale representation

of boundary layer processes. Such high resolution NWP is computationally expensive to

run - and especially so if AQ forecasting is incorporated - thus they could be reserved for

use during busy events with high people-density, e.g. the Olympics in Paris, 2024.

Currently, it is likely that off-line dispersion models such as NAME require further

development to be able to make the best use of convection-resolving NWP, in light of the

UKV tracer results presented in chapter 5. There is also the bigger question of whether

off-line models would even be capable of operating efficiently at such high resolutions, since

they would also require a small model time-step to match. However, fog forecasts within

the 333 m scale London Model (Boutle et al., 2016) are already running routinely, therefore

it is only a matter of time until routine on-line air quality forecasts reach similar city-

scale resolutions. It was therefore a useful exercise to test the suitability of neighbourhood

verification methods on air quality variables in chapter 4 of this thesis, as it is clear that

moving forward, traditional verification metrics will be inadequate to provide an accurate

assessment of the skill of a high-resolution forecast. Further work needs to be done on

testing optimal neighbourhood sizes for different variables, testing which probabilistic

scores are most useful (Brier score and CRPS used in this thesis are two of many),

and testing which threshold values are most appropriate for each variable. Furthermore,

probabilistic neighbourhood verification methods could also be applied not only to routine

forecasts, but also to the type of evaluation conducted in chapter 5, which would provide

more information about the type of spatial errors within a semi-idealised setting.

In terms of the future of air quality forecasting itself, there is a lot of rewarding work

to be done. “Clean growth and Innovation” is one of the Met Office’s current Research

and Innovation Strategies 1 which includes air pollution, as it is widely recognised that

air pollution is an area of high importance to public health and meeting international

emissions incentives. A recent high-profile case of a child’s death due to successive asthma

attacks and respiratory problems has led to an inquest into the levels of pollutant exposure

in London, as well as the public messaging surrounding air quality, such as the DAQI.

Ella Adoo Kissi-Debrah is the first person to officially have had air pollution named as

1https://www.metoffice.gov.uk/research/approach/research-and-innovation-strategy - last ac-
cessed on 14-01-2021

https://www.metoffice.gov.uk/research/approach/research-and-innovation-strategy
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a cause of death2. Evaluating population exposure to PM2.5 in particular is therefore

a priority for the Office of Health Promotion (successor to Public Health England after

October 2021).

Accurate short-term pollution forecasts (daily – weekly) at urban scales are therefore

necessary in the interest of public health. Pollution concentrations in urban areas are not

spatially homogeneous, as some regions of a city will be more highly polluted than others

due to local sources and building characteristics dictating dispersion flows and surface

heat fluxes. Therefore, in an ideal world with sufficient computational availability, a

city-scale forecast of high accuracy could be possible, and it could be possible by relying

on accurate representations of meteorological processes at fine scales. There is on-going

work to advance the resolution capabilities of AQ forecasting, e.g. Wu et al. (2014) use

the Community Multi-scale Air Quality Modeling (CMAQ) to forecast PM10 in Beijing at

3km resolution; Žabkar et al. (2015) use the Weather Research and Forecasting model with

chemistry (WRF-Chem) to forecast O3 at 3.7 km resolution in Slovenia, with more skill

than a statistical model. WRF-Chem forecasts of O3, PM2.5, PM10 and other species are

also evaluated against observations taken during a campaign in Australia, within nested

domains at 81, 21, 9 and 3 km (Zhang et al., 2019). WRF-Chem PM2.5 forecasting

capability is evaluated at even higher resolutions by Jena et al. (2021), who evaluate

the performance of the first 400 m WRF-Chem configuration as is used in Delhi to alert

citizens of high pollution levels at the street-scale. It is apparent that city-scale AQ

models are well on their way to becoming used in routine forecasting within the next

decade.

Various international pollution incentives (e.g the Paris Agreement) are resulting in

cities all over the UK pledging to reduce street pollution levels e.g. by reducing emissions

from road vehicles, waste management and domestic heating. Therefore accurate long-

term pollution predictions (e.g. seasonal – annual) based on anthropogenic scenarios are

necessary to help policymakers reach realistic targets.

Both short- and long-term pollution forecasts need to be verified against a reliable

truth. The current network of Automatic Urban and Rural (AURN) sites provides re-

liable quality surface observations; however, the irregularity of these sites and extreme

spareness in some rural regions of the UK (e.g. Scotland, North Wales, the Lake District

and Northumberland to name a few) mean that the air quality forecast in these regions

cannot be verified reliably without the use of spatial interpolation or neighbourhood ver-

2https://www.gov.uk/government/news/government-responds-to-coroner-after-ella-kissi-

debrah-inquest

https://www.gov.uk/government/news/government-responds-to-coroner-after-ella-kissi-debrah-inquest
https://www.gov.uk/government/news/government-responds-to-coroner-after-ella-kissi-debrah-inquest
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ification methods, both of which introduce another element of measurement uncertainty.

Therefore, there is a need for a higher density network of quality-controlled air quality

observation sites in order to verify air quality forecasts reliably, especially as forecast

model resolution increases. Higher spatial density of observations could also pave a way

for incorporating data assimilation into the forecasts - either on small, urban-scales or

regional scales. Data assimilation can improve the accuracy of a forecast by regularly

incorporating near-real-time observations, in order to correct for any fluctuations from

the truth in the forecast. The air quality monitoring sites should also be located near to

existing WMO meteorological sites (of which there exist hundreds throughout the UK),

which could improve scientists’ understanding of direct links between air pollution and

meteorology on scales smaller than is currently possible.
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Brönnimann, S. and U. Neu, 1997: Weekend-weekday differences of near-surface ozone
concentrations in Switzerland for different meteorological conditions. Atmospheric En-
vironment , 31, 1127–1135, doi:10.1016/S1352-2310(96)00311-1. (cited on page: 19)

Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012a: Uni-
fied modeling and prediction of weather and climate: A 25-year journey. Bulletin of
the American Meteorological Society , 93, 1865–1877, doi:10.1175/BAMS-D-12-00018.1.
(cited on page: 41)



REFERENCES 185

Brown, B. G., E. Gilleland, and E. E. Ebert, 2012b: Forecasts of spatial fields. Forecast
verification: A practitioner’s guide in atmospheric science, I. T. Joliffe and D. B.
Stephenson, eds., John Wiley & Sons, volume 2, chapter 6, 2 edition, 95–118. (cited
on page: 9)

Brown, S. S. and J. Stutz, 2012: Nighttime radical observations and chemistry. Chemical
Society Reviews, 41, 6405, doi:10.1039/c2cs35181a. (cited on page: 118)

Brown-Steiner, B., P. Hess, and M. Lin, 2015: On the capabilities and limitations of
GCCM simulations of summertime regional air quality: A diagnostic analysis of ozone
and temperature simulations in the US using CESM CAM-Chem. Atmospheric Envi-
ronment , 101, 134–148, doi:10.1016/j.atmosenv.2014.11.001. (cited on page: 3)

Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró,
R. Bianconi, C. Chemel, G. Curci, R. Forkel, P. Jiménez-Guerrero, M. Hirtl, A. Hodzic,
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