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TNE: A General Time-aware Network Representation Learning Framework for Temporal
Applications

Huizhi Liang∗, Thanet Markchom

Department of Computer Science, University of Reading, United Kindom

Abstract

Temporal dynamics such as short term and long term effects, recency effects, periodic and seasonal temporal factors in informa-
tion networks are of great importance for many real-world applications. However, existing network embedding learning approaches
mainly focus on semantic information or temporal phenomenon such as recency or dynamic process. They failed to have the ca-
pability of incorporating multiple temporal factors/phenomenon in information networks. To bridge the gap, this paper proposes
a general time-aware network representation learning framework TNE for temporal applications. TNE contains a temporally an-
notated network TAN, a temporally annotated meta-path based random walk method, and a self-supervised embedding learning
approach. We introduce temporal nodes and relations to existing information networks to construct TAN that can incorporate mul-
tiple temporal factors. We propose a temporally annotated meta-path based random walk approach to form a time-aware hybrid
neighbourhood context that considers both semantic and temporal factors. Based on the time-aware context, self-supervised rep-
resentation learning approaches are used to simultaneously preserve both semantic and temporal factors in embeddings. Extensive
experiments of two large scale real-life datasets show that the proposed framework is effective in various temporal applications
such as temporal similarity search and temporal recommendations.

Keywords: Representation Learning, Heterogeneous Information Network, User Profiling, Network Embeddings, Temporal
Dynamics

1. Introduction

Temporal dynamics are natural and common in information
networks, which includes recency, short term and long term ef-
fects, periodic, seasonal and other effects. Recency effect is an
important temporal phenomenon in information networks. For
example, people in social media tend to discuss more recent
topics than topics 7 days ago [34]. Long term and short term
effects are common phenomenon for human users’ information
needs and topic preferences [59]. Commonly, a user has long
term preferences/interests in certain topics that seldom change
or remain a long time period [25]. A user is also affected by
his/her short-term interests due to breaking news events such as
pandemic diseases or special personal occasions/changes such
as birthday or having babies. Other temporal dynamics include
periodic effects such as a user’s active time in a day/month/year
and seasonal effects [59]. Temporal dynamics are of great im-
portance for many real-world temporal applications [25] such
as similarity search [19], recommendations [25], link predic-
tion [67], influence modelling [30], community detection [4,
21, 63], relation reasoning [53], and other network analysis
tasks [54].

Heterogeneous information network have been widely used
to model multi-typed entities and their interactions. For ex-

∗Corresponding author
Email addresses: huizhi.liang@reading.ac.uk (Huizhi Liang),

thanet.mar@gmail.com (Thanet Markchom )

ample, in a recommender system, there are multiple entities
including users, items, and affiliated entities such as tags and
item categories. These entities and relations form a hetero-
geneous information network [8]. Network embedding learn-
ing maps nodes in a network to low-dimensional embedding
vector representations and can effectively preserve the network
structure [46] and other information such as properties [29] and
attributes [15]. The embedding vectors can be directly used
as node features in various network processing and analysis
tasks [18] such as node classification, node clustering, similar-
ity search [19], recommendation [60], and link prediction [67].
The embedding learning approaches can be categories as self-
supervised learning methods such as skip-gram [41] model, trans-
former model [17], and end-end network embedding learning
approaches such as graph convolutional neural network [24]
and graph attention network [56]. Self-supervised approaches
can work on unlabelled data. They have been popularly used
to learn network representations in many application areas [13,
18, 17].

Static network embedding learning approaches are the main
stream of embedding learning approaches [8]. For heteroge-
neous information networks, the semantics of the networks are
very important [8]. The existing heterogeneous information
network representation learning approaches mainly focus on
the semantic factors of information networks. For example, us-
ing meta-path based approaches to form heterogeneous neigh-
borhood nodes context and learn nodes embeddings [51, 13,
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14]. Recently, some work explored the problem of learning dy-
namic node embeddings from temporal networks [50]. These
approaches focus on the dynamic evolution of network [50],
the sequence order of edges [42], and the change and updates
of edges and nodes [66]. The existing static and dynamic net-
work representation learning approaches fail to incorporate or
model the multiple temporal factors in information networks to
learn network representations. The major challenges of model-
ing temporal dynamics and learning time-aware embeddings in
information networks include:

First, how to represent various kinds of temporal factors in
existing information networks? In heterogeneous information
networks, each type of node might have different kinds of tem-
poral factors. For example, the temporal factors of item nodes
are usually different with those of user and tag nodes. Even for
the same type of nodes, one node might have different tempo-
ral factors with another. For example, some item nodes have
stronger seasonal effect than other item nodes. Some tempo-
ral factors are global phenomenon for the whole network while
some are local effects that are only applicable to part of the net-
work [59]. All these increase the complexity of this problem.

Second, how to consider both semantic and temporal factors
simultaneously to form neighborhood context and learn net-
work embeddings? Real-life applications usually need to con-
sider multiple factors in information networks, including both
semantic and temporal factors. For example, a user wants to
find a comedy movie and suitable to watch in weekend. This
query requires the consideration of those items with the seman-
tic meaning “comedy” and temporal factor “weekend”. Model-
ing the interaction of various types of factors in information net-
works and preserve these factors in network embeddings brings
challenges to existing network embedding learning approaches.

To address these challenges, we introduce a general time-
aware network representation learning framework TNE for tem-
poral applications. TNE contains three components: 1) a tem-
porally annotated network TAN; 2) a temporally annotated meta-
path based random walk method; 3) a self-supervised approach
for embedding learning. In this framework, we introduce tem-
poral nodes and relations to existing information networks to
construct TAN that can incorporate multiple temporal factors.
The nodes and edges of information networks are classified into
two types: semantic entity nodes and relations, and temporal
nodes and relations. The semantic entity nodes and relations
are traditional nodes and relations in information networks. The
proposed framework defines the concept of temporally anno-
tated meta-path. Following a random walk approach based on
temporally annotated meta-paths, we can consider both seman-
tic and temporal factors to find neighbor nodes and thus form a
time-aware hybrid neighborhood context. The time-aware hy-
brid context will be used to facilitate self-supervised represen-
tation learning approaches to learn network embeddings that si-
multaneously preserve both semantic and temporal factors. The
contribution of this paper is as below:

• This work proposes a general framework to learn time-aware
embeddings for temporal applications.

• This work introduces temporal nodes and temporal relations

to information networks to construct temporally anno-
tated information networks (TAN), for the purpose of in-
corporating temporal dynamics in information networks.

• This work proposes temporally annotated meta-paths guided
random walks to form profound hybrid context that con-
siders temporal and semantic factor simultaneously to learn
static time-aware network embeddings.

• This work conducted extensive experiments on real-life datasets
for various kinds of temporal applications including tem-
poral similarity search and temporal recommendation tasks.

The rest of the paper is organised as follows. In Section 2,
the related work will be briefly reviewed. Then the proposed
framework will be discussed in details in Section 3. In this
section, the definition and construction of temporally annotated
network (TAN) will be discussed first. Then, we will define
temporally annotated meta-path and discuss the time-aware hy-
brid neighborhood forming approach following temporally an-
notated meta-path random walk. In Section 4, the temporal
applications including temporal similarity search and tempo-
ral recommendation will be discussed. The experiments and
results will be discussed in Section 5. The conclusions will be
given in Section 6.

2. Related Work

Modelling time drifting data is a central problem in data
mining [25]. Temporal analysis contains a wide range of ana-
lytic techniques. For example, computing correlations between
time series [12, 64], detecting global and local temporal dy-
namics in user behaviors [25], identifying lagged effects [9], re-
cency phenomenon [34], periodic or seasonal effects [59], rec-
ognizing user engagement patterns [28] and temporal patterns
for patient treatment [5, 27]. Temporal dynamics have been dis-
cussed in various applications including similarity search [19],
recommender systems [25], link predictions [67], dynamic com-
munity structure analysis [45], and attack detection [7]. Simi-
larity search and recommender systems and are two important
applications. Accuracy is one important evaluation metrics.
Precision and Recall are commonly used to evaluate the accu-
racy of Top-N recommendation task, while Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) are widely
used to measure that of rating prediction task of recommender
systems. Besides accuracy, diversity metrics such as Coverage
and Novelty are popularly used for information retrieval and
Top-N recommendation tasks [26, 20, 10].

Modelling temporal dynamics is one important research di-
rection for these applications. Some time-aware similarity search
have been proposed. For example, Daud et al. [11] proposed a
method to incorporate temporal data in topic models for tem-
poral expert search. He et al. proposed to exploit transitive
similarity and temporal dynamics for similarity search in het-
erogeneous information networks [19]. Some temporal Collab-
orative filtering based approaches have been proposed to make
recommendations [62, 60, 25, 38, 33] and attack detection [7].
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For example, Koren et al. proposed a matrix factorisation ap-
proach to consider the temporal dynamics of users and items
to improve recommender systems [25]. Cai et al. proposed
an approach to detecting shilling attacks in recommender sys-
tems based on analysis of the temporal dynamics of user rating
behavior [7]. Other temporal dynamic modeling approaches in-
clude recency-aware [34], time interval-aware [31], long term
and short term-aware [59], time-weighted meta-path [36] rec-
ommendation approaches. These approaches are neither from
the perspective of learning network embeddings nor capable of
incorporating various kinds of temporal factors in their models.

Network embedding learning is an emerging network analy-
sis paradigm. It assigns nodes in a network to low-dimensional
embedding vector representations and effectively preserves the
network structure and other information [18]. The embedding
vectors can be directly used as node features in various network
processing and analysis tasks such as node classification, node
clustering, network visualisation [18, 13, 66], social influence
analysis [30], similarity search [19], recommendation [60, 33],
and link prediction [67]. Existing network embedding learning
approaches include self-supervised approaches and supervised
end-end embedding learning approaches. self-supervised ap-
proaches such as node2vec [18] and deepWalk [46] were in-
spired by the skip-gram model of Word2Vec [41] in natural
language processing area. End-end network embeddings learn-
ing models include graph convolutional neural network [24],
graph attention network [56], network embedding based recom-
mender systems [49]. They are usually supervised approaches
and learn embeddings from prediction tasks directly such as
node classification task.

The majority of research in this area focuses on static net-
work embedding learning approaches. These approaches can
be categorised as structure preserving [46], property preserv-
ing [29], and attributes preserving [15] approaches. Network
embedding usually refer to node embeddings. There are some
research focuses on learning the latent representations for edges
or relations [58, 35]. The node embedding learning approaches
can be classified as homogeneous network embedding learn-
ing approaches and heterogeneous information network learn-
ing approaches. For a homogeneous network with only one type
of entity and relation, these models capture the co-occurrence
phenomenon of nodes in a hop-n random walk context [18, 46].
For heterogeneous information networks with multiple type of
entities and relations, meta-paths based approaches are popu-
larly used to make recommendations [8, 51, 32]. The meta-path
similarity measure framework [51] of heterogenous informa-
tion networks provides a powerful mechanism for a user to mea-
sure the possibility of an unobserved user-item interaction in
the information network under different semantic assumptions.
Dong et al. proposed a metapath2vec[13] approach to learn
network embeddings for heterogeneous information network.
Recently, Fu et al. proposed a metapath aggregated graph neu-
ral network for heterogeneous graph embeddings [14]. These
approaches fail to model or discuss the temporal factors in the
information network. How to incorporate temporal factors in
heterogeneous information networks and learn the latent net-
work representations still need to be explored.

Recently, some work explored the problem of learning dy-
namic node embeddings from temporal networks [54, 37, 52,
44, 39, 16, 48, 23]. For example, some work proposed to ap-
proximate the dynamic network as a sequence of discrete static
snapshot graphs [50]. The work of Nguyen et al. [42] consid-
ers the temporal order of neighbour edges to learn continuous
time dynamic network embeddings. These approaches mainly
model the dynamic evolution of network [65], the sequence or-
der of edges [42], and the change and updates of edges and
nodes and weights [66]. However, these dynamic graph em-
bedding methods are mainly focusing on network dynamics or
the time-evolving phenomenon of nodes (e.g., adding, deletion,
updating of nodes), which is different with our approach that
focuses on temporal dynamics such as recency, long term, short
term, and periodic/seasonal phenomenon.

Different with these dynamic embedding learning approaches,
the proposed approach is a static network embedding learning
approach but focus on preserving both semantic and temporal
factors of the network in embeddings. In summary, the exist-
ing approaches mainly focus on semantic factor or one type of
temporal factor. They lack the capability of incorporating and
modeling multiple temporal factors in information networks to
learn network representations. To bridge the gap, the proposed
approach is a general framework that can incorporate multi-
ple temporal factors and simultaneously consider both semantic
and temporal factors to learn the latent network representations
for heterogeneous information networks.

3. TNE: A General Time-aware Network Representation
Learning Framework

In this section, we discuss the proposed framework. The
goal of this framework is to maximise the likelihood of preserv-
ing both semantic and temporal factors of a given information
network. We first discuss how to construct temporally anno-
tated networks TAN and how to design the weight functions.
Then we discuss how to form time-aware hybrid neighbour-
hood context that considers both semantic and temporal factors
in TAN. Based on the hybrid context, we discuss how to learn
time-aware network representations. Note this paper do not dif-
ferentiate the term “network” and “graph”. The summary of
notations is shown in Table 1.

3.1. The construction of TAN
To make an information network capable to incorporate mul-

tiple temporal factors, we introduce the concept of temporal
nodes and temporal relations to information networks. Their
definitions are given below.

Definition 1: Temporal nodes and Temporal relations.
Let f be a temporal analysis function, v and v′ are two nodes in
a graph. If the nodes have the same value f (v)=f (v′)= n, then
nodes v and v′ can be put into the same temporal bin/category
with the same value n. We call n a temporal node. The rela-
tion between nodes v and n is called a temporal relation.The
same with other semantic relations, temporal relations have di-
rections. The relation between nodes v′ and n is another tem-
poral relation. The function f is call a temporal type.
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Table 1: Summary of notations

Notations Descriptions Notations Descriptions
C schema G graph or network
N type nodes set V nodes set
R relation type edges set L edges set
W weight functions for relation type edges W weight functions for relation edges
Ni a type node v a node
Rij hop-1 relation of typeNi andNj lvv′ relation between nodes v and v′

R−1
ij reversed relation ofRij Z function of obtaining the relation type of an edge

Wij weight of relationRij Wvv′ weight for relation lvv′
E semantic entity type nodes set E semantic entity nodes set
T temporal type nodes set T temporal nodes set
Eτ temporally annotated entity types set Eτ temporally annotated entity nodes set
bei semantic entity relation weight Ov outgoing edges of node v
bti temporal relation weight Oev outgoing edges with semantic relations of node v
bi ratio of bei over bti Otv outgoing edges with temporal relations of node v
bd temporal decay weight M a meta-path
T (l) timestamp of edge l P random walk transition probability
t timestamp ρ random walk out-degree impact parameter
tm minimum timestamp of all edges of of Ov β prior weight for starting node
C context U users set
Ct temporal hybrid context ui a user in U
VC nodes in the context C P items set
d size of embedding vector or latent space pj an item in P
W nodes weight matrix Oi observed items of ui
V d-dimensional latent space Ñ (v) top k similar nodes of v
R non-negative real values Lj set of users that have rated pj
Z+ positive integer values k neighborhood size

If the temporal function is only related to one node type, we
call it a global temporal type. It does not dependent or condi-
tioned on other node types. Otherwise, we call it a local tempo-
ral type. For example, the ”session” concept is a local temporal

type. Those items that have the same time span and accessed
by the same user will be put in the same time bin or connect to
the same temporal node.

Example 1: Temporal nodes and relations. Let T denote
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the time series of user rating behavior of an item. For two given
items v and v′, T (v)={19-8-2018, 24-12-2019, 20-4-2020},
T (v′)={19-8-2015, 25-12-2018, 18-4-2020}. Assume the tem-
poral analysis function f is to get the “year” of the most re-
cent time stamp of these items. f (T (v))=f (T (v′))=“2020”.
“2020” is a temporal node, the temporal relation includes the
edge between “2020” and v, and the edge between “2020” and
v′. Nodes v and v′ are neighbor nodes and connected with each
other via the temporal function f . This function is a global
temporal type.

We can use various temporal feature engineering functions
or approaches to extract the temporal features of nodes. Tem-
poral type can be a simple or complicated temporal analysis
function, for example, tendency [6] and periodic analysis func-
tion [6], temporal distance measure function such as Dynamic
Time Warping Distance [22], Longest Common Sub-sequence [1].
It can be an Allen’s interval algebra function such as ”overlap”,
”meets”, ”during”, ”starts”, ”finishes” [3], time interval distri-
bution function [47], burst pattern detection function [43], out-
lier detection function [61]. It also can be a time series mod-
eling function such as moving average, auto-regression, and
ARIMA model [6].

A network schema is a graph that defines node types and re-
lation types of a network. It defines the semantics of a network.
For example, for a network schema of a movie heterogeneous
information network, the nodes of network schema represent
semantic entity types such as Users, Items, and Tags. The edges
represent semantic relation types of two types of nodes such
as User-Item relation and Item-Tag Relation types. The tem-
poral nodes and relations are used to annotate the semantic en-
tity nodes, we call this network Temporally Annotated Networks
(TAN). To be general, a TAN network schema is a weighted and
directed graph. It is defined as follows:

Definition 2: TAN schema. Let C denote a TAN schema,
C =(N,R,W), consists of type nodes N = {N1,N2, ...,Nm},
a set of relation type edges R, and a weight function W : R →
R that denotes a non-negative weight function to map each re-
lation type edge to a real value R. Type nodes include both
semantic entity types E and temporal types T. R includes re-
lations among type nodes, i.e. R = {Rij |i = 1...|N|, j =
1...|N|, i 6= j}, where Rij denotes the hop-1 connection rela-
tion of type Ni and Nj . R−1ij denotes the reversed relation of
Rij . Wij denote the weight of relation Rij . Relation types
include entity relation types that connect two entity type nodes
and temporal relation types.

Example 2: TAN Schema. Figure 1 (a) shows an exam-
ple TAN schema. It has entity types Users U , Items P , Tags
T , Genres G. Entity relation types include RGP , R−1GP , RTU ,
R−1TU ,RTP ,R−1TP . It has user temporal types S1 for user nodes
and item temporal types S2 for item nodes. S1 is defined to
get the latest active “year” of users. S2 is defined to get the
“month” of the most recent time stamp of items. Temporal Re-
lation types includeRS1U ,R−1S1U

,RS2P ,R−1S2P
.

Based on the schema C, we can define a network. The defi-
nition of TAN is as below:

Definition 3: TAN. It is defined as a weighted and directed
graph G =(V,L,W) with schema C. Each node v ∈ V belongs

to one particular node type of N. Each edge l ∈ L belongs to
a particular type of relation of R. Let E denote the set of entity
nodes, T denotes the set of temporal nodes, V = E∪T . Given a
node typeNi ∈ N, Ei denotes a set of nodes belong to node type
Ni. Let Le denote the set of entity relations of G, Lt denotes
the set of temporal relations of G, L = Le ∪ Lt. W : L → R
denotes a non-negative weight function for relationsL. There is
a mapping between the weight functionW of G and the weight
function W of schema C. For two nodes v and v′ of graph G,
assume v is a node of type Ni and v′ is a node of type Nj . Let
lvv′ be a relation of type Rij , Wvv′ be the weight for relation
lvv′ ,Wvv′ =Wij .

Example 3: TAN. Figure 1 (b) shows an example TAN de-
fined by schema C in Figure 1 (a). It has usersU = {u1, u2, u3},
tags T = {t1, t2, t3}, items P = {p1, p2, p3, p4}, and genre
nodes G = {g1, g2, g3}. It also has temporal nodes S1 =
{s11, s12}, and S2 = {s21, s22, s23}.

The problem of Network Representation Learning is de-
fined as: given a temporally annotated information network
TAN G, the task is to learn the d-dimensional latent represen-
tations V ∈ R|E|∗d for nodes V that are able to capture the
semantic and temporal relations among them, d� |E|.

3.2. The Design of Weight Functions

In this section, we discuss how to design weight functions.
In a TAN, assuming that temporal factors have the same im-
portance with the semantic factors is not always true in many
scenarios. To be able to model the different importance level of
temporal factors more precisely, we use a weight function W to
assign weights to different type of relations at the schema level.
Also, to be able to differentiate the importance of those edges
of the same type of relations (e.g., temporal decay), we use a
weight function W to assign weights to different edges at the
graph level.

For easy discussion, we introduce the concept temporally
annotated entity type and typical entity type. If a semantic en-
tity type is directly connected to one or more temporal types,
it is called a temporally annotated entity type. Otherwise, it is
called a typical entity type. Let Eτ denote the set of tempo-
rally annotated entity types at schema C, Eτ denote the set of
temporally annotated entity nodes at graph G. For example, in
Figure 1 (a), item type P is a temporally annotated entity type,
P ∈ Eτ , and item nodes p1 is a temporally annotated entity
node, p1 ∈ Eτ . For a given edge lvv′ ∈ L of G, let Ni be
the node type of v, Nj be the node type of v′, Rij is the edge
that connects type Ni and Nj at schema level C. We discuss
how to assign weight Wij for Rij ∈ R at the schema level and
Wvv′ ∈ L at the graph level. We discuss the weight setting for
both semantic and temporal relations.

3.2.1. Semantic Relation
Semantic relations connect two semantic entities nodes. Both

the source and target nodes can be either a typical entity type
node or a temporally annotated entity type node. Based on the
source node types, we discuss the following two cases:
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• i) The source type Ni is a typical entity type node, Ni ∈
E−Eτ . Based on the definition of typical entity type , the
target nodeNj only can be an semantic entity type (either
a typical entity type or a temporally annotated entity type,
Nj ∈ E). For this case, Rij is an entity relation and lij
connects two semantic entity types. Although the weight
for each relation type can be set differently by domain ex-
perts, assuming equal weight of each entity relation is a
common setting in heterogeneous information networks
[8]. For simplicity, we follow the traditional heteroge-
neous information networks setting, let weight Wij = 1
andWvv′ = 1 for this case. For example, in Figure 1 (a),
Genres G and Tags T are typical semantic entity types,
the weights of WGP ,WTU , and WTP are set to 1.

• ii) The source type Ni is a temporally annotated entity
type, Ni ∈ Eτ . The target node Nj can be either a tem-
poral type or a semantic entity type. We discuss the case
of Nj is a semantic entity type here while the case of Nj
is a temporal type in the following subsection 3.2.2. In
the case of Nj is a semantic entity type, Rij is an entity
relation and lij connects two semantic entity types. To
differentiate temporal relations and semantic relations,
we can assign different weights for them. At the schema
level, the source type Ni has two types of outgoing re-
lations. Let bei be the weight for the outgoing semantic
entity relation, 0 ≤ bei ≤ 1. If Ni has multiple outgoing
semantic entity types, we can assign different weights to
different types of outgoing semantic entity relations and
set their weight summation to bei . If the target Nj is a
semantic entity type, Wij = bei andWvv′ = bei . For ex-
ample, in Figure 1 (a), P and U are temporally annotated
types, G and T are semantic entity types, the weights for
W−1GP = bep, W−1TU = beu, W−1TP = bep.

3.2.2. Temporal Relation
Temporal relations connect semantic entities types and tem-

poral types. Based on the source node types, we discuss the
following two cases:

• i) Source type Ni is a temporally annotated entity type
Ni ∈ Eτ . The target node Nj can be either a temporal
type or a semantic entity type. We discuss the case of
Nj is a temporal node here. For this case, the relation
is a temporal relation. At the schema level, the source
typeNi has two types of outgoing relations. Let bti be the
weight for the temporal relation, 0 ≤ bti ≤ 1. 0 ≤ bti ≤ 1.
Similarly, if Ni has multiple outgoing temporal relation
types, we can give different weights to different types of
outgoing temporal relations and let their summation to bti.
For the purpose of normalising the total outgoing relation
weights of source type Ni, we set bti + bei = 1. Nj ∈ T,
Wij = bti andWvv′ = bti. For example, in Figure 1 (a),
U and P are temporally annotated nodes, S1 and S2 are
temporal nodes, W−1S1U

= btu, W−1S2P
= btp.

• ii) Source type Ni is a temporal type Ni ∈ T. Based
on the definition of temporally annotated entity type, the

target node Nj only can be a temporally annotated en-
tity type Nj ∈ Eτ . As a temporal type can connect to
one or multiple semantic entity types, we can set differ-
ent weights for different types of temporal relations by
domain experts. For simplicity and fitting the temporal
relations to the same weighting system as entity relations,
we set Wij = 1 at the schema level. For example, in Fig-
ure 1 (a), S1 and S2 are temporal nodes, U and P are
temporally annotate entity types, WS1U = 1, WS2P = 1.

To sum up, the weight function Wij forRij ∈ R at schema
level is defined as:

Wij =


1 if (Ni ∈ E− Eτ , Nj ∈ E) or

(Ni ∈ T, Nj ∈ Eτ )
bei if (Ni ∈ Eτ , Nj ∈ E)
bti (if Ni ∈ Eτ , Nj ∈ T)

(1)

Note, the weight Wij = 1 can be replaced by weights given
by experts. The weight function on the schema level can be
easily mapped to the weight function at network level. Differ-
ent with the weight setting of temporal relations at the schema
level, the weight of temporal relations at graph level should con-
sider the time decay effect.

3.2.3. Temporal decay
For a given edge lvv′ of G, we discuss how to set up tem-

poral decay effects at graph level generally. We discuss three
kinds of temporal decay methods:

Unbiased decay. This kind of decay ignored the temporal
differences between different outgoing nodes. Every outgoing
semantic entity nodes of source node v is equally important.
There is no temporal decay for outgoing temporal relations. For
simplicity and fitting the temporal relations to the same weight-
ing system as semantic relations, we setWvv′ = 1.

Exponential decay. We can incorporate different temporal
decay effects for outgoing semantic entity nodes with different
times tamps. For example, items have the same time function
value (i.e., connect with the same temporal node in TAN G), but
they have different time stamps. Thus we can use decay func-
tions to assigning higher weights for most recent items while
those old items will get lower weights. Let l be an edge be-
tween a temporal node v of type Ti (v ∈ Ti) and a temporally
annotated semantic entity node v′ of type Nj (v′ ∈ Eτj ), Ov
denote all the out edges of node v of relation type Rij , T (l)
is the timestamp of edge l, tm is a minimum timestamp of all
edges of Ov . The weight can be calculated as:

Wvv′ =
exp (T (l)− tm)∑

l′∈Ov
exp (T (l′)− tm)

(2)

This favours the edges come late in time. In other words, re-
cency matters.

Linear decay. When the time difference between two time-
wise consecutive edges is large, it can sometimes be helpful to
map the edges to discrete time steps. Let g : L → Z+ be a
function that sorts the edges in ascending order by time in the
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graph. g maps each edge to an index with g(l)=1 for the earliest
edge l. g(l′)=2, if l′ is a second earliest edge in L. In this case,
each edge l ∈ g(Ov) will be assigned the probability:

Wvv′ =
g (l)∑

l′∈Ov
g (l′)

(3)

Let bd denote the temporal decay weight. After consider-
ing the temporal decay effect of temporal relations, the weight
Wvv′ for edge lvv′ ∈ L at graph level is defined as below:

Wvv′ =


1 if (v ∈ Ei − Eτi , v′ ∈ Ej)
bd if (v ∈ Ti, v′ ∈ Eτj )
bei if (v ∈ Eτi , v′ ∈ Ej)
bti if (v ∈ Eτi , v′ ∈ Tj)

(4)

bd =


1

exp(T (l)−tm)∑
l′∈Ov

exp(T (l′)−tm)
g(l)∑

l′∈Ov
g(l′)

(5)

Note, the same with Wij on the schema level, the weight
Wij = 1 also can be replaced by weights given by experts.

3.3. Hybrid Neighbourhood Context Forming

For self-supervised representation learning models, ”con-
text” is a key concept that defines under which condition or
circumstances, a set of components are co-occurred together or
connect with each other[17, 41]. Context also defines the in-
put and output of a model. Usually, the input is one or some
components of the context and the output is the other compo-
nents of the same context. For example, for language skip-gram
model [41], the context is a window of words in a sentence. For
homogeneous information network, the context of a given node
of a graph is the hop-1 neighbours of that node [18]. For hetero-
geneous information network, the context usually has semantic
meaning [8, 32]. For example, meta-path (UPUP ) can find
items that are used by those users that at least shared one com-
mon item with a given user, which forms a user based collab-
orative filtering neighbourhood [32]. Meta-pah (UTP ) forms
a content based neighbourhood, while the items in the context
has the same tag with a given user [32].

Meta-path based random walk is popularly used to form
context for heterogeneous information networks[8, 32]. For a
TAN, as the nodes with the same temporal effect can be con-
sidered as similar nodes in terms as temporal effect, we can
consider temporal effect as one type of context to capture their
co-occurrence phenomenon and find neighbour nodes. To con-
sider both semantic and temporal factors in the same context,
we can use an “or” operation in a meta-path to find a hybrid
context. For a TAN, we define the context as a hybrid context
that includes both semantic and temporal factors. To better de-
scribe the hybrid context, we define the concept of temporally
annotated meta-path. We introduce symbol “⊕” to represent
an “or” operation of a temporally annotated type that has both
outgoing semantic entity relations and temporal relations.

Definition 4: Temporally Annotated Meta-path. A tem-
porally annotated meta-pathM = (i{beix⊕ btiy}l...j) is a se-
quence of node types and relation types in schema C of a TAN.
It contains at least one temporally annotated type and one tem-
poral relation type. For simplicity, we ignore the weights in the
annotation and use (i{x⊕ y}l...j) to denoteM.

M =
(
i{beix⊕ btiy}l...j

)
= Ni


Rix→
bei

Nx
Rxl→
Wxl

Riy→
bti

Ny
Ryl→
Wyl

Nl Rl.→
Wl.

... Nj .

(6)

Example 4: Temporally Annotated Meta-path. In Figure 1,
M = (P{T ⊕ S2}P ) is a temporally annotated meta-path. It
forms a hybrid neighbourhood. In this context, items are either
have the same temporal factor value or have the same tags with
each other. For item p1, following this meta-path, item p2 that
has the same temporal factor value with p1 has the probability
of btp being put in the same context with p1, while item p3 that
has the same tag with p1 has the probability of bep being put in
the same context with p1.

Starting from one source node, we can walk along a tempo-
rally annotated meta path to get a set of neighbour nodes. Dif-
ferent with those papers only consider symmetric meta paths,
in this paper, we do not restrict the meta paths be symmetric,
as the connectivity of different types of nodes are important
in many applications. For a given temporally annotated meta-
path M = (i{beix⊕ btiy}l...j), starting from source node v
with type Ni, it can walk along the path and reach target nodes
with type Nj . The walk transition probability from node v to
another node v′ with type Nl following Ril can be calculated
based on the ratio of the weight of the edge lvv′ over the to-
tal number of weights of all outgoing edges of v with relation
Ril. This paper assumes each connection (i.e., edge) between
any two nodes with the same type of relation without tempo-
ral decay is equally important. For example, in Figure 1, lp1g1
and lp1g2 have the same weight because they have the same
type of relation RPG. Let Z(lvv′ ) be the function of obtaining
the relation type of edge lvv′ , Z(lvv′ ) = Rij . Let Ov be the
set of outgoing edges of v with relation Rij of meta pathM,
Ov = {v′′ ∈ V : lvv′′ ∈ L,Z(lvv′ )= Ril}. The walk transi-
tion probability from node v to another v′ followingRil can be
calculated as:

P (v, v′) =

(
Wvv′∑

v′′∈Ov
Wvv′′

)ρ
(7)

Where ρ ∈ [0,1] is a parameter to tune the impact of the
out-degree in the random walk propagation process. Node v′

will get lower incoming preference if node v has larger out-
degree. Temporal relations can be decayed with time, which
will be further discussed in section 3.2.2. For easy control of
the importance of semantic and temporal factor, we introduce
parameter bi =

bei
bti

to control the ratio of semantic entity nodes
to temporal nodes. The outgoing edge setOv can be categorized
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Algorithm 1: Meta-path based Neighbourhood Context Forming
Input:
- GraphG, Graph schema C, Meta PathM
- Parameter bi, bd, ρ
Output:
- context setDC

1:DC ← {} // Initialize context set
2:RepeatN times:
3: C ← {} // Initialize context
4: k = 0 //k is the index of the sequence ofM
5: Randomly draw node v ∈ Vk , Vk has the node type Tk inM
6: C ← C ∪ {v}
7: For k =1 to |M|-1:
8: Draw next node v′ ∈ Vk with P

(
v, v′

)
based on Equation 8

9: C ← C ∪ {v′}
10: DC ← DC ∪ C

into semantic entity relations and temporal relations. Let Oev be
the sub set of outgoing edges of semantic entity relations. Otv
be the sub set of outgoing edges of temporal relations. Ov =
Otv ∪ Oev . By applying edge weight definition, Equation 7 can
be rewritten as:

P (v, v′) =



(
1
|Ov|

)ρ
if v ∈ Ei − Eτj , v′ ∈ Ej(

bd
|Ov|

)ρ
if v ∈ Ti, v′ ∈ Eτj(

1
|Oe

v|+ 1
bi
∗|Ot

v|

)ρ
if v ∈ Eτi , v′ ∈ Ej(

1
|Ot

v|+ 1
bi
∗|Oe

v|

)ρ
if v ∈ Eτi , v′ ∈ Tj

(8)

Parameter bi affects the importance of temporal and seman-
tic factors respectively on measuring the similarity of two nodes
with temporal annotations. If bi = 0, only semantic factor will
be considered. If bi = ∞, only temporal factor will be consid-
ered for the value of P (v, v′). P (v, v′) can be considered a
propagation function that measures how much preference of v
is propagated to its succeed node v′.

Injecting weights for starting nodes A Meta-path can start
with a temporal node or a semantic entity node. The weight
propagates from the starting node to the target node along the
meta-path. To control the influence of different types of starting
nodes, we can set up a parameter for the weight of the starting
node. Let B(vi) denote the function to inject prior preference
weight for a starting node, following a meta-pathM =(il...kj),
the transition probability from source node vi to target node vj
can be calculated by the following equation:

P (vi, vj |M) = B (vi) ∗P (vi, vl) ∗ ... ∗P (vk, vj) (9)

Let β denote a prior weight, 0 ≤ β ≤ 1. β is a parameter
used to tune the ratio of injected preferences on the entity node
against the temporal node. β = 0 means no preferences are
injected into the starting entity node; while β = 1 means all
preferences are injected into the starting temporal node. If vi is
a semantic entity node, vi ∈ Ei, B (vi) = β; if vi is a temporal
node, vi ∈ T , B (vi) = 1− β.

3.4. Embedding Learning Models
We can use self-supervised representation learning mod-

els to learn node embeddings. As skip-gram model has been
popularly used in heterogeneous information networks for the
task of node embedding learning [13], we used the skip-gram
model as the embedding learning model in this paper. For a
given context C, let VC ⊆ V denote the nodes in the context
C. The objective is then to maximise the average log prob-
ability: 1

|VC|
∑
v∈VC

∑
v′∈VC\{v} log Pr (v

′|v) The input is the
vector representation of a node v ∈ VC with random initiali-
sation, while the output is every other node in the same con-
text v′ ∈ VC \ {v}. Let W be the weight matrix between
the input layer and output layer; W is randomly initialised and
shared across all contexts. Let y denote the un-normalised log-
probability for each output node vl, which can be computed as:

y = W ·V (10)

We use a multi-class classifier (e.g., softmax) to conduct the
prediction task:

Pr (v′|v) = eyv′∑|VC|
l=1 e

yvl
(11)

We use the squared difference error as the loss function,
stochastic gradient descent to train the model, and back propa-
gation to obtain the gradient to update each input latent vector
of node v and weight matrix W. With this approach, we can
learn the representations of each node, including source nodes,
intermediate nodes, and target nodes of given paths.

4. Temporal Applications

We can apply the TNE framework to downstream temporal
applications, for example temporal recommendation and sim-
ilarity search. Figure 2 illustrates the application framework
of TNE. In these application scenario, users and items are two
basic node types in information networks G. Users: U =
{u1, u2, ..., uk} is the set of all users in an online community.
Items (e.g., Products or Businesses): P = {p1, p2, ..., pz} is
the set of all items that have interactions with users in U . In
this section, we discuss two important temporal applications:
temporal similarity search and temporal recommendations.

4.1. Temporal Similarity Search
Similarly search is popularly used in various kinds of sce-

narios, for example, information retrieval, clustering, and en-
tity resolution [19]. Temporal similarity search can help to an-
swer temporal dynamics related queries in temporal applica-
tions. Temporal similarity search is defined as given a node v
and a temporal or hybrid context Ct, find a set of nodes that are
similar to v. The distance or similarity measure can be calcu-
lated through various kinds of proximity computing approaches
such as cosine similarity or Pearson’s correlation. Cosine is
used to measure the similarity of two nodes in this paper. The
similarity of two nodes v and v′ can be measured by the similar-
ity of their node representations following temporally annotated
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Figure 2: The Application framework of TNE

meta-paths. Let sim(v, v′|Ct) be the similarity of two nodes v
and v′ in the context Ct. The top-k nodes of v is denoted as
Ñv = {v′|v′ ∈ maxKv′∈V {sim (v, v′|Ct)}}, v′ ∈ V , where
maxK{} returns the top-k most similar nodes to v. For hetero-
geneous entity type network, the similarity nodes is restricted
to the same type of nodes with v.

4.2. Temporal Recommendation

This section discusses how to make Top-N recommenda-
tions. Let Lu (ui, pj) be the predicted score of how much the
target user ui would be interested in the item pk, the problem of
Top-N recommendation is defined as to generate a set of (i.e.,
N numbers of ) ordered items pl, ..., pm ∈ P − Oi to the user
ui, where Oi is the set of observed items of ui and Lu(ui, pl)≥
... ≥ Lu(ui, pm). For temporal recommendation, the task is to
predict the item preferences of the target user ui after a given
time stamp t. The user behaviour data before the time stamp t is
used as training while the data after the time stamp t is used for
testing. With the proposed TAN framework, we can incorporate
various kinds of temporal and semantic factors such as user ac-
tive patterns and item life cycles, temporal decay of users and
items in user and item embedding. The constructed TAN can be
used for different kinds of recommendations approaches. The
neighborhood based collaborative filtering approaches are pop-
ularly used recommendation approaches. Comparing with ma-
trix factorisation and deep learning models, they are simple, ex-
plainable, and easy to implement. For this approach, each user
or item is profiled with the learned embeddings. We calculate
the similarity of the embeddings of each user with other users.

The neighborhood of user ui is denoted as Ñui
= {uj |uj ∈

maxKuj∈U{sim (ui, uj)}}, uj ∈ U . For each target user ui,
the prediction score of how much ui will be interested in an
unobserved candidate item pj ∈ P − Oi is calculated by con-
sidering the similarities between user ui and those users who
are neighbors of ui and have rated item pj [2]:

Lu (ui, pj) =
∑

uk∈(Ñui
∩Lj)

sim (ui, uk) (12)

Where Lj denotes the user nodes that item node pj has linked
based on hop-1 relation RUP−1 (i.e., those users that have
rated item pj). The Top N items with high prediction scores
will be recommended to the target user ui. This is a user-
based approach. Let Li denotes the item nodes that user node
ui has collected. The neighborhood of item pj is denoted as
Ñpj = {pk|pk ∈ maxKpk∈P {sim (pj , pk)}}, pk ∈ P . The
item based approach is given as below:

Lp (ui, pj) =
∑

pk∈(Ñpj
∩Li)

sim (pj , pk) (13)

5. Experiments

5.1. Datasets

To evaluate the effectiveness of the proposed approaches,
this work conducted experiments on the following two datasets:
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• HetRec2011-MovieLens Dataset: This is an extension
of MovieLens 10M dataset. It has enriched with various
kinds of affiliated information about movies [32]. This
includes the following data files or relations: the tagging
assignment user-taggedmovies.dat, the movie-genres.dat,
movie-directors.dat, movie-actors.dat, movie-countries.dat.
The recommended items are movies.1 The tagging be-
havior has timestamp information.

• Amazon Dataset: This dataset contains product reviews
and metadata from Amazon, including 142.8 million re-
views spanning May 1996 - July 2014.2 This dataset in-
cludes reviews (i.e., ratings, text, helpfulness votes, re-
viewTime), product metadata (i.e., descriptions, category
information, price, brand, and image features), and links
(i.e., also viewed/also bought graphs) [40]. We only se-
lected the “Clothing, Shoes and Jewelry” category. We
only retained 5-rated reviews in the dataset to ensure the
users’ satisfaction for learning their preferences and con-
sidered user rating as implicit feedback.

To reduce the sparseness in the dataset, this work filtered
out those user nodes that have tagged less than 10 items and
those item nodes that have been used by less than 10 users.
We used local temporal type and global temporal type of items.
For each item of HetRec2011-MovieLens Dataset, we aggre-
gated all the tagging behaviour represented as quadruples (User,
Item, Tag, Timestamp) related to this item. Then we convert the
timestamps to Year-Month format. The global temporal type
(denoted as Sg) of items are defined as Year-Month of items.
If two items have the same Year-Month value, these two items
are connect to the same temporal node. The local temporal type
(denoted as Sl) of items are defined as Year-Month-User. If
two items have been tagged at the same Year and Month by the
same user, then these two items are connect to the same tem-
poral node. The local temporal type is a personalized tempo-
ral factor. For each item of Amazon Dataset, we aggregated all
the review behaviour represented as quadruples (User, Item, Re-
view, Timestamp) related to this item. Then we follow the same
process to get the local and global temporal type nodes and rela-
tions. The statistics of the two datasets after pre-processing and
adding the temporal nodes and relations are shown in Table 2.
On average, each node of HetRec2011-MovieLens has 22.82
edges, and each node of Amazon Dataset has 14.22 edges.

For all embedding methods, we use the same parameters in-
cluding the vector dimension d=128 and the neighborhood size
k=100. The other parameter settings include ρ = 0.8, β = 1.
We selected some popularly used meta-paths. As symmetric
meta-paths that both start from and end with item nodes can
help find similar items, we used them for the temporal similar-
ity search application. In recommendation tasks, those asym-
metric meta-paths that start from a user node and end with
an item node are popularly used [8, 32]. We use those pop-
ular asymmetric meta-paths for the temporal recommendation

1https://grouplens.org/datasets/hetrec-2011/
2http://jmcauley.ucsd.edu/data/amazon/

application. The selected semantic and temporally annotated
meta-paths that used in the experiments are shown in Table 3.
For any temporally annotated meta-paths, both Sg and Sl can
be considered as the temporal types. For simplicity, we denote
the temporally annotated meta-paths with Sg as M1,2, M2,2,
..., M8,2 and the temporally annotated meta-paths with Sl as
M′1,2, M′2,2, ..., M′8,2. Accuracy and Diversity are used as
evaluation metrics to measure the performance of the compared
approaches.

5.2. Temporal Similarity Search

We conducted Top-N (N=[5,10]) temporal similarity search
experiments. We compared the proposed embedding learning
approach with the metapath2vec approach. We used the meta-
path2vec++ [13] approach in the experiments.3 The embed-
dings learned by metapath2vec approach is denoted as MPE
and those learned by the proposed approach denoted is denoted
as TNE. We used Coverage [26] to measure the diversity of
similarity search. We randomly selected 20% of item nodes as
query nodes. The results of averaged Coverage value is used
to measure the Diversity of the compared embeddings.

Table 4 shows a case study of Top-5 similar nodes of a given
item node for HetRec2011-MovieLens Dataset of MPE and
TNE with linear (i.e., dl) and exponential (i.e., de) decay func-
tions for both local (i.e., Sl) and global (i.e., Sg) temporal types
of item nodes. We also listed the Genres of each item. We can
see MPE mainly returns items that have the same Genres with
the query item such as “Action”, “Adventure”, “Sci-Fi”. As the
proposed approach TNE considers both semantically and tem-
porally associated items, the returned items is more diversified
in terms of Genres such as “Comedy” and “Drama”. Linear and
Temporal decay functions for local and global temporal types
returns different items. Table 5 shows a case study of Top-5
similar nodes of a given item node for Amazon Dataset. The
tables shows that MPE returned items with the same categories
as the query node, for example, “Team Sports” and “Athletic”.
The proposed approach TNE returned items with more diver-
sified and associated categories such as “Pants” and “T-shirts”.
These items are temporally associated with the query item. The
Genre/ Category Coverage results of Top-10 items of the two
compared approaches for different meta-paths are shown in Fig-
ure 3. We can see that the proposed approach TNE achieved
better Diversity than MPE.

To evaluate the effectiveness of preserving both temporal
and semantic information in embeddings, we conducted clus-
tering experiments for items with semantic, temporal, hybrid la-
bels. We selected Genre/ Category as the semantic label, Most-
Recent-Year-Month as the temporal label, and Genre/ Category-
Most-Recent-Year-Month as the hybrid label. For items that
have multiple genres or categories, we randomly selected one
genre or category to create the label. We used Normalized Mu-
tual Information NMI [13] to measure the performance of clus-
tering based on item node embeddings. The results of TNE

3https://ericdongyx.github.io/metapath2vec/m2v.
html
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Table 2: The basic statistics of datasets

Nodes Number Relations Number
HetRec2011-MovieLens

Users U 152
Movies P 301 RUP 3,870

Tags T 3,031 RPT 11,289
Movie Genres G 18 RPG 871

Directors D 193 RPD 300
Actors A 7,206 RPA 8,743

Item Global Temporal factors Sg 36 RPSg 2,766
Item Local Temporal factors Sl 306 RPSl 3,870

Nodes V 11,243 Edges E 31,709

Amazon
Users U 12,491
Item P 1,019 RUP 207,281

Category C 604 RPC 5,775
Brand B 77 RPB 221

Item Global Temporal factors Sg 121 RPSg 18,725
Item Local Temporal factors Sl 16,578 RPSl 207,281

Nodes V 30,890 Edges E 439,283

Table 3: The Selected Semantic and Temporally Annotated Meta-paths

Semantic Meta-path Temporally Annotated Meta-path
HetRec2011-MovieLens

M1,1 = (PGP ) M1,2 = (P{G⊕ S}P )
M2,1 = (PGPGP ) M2,2 = (P{G⊕ S}P{G⊕ S}P )
M3,1 = (UPUP ) M3,2 = (UP{U ⊕ S}P )
M4,1 = (UPGP ) M4,2 = (UP{G⊕ S}P )
M5,1 = (UPAP ) M5,2 = (UP{A⊕ S}P )
M6,1 = (UPDP ) M6,2 = (UP{D ⊕ S}P )
M7,1 = (UPTP ) M7,2 = (UP{T ⊕ S}P )
M8,1 = (UPUPUP ) M8,2 = (UP{U ⊕ S}P{U ⊕ S}P )
M9,1 = (UPGPUP ) M9,2 = (UP{G⊕ S}P{U ⊕ S}P )
M10,1 = (UPTPTP ) M10,2 = (UP{T ⊕ S}P{T ⊕ S}P )

Amazon
M1,1 = (PCP ) M1,2 = (P{C ⊕ S}P )
M2,1 = (PCPCP ) M2,2 = (P{C ⊕ S}P{C ⊕ S}P )
M3,1 = (UPUP ) M3,2 = (UP{U ⊕ S}P )
M4,1 = (UPCP ) M4,2 = (UP{C ⊕ S}P )
M5,1 = (UPBP ) M5,2 = (UP{B ⊕ S}P )
M6,1 = (UPUPUP ) M6,2 = (UP{U ⊕ S}P{U ⊕ S}P )
M7,1 = (UPCPUP ) M7,2 = (UP{C ⊕ S}P{U ⊕ S}P )
M8,1 = (UPBPUP ) M8,2 = (UP{B ⊕ S}P{U ⊕ S}P )

and MPE are shown in Figure 4. We can see that TNE had
higher NMI values than MPE for the selected temporal label
Most-Recent-Year-Month and hybrid label Genre/ Category-
Most-Recent-Year-Month, while MPE had better NMI values
for semantic label Genre. This shows that TNE can preserve
both semantic and temporal information in embeddings.

We also used t-SNE [55] to visualise the nodes based on
their embeddings. The embeddings are coloured with the three
kinds of selected labels different meta-paths. The results of
HetRec2011-MovieLens are shown in Figure 5, while the re-
sults of Amazon Dataset are shown in Figure 6. We can see
that those nodes with the same colour which represent the same

semantic label Genres are close to each other for MPE, while
the nodes with the same colours are more scattered for TNE.
For TNE, those nodes with the same colour which represent
the same temporal label Most-Recent-Year-Month and hybrid
label Genre-Most-Recent-Year-Month are more close to each
other than MPE. This also demonstrates the effectiveness of
preserving temporal and hybrid information in embeddings for
the proposed approach TNE.

5.3. Temporal Recommendation

Top-N recommendation task is popularly used for implicit
or binary ratings [2]. As the task is to recommend items, we
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only keep User-Item RUP relation in the Test Set. For a tar-
get user, we randomly selected 20% of User-Item relation as
Test Set, the rest User-Item relation and the affiliated informa-
tion forms the training graph set. The Precision and Recall
are used to measure the Accuracy performance of the Top-N
item recommendation task. The averaged values of all test users
are used to measure the overall Accuracy performances of rec-
ommendation approaches. This work conducted Top-N (N =
[1,5,10,50,100]) recommendation tasks on both datasets. The
Coverage of item Genres andNovelty of Top-10 items is used
to measure the Diversity of recommendations [26].

5.3.1. Recommendation Results
To evaluate the effectiveness of the proposed approach, we

compared the performances of the following approaches.

• MV : is the user-based Collaborative Filtering approach
based on the MPE embeddings learned by metapath2vec
approach [13]. This approach only considers semantic
factors and did not consider temporal nodes and relations.

• TM : is the proposed user based Collaborative Filtering
approach based on the TNE embedding. This approach
considers both semantic and temporal factors.

• CF : is the typical user based collaborative filtering ap-
proach. It is based on the user-item relation.

The best parameter settings are selected for all the com-
pared models. For HetRec2011-MovieLens Dataset, we se-
lectedM10,1 forMV model andM10,2 for TM model. Mean-
while, for Amazon Dataset, we selected M7,1 and M7,2 for
MV and TM respectively. For both datasets, the exponential
decay function (de) and the local temporal type (Sl) were se-
lected. The Precision, Recall, Coverage, and Novelty val-
ues are shown in Figure 7. We can see that for HetRec2011-
MovieLens Dataset, TM performed the best in evaluation ma-
trices Precision, Coverage, and Novelty. The Recall values
of all approaches are close, while MV had lower Recall val-
ues than that of the other approaches. For Amazon Dataset,
TM performed the best among these approaches from all four
evaluation metrics. MV and TM performed better than CF
approach from the aspect of Coverage and Novelty for both
datasets. The results show that we can boost both Accuracy
and Diversity performances, if we consider both semantic and
temporal factors in recommendation approaches.

5.3.2. The effectiveness of TAN for Recommendations
Furthermore, we evaluated whether the added temporal nodes

and relations are effective or not when the constructed temporally-
annotated network TAN is applied to Knowledge Graph based
recommender systems such as knowlege graph attention net-
works [57].

• GA: the state-of-the-art recommendation approach based
on knowledge graph attention network [57]. The input
graph is an expanded graph that generated by the com-
bination of various types of hop-n item-feature relations.

In the experiments, n = [1, 2, 3] [57]. The original input
graph of this approach ignores temporal information.

We used the cold start datasets that filtered out those users
that only had one item and those items that only being used
by one user. We use GA to denote this model based on the
original semantic network, GA-Sg denote the GA model with
added global temporal type relations and nodes, GA-Sl denote
the model with local temporal type and nodes. Note, for this set
of experiments, we directly applied the constructed TANs with-
out learning the embeddings. The temporal decay functions are
not applicable for GA related models. The Precision, Recall,
andNovelty results of these models are shown in Figure 8. We
can see that GA had slightly higher performance for Novelty
values than the other two approaches. GA-Sg and GA-Sl per-
formed better than GA for both datasets from the aspects of
Precision, Recall, and Coverage.

5.3.3. Detailed analysis of the proposed approach
We compared the performance of TM based on various

kinds of meta-paths. The meta-path set for each dataset is shown
in table 3. The results are shown in Figure 9. We can see that
M10,2 = (UP{T ⊕ S}P{T ⊕ S}P ) performed the best for
HetRec2011-MovieLens Dataset. Among all the selected meta-
paths,M7,2 = (UP{C ⊕ S}P{U ⊕ S}P ) performed the best
for Amazon dataset.

We compared the performance of TM with different set-
tings for temporal factor weight btp. btp is set from 0 to 1. The
semantic factor weight bep can be calculated based on the for-
mula bep = 1 − btp. btp = 0 means that only semantic nodes
will be selected in a temporally annotated meta-paths, while
btp = 1 means that only temporal nodes will be selected. The
meta-path is M4,1 for both datasets. The results of different
settings for btp is shown in Figure 10. We can see that btp = 0
performed the worst for both datasets. With a btp value between
0.25 to 0.75, TM can achieve better results. This also demon-
strated that considering both the semantic and temporal factors
can promote the recommendation performances.

6. Conclusion

This work proposed TNE a temporally annotated informa-
tion network embedding learning framework to preserve tem-
poral information in embeddings. In this framework, temporal
nodes and temporal relations were introduced to construct tem-
porally annotated networks to incorporate various kinds of tem-
poral factors in information networks. We also proposed tem-
poral annotated meta-paths guided random walk to form hybrid
context that simultaneously considers both semantic and tem-
poral factors to find neighbour nodes. A skip-gram based self-
learning approach has been used to learn the embeddings.

We conducted experiments in open accessed datasets in-
cluding HetRec2011-MovieLens Dataset and Amazon Dataset.
We compared the Diversity and Accuracy of the proposed ap-
proach with other static network embedding learning approaches
in the tasks of temporal similarity search and recommendation.
Extensive experiments show that the proposed framework is ef-
fective.
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Table 4: The Case Study of Temporal Similarity Search for HetRec2011-MovieLens Dataset

Query: Star Wars: Episode I-The Phantom Menace Genres (Action, Adventure, Sci-Fi)

Method MPE TNE + linear decay function dl
(global temporal factor Sg) (local temporal factor Sl)

Meta-path M1,1 =(PGP ) M1,2 =(P{G⊕ Sg}P ) M
′
1,2 =(P{G⊕ Sl}P )

Top N
1 Indiana Jones and the Last Crusade Akira Mr. & Mrs. Smith

(Action, Adventure) (Action, Adventure, Animation, Sci-Fi) (Action, Adventure, Comedy, Romance, Thriller)
2 Raiders of the Lost Ark The Life Aquatic with Steve Zissou Young Frankenstein

(Action, Adventure) (Adventure, Comedy, Fantasy) (Action, Comedy, Horror)
3 Total Recall 2001: A Space Odyssey Terminator 3: Rise of the Machines

(Action, Adventure, Sci-Fi, Thriller) (Adventure, Sci-Fi) (Action, Adventure, Sci-Fi)
4 Indiana Jones and the Temple of Doom Hotaru no haka The Bourne Identity

(Action, Adventure) (Animation, Drama, War) (Action, Thriller)
5 Star Wars: Episode II - Attack of the Clones La cité des enfants perdus Indiana Jones and the Last Crusade

(Action, Adventure, Sci-Fi) (Adventure, Drama, Fantasy, Mystery, Sci-Fi) (Action, Adventure)
Method TNE + exponential decay function de

(global temporal factor Sg) (local temporal factor Sl)
Meta-path M1,2 =(P{G⊕ Sg}P ) M

′
1,2 =(P{G⊕ Sl}P )

Top N
1 Waiting for Guffman To Kill a Mockingbird

(Comedy) (G-Drama)
2 King Kong Indiana Jones and the Temple of Doom

(Action, Adventure, Drama, Fantasy, Thriller) (Action, Adventure)
3 I Robot La cité des enfants perdus

(Action, Adventure, Sci-Fi, Thriller) (Adventure, Drama, Fantasy, Mystery, Sci-Fi)
4 Good Night and Good Luck. Ben-Hur

(Crime, Drama, Film-Noir) (Action, Adventure, Drama, Romance)
5 Smultronstället Sideways

(Drama) (Adventure, Comedy, Drama, Romance)

Method MPE TNE + linear decay function dl
(global temporal factor Sg) (local temporal factor Sl)

Meta-path M2,1 = (PGPGP ) M2,2 = (P{G⊕ Sg}P{G⊕ Sg}P ) M
′
2,2 = (P{G⊕ Sl}P{G⊕ Sl}P )

Top N
1 Dark City Close Encounters of the Third Kind The Shawshank Redemption

(Adventure, Fantasy, Film-Noir, Sci-Fi, Thriller) (Adventure, Drama, Sci-Fi) (Drama)
2 Superman Raiders of the Lost Ark Star Wars: Episode II - Attack of the Clones

(Action, Adventure, Sci-Fi) (Action, Adventure) (Action, Adventure, Sci-Fi)
3 Terminator 2: Judgment Day Edward Scissorhands Léon

(Action, Sci-Fi) (Comedy, Drama, Fantasy, Romance) (Crime, Drama, Romance, Thriller)
4 Total Recall Superman Psycho

(Action, Adventure, Sci-Fi, Thriller) (Action, Adventure, Sci-Fi) (Horror, Thriller)
5 Raiders of the Lost Ark The Truman Show Indiana Jones and the Temple of Doom

(Action, Adventure) (Drama, Fantasy) (Action, Adventure)
Method TNE + exponential decay function de

(global temporal factor Sg) (local temporal factor Sl)
Meta-path M2,2 = (P{G⊕ Sg}P{G⊕ Sg}P ) M

′
2,2 = (P{G⊕ Sl}P{G⊕ Sl}P )

Top N
1 The Matrix Reloaded Terminator 3: Rise of the Machines

(Action, Sci-Fi, Thriller) (Action, Adventure, Sci-Fi)
2 Ferris Bueller’s Day Off Interview with the Vampire: The Vampire Chronicles

(Comedy) (Drama, Horror)
3 This Is Spinal Tap Being John Malkovich

(Comedy, Musical) (Comedy, Drama, Fantasy)
4 The Usual Suspects Dr. Strangelove

(Crime, Mystery, Thriller) (Comedy, War)
5 Mononoke-hime Napoleon Dynamite

(Action, Adventure, Animation, Drama, Fantasy) (Comedy)

13



Ta
bl

e
5:

T
he

C
as

e
St

ud
y

of
Te

m
po

ra
lS

im
ila

ri
ty

Se
ar

ch
fo

rA
m

az
on

D
at

as
et

Q
ue

ry
:

C
at

eg
or

ie
s

(T
ea

m
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
)

M
et

ho
d

M
PE

T
N

E
+

lin
ea

r
de

ca
y

fu
nc

tio
n
d
l

T
N

E
+

ex
po

ne
nt

ia
ld

ec
ay

fu
nc

tio
n
d
e

(g
lo

ba
lt

em
po

ra
lf

ac
to

rS
g
)

(l
oc

al
te

m
po

ra
lf

ac
to

rS
l)

(g
lo

ba
lt

em
po

ra
lf

ac
to

rS
g
)

(l
oc

al
te

m
po

ra
lf

ac
to

rS
l)

M
et

a-
pa

th
M

1
,1

=
(P
C
P

)
M

1
,2

=
(P
{C
⊕
S
g
}P

)
M

′ 1
,2

=
(P
{C
⊕
S
l}
P

)
M

1
,2

=
(P
{C
⊕
S
g
}P

)
M

′ 1
,2

=
(P
{C
⊕
S
l}
P

)
To

p
N

1
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
U

ni
fo

rm
s

W
or

k
Sa

fe
ty

,P
an

ts
,M

en
,C

lo
th

in
g

Fa
sh

io
n

Sn
ea

ke
rs

,M
en

,S
ho

es
Fa

sh
io

n
Sn

ea
ke

rs
,M

en
,S

ho
es

Fa
sh

io
n

Sn
ea

ke
rs

,W
om

en
,S

ho
es

2
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
N

o
Sh

ow
L

in
er

So
ck

s,
W

om
en

,C
lo

th
in

g
Sn

ea
ke

rs
,G

ir
ls

,S
ho

es
Sn

ea
ke

rs
,G

ir
ls

,S
ho

es
W

om
en

,S
ho

es
,A

th
le

tic

3
R

un
ni

ng
,M

en
,S

ho
es

,A
th

le
tic

C
lo

th
in

g,
U

ni
fo

rm
s

W
or

k
Sa

fe
ty

Fa
sh

io
n

Sn
ea

ke
rs

,W
om

en
,S

ho
es

Sh
oe

s,
B

oo
ts

,M
en

,C
hu

kk
a

W
om

en
,I

m
po

rt
ed

,S
ho

es

4
la

ce
up

,R
un

ni
ng

,c
an

va
s,

W
om

en
,S

ho
es

,A
th

le
tic

Je
an

s,
M

en
Fa

sh
io

n
Sn

ea
ke

rs
,W

om
en

,I
m

po
rt

ed
,S

ho
es

M
en

,S
ho

es
Fa

sh
io

n
Sn

ea
ke

rs
,W

om
en

,I
m

po
rt

ed
,S

ho
es

5
ca

nv
as

,W
om

en
,S

ho
es

,A
th

le
tic

ca
nv

as
,W

om
en

,S
ho

es
,A

th
le

tic
Fa

sh
io

n
Sn

ea
ke

rs
,M

en
,S

ho
es

So
ck

s,
M

en
,C

lo
th

in
g,

C
as

ua
l

So
ck

s
Fa

sh
io

n
Sn

ea
ke

rs
,W

om
en

,S
ho

es
M

et
a-

pa
th

(M
2
,1

=
(P
C
P
C
P

)
M

2
,2

=
(P
{C
⊕
S
g
}P
{C
⊕
S
g
}P

)
M

′ 2
,2

=
(P
{C
⊕
S
l}
P
{C
⊕
S
l}
P

)
M

2
,2

=
(P
{C
⊕
S
g
}P
{C
⊕
S
g
}P

)
M

′ 2
,2

=
(P
{C
⊕
S
l}
P
{C
⊕
S
l}
P

)
To

p
N

1
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
T

Sh
ir

ts
,M

en
,S

hi
rt

s,
C

lo
th

in
g

Fa
sh

io
n

Sn
ea

ke
rs

,M
en

,S
ho

es
W

om
en

,C
lo

th
in

g,
To

ps
Te

es
B

lo
us

es
Fa

sh
io

n
Sn

ea
ke

rs
,M

en
,S

ho
es

2
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
Fa

sh
io

n
Sn

ea
ke

rs
,M

en
,S

ho
es

Sn
ea

ke
rs

,G
ir

ls
,S

ho
es

Su
rf

Sk
at

e
St

re
et

,F
as

hi
on

Sn
ea

ke
rs

,M
en

,S
ho

es
Fa

sh
io

n
Sn

ea
ke

rs
,W

om
en

,I
m

po
rt

ed
,S

ho
es

3
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
Sn

ea
ke

rs
,G

ir
ls

,S
ho

es
Fa

sh
io

n
Sn

ea
ke

rs
,W

om
en

,S
ho

es

4
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
M

ili
ta

ry
,U

ni
fo

rm
s

W
or

k
Sa

fe
ty

,T
op

s,
M

en
,C

lo
th

in
g

Fa
sh

io
n

Sn
ea

ke
rs

,M
en

,S
ho

es
Su

rf
Sk

at
e

St
re

et
,F

as
hi

on
Sn

ea
ke

rs
,M

en
,S

ho
es

Sn
ea

ke
rs

,G
ir

ls
,S

ho
es

5
Te

am
Sp

or
ts

,B
as

ke
tb

al
l,

M
en

,S
ho

es
,A

th
le

tic
A

cc
es

so
ri

es
,M

en
,B

el
ts

Fa
sh

io
n

Sn
ea

ke
rs

,W
om

en
,S

ho
es

U
ni

fo
rm

s
W

or
k

Sa
fe

ty
,P

an
ts

,M
en

,C
lo

th
in

g
Fa

sh
io

n
Sn

ea
ke

rs
,M

en
,S

ho
es

14



This paper focuses on the static embedding learning ap-
proaches and did not consider the time-evolving of nodes (e.g.,
adding, deletion, updating of nodes). The proposed framework
can be expanded to support dynamic embedding learning ap-
proaches. For example, we can record the sequence or order of
nodes and edges in TNE. The future work will investigate novel
dynamic time-aware embedding learning approaches based on
TNE. The future work will also extend the proposed framework
to include the content information of node and explore novel
self-learning approaches for the proposed framework.
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(a) Genre Labels

(b) Most-Recent-Year-Month Labels

(c) Genre-Most-Recent-Year-Month Labels

Figure 5: TSNE visualisation of item embeddings with different labels for HetRec2011-MovieLens Dataset.Coloured with Genres, Recent-Year-Month, and Genre-
Most-Recent-Year-Month Labels respectively
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(a) Category Labels

(b) Most-Recent-Year-Month Labels

(c) Category-Most-Recent-Year-Month Labels

Figure 6: TSNE visualisation of item embeddings with different labels for Amazon Dataset. Coloured with Genres, Most-Recent-Year-Month, and Genre-Most-
Recent-Year-Month Labels respectively
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(a) HetRec2011-MovieLens Dataset (b) Amazon Dataset

Figure 7: Results of Comparison with baseline models

(a) HetRec2011-MovieLens Dataset (b) Amazon Dataset

Figure 8: Results of GA model based on different TANs for cold start datasets

(a) HetRec2011-MovieLens Dataset (b) Amazon Dataset

Figure 9: Results of TM model based on different meta-paths
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(b) Exponential Decay de with different btp weights for HetRec2011-MovieLens Dataset

(c) Linear Decay dg with different btp weights for Amazon Dataset

(d) Exponential Decay de with different btp weights for Amazon Dataset

Figure 10: Results of different settings for temporal weight parameter btp of TM model based on meta-path M4,1 with different temporal decay functions
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[67] A. Özcan and Ş. G. Öğüdücü. 2015. Multivariate temporal Link Predic-
tion in evolving social networks. In 2015 IEEE/ACIS 14th International
Conference on Computer and Information Science (ICIS). 185–190.

21


